1
|
Schicker D, Khorisantono PA, Rramani Dervishi Q, Lim SXL, Saruco E, Pleger B, Schultz J, Ohla K, Freiherr J. Smell the Label: Odors Influence Label Perception and Their Neural Processing. J Neurosci 2025; 45:e1159242024. [PMID: 39993837 PMCID: PMC11968547 DOI: 10.1523/jneurosci.1159-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 12/10/2024] [Accepted: 12/26/2024] [Indexed: 02/26/2025] Open
Abstract
Providing nutrition or health labels on product packaging can be an effective strategy to promote a conscious and healthier diet. However, such labels also have the potential to be counterproductive by creating obstructive expectations about the flavor of the food and influencing odor perception. Conversely, olfaction could significantly influence label perception, whereby negative expectations could be mitigated by pleasant odors. This study explored the neural processing of the interplay between odors and nutrition labels using fMRI in 63 participants of either sex, to whom we presented beverage labels with different nutrition-related statements either with or without a congruent odor. On a behavioral level, the products for which the label was presented together with the odor were in general perceived as more positive than the same labels without an odor. Neuroimaging results revealed that added odors significantly altered activity in brain regions associated with flavor and label processing as well as decision-making, with higher activations in the right amygdala/piriform cortex (Amy/pirC) and orbitofrontal cortex. The presentation of odors induced pattern-based encoding in the right dorsolateral prefrontal cortex, the left ventral striatum/nucleus accumbens, and the right Amy/pirC when accounting for behavioral differences. This suggests that odors influence the effects of labels both on a neural and behavioral level and may offer the possibility of compensating for obstructive associations. The detailed mechanisms of odor and statement interactions within the relevant brain areas should be further investigated, especially for labels that evoke negative expectations.
Collapse
Affiliation(s)
- Doris Schicker
- Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising 85354, Germany
| | - Putu A Khorisantono
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | | | - Shirley X L Lim
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm SE-171 77, Sweden
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14558, Germany
| | - Elodie Saruco
- Clinic for Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum 44789, Germany
| | - Burkhard Pleger
- Clinic for Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum 44789, Germany
| | - Johannes Schultz
- Institute for Experimental Epileptology and Cognition Research, University of Bonn, Bonn 53127, Germany
- Center for Economics and Neuroscience & Institute for Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Bonn 53223, Germany
| | - Kathrin Ohla
- NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal 14558, Germany
- Head of Perception & Cognitive Neuroscience, Science & Research, dsm-firmenich, Satigny 1242, Switzerland
| | - Jessica Freiherr
- Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Freising 85354, Germany
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91054, Germany
| |
Collapse
|
2
|
Zhang X, Zhu Y, Lu J, Chen Q, Chen F, Long C, Xu X, Ge D, Bai Y, Liu D, Du S, Zhu Z, Mai X, Yang QX, Zhang B. Altered functional connectivity of primary olfactory cortex-hippocampus-frontal cortex in subjective cognitive decline during odor stimulation. Hum Brain Mapp 2024; 45:e26814. [PMID: 39163575 PMCID: PMC11335137 DOI: 10.1002/hbm.26814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/22/2024] Open
Abstract
Subjective cognitive decline (SCD) is a high-risk population in the preclinical stage of Alzheimer's disease (AD), and olfactory dysfunction is a risk factor for dementia progression. The present study aimed to explore the patterns of functional connectivity (FC) changes in the olfactory neural circuits during olfactory stimulation in SCD subjects. A total of 56 SCD subjects and 56 normal controls (NCs) were included. All subjects were assessed with a cognitive scale, an olfactory behavior test, and olfactory task-based functional magnetic resonance imaging scanning. The FC differences in olfactory neural circuits between the two groups were analyzed by the generalized psychophysiological interaction. Additionally, we calculated and compared the activation of brain regions within the olfactory neural circuits during odor stimulation, the volumetric differences in brain regions showing FC differences between groups, and the correlations between neuroimaging indicators and olfactory behavioral and cognitive scale scores. During odor stimulation, the FC between the bilateral primary olfactory cortex (bPOC) and the right hippocampus in the SCD group was significantly reduced; while the FC between the right hippocampus and the right frontal cortex was significantly increased in the SCD group. The bPOC of all subjects showed significant activation, but no significant difference in activation between groups was found. No significant differences were observed in the volume of the brain regions within the olfactory neural circuits or in olfactory behavior between groups. The volume of the bPOC and right frontal cortex was significantly positively correlated with olfactory identification, and the volume of the right frontal cortex and right hippocampus was significantly correlated with cognitive functions. Furthermore, a significant correlation between the activation of bPOC and the olfactory threshold was found in the whole cohort. These results suggested that while the structure of the olfactory neural circuits and olfactory behavior in SCD subjects remained stable, there were significant changes observed in the FC of the olfactory neural circuits (specifically, the POC-hippocampus-frontal cortex neural circuits) during odor stimulation. These findings highlight the potential of FC alterations as sensitive imaging markers for identifying high-risk individuals in the early stage of AD.
Collapse
Affiliation(s)
- Xin Zhang
- Department of RadiologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
| | - Yajing Zhu
- Department of RadiologyNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingChina
| | - Jiaming Lu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Qian Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Futao Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Cong Long
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xinru Xu
- Department of RadiologyNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingChina
| | - Danni Ge
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Yijun Bai
- Department of PsychologyNanjing UniversityNanjingChina
| | - Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Shunshun Du
- Department of PsychologyNanjing UniversityNanjingChina
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Xiaoli Mai
- Department of RadiologyNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingChina
| | - Qing X. Yang
- Department of RadiologyThe Pennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Bing Zhang
- Department of RadiologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingChina
- Department of RadiologyNanjing Drum Tower Hospital Clinical College of Nanjing Medical UniversityNanjingChina
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
- Department of PsychologyNanjing UniversityNanjingChina
- Institute of Medical Imaging and Artificial IntelligenceNanjing UniversityNanjingChina
- Medical Imaging Center, Affiliated Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular MedicineNanjingChina
- Institute of Brain ScienceNanjing UniversityNanjingChina
| |
Collapse
|
3
|
Wang Y, Shen T, Wang Y. Association between dietary zinc intake and olfactory dysfunction: a study based on the NHANES database. Eur Arch Otorhinolaryngol 2024; 281:2441-2450. [PMID: 38180607 DOI: 10.1007/s00405-023-08427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
OBJECTIVE The primary objective of this study was to find the association between dietary zinc intake and the prevalence of olfactory disorders using data from the National Health and Nutrition Examination Survey (NHANES). METHODS A cross-sectional study was conducted using the 2013-2014 NHANES data. A linear regression model was constructed with dietary zinc intake as the independent variable and olfactory dysfunction as the dependent variable. Initially, in the unadjusted model, weighted logistic regression analysis was carried out for continuous variables, and stratified analysis was conducted for categorical variables. Subsequently, three models were created to perform subgroup analysis by adjusting for different confounding factors, further investigating the relationship between dietary zinc intake and olfactory dysfunction. Finally, restricted cubic spline (RCS) models adjusting for all confounding factors were utilized to study the nonlinear associations of age and dietary zinc intake with olfactory dysfunction and their relevant thresholds. RESULTS A total of 2958 samples were analyzed in this study. Weighted logistic regression analysis displayed a negative relationship between dietary zinc intake and the prevalence of olfactory dysfunction in the population of non-Hispanic whites and other Hispanics, as well as in individuals with body mass index (BMI) ≥ 25 kg/m2 (OR < 1, P < 0.05). The P values for the multiplicative interaction terms adjusting for all confounding factors were not significant (P for interaction > 0.05). In the three regression models adjusting for different confounding factors, dietary zinc intake was significantly negatively related to olfactory dysfunction in all populations (Crude: OR 0.63, 95% CI 0.44-0.91; Model I: OR 0.58, 95% CI 0.38-0.90; Model II: OR 0.59, 95% CI 0.35-1.00). Subgroup analysis based on BMI showed a remarkable negative relationship between dietary zinc intake and olfactory dysfunction in the group with BMI of 25-30 kg/m2 (Crude: OR 0.50, 95% CI 0.28-0.90, P = 0.012; Model I: OR 0.49, 95% CI 0.24-1.00, P = 0.021) and the group with BMI ≥ 30 kg/m2 (Crude: OR 0.55, 95% CI 0.33-0.92, P = 0.013; Model I: OR 0.51, 95% CI 0.29-0.88, P = 0.005; Model II: OR 0.51, 95% CI 0.29-0.91, P = 0.004). RCS analysis revealed a remarkable nonlinear association of age and dietary zinc intake with olfactory dysfunction (P-non-linear < 0.05). The prevalence of olfactory dysfunction was considerably higher in individuals aged 60 and above compared to those under 60 years old. Daily dietary zinc intake within the range of 9.60-17.45 mg was a protective factor for olfactory dysfunction, while intake outside this range increased the prevalence of olfactory dysfunction. CONCLUSION Daily dietary zinc intake within the range of 9.60-17.45 mg has a protective effect against olfactory dysfunction. Intake outside this range increases the prevalence of olfactory dysfunction. The prevalence of olfactory dysfunction is significantly higher in individuals aged 60 and above compared to those under 60 years old. For individuals with a BMI of 25-30 kg/m2 and a BMI ≥ 30 kg/m2, dietary zinc intake is negatively correlated with olfactory dysfunction. Therefore, it is recommended that these populations increase their dietary zinc intake to develop healthier lifestyles and maintain olfactory health.
Collapse
Affiliation(s)
- Yifang Wang
- Department of Otolaryngology, Panan People's Hospital, No. 1 Luoshan Road, Anwen Street, Panan County, Jinhua City, 322300, Zhejiang Province, China.
| | - Tianping Shen
- Department of Otolaryngology, Panan People's Hospital, No. 1 Luoshan Road, Anwen Street, Panan County, Jinhua City, 322300, Zhejiang Province, China
| | - Yan Wang
- Department of Otolaryngology, Panan People's Hospital, No. 1 Luoshan Road, Anwen Street, Panan County, Jinhua City, 322300, Zhejiang Province, China
| |
Collapse
|
4
|
Oka N, Iwai K, Sakai H. The neural substrates responsible for food odor processing: an activation likelihood estimation meta-analysis. Front Neurosci 2023; 17:1191617. [PMID: 37424999 PMCID: PMC10326844 DOI: 10.3389/fnins.2023.1191617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
In many species including humans, food odors appear to play a distinct role when compared with other odors. Despite their functional distinction, the neural substrates responsible for food odor processing remain unclear in humans. This study aimed to identify brain regions involved in food odor processing using activation likelihood estimation (ALE) meta-analysis. We selected olfactory neuroimaging studies conducted with sufficient methodological validity using pleasant odors. We then divided the studies into food and non-food odor conditions. Finally, we performed an ALE meta-analysis for each category and compared the ALE maps of the two categories to identify the neural substrates responsible for food odor processing after minimizing the confounding factor of odor pleasantness. The resultant ALE maps revealed that early olfactory areas are more extensively activated by food than non-food odors. Subsequent contrast analysis identified a cluster in the left putamen as the most likely neural substrate underlying food odor processing. In conclusion, food odor processing is characterized by the functional network involved in olfactory sensorimotor transformation for approaching behaviors to edible odors, such as active sniffing.
Collapse
|
5
|
Alotaibi MM, De Marco M, Venneri A. Sex differences in olfactory cortex neuronal loss in aging. Front Hum Neurosci 2023; 17:1130200. [PMID: 37323926 PMCID: PMC10265738 DOI: 10.3389/fnhum.2023.1130200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Aging plays a major role in neurodegenerative disorders such as Alzheimer's disease, and impacts neuronal loss. Olfactory dysfunction can be an early alteration heralding the presence of a neurodegenerative disorder in aging. Studying alterations in olfaction-related brain regions might help detection of neurodegenerative diseases at an earlier stage as well as protect individuals from any danger caused by loss of sense of smell. Objective To assess the effect of age and sex on olfactory cortex volume in cognitively healthy participants. Method Neurologically healthy participants were divided in three groups based on their age: young (20-35 years; n = 53), middle-aged (36-65 years; n = 66) and older (66-85 years; n = 95). T1-weighted MRI scans acquired at 1.5 T were processed using SPM12. Smoothed images were used to extract the volume of olfactory cortex regions. Results ANCOVA analyses showed significant differences in volume between age groups in the olfactory cortex (p ≤ 0.0001). In women, neuronal loss started earlier than in men (in the 4th decade of life), while in men more substantial neuronal loss in olfactory cortex regions was detected only later in life. Conclusion Data indicate that age-related reduction in the volume of the olfactory cortex starts earlier in women than in men. The findings suggest that volume changes in olfaction-related brain regions in the aging population deserve further attention as potential proxies of increased risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Majed M. Alotaibi
- Sheffield Institute for Translational Neuroscience, The University of Sheffield, Sheffield, United Kingdom
- Department of Medical Genomics Research, King Abdullah International Medical Research Center, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge, United Kingdom
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
6
|
Kim BY, Lee SH, Kim IK, Park JY, Bae JH. Chronic intermittent hypoxia impacts the olfactory nervous system in an age-dependent manner: pilot study. Eur Arch Otorhinolaryngol 2023; 280:241-248. [PMID: 35780199 DOI: 10.1007/s00405-022-07529-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Obstructive sleep apnea (OSA) is characterized by repetitive upper airway collapse during sleep, which induces chronic intermittent hypoxia (CIH). CIH results in low-grade inflammation, sympathetic overactivity, and oxidative stress. Nevertheless, it remains unclear how exposure to CIH affects olfaction. The purpose of this study was, therefore, to investigate the cytotoxic effects of CIH exposure on mouse olfactory epithelium and the underlying pathophysiology involved. METHODS Mice were randomly divided into four groups: Youth mouse (You) + room air (RA), You + intermittent hypoxia (IH), Elderly mouse (Eld) + RA, and Eld + IH (n = 6 mice/group). Mice in the two hypoxia groups were exposed to CIH. The control condition involved exposure to room air (RA) for 4 weeks. Olfactory neuroepithelium was harvested for histologic examination, gene ontology analysis, quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting. RESULTS Based on qRT-PCR analysis, olfactory marker protein (OMP), Olfr1507, ADCY3, and GNAL mRNA levels were lower, whereas NGFR, CNPase, NGFRAP1, NeuN, and MAP-2 mRNA levels were higher in the You + IH group than in the You + RA group. Olfactory receptor-regulated genes, neurogenesis-related genes and immunohistochemical results were altered in nasal neuroepithelium under CIH exposure. CONCLUSIONS Based on genetic and cytologic analysis, CIH impacted the olfactory neuroepithelium in an age-dependent manner. Our findings suggest that CIH-induced damage to the olfactory neuroepithelium may induce more severe change in the youth than in the elderly.
Collapse
Affiliation(s)
- Boo-Young Kim
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Seoul Hospital, Ewha Womans University, Gangseo-gu, Gonghang-daero 260, Seoul, Korea.
| | - Sang Haak Lee
- Department of Clinical Laboratory, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Eunpyeong, Seoul, Korea
| | - In Kyoung Kim
- Department of Clinical Laboratory, Eunpyeong St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Eunpyeong, Seoul, Korea
| | - Ju Yeon Park
- Department of Clinical Laboratory, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Banpo, Seoul, Korea
| | - Jung Ho Bae
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Seoul Hospital, Ewha Womans University, Gangseo-gu, Gonghang-daero 260, Seoul, Korea
| |
Collapse
|
7
|
Fantin L, Pinzano C, Rumeau C, Hossu G, Ceyte H. Effects of Gender and Age on Self-reported Odor Imagery Ability. CHEMOSENS PERCEPT 2022. [DOI: 10.1007/s12078-022-09302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
8
|
Felix C, Chahine LM, Hengenius J, Chen H, Rosso AL, Zhu X, Cao Z, Rosano C. Diffusion Tensor Imaging of the Olfactory System in Older Adults With and Without Hyposmia. Front Aging Neurosci 2021; 13:648598. [PMID: 34744681 PMCID: PMC8569942 DOI: 10.3389/fnagi.2021.648598] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/21/2021] [Indexed: 11/15/2022] Open
Abstract
Objectives: To compare gray matter microstructural characteristics of higher-order olfactory regions among older adults with and without hyposmia. Methods: Data from the Brief Smell Identification Test (BSIT) were obtained in 1998–99 for 265 dementia-free adults from the Health, Aging, and Body Composition study (age at BSIT: 74.9 ± 2.7; 62% White; 43% male) who received 3T diffusion tensor imaging in 2006–08 [Interval of time: mean (SD): 8.01 years (0.50)], Apolipoprotein (ApoEε4) genotypes, and repeated 3MS assessments until 2011–12. Cognitive status (mild cognitive impairment, dementia, normal cognition) was adjudicated in 2011–12. Hyposmia was defined as BSIT ≤ 8. Microstructural integrity was quantified by mean diffusivity (MD) in regions of the primary olfactory cortex amygdala, orbitofrontal cortex (including olfactory cortex, gyrus rectus, the orbital parts of the superior, middle, and inferior frontal gyri, medial orbital part of the superior frontal gyrus), and hippocampus. Multivariable regression models were adjusted for total brain atrophy, demographics, cognitive status, and ApoEε4 genotype. Results: Hyposmia in 1998–99 (n = 57, 21.59%) was significantly associated with greater MD in 2006–08, specifically in the orbital part of the middle frontal gyrus, and amygdala, on the right [adjusted beta (p value): 0.414 (0.01); 0.527 (0.01); respectively]. Conclusion: Older adults with higher mean diffusivity in regions important for olfaction are more likely to have hyposmia up to ten years prior. Future studies should address whether hyposmia can serve as an early biomarker of brain microstructural abnormalities for older adults with a range of cognitive functions, including those with normal cognition.
Collapse
Affiliation(s)
- Cynthia Felix
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - James Hengenius
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Honglei Chen
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Andrea L Rosso
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaonan Zhu
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Zichun Cao
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Feng Q, Liu H, Zhang H, Liu Y, Zhang H, Zhou Y, Liu G, Han T. Objective Assessment of Hyposmia in Alzheimer's Disease From Image and Behavior by Combining Pleasant Odor With Unpleasant Odor. Front Neurol 2021; 12:697487. [PMID: 34566843 PMCID: PMC8459611 DOI: 10.3389/fneur.2021.697487] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/22/2021] [Indexed: 11/15/2022] Open
Abstract
Background: Olfactory functional magnetic resonance imaging (fMRI) of responses to a pleasant odor (PO) (lavender) can objectively evaluate olfactory dysfunction in Alzheimer's disease (AD) patients. The brain responses to a PO and unpleasant odor (UPO) were shown to differ in normal young people. Whether AD patients with olfactory dysfunction have the same brain response is not yet known. Objective: Our aim was to explore whether olfactory fMRI with both a PO and UPO can provide more information regarding olfactory impairment in AD than a PO alone. Methods: Twenty-five normal controls (NC), 26 individuals with mild cognitive impairment (MCI), and 22 AD patients underwent olfactory fMRI with lavender and pyridine odorants at three concentrations (0.10, 0.33, and 1.00%) with a 3.0-T MRI scanner. Results: There were no differences in the number of activated voxels in the primary olfactory cortex (POC) between PO and UPO conditions in the NC, MCI, and AD groups (SPM, paired t-test, uncorrected p < 0.001, extent threshold = 70). In the right inferior frontal gyrus, orbital part (F3O), the number of activated voxels was greater with the UPO than with the PO in the NC group (SPM, paired t-test, uncorrected p < 0.001, extent threshold = 70), but there were no differences in the MCI and AD groups. Regardless of PO or UPO conditions, there were significant differences in the number of activated voxels in the POC among the NC, MCI, and AD groups. With increasing odor concentration, the number of activated voxels in the POC decreased in the NC group but increased in the AD group. When 0.10% UPO was presented, the NC group (21/25) showed a lower breathing amplitude and shorter inhalation time, whereas the AD patients (0/22) did not show such changes in breathing. Conclusions: After PO and UPO inhalation, brain activation and respiratory behavior in AD patients were significantly different than in NC patients. Therefore, olfactory fMRI using both PO and UPO stimulation, compared with PO stimulation only, can provide more objective information regarding hyposmia associated with AD based on imaging and behavior.
Collapse
Affiliation(s)
- Quanzhi Feng
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China
| | - Hui Liu
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin University, Tianjin, China
| | - Hui Zhang
- Department of Radiology, First Teaching Hospital of Tianjin University of Traditional Chinese, Tianjin, China
| | - Yi Liu
- Department of Ultrasound, Tianjin Huanhu Hospital, Tianjin, China
| | - Huihong Zhang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Yuying Zhou
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China
| | - Gang Liu
- Department of Otolaryngology, Tianjin Huanhu Hospital, Tianjin, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin, China
| |
Collapse
|
10
|
Olofsson JK. Olfaction and Aging: A Review of the Current State of Research and Future Directions. Iperception 2021; 12:20416695211020331. [PMID: 34249327 PMCID: PMC8239976 DOI: 10.1177/20416695211020331] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/21/2021] [Indexed: 11/16/2022] Open
Abstract
Olfaction, the sense of smell, is characterized by a notable age-dependency such that aging individuals are more likely to have poor olfactory abilities. These impairments are considered to be mostly irreversible and as having potentially profound effects on quality of life and food behavior, as well as constituting warning signs of mortality, cognitive dysfunction, and dementia. Here, we review the current state of research on aging and olfaction, focusing on five topics which we regard to be of particular relevance for the field: nutrition and health, cognition and dementia, mortality, environment and genetics, and training-based enhancement. Under each of these headlines, we provide a state-of-the-art overview and discuss gaps in our knowledge which might be filled by further research. Understanding how olfactory abilities are diminished in aging, and how they may be alleviated or recovered, involves a set of challenging tasks for researchers in the years to come.
Collapse
Affiliation(s)
- Jonas K. Olofsson
- Gösta Ekman Laboratory, Stockholm University, Stockholm, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
11
|
Rai N, Hipolito MM, VanMeter JW, Seth R, Adenuga A, Shelby M, Misiak-Christian M, Nwaokobia C, Manaye KF, Obisesan TO, Nwulia E. Comparative Effects of Repetitive Odor Identification and Odor Memory Tasks on Olfactory Engagement in Older Populations - A Pilot fMRI Study. Neuropsychiatr Dis Treat 2021; 17:1279-1288. [PMID: 33958869 PMCID: PMC8096456 DOI: 10.2147/ndt.s298303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/11/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE This study evaluated human Blood Oxygen Level-Dependent (BOLD) responses in primary and higher-order olfactory regions of older adults, using odor memory and odor identification tasks. The goal was to determine which olfactory and memory regions of interest are more strongly engaged in older populations comparing these two odor training tasks. METHODS Twelve adults 55-75 years old (75% females) without intranasal or major neurological disorders performed repetitive odor memory and identification tasks using a 3-tesla magnetic resonance scanner. Odors were presented intermittently at 10-second bursts separated by 20-second intervals of odorless air. Paired t-tests were used to compare differences in the degree of activation between odor identification and odor memory tasks within individuals. An FDR cluster-level correction of p<0.05 was used for multiplicity of tests (with a cluster-defining threshold set at p<0.01 and 10 voxels). RESULTS Odor identification compared to memory (ie, odor identification > odor memory) contrasts had several areas of significant activation, including many of the classical olfactory brain regions as well as the hippocampus. The opposite contrast (odor memory > odor identification) included the piriform cortex, though this was not significant. Both tasks equally activated the piriform cortex, and thus when the two tasks are compared to each other this area of activation appears to be either absent (OI > OM) or only weakly observed (OM > OI). CONCLUSION These findings from a predominantly African American sample suggest that odor identification tasks may be more potent than memory tasks in targeted olfactory engagement in older populations. Furthermore, repetitive odor identification significantly engaged the hippocampus - a region relevant to Alzheimer's disease - more significantly than did the odor memory task. If validated in larger studies, this result could have important implications in the design of olfactory training paradigms.
Collapse
Affiliation(s)
- Narayan Rai
- Department of Psychiatry and Behavioral Sciences, Howard University, Washington DC, USA
| | | | - John W VanMeter
- Department of Neurology, Center for Functional and Molecular Imaging, Georgetown University Medical Center, Washington DC, USA
| | | | | | | | | | | | | | | | - Evaristus Nwulia
- Department of Psychiatry and Behavioral Sciences, Howard University, Washington DC, USA
- Evon Medics LLC, Elkridge, MD, USA
| |
Collapse
|
12
|
Kondo K, Kikuta S, Ueha R, Suzukawa K, Yamasoba T. Age-Related Olfactory Dysfunction: Epidemiology, Pathophysiology, and Clinical Management. Front Aging Neurosci 2020; 12:208. [PMID: 32733233 PMCID: PMC7358644 DOI: 10.3389/fnagi.2020.00208] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/12/2020] [Indexed: 12/21/2022] Open
Abstract
Like other sensory systems, olfactory function deteriorates with age. Epidemiological studies have revealed that the incidence of olfactory dysfunction increases at the age of 60 and older and males are more affected than females. Moreover, smoking, heavy alcohol use, sinonasal diseases, and Down’s syndrome are associated with an increased incidence of olfactory dysfunction. Although the pathophysiology of olfactory dysfunction in humans remains largely unknown, studies in laboratory animals have demonstrated that both the peripheral and central olfactory nervous systems are affected by aging. Aged olfactory neuroepithelium in the nasal cavity shows the loss of mature olfactory neurons, replacement of olfactory neuroepithelium by respiratory epithelium, and a decrease in basal cell proliferation both in the normal state and after injury. In the central olfactory pathway, a decrease in the turnover of interneurons in the olfactory bulb (OB) and reduced activity in the olfactory cortex under olfactory stimulation is observed. Recently, the association between olfactory impairment and neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), has gained attention. Evidence-based pharmacotherapy to suppress or improve age-related olfactory dysfunction has not yet been established, but preliminary results suggest that olfactory training using odorants may be useful to improve some aspects of age-related olfactory impairment.
Collapse
Affiliation(s)
- Kenji Kondo
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Rumi Ueha
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keigo Suzukawa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Seubert J, Laukka EJ, Rizzuto D, Hummel T, Fratiglioni L, Bäckman L, Larsson M. Prevalence and Correlates of Olfactory Dysfunction in Old Age: A Population-Based Study. J Gerontol A Biol Sci Med Sci 2017; 72:1072-1079. [PMID: 28444135 PMCID: PMC5861894 DOI: 10.1093/gerona/glx054] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 03/16/2017] [Indexed: 02/03/2023] Open
Abstract
Background: Olfactory dysfunction (OD) in old age is associated with poor health outcomes. Interrelationships among different correlates of OD can offer insights into the underlying mechanisms, but to date remain understudied. Methods: Odor identification performance and self-reported olfactory functioning were studied in 2,234 people aged 60–90 years, who were free of neurodegenerative disease and enrolled in the Swedish National Study on Aging and Care in Kungsholmen (SNAC-K) study, Stockholm, Sweden. OD was defined as the inability to identify more than 10 out of 16 odors (free or cued identification) in a standardized odor identification task. OD prevalence was estimated, and associations with demographic, genetic, vascular, clinical, and behavioral factors, as well as their interactions were examined using multiple logistic regression analyses. Results: Overall prevalence of OD was 24.8% (CI: 23.1; 26.6). Self-reports were characterized by low sensitivity (35%), but high specificity (87%). Advancing age (OR = 15.50, CI = 9.40; 26.10 between the first and last age group), and history of coronary heart disease (OR = 1.35, 95% CI = 1.04; 1.75) were the principal factors associated with an increased probability of OD, whereas female gender (OR = 0.53, 95% CI = 0.43; 0.66) and more years of education (OR = 0.97, CI 0.94; 0.99) were linked to a lower probability. Exploratory interaction analyses indicated that prevalence of OD was particularly elevated among Apolipropotein E (APOE) ε4 allele carriers who were also obese, and that being physically active counteracted the negative impact of cerebrovascular disease on OD. Conclusion: Demographic and genetic factors, but also prior and current health insults, are linked to OD in old age. Modulatory effects of behavioral factors highlight their value as possible prevention targets.
Collapse
Affiliation(s)
- Janina Seubert
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.,Department of Clinical Neuroscience, Psychology Division, Karolinska Institutet, Stockholm, Sweden
| | - Erika J Laukka
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Sweden
| | - Thomas Hummel
- Department of Otorhinolaryngology, TU Dresden, Germany
| | - Laura Fratiglioni
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.,Stockholm Gerontology Research Center, Sweden
| | - Lars Bäckman
- Department of Neurobiology, Care Sciences and Society, Aging Research Center, Karolinska Institutet and Stockholm University, Sweden.,Stockholm Gerontology Research Center, Sweden
| | - Maria Larsson
- Gösta Ekman's Laboratory, Department of Psychology, Stockholm University, Sweden
| |
Collapse
|
14
|
Adaptive and maladaptive neural compensatory consequences of sensory deprivation-From a phantom percept perspective. Prog Neurobiol 2017; 153:1-17. [PMID: 28408150 DOI: 10.1016/j.pneurobio.2017.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/21/2017] [Accepted: 03/28/2017] [Indexed: 12/19/2022]
Abstract
It is suggested that the brain undergoes plastic changes in order to adapt to changing environmental needs. Sensory deprivation results in decreased input to the brain leading to adaptive or maladaptive changes. Although several theories hypothesize the mechanism of these adaptive and maladaptive changes, the course of action taken by the brain heavily depends on the age of incidence of damage. The growing body of literature on the topic proposes that maladaptive changes in the brain are instrumental in creating phantom percepts, defined as the perception of a sensory experience in the absence of a physical stimulus. The current article reviews the mechanisms of adaptive and maladaptive plasticity in the brain in congenital, early, and late-onset sensory deprivation in conjunction with the phantom percepts in the different sensory domains. We propose that the mechanisms of adaptive and maladaptive plasticity fall under a universal construct of updating hierarchical Bayesian prediction errors. This theory of the Bayesian brain hypothesizes that the brain constantly compares its internal milieu with changing environmental cues and either adjusts its predictions or discards the change, depending on the novelty or salience of the external stimulus. We propose that adaptive plasticity reflects both successful bottom-up compensation and top-down updating of the model while maladaptive plasticity reflects failure in one or both mechanisms, resulting in a constant prediction-error. Finally, we hypothesize that phantom percepts are generated by the brain as a solution to this prediction error and are thus a manifestation of unsuccessful adaptation to sensory deprivation.
Collapse
|
15
|
Martinez B, Karunanayaka P, Wang J, Tobia MJ, Vasavada M, Eslinger PJ, Yang QX. Different patterns of age-related central olfactory decline in men and women as quantified by olfactory fMRI. Oncotarget 2017; 8:79212-79222. [PMID: 29108300 PMCID: PMC5668033 DOI: 10.18632/oncotarget.16977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/02/2017] [Indexed: 01/11/2023] Open
Abstract
Age-related olfactory decline, or presbyosmia, is a prevalent condition with potentially devastating consequences on both quality of life and safety. Despite clear evidence for this decline, it is unknown whether presbyosmia is sex-dependent and also whether it is due to central or peripheral olfactory system deterioration. Therefore, the goals of this study were to investigate the neurofunctional substrate of olfactory decline and examine its relationship to age and sex in thirty-seven (18 women, 19 men) healthy older participants using olfactory functional MRI (fMRI). The olfactory fMRI paradigm utilized unique odor+visual and visual-only conditions to contrast peripheral-to-central and central-to-central olfactory processing, respectively. Age was negatively correlated with fMRI activation in olfactory-related regions. Significant aging effects were identifiable in male participants in all target regions. Female participants, however, showed a different pattern of functional decline. Extended unified structural equation modeling (euSEM) analysis revealed that the effective functional connectivity profile was drastically different between male and female participants, with females manifesting a top-down mechanism to offset age-related olfactory activation decline. Our results support the hypotheses that the central olfactory system is involved in age-related olfactory decline, and that resilience to age-related olfactory decline in women may be due to their profuse olfactory network effective connectivity.
Collapse
Affiliation(s)
- Brittany Martinez
- Department of Radiology, Center for NMR Research, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Prasanna Karunanayaka
- Department of Radiology, Center for NMR Research, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Jianli Wang
- Department of Radiology, Center for NMR Research, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Michael J Tobia
- Department of Radiology, Center for NMR Research, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Megha Vasavada
- Department of Radiology, Center for NMR Research, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Paul J Eslinger
- Department of Radiology, Center for NMR Research, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Neurology, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA
| | - Qing X Yang
- Department of Radiology, Center for NMR Research, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA.,Department of Neurosurgery, The Pennsylvania State University College of Medicine, The Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
16
|
Abstract
Olfaction is often viewed as difficult, yet the empirical evidence suggests a different picture. A closer look shows people around the world differ in their ability to detect, discriminate, and name odors. This gives rise to the question of what influences our ability to smell. Instead of focusing on olfactory deficiencies, this review presents a positive perspective by focusing on factors that make someone a better smeller. We consider three driving forces in improving olfactory ability: one’s biological makeup, one’s experience, and the environment. For each factor, we consider aspects proposed to improve odor perception and critically examine the evidence; as well as introducing lesser discussed areas. In terms of biology, there are cases of neurodiversity, such as olfactory synesthesia, that serve to enhance olfactory ability. Our lifetime experience, be it typical development or unique training experience, can also modify the trajectory of olfaction. Finally, our odor environment, in terms of ambient odor or culinary traditions, can influence odor perception too. Rather than highlighting the weaknesses of olfaction, we emphasize routes to harnessing our olfactory potential.
Collapse
Affiliation(s)
- Asifa Majid
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands; Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Laura Speed
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands
| | - Ilja Croijmans
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands; International Max Planck Research School for Language Sciences, Nijmegen, The Netherlands
| | - Artin Arshamian
- Centre for Language Studies, Radboud University, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands; Division of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|