1
|
Drewelies J, Homann J, Vetter VM, Düzel S, Kühn S, Deecke L, Steinhagen-Thiessen E, Jawinski P, Markett S, Lindenberger U, Lill CM, Bertram L, Demuth I, Gerstorf D. There Are Multiple Clocks That Time Us: Cross-Sectional and Longitudinal Associations Among 14 Alternative Indicators of Age and Aging. J Gerontol A Biol Sci Med Sci 2025; 80:glae244. [PMID: 39383103 DOI: 10.1093/gerona/glae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Indexed: 10/11/2024] Open
Abstract
Aging is a complex process influenced by mechanisms operating at numerous levels of functioning. Multiple biomarkers of age have been identified, yet we know little about how the different alternative age indicators are intertwined. In the Berlin Aging Study II (nmin = 328; nmax = 1 517, women = 51%; 14.27 years of education), we examined how levels and 7-year changes in indicators derived from blood assays, magnetic resonance imaging brain scans, other-ratings, and self-reports converge among older adults. We included 8 epigenetic biomarkers (incl. 5 epigenetic "clocks"), a BioAge composite from clinical laboratory parameters, brain age, skin age, subjective age, subjective life expectancy, and subjective health horizon. We found moderate associations within aging domains, both cross-sectionally and longitudinally over 7 years. However, associations across different domains were infrequent and modest. Notably, participants with older BioAge had correspondingly older epigenetic ages. Our results suggest that different aging clocks are only loosely interconnected and that more specific measures are needed to differentiate healthy from unhealthy aging.
Collapse
Grants
- #16SV5536K, #16SV5537, #16SV5538, #16SV5837, #01UW0808, #01GL1716A, and #01GL1716B German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF)
- Max Planck Institute for Human Development, Berlin, Germany
- 460683900 Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- LI 2654/4-1 Heisenberg program of the German Research Foundation
Collapse
Affiliation(s)
- Johanna Drewelies
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Jan Homann
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Valentin Max Vetter
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sandra Düzel
- Friede Springer Cardiovascular Prevention Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Simone Kühn
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Laura Deecke
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Philippe Jawinski
- Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Sebastian Markett
- Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Ulman Lindenberger
- Center for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London, UK
| | - Christina M Lill
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Ageing Epidemiology Unit, School of Public Health, Imperial College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Ilja Demuth
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Denis Gerstorf
- Department of Psychology, Humboldt Universität zu Berlin, Berlin, Germany
- German Institute for Economic Research, DIW Berlin, Berlin, Germany
| |
Collapse
|
2
|
Vetter VM, Demircan K, Homann J, Chillon TS, Mülleder M, Shomroni O, Steinhagen-Thiessen E, Ralser M, Lill CM, Bertram L, Schomburg L, Demuth I. Low blood levels of selenium, selenoprotein P and GPx3 are associated with accelerated biological aging: results from the Berlin Aging Study II (BASE-II). Clin Epigenetics 2025; 17:62. [PMID: 40275394 PMCID: PMC12023433 DOI: 10.1186/s13148-025-01863-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/22/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Biological age reflects inter-individual differences in biological function and capacity beyond chronological age. DNA methylation age (DNAmA) and its deviation from chronological age, DNAmA acceleration (DNAmAA), which was calculated as residuals of leukocyte cell count adjusted linear regression of DNAmA on chronological age, were used to estimate biological age in this study. Low levels of serum selenium, selenoprotein P (SELENOP), and the selenocysteine-containing glutathione peroxidase 3 (GPx3) are associated with adverse health outcomes and selenium supplementation is discussed as an anti-aging intervention. METHODS In this study, we cross-sectionally analyzed 1568 older participants from the observational Berlin Aging Study II (mean age ± SD: 68.8 ± 3.7 years, 51% women). Serum selenium was measured by total reflection X-ray fluorescence (TXRF) spectroscopy and SELENOP was determined by sandwich ELISA. GPx3 was assessed as part of a proteomics dataset using liquid chromatography-mass spectrometry (LC-MS). The relationship between selenium biomarkers and epigenetic clock measures was analyzed using linear regression analyses. P values and 95% confidence intervals (not adjusted for multiple testing) are stated for each analysis. RESULTS Participants with deficient serum selenium levels (< 90 μg/L) had a higher rate of biological aging (DunedinPACE, β = - 0.02, SE = 0.01, 95% CI - 0.033 to - 0.004, p = 0.010, n = 865). This association remained statistically significant after adjustment for age, sex, BMI, smoking, and first four genetic principal components (β = - 0.02, SE = 0.01, 95% CI - 0.034 to - 0.004, p = 0.012, n = 757). Compared to the highest quartile, participants in the lowest quartile of SELENOP levels showed an accelerated biological aging rate (DunedinPACE, β = - 0.03, SE = 0.01, 95% CI - 0.051 to - 0.008, p = 0.007, n = 740, fully adjusted model). Similarly, after adjustment for confounders, accelerated biological age was found in participants within the lowest GPx3 quartile compared to participants in the fourth quartile (DunedinPACE, β = - 0.04, SE = 0.01, 95% CI - 0.06 to - 0.02, p = 0.001, n = 674 and GrimAge, β = - 0.98, SE = 0.32, 95% CI - 1.6 to - 0.4, p = 0.002, n = 608). Only the association with GPx3 remained statistically significant after multiple testing correction. CONCLUSION Our study suggests that low levels of selenium biomarkers are associated with accelerated biological aging measured through epigenetic clocks. This effect was not substantially changed after adjustment for known confounders.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Kamil Demircan
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Jan Homann
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Thilo Samson Chillon
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Michael Mülleder
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Orr Shomroni
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Markus Ralser
- Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Nuffield Department of Medicine, The Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Christina M Lill
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lutz Schomburg
- Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10115, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
3
|
Mi P, Cao X, Feng H, Wang H. Association of blood cadmium levels with epigenetic age acceleration in U.S. adults aged > 50 years. Front Public Health 2025; 13:1504830. [PMID: 40302773 PMCID: PMC12037496 DOI: 10.3389/fpubh.2025.1504830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Objectives DNA methylation (DNAm) is a sensitive biomarker of aging-related processes, and novel epigenetic-based "clocks" can estimate accelerated biological aging. Cadmium (Cd) can alter cellular processes that promote aging and disrupt global methylation patterns. However, few studies have investigated the association between blood Cd and accelerated aging. We aimed to investigate the association between blood Cd and four DNAm-based epigenetic age accelerations in individuals over 50 in the United States, using data from the National Health and Nutrition Examination Survey (NHANES). Methods DNAm-epigenetic biomarkers and blood Cd data from the NHANES database (1999-2002) were retrieved for this study. We evaluated four epigenetic ages: HorvathAge, HannumAge, PhenoAge, and GrimAge. Age acceleration was calculated by extracting the residuals from the regression of chronological age on each epigenetic age measure. We used weighted linear regression models and subgroup analyses to investigate the associations between blood Cd levels and these age accelerations, adjusting for potential confounding factors. Results Higher blood Cd levels (≥0.5 μg/dl) were significantly associated with increased age acceleration for PhenoAge (β = 1.37, P = 0.017) and GrimAge (β = 1.31, P = 0.003) in adjusted models. A significant association was also observed for HannumAge (β = 0.94, P = 0.016), although this association was not significant for continuous Cd levels (P = 0.111). No significant associations were found for HorvathAge. Subgroup analyses indicated consistent associations across demographic and lifestyle subgroups, with no significant interactions. Conclusions In this study, after adjusting for confounders, blood Cd levels were positively associated with PhenoAge acceleration and GrimAge acceleration in people over 50 in the United States. These results may be useful in proposing interventions in environmental exposures to slow the aging process and prevent age-related diseases.
Collapse
Affiliation(s)
- Panpan Mi
- Department of Orthopedic, Hebei PetroChina Central Hospital, Langfang, China
| | - Xu Cao
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| | - Haixia Feng
- Department of Tuberculosis, Shandong Public Health Clinical Center, Jinan, Shandong, China
| | - Huijie Wang
- Department of Endoscopy, Shijiazhuang Traditional Chinese Medicine Hospital, Shijiazhuang, China
| |
Collapse
|
4
|
Choi BY, Ryoo SW, Son SY, Lee JH, Min KB, Min JY. Epigenetics-Based Age Acceleration Associated with 2,3,7,8 TCDD Exposure in Older Americans. Int J Mol Sci 2025; 26:1478. [PMID: 40003942 PMCID: PMC11855520 DOI: 10.3390/ijms26041478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/31/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is highly toxic with potential impacts on aging. While previous studies have linked TCDD exposure to reduced telomere length and altered sperm DNA methylation (DNAm) age, its relationship with epigenetic aging remains unclear. This study investigated the association between serum TCDD levels and epigenetic clocks derived from DNAm in whole blood in older adults. Using data from the 1999-2002 National Health and Nutrition Examination Survey, we analyzed 589 participants aged 50 to 79 years with available blood TCDD and DNA methylation measures. Blood TCDD levels were measured by high-resolution gas chromatography/isotope-dilution high-resolution mass spectrometry. The six DNAm-based epigenetic clocks included Horvath Age, Hannum Age, SkinBlood Age, Pheno Age, Grim Age, and Grim Age2. Multivariable regression analysis showed significant associations between TCDD levels and Horvath Age, Hannum Age, Pheno Age, Grim Age, and Grim Age2. However, when using lipid-adjusted TCDD levels, significant associations remained only for PhenoAge (β = 0.73; SE, 0.31; p = 0.0258) and Grim Age2 (β = 0.44; SE, 0.21; p = 0.0472). The strongest non-linear trends were observed for PhenoAge, Grim Age, and Grim Age2, suggesting a threshold-dependent impact of TCDD on DNAm aging processes. Our findings suggest that TCDD exposure is associated with accelerated epigenetic aging, particularly in mortality-related clocks, with a dose-dependent and non-linear pattern.
Collapse
Affiliation(s)
- Baek-Yong Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (B.-Y.C.); (S.-W.R.); (S.-Y.S.); (J.-H.L.)
| | - Seung-Woo Ryoo
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (B.-Y.C.); (S.-W.R.); (S.-Y.S.); (J.-H.L.)
| | - Seok-Yoon Son
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (B.-Y.C.); (S.-W.R.); (S.-Y.S.); (J.-H.L.)
| | - Ji-Hyeon Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (B.-Y.C.); (S.-W.R.); (S.-Y.S.); (J.-H.L.)
| | - Kyoung-Bok Min
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; (B.-Y.C.); (S.-W.R.); (S.-Y.S.); (J.-H.L.)
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul 03080, Republic of Korea
| | - Jin-Young Min
- Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul 05368, Republic of Korea
| |
Collapse
|
5
|
Zhang C, Ren T, Zhao X, Su Y, Wang Q, Zhang T, He B, Chen Y, Wu LY, Sun L, Zhang B, Xia Z. Biologically informed machine learning modeling of immune cells to reveal physiological and pathological aging process. Immun Ageing 2024; 21:74. [PMID: 39449067 PMCID: PMC11515583 DOI: 10.1186/s12979-024-00479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
The immune system undergoes progressive functional remodeling from neonatal stages to old age. Therefore, understanding how aging shapes immune cell function is vital for precise treatment of patients at different life stages. Here, we constructed the first transcriptomic atlas of immune cells encompassing human lifespan, ranging from newborns to supercentenarians, and comprehensively examined gene expression signatures involving cell signaling, metabolism, differentiation, and functions in all cell types to investigate immune aging changes. By comparing immune cell composition among different age groups, HLA highly expressing NK cells and CD83 positive B cells were identified with high percentages exclusively in the teenager (Tg) group, whereas unknown_T cells were exclusively enriched in the supercentenarian (Sc) group. Notably, we found that the biological age (BA) of pediatric COVID-19 patients with multisystem inflammatory syndrome accelerated aging according to their chronological age (CA). Besides, we proved that inflammatory shift- myeloid abundance and signature correlate with the progression of complications in Kawasaki disease (KD). The shift- myeloid signature was also found to be associated with KD treatment resistance, and effective therapies improve treatment outcomes by reducing this signaling. Finally, based on those age-related immune cell compositions, we developed a novel BA prediction model PHARE ( https://xiazlab.org/phare/ ), which can apply to both scRNA-seq and bulk RNA-seq data. Using this model, we found patients with coronary artery disease (CAD) also exhibit accelerated aging compared to healthy individuals. Overall, our study revealed changes in immune cell proportions and function associated with aging, both in health and disease, and provided a novel tool for successfully capturing features that accelerate or delay aging.
Collapse
Affiliation(s)
- Cangang Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tao Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofan Zhao
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Qianhao Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Tianzhe Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China
| | - Boxiao He
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yabing Chen
- Department of Pathology and Laboratory Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Ling-Yun Wu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lina Sun
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi, China.
- Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China.
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, China.
| | - Zheng Xia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
- Center for Biomedical Data Science, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
6
|
Si J, Ma Y, Yu C, Sun D, Pang Y, Pei P, Yang L, Millwood IY, Walters RG, Chen Y, Du H, Zheng X, Avery D, Chen J, Chen Z, Liang L, Li L, Lv J. DNA Methylation Age Mediates Effect of Metabolic Profile on Cardiovascular and General Aging. Circ Res 2024; 135:954-966. [PMID: 39308399 DOI: 10.1161/circresaha.124.325066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/02/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Alterations in lipid metabolism and DNA methylation are 2 hallmarks of aging. Connecting metabolomic, epigenomic, and aging outcomes help unravel the complex mechanisms underlying aging. We aimed to assess whether DNA methylation clocks mediate the association of circulating metabolites with incident atherosclerotic cardiovascular disease (ASCVD) and frailty. METHODS The China Kadoorie Biobank is a prospective cohort study with a baseline survey from 2004 to 2008 and a follow-up period until December 31, 2018. We used the Infinium Methylation EPIC BeadChip to measure the methylation levels of 988 participants' baseline blood leukocyte DNA. Metabolite profiles, including lipoprotein particles, lipid constituents, and various circulating metabolites, were measured using quantitative nuclear magnetic resonance. The pace of DNA methylation age acceleration (AA) was calculated using 5 widely used epigenetic clocks (the first generation: Horvath, Hannum, and Li; the second generation: Grim and Pheno). Incident ASCVD was ascertained through linkage with local death and disease registries and national health insurance databases, supplemented by active follow-up. The frailty index was constructed using medical conditions, symptoms, signs, and physical measurements collected at baseline. RESULTS A total of 508 incident cases of ASCVD were documented during a median follow-up of 9.5 years. The first generation of epigenetic clocks was associated with the risk of ASCVD (P<0.05). For each SD increment in LiAA, HorvathAA, and HannumAA, the corresponding hazard ratios for ASCVD risk were 1.16 (1.05-1.28), 1.10 (1.00-1.22), and 1.17 (1.04-1.31), respectively. Only LiAA mediated the association of various metabolites (lipids, fatty acids, histidine, and inflammatory biomarkers) with ASCVD, with the mediating proportion reaching up to 15% for the diameter of low-density lipoprotein (P=1.2×10-2). Regarding general aging, a 1-SD increase in GrimAA was associated with an average increase of 0.10 in the frailty index (P=2.0×10-3), and a 33% and 63% increased risk of prefrailty and frailty at baseline (P=1.5×10-2 and 5.8×10-2), respectively; this association was not observed with other clocks. GrimAA mediated the effect of various lipids, fatty acids, glucose, lactate, and inflammatory biomarkers on the frailty index, with the mediating proportion reaching up to 22% for triglycerides in very small-sized very low-density lipoprotein (P=6.0×10-3). CONCLUSIONS These findings suggest that epigenomic mechanisms may play a role in the associations between circulating metabolites and the aging process. Different mechanisms underlie the first and second generations of DNA methylation age in cardiovascular and general aging.
Collapse
Affiliation(s)
- Jiahui Si
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China (J.S.)
| | - Yu Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China (Y.M., C.Y., D.S., Y.P., L. Li, J.L.)
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China (Y.M., C.Y., D.S., Y.P., L. Li, J.L.)
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China (C.Y., D.S., Y.P., P.P., L. Li, J.L.)
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China (C.Y., D.S., Y.P., L. Li, J.L.)
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China (Y.M., C.Y., D.S., Y.P., L. Li, J.L.)
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China (C.Y., D.S., Y.P., P.P., L. Li, J.L.)
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China (C.Y., D.S., Y.P., L. Li, J.L.)
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China (Y.M., C.Y., D.S., Y.P., L. Li, J.L.)
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China (C.Y., D.S., Y.P., P.P., L. Li, J.L.)
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China (C.Y., D.S., Y.P., L. Li, J.L.)
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China (C.Y., D.S., Y.P., P.P., L. Li, J.L.)
| | - Ling Yang
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom (L.Y., I.Y.M., R.G.W., Y.C., H.D., D.A., Z.C.)
| | - Iona Y Millwood
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom (L.Y., I.Y.M., R.G.W., Y.C., H.D., D.A., Z.C.)
| | - Robin G Walters
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom (L.Y., I.Y.M., R.G.W., Y.C., H.D., D.A., Z.C.)
| | - Yiping Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom (L.Y., I.Y.M., R.G.W., Y.C., H.D., D.A., Z.C.)
| | - Huaidong Du
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom (L.Y., I.Y.M., R.G.W., Y.C., H.D., D.A., Z.C.)
| | - Xiaoyan Zheng
- NCDs Prevention and Control Department, Licang CDC (X.Z.)
| | - Daniel Avery
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom (L.Y., I.Y.M., R.G.W., Y.C., H.D., D.A., Z.C.)
| | - Junshi Chen
- China National Center for Food Safety Risk Assessment, Beijing, China (J.C.)
| | - Zhengming Chen
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, United Kingdom (L.Y., I.Y.M., R.G.W., Y.C., H.D., D.A., Z.C.)
| | - Liming Liang
- Departments of Epidemiology and Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA (L. Liang)
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China (Y.M., C.Y., D.S., Y.P., L. Li, J.L.)
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China (C.Y., D.S., Y.P., P.P., L. Li, J.L.)
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China (C.Y., D.S., Y.P., L. Li, J.L.)
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China (Y.M., C.Y., D.S., Y.P., L. Li, J.L.)
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China (C.Y., D.S., Y.P., P.P., L. Li, J.L.)
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China (C.Y., D.S., Y.P., L. Li, J.L.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China (J.L.). The members of steering committee and collaborative group are listed in the online-only supplemental material
| |
Collapse
|
7
|
Martínez-Magaña JJ, Hurtado-Soriano J, Rivero-Segura NA, Montalvo-Ortiz JL, Garcia-delaTorre P, Becerril-Rojas K, Gomez-Verjan JC. Towards a Novel Frontier in the Use of Epigenetic Clocks in Epidemiology. Arch Med Res 2024; 55:103033. [PMID: 38955096 DOI: 10.1016/j.arcmed.2024.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/10/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
Health problems associated with aging are a major public health concern for the future. Aging is a complex process with wide intervariability among individuals. Therefore, there is a need for innovative public health strategies that target factors associated with aging and the development of tools to assess the effectiveness of these strategies accurately. Novel approaches to measure biological age, such as epigenetic clocks, have become relevant. These clocks use non-sequential variable information from the genome and employ mathematical algorithms to estimate biological age based on DNA methylation levels. Therefore, in the present study, we comprehensively review the current status of the epigenetic clocks and their associations across the human phenome. We emphasize the potential utility of these tools in an epidemiological context, particularly in evaluating the impact of public health interventions focused on promoting healthy aging. Our review describes associations between epigenetic clocks and multiple traits across the life and health span. Additionally, we highlighted the evolution of studies beyond mere associations to establish causal mechanisms between epigenetic age and disease. We explored the application of epigenetic clocks to measure the efficacy of interventions focusing on rejuvenation.
Collapse
Affiliation(s)
- José Jaime Martínez-Magaña
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | | | | | - Janitza L Montalvo-Ortiz
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA; U.S. Department of Veterans Affairs National Center for Post-Traumatic Stress Disorder, Clinical Neuroscience Division, West Haven, CT, USA; VA Connecticut Healthcare System, West Haven, CT, USA
| | - Paola Garcia-delaTorre
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Área de Envejecimiento, Centro Médico Nacional, Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | | | | |
Collapse
|
8
|
Garg A, Seli E. Leukocyte telomere length and DNA methylome as biomarkers of ovarian reserve and embryo aneuploidy: the intricate relationship between somatic and reproductive aging. Fertil Steril 2024; 121:26-33. [PMID: 37979607 DOI: 10.1016/j.fertnstert.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
The average childbearing age among women continues to rise, leading to an increased prevalence of infertility and a subsequent increased use of assisted reproductive technologies (ARTs). Ovarian aging, especially diminished ovarian reserve and poor ovarian response, have been implicated as common causes of infertility. Telomere length and DNA methylation-based epigenetic clocks are established hallmarks of cellular aging; however, the interplay between somatic and ovarian aging remains unclear. There appears to be a lack of correlation between leukocyte telomere length and the DNA methylation age of somatic and ovarian cells. Both the telomere length and methylome of follicular somatic cells (granulosa and cumulus) appear to be unaffected by chronologic age, infertility, or processes that result in diminished ovarian reserve and poor ovarian response. As such, they are unlikely candidates as surrogate biomarkers of reproductive potential, response to stimulation, or ART outcome. Meanwhile, telomere or methylome changes in leukocytes associated with aging seem to correlate with reproductive function and may have the potential to aid the characterization of women with reproductive decline; however, current data are limited and larger studies evaluating this within an ART setting are warranted.
Collapse
Affiliation(s)
- Akanksha Garg
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom; Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut; IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, New Jersey.
| |
Collapse
|
9
|
Dutta S, Goodrich JM, Dolinoy DC, Ruden DM. Biological Aging Acceleration Due to Environmental Exposures: An Exciting New Direction in Toxicogenomics Research. Genes (Basel) 2023; 15:16. [PMID: 38275598 PMCID: PMC10815440 DOI: 10.3390/genes15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Biological clock technologies are designed to assess the acceleration of biological age (B-age) in diverse cell types, offering a distinctive opportunity in toxicogenomic research to explore the impact of environmental stressors, social challenges, and unhealthy lifestyles on health impairment. These clocks also play a role in identifying factors that can hinder aging and promote a healthy lifestyle. Over the past decade, researchers in epigenetics have developed testing methods that predict the chronological and biological age of organisms. These methods rely on assessing DNA methylation (DNAm) levels at specific CpG sites, RNA levels, and various biomolecules across multiple cell types, tissues, and entire organisms. Commonly known as 'biological clocks' (B-clocks), these estimators hold promise for gaining deeper insights into the pathways contributing to the development of age-related disorders. They also provide a foundation for devising biomedical or social interventions to prevent, reverse, or mitigate these disorders. This review article provides a concise overview of various epigenetic clocks and explores their susceptibility to environmental stressors.
Collapse
Affiliation(s)
- Sudipta Dutta
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (J.M.G.); (D.C.D.)
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Douglas M. Ruden
- C. S. Mott Center for Human Health and Development, Department of Obstetrics and Gynecology, Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
10
|
Majumdar V, Manjunath NK, Snigdha A, Chakraborty P, Majumdar R. Study protocol on effectiveness of yoga practice on composite biomarker age predictors (yBioAge) in an elderly Indian cohort- two-armed open label randomized controlled trial. BMC Geriatr 2023; 23:864. [PMID: 38102561 PMCID: PMC10724948 DOI: 10.1186/s12877-023-04517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION The recent development of robust indices to quantify biological aging, along with the dynamic epidemiological transitions of population aging generate the unmet need to examine the extent up to which potential interventions can delay, halt or temporarily modulate aging trajectories. METHODS AND ANALYSIS The study is a two-armed, open label randomised controlled trial. We aim to recruit 166 subjects, aged 60-75 years from the residential communities and old age clubs in Bangalore city, India, who will undergo randomisation into intervention or control arms (1:1). Intervention will include yoga sessions tailored for the older adults, 1 h per day for 5 days a week, spread for 12 months. Data would be collected at the baseline, 26th week and 52nd week. The primary outcome of the study is estimation in biological age with yoga practice. The secondary outcomes will include cardinal mechanistic indicators of aging- telomere length, interleukin-6 (IL-6), tumor necrosis factor receptor II (TNF-RII), high sensitivity c-reactive protein (hsCRP)], insulin signaling [insulin and IGF1], renal function [cystatin], senescence [growth differentiating factor 15 (GDF-15)] and cardiovascular function [N-terminal B-type natriuretic peptides (NT-proBNP)]. Analyses will be by intention-to-treat model. ETHICS & DISSEMINATION The study is approved by the Institutional Ethics Committee of Swami Vivekananda Yoga Anusandhana Samsthana University, Bangalore (ID:RES/IEC-SVYASA/242/2022). Written informed consent will be obtained from each participant prior to inclusion. TRIAL REGISTRATION NUMBER CTRI/2022/07/044442.
Collapse
Affiliation(s)
- Vijaya Majumdar
- Division of Life Science, Molecular Bioscience Lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka, 560105, India.
| | - N K Manjunath
- Division of Life Science, Molecular Bioscience Lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka, 560105, India
| | - Atmakur Snigdha
- Division of Life Science, Molecular Bioscience Lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka, 560105, India
| | - Prosenjeet Chakraborty
- Division of Life Science, Molecular Bioscience Lab, Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore, Karnataka, 560105, India
| | - Robin Majumdar
- Indian Institute of Information Technology, Bangalore, Karnataka, 560100, India
| |
Collapse
|
11
|
Silva N, Rajado AT, Esteves F, Brito D, Apolónio J, Roberto VP, Binnie A, Araújo I, Nóbrega C, Bragança J, Castelo-Branco P, ALFAScore Consortium, Andrade RP, Calado S, Faleiro ML, Matos C, Marques N, Marreiros A, Nzwalo H, Pais S, Palmeirim I, Simão S, Joaquim N, Miranda R, Pêgas A, Sardo A. Measuring healthy ageing: current and future tools. Biogerontology 2023; 24:845-866. [DOI: https:/doi.org/10.1007/s10522-023-10041-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 09/01/2023]
Abstract
AbstractHuman ageing is a complex, multifactorial process characterised by physiological damage, increased risk of age-related diseases and inevitable functional deterioration. As the population of the world grows older, placing significant strain on social and healthcare resources, there is a growing need to identify reliable and easy-to-employ markers of healthy ageing for early detection of ageing trajectories and disease risk. Such markers would allow for the targeted implementation of strategies or treatments that can lessen suffering, disability, and dependence in old age. In this review, we summarise the healthy ageing scores reported in the literature, with a focus on the past 5 years, and compare and contrast the variables employed. The use of approaches to determine biological age, molecular biomarkers, ageing trajectories, and multi-omics ageing scores are reviewed. We conclude that the ideal healthy ageing score is multisystemic and able to encompass all of the potential alterations associated with ageing. It should also be longitudinal and able to accurately predict ageing complications at an early stage in order to maximize the chances of successful early intervention.
Collapse
|
12
|
Silva N, Rajado AT, Esteves F, Brito D, Apolónio J, Roberto VP, Binnie A, Araújo I, Nóbrega C, Bragança J, Castelo-Branco P. Measuring healthy ageing: current and future tools. Biogerontology 2023; 24:845-866. [PMID: 37439885 PMCID: PMC10615962 DOI: 10.1007/s10522-023-10041-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 07/14/2023]
Abstract
Human ageing is a complex, multifactorial process characterised by physiological damage, increased risk of age-related diseases and inevitable functional deterioration. As the population of the world grows older, placing significant strain on social and healthcare resources, there is a growing need to identify reliable and easy-to-employ markers of healthy ageing for early detection of ageing trajectories and disease risk. Such markers would allow for the targeted implementation of strategies or treatments that can lessen suffering, disability, and dependence in old age. In this review, we summarise the healthy ageing scores reported in the literature, with a focus on the past 5 years, and compare and contrast the variables employed. The use of approaches to determine biological age, molecular biomarkers, ageing trajectories, and multi-omics ageing scores are reviewed. We conclude that the ideal healthy ageing score is multisystemic and able to encompass all of the potential alterations associated with ageing. It should also be longitudinal and able to accurately predict ageing complications at an early stage in order to maximize the chances of successful early intervention.
Collapse
Affiliation(s)
- Nádia Silva
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Ana Teresa Rajado
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Filipa Esteves
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - David Brito
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Joana Apolónio
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
| | - Vânia Palma Roberto
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
| | - Alexandra Binnie
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Department of Critical Care, William Osler Health System, Etobicoke, ON, Canada
| | - Inês Araújo
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - José Bragança
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Pedro Castelo-Branco
- Algarve Biomedical Center Research Institute (ABC-RI), Campus Gambelas, Bld.2, 8005-139, Faro, Portugal.
- ABC Collaborative Laboratory, Association for Integrated Aging and Rejuvenation Solutions (ABC CoLAB), 8100-735, Loulé, Portugal.
- Faculty of Medicine and Biomedical Sciences (FMCB), University of Algarve, Gambelas Campus, Bld. 2, 8005-139, Faro, Portugal.
- Champalimaud Research Program, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
13
|
Vetter VM, Özince DD, Kiselev J, Düzel S, Demuth I. Self-reported and accelerometer-based assessment of physical activity in older adults: results from the Berlin Aging Study II. Sci Rep 2023; 13:10047. [PMID: 37344489 DOI: 10.1038/s41598-023-36924-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
Physical activity (PA) has a substantial impact on health and mortality. Besides questionnaires that rely on subjective assessment of activity levels, accelerometers can help to objectify an individual's PA. In this study, variables estimating PA and sleep time obtained through the wGT3X-BT activity monitor (ActiGraph LLC, USA) in 797 participants of the Berlin Aging Study II (BASE-II) were analyzed. Self-reports of PA and sleep time were recorded with Rapid Assessment of Physical Activity (RAPA) and the Pittsburgh Sleep Quality Index sleep questionnaire (PSQI). Total cholesterol (TC), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides (TG), fasting glucose, and hemoglobin A1c (HbA1c) were determined in an accredited standard laboratory. Of all participants, 760 fulfilled the PA wear-time criteria. In this sample mean age was 75.6 years (SD: 3.8 years, range 66.0-94.1 years) and 53% of the included participants were women. Average wear time was 23.2 h/day (SD 1.3 h/day). Statistically significant differences between RAPA groups were found for all accelerometric variables except energy expenditure. Post-hoc analysis, however, suggested low agreement between subjective and device-based assessment of physical activity. TC, HDL-C, LDL-C, TG, fasting glucose and HbA1c were weakly correlated with accelerometric variables (Pearson's r ≤ 0.25). Device-based average sleep time per night (mean sleep time = 6.91 h, SD = 1.3, n = 720) and self-reported average sleep time per night (mean sleep time = 7.1 h, SD = 1.15 h, n = 410) were in a comparable range and moderately correlated (Pearson's r = 0.31, p < 0.001, n = 410). Results from this study suggest that self-reported PA obtained through the RAPA and device-based measures assessed by accelerometers are partially inconsistent in terms of the physical activity level of the participants. Self-reported and device-based measures of average sleep time per night, however, were comparable.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | | | - Jörn Kiselev
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Operative Intensive Care Medicine (CVK/CCM), Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - Sandra Düzel
- Max-Planck Institut für Bildungsforschung, Berlin, Germany
- Department of Cardiology, Charité - Universitätsmedizin Berlin (CBF), Berlin, Germany
| | - Ilja Demuth
- Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| |
Collapse
|
14
|
Baumer Y, Pita M, Baez A, Ortiz-Whittingham L, Cintron M, Rose R, Gray V, Osei Baah F, Powell-Wiley T. By what molecular mechanisms do social determinants impact cardiometabolic risk? Clin Sci (Lond) 2023; 137:469-494. [PMID: 36960908 PMCID: PMC10039705 DOI: 10.1042/cs20220304] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/25/2023]
Abstract
While it is well known from numerous epidemiologic investigations that social determinants (socioeconomic, environmental, and psychosocial factors exposed to over the life-course) can dramatically impact cardiovascular health, the molecular mechanisms by which social determinants lead to poor cardiometabolic outcomes are not well understood. This review comprehensively summarizes a variety of current topics surrounding the biological effects of adverse social determinants (i.e., the biology of adversity), linking translational and laboratory studies with epidemiologic findings. With a strong focus on the biological effects of chronic stress, we highlight an array of studies on molecular and immunological signaling in the context of social determinants of health (SDoH). The main topics covered include biomarkers of sympathetic nervous system and hypothalamic-pituitary-adrenal axis activation, and the role of inflammation in the biology of adversity focusing on glucocorticoid resistance and key inflammatory cytokines linked to psychosocial and environmental stressors (PSES). We then further discuss the effect of SDoH on immune cell distribution and characterization by subset, receptor expression, and function. Lastly, we describe epigenetic regulation of the chronic stress response and effects of SDoH on telomere length and aging. Ultimately, we highlight critical knowledge gaps for future research as we strive to develop more targeted interventions that account for SDoH to improve cardiometabolic health for at-risk, vulnerable populations.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Mario A. Pita
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Andrew S. Baez
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Lola R. Ortiz-Whittingham
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Manuel A. Cintron
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Rebecca R. Rose
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Veronica C. Gray
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Foster Osei Baah
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
| | - Tiffany M. Powell-Wiley
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, Cardiovascular Branch, Division of Intramural Research, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD, U.S.A
- Intramural Research Program, National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, MD, U.S.A
| |
Collapse
|
15
|
DNA methylation age acceleration is associated with risk of diabetes complications. COMMUNICATIONS MEDICINE 2023; 3:21. [PMID: 36765171 PMCID: PMC9918553 DOI: 10.1038/s43856-023-00250-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND Patients with Type 2 diabetes mellitus (T2D) are at risk for micro- and macrovascular complications. Implementable risk scores are needed to improve targeted prevention for patients that are particularly susceptible to complications. The epigenetic clock estimates an individual's biological age using DNA methylation profiles. METHODS In this study, we examined older adults of the Berlin Aging Study II that were reexamined on average 7.4 years after baseline assessment as part of the GendAge study. DNA methylation age (DNAmA) and its deviation from chronological age DNAmA acceleration (DNAmAA) were calculated with the 7-CpG clock (available at both timepoints, n = 1,071), Horvath's clock, Hannum's clock, PhenoAge and GrimAge (available at follow-up only, n = 1,067). T2D associated complications were assessed with the Diabetes Complications Severity Index (DCSI). RESULTS We report on a statistically significant association between oral glucose tolerance test results and Hannum and PhenoAge DNAmAA. PhenoAge was also associated with fasting glucose. In contrast, we found no cross-sectional association after covariate adjustment between DNAmAA and a diagnosis of T2D. However, longitudinal analyses showed that every additional year of 7-CpG DNAmAA at baseline increased the odds for developing one or more additional complications or worsening of an already existing complication during the follow-up period by 11% in male participants with T2D. This association persisted after covariate adjustment (OR = 1.11, p = 0.045, n = 56). CONCLUSION Although our results remain to be independently validated, this study shows promising evidence of utility of the 7-CpG clock in identifying patients with diabetes who are at high risk for developing complications.
Collapse
|
16
|
Banszerus VL, König M, Landmesser U, Vetter VM, Demuth I. Epigenetic aging in patients diagnosed with coronary artery disease: results of the LipidCardio study. Clin Epigenetics 2023; 15:16. [PMID: 36721243 PMCID: PMC9887837 DOI: 10.1186/s13148-023-01434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
INTRODUCTION People age biologically at different rates. Epigenetic clock-derived DNA methylation age acceleration (DNAmAA) is among the most promising markers proposed to assess the interindividual differences in biological age. Further research is needed to evaluate the characteristics of the different epigenetic clock biomarkers available with respect to the health domains they reflect best. METHODS In this study, we have analyzed 779 participants of the LipidCardio study (mean chronological age 69.9 ± 11.0 years, 30.6% women) who underwent diagnostic angiography at the Charité University Hospital in Berlin, Germany. DNA methylation age (DNAm age) was measured by methylation-sensitive single nucleotide primer extension (MS-SNuPE) and calculated with the 7-CpG clock. We compared the biological age as assessed as DNAmAA of participants with an angiographically confirmed coronary artery disease (CAD, n = 554) with participants with lumen reduction of 50% or less (n = 90) and patients with a normal angiogram (n = 135). RESULTS Participants with a confirmed CAD had on average a 2.5-year higher DNAmAA than patients with a normal angiogram. This association did not persist after adjustment for sex in a logistic regression analysis. High-density lipoprotein, low-density lipoprotein, triglycerides, lipoprotein (a), estimated glomerular filtration rate, physical activity, BMI, alcohol consumption, and smoking were not associated with DNAmAA. CONCLUSION The association between higher DNAmAA and angiographically confirmed CAD seems to be mainly driven by sex.
Collapse
Affiliation(s)
- Verena Laura Banszerus
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Maximilian König
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin (CBF), Berlin, Germany
- Berlin Institute of Health (BIH), Deutsches Zentrum Für Herzkreislaufforschung (DZHK), Partner Site Berlin, Berlin, Germany
| | - Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
17
|
Cabrera-Mendoza B, Stertz L, Najera K, Selvaraj S, Teixeira AL, Meyer TD, Fries GR, Walss-Bass C. Within subject cross-tissue analyzes of epigenetic clocks in substance use disorder postmortem brain and blood. Am J Med Genet B Neuropsychiatr Genet 2023; 192:13-27. [PMID: 36056652 PMCID: PMC9742183 DOI: 10.1002/ajmg.b.32920] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/22/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
There is a possible accelerated biological aging in patients with substance use disorders (SUD). The evaluation of epigenetic clocks, which are accurate estimators of biological aging based on DNA methylation changes, has been limited to blood tissue in patients with SUD. Consequently, the impact of biological aging in the brain of individuals with SUD remains unknown. In this study, we evaluated multiple epigenetic clocks (DNAmAge, DNAmAgeHannum, DNAmAgeSkinBlood, DNAmPhenoAge, DNAmGrimAge, and DNAmTL) in individuals with SUD (n = 42), including alcohol (n = 10), opioid (n = 19), and stimulant use disorder (n = 13), and controls (n = 10) in postmortem brain (prefrontal cortex) and blood tissue obtained from the same individuals. We found a higher DNAmPhenoAge (β = 0.191, p-value = 0.0104) and a nominally lower DNAmTL (β = -0.149, p-value = 0.0603) in blood from individuals with SUD compared to controls. SUD subgroup analysis showed a nominally lower brain DNAmTL in subjects with alcohol use disorder, compared to stimulant use disorder and controls (β = 0.0150, p-value = 0.087). Cross-tissue analyzes indicated a lower blood DNAmTL and a higher blood DNAmAge compared to their respective brain values in the SUD group. This study highlights the relevance of tissue specificity in biological aging studies and suggests that peripheral measures of epigenetic clocks in SUD may depend on the specific type of drug used.
Collapse
Affiliation(s)
- Brenda Cabrera-Mendoza
- PECEM, Faculty of Medicine, Universidad Nacional
Autónoma de México, Mexico City, 04510, Mexico
| | - Laura Stertz
- Louis A. Faillace, MD, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX, 77054, USA
| | - Katherine Najera
- Louis A. Faillace, MD, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX, 77054, USA
| | - Sudhakar Selvaraj
- Louis A. Faillace, MD, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX, 77054, USA
| | - Antonio L. Teixeira
- Louis A. Faillace, MD, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX, 77054, USA
| | - Thomas D. Meyer
- Louis A. Faillace, MD, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX, 77054, USA
| | - Gabriel R. Fries
- Louis A. Faillace, MD, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX, 77054, USA
- Center for Precision Health, School of Biomedical
Informatics, University of Texas Health Science Center at Houston, Houston, TX,
77054, USA
| | - Consuelo Walss-Bass
- Louis A. Faillace, MD, Department of Psychiatry and
Behavioral Sciences, McGovern Medical School, University of Texas Health Science
Center at Houston, Houston, TX, 77054, USA
| |
Collapse
|
18
|
Drewelies J, Hueluer G, Duezel S, Vetter VM, Pawelec G, Steinhagen-Thiessen E, Wagner GG, Lindenberger U, Lill CM, Bertram L, Gerstorf D, Demuth I. Using blood test parameters to define biological age among older adults: association with morbidity and mortality independent of chronological age validated in two separate birth cohorts. GeroScience 2022; 44:2685-2699. [PMID: 36151431 PMCID: PMC9768057 DOI: 10.1007/s11357-022-00662-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/12/2022] [Indexed: 01/07/2023] Open
Abstract
Biomarkers defining biological age are typically laborious or expensive to assess. Instead, in the current study, we identified parameters based on standard laboratory blood tests across metabolic, cardiovascular, inflammatory, and kidney functioning that had been assessed in the Berlin Aging Study (BASE) (n = 384) and Berlin Aging Study II (BASE-II) (n = 1517). We calculated biological age using those 12 parameters that individually predicted mortality hazards over 26 years in BASE. In BASE, older biological age was associated with more physician-observed morbidity and higher mortality hazards, over and above the effects of chronological age, sex, and education. Similarly, in BASE-II, biological age was associated with physician-observed morbidity and subjective health, over and above the effects of chronological age, sex, and education as well as alternative biomarkers including telomere length, DNA methylation age, skin age, and subjective age but not PhenoAge. We discuss the importance of biological age as one indicator of aging.
Collapse
Affiliation(s)
- Johanna Drewelies
- Humboldt University of Berlin, Berlin, Germany.
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.
| | | | - Sandra Duezel
- Max Planck Institute for Human Development, Berlin, Germany
| | - Valentin Max Vetter
- Humboldt University of Berlin, Berlin, Germany
- Charite - Universitätsmedizin Berlin, Berlin, Germany
| | - Graham Pawelec
- University of Tübingen, Tübingen, Germany
- Health Sciences North Research Institute, Sudbury, ON, Canada
| | | | - Gert G Wagner
- Max Planck Institute for Human Development, Berlin, Germany
- German Institute for Economic Research (DIW Berlin), Berlin, Germany
| | - Ulman Lindenberger
- Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - Christina M Lill
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Institute of Epidemiology and Social Medicine, University of Muenster, Muenster, Germany
- Ageing and Epidemiology Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Denis Gerstorf
- Humboldt University of Berlin, Berlin, Germany
- German Institute for Economic Research (DIW Berlin), Berlin, Germany
| | - Ilja Demuth
- Charite - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
19
|
Bolhuis E, Belsky J, Frankenhuis WE, Shalev I, Hastings WJ, Tollenaar MS, O’Donnell KJ, McGill MG, Pokhvisneva I, Lin DT, MacIsaac JL, Kobor MS, de Weerth C, Beijers R. Attachment insecurity and the biological embedding of reproductive strategies: Investigating the role of cellular aging. Biol Psychol 2022; 175:108446. [DOI: 10.1016/j.biopsycho.2022.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 11/02/2022]
|
20
|
Oluwayiose OA, Houle E, Wu H, Whitcomb BW, Mumford SL, Schisterman EF, Suvorov A, Balzer LB, Pilsner JR. Urinary phthalate metabolites and their mixtures are associated with advanced sperm epigenetic aging in a general population. ENVIRONMENTAL RESEARCH 2022; 214:114115. [PMID: 35988832 DOI: 10.1016/j.envres.2022.114115] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/22/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION We have recently shown that sperm epigenetic age (SEA), a surrogate measure of biological aging in sperm, is associated with couples' time-to-pregnancy (TTP). Advanced SEA was also observed among smokers, suggesting its susceptibility to environmental exposures. Therefore, we assessed the association between urinary phthalate metabolites and SEA in male partners of couples planning to conceive among the general population. METHOD The Longitudinal Investigation of Fertility and the Environment (LIFE) Study was a prospective multi-site and general population cohort study of couples who were interested in becoming pregnant. Among male partners (n = 333), eleven urinary phthalate metabolites were measured and SEA was previously developed using Super Learner ensemble algorithm. Multivariable linear regression was used to evaluate associations of SEA with individual metabolites. Bayesian kernel machine regression (BKMR), quantile g-computation (qgcomp) and weighted quantile sum (WQS) models were used for mixture analyses. Covariates included were BMI, cotinine, race and urinary creatinine. RESULT In the single metabolite multivariate analyses, nine (82%) phthalate metabolites displayed positive trends with SEA (range: 0.05-0.47 years). Of these metabolites, advanced SEA was significantly associated with interquartile range increases in exposure of three phthalates [MEHHP (β = 0.23, 95% CI: 0.03, 0.43, p = 0.03), MMP (β = 0.24, 95% CI: 0.01, 0.47, p = 0.04), and MiBP (β = 0.47, 95% CI: 0.14, 0.81, p = 0.01)]. Additionally, in BKMR and qgcomp (p = 0.06), but not WQS models, phthalate mixtures showed an overall positive trend with SEA, with MiBP, MMP and MBzP as major drivers of the mixture effects. CONCLUSION This is the first study that combined single exposure and mixture models to associate male phthalate exposures with advanced epigenetic aging of sperm in men planning to conceive among the general population. Our findings suggest that phthalate exposure may contribute to the acceleration of biological aging of sperm.
Collapse
Affiliation(s)
- Oladele A Oluwayiose
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Emily Houle
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA
| | - Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, 722 W 168th St, New York, NY, 10032, USA
| | - Brian W Whitcomb
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, MA, USA
| | - Sunni L Mumford
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Enrique F Schisterman
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexander Suvorov
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA, USA
| | - Laura B Balzer
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts Amherst, 715 North Pleasant Street, Amherst, MA, USA
| | - J Richard Pilsner
- C.S. Mott Center for Human Growth and Development, Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, 48201, USA; Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| |
Collapse
|
21
|
Epigenetic aging and perceived psychological stress in old age. Transl Psychiatry 2022; 12:410. [PMID: 36163242 PMCID: PMC9513097 DOI: 10.1038/s41398-022-02181-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 12/20/2022] Open
Abstract
Adverse effects of psychological stress on physical and mental health, especially in older age, are well documented. How perceived stress relates to the epigenetic clock measure, DNA methylation age acceleration (DNAmAA), is less well understood and existing studies reported inconsistent results. DNAmAA was estimated from five epigenetic clocks (7-CpG, Horvath's, Hannum's, PhenoAge and GrimAge DNAmAA). Cohen's Perceived Stress Scale (PSS) was used as marker of psychological stress. We analyzed data from 1,100 Berlin Aging Study II (BASE-II) participants assessed as part of the GendAge study (mean age = 75.6 years, SD = 3.8 years, 52.1% women). In a first step, we replicated well-established associations of perceived stress with morbidity, frailty, and symptoms of depression in the BASE-II cohort studied here. In a second step, we did not find any statistically significant association of perceived stress with any of the five epigenetic clocks in multiple linear regression analyses that adjusted for covariates. Although the body of literature suggests an association between higher DNAmAA and stress or trauma during early childhood, the current study found no evidence for an association of perception of stress with DNAmAA in older people. We discuss possible reasons for the lack of associations and highlight directions for future research.
Collapse
|
22
|
Reimann B, Martens DS, Wang C, Ghantous A, Herceg Z, Plusquin M, Nawrot TS. Interrelationships and determinants of aging biomarkers in cord blood. J Transl Med 2022; 20:353. [PMID: 35945616 PMCID: PMC9361565 DOI: 10.1186/s12967-022-03541-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing evidence supports the concept of prenatal programming as an early factor in the aging process. DNA methylation age (DNAm age), global genome-wide DNA methylation (global methylation), telomere length (TL), and mitochondrial DNA content (mtDNA content) have independently been shown to be markers of aging, but their interrelationship and determinants at birth remain uncertain. METHODS We assessed the inter-correlation between the aging biomarkers DNAm age, global methylation, TL and mtDNA content using Pearson's correlation in 190 cord blood samples of the ENVIRONAGE birth cohort. TL and mtDNA content was measured via qPCR, while the DNA methylome was determined using the human 450K methylation Illumina microarray. Subsequently, DNAm age was calculated according to Horvath's epigenetic clock, and mean global, promoter, gene-body, and intergenic DNA methylation were determined. Path analysis, a form of structural equation modeling, was performed to disentangle the complex causal relationships among the aging biomarkers and their potential determinants. RESULTS DNAm age was inversely correlated with global methylation (r = -0.64, p < 0.001) and mtDNA content (r = - 0.16, p = 0.027). Cord blood TL was correlated with mtDNA content (r = 0.26, p < 0.001) but not with global methylation or DNAm age. Path analysis showed the strongest effect for global methylation on DNAm age with a decrease of 0.64 standard deviations (SD) in DNAm age for each SD (0.01%) increase in global methylation (p < 0.001). Among the applied covariates, newborn sex and season of delivery were the strongest determinants of aging biomarkers. CONCLUSIONS We provide insight into molecular aging signatures at the start of life, including their interrelations and determinants, showing that cord blood DNAm age is inversely associated with global methylation and mtDNA content but not with newborn telomere length. Our findings demonstrate that cord blood TL and DNAm age relate to different pathways/mechanisms of biological aging and can be influenced by environmental factors already at the start of life. These findings are relevant for understanding fetal programming and for the early prevention of noncommunicable diseases.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Congrong Wang
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research On Cancer (IARC), Lyon, France
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- School of Public Health, Occupational and Environmental Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Johnson AA, English BW, Shokhirev MN, Sinclair DA, Cuellar TL. Human age reversal: Fact or fiction? Aging Cell 2022; 21:e13664. [PMID: 35778957 PMCID: PMC9381899 DOI: 10.1111/acel.13664] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 12/19/2022] Open
Abstract
Although chronological age correlates with various age-related diseases and conditions, it does not adequately reflect an individual's functional capacity, well-being, or mortality risk. In contrast, biological age provides information about overall health and indicates how rapidly or slowly a person is aging. Estimates of biological age are thought to be provided by aging clocks, which are computational models (e.g., elastic net) that use a set of inputs (e.g., DNA methylation sites) to make a prediction. In the past decade, aging clock studies have shown that several age-related diseases, social variables, and mental health conditions associate with an increase in predicted biological age relative to chronological age. This phenomenon of age acceleration is linked to a higher risk of premature mortality. More recent research has demonstrated that predicted biological age is sensitive to specific interventions. Human trials have reported that caloric restriction, a plant-based diet, lifestyle changes involving exercise, a drug regime including metformin, and vitamin D3 supplementation are all capable of slowing down or reversing an aging clock. Non-interventional studies have connected high-quality sleep, physical activity, a healthy diet, and other factors to age deceleration. Specific molecules have been associated with the reduction or reversal of predicted biological age, such as the antihypertensive drug doxazosin or the metabolite alpha-ketoglutarate. Although rigorous clinical trials are needed to validate these initial findings, existing data suggest that aging clocks are malleable in humans. Additional research is warranted to better understand these computational models and the clinical significance of lowering or reversing their outputs.
Collapse
Affiliation(s)
- Adiv A. Johnson
- Longevity Sciences, Inc. (dba Tally Health)GreenwichConnecticutUSA
| | - Bradley W. English
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging ResearchHarvard Medical SchoolBostonMassachusettsUSA
| | | | - David A. Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging ResearchHarvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
24
|
Daios S, Anogeianaki A, Kaiafa G, Kontana A, Veneti S, Gogou C, Karlafti E, Pilalas D, Kanellos I, Savopoulos C. Telomere Length as a marker of biological aging: A critical review of recent literature. Curr Med Chem 2022; 29:5478-5495. [PMID: 35838223 DOI: 10.2174/0929867329666220713123750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Aging is characterized as a syndrome of deleterious, progressive, universal, and irreversible function changes affecting every structural and functional aspect of the organism and accompanied by a generalized increase in mortality. Although a substantial number of candidates for biomarkers of aging have been proposed, none has been validated or universally accepted. Human telomeres constitute hexameric repetitive DNA sequence nucleoprotein complexes that cap chromosome ends, regulating gene expression and modulating stress-related pathways. Telomere length (TL) shortening is observed both in cellular senescence and advanced age, leading to the investigation of TL as a biomarker for aging and a risk factor indicator for the development and progression of the most common age-related diseases. OBJECTIVE The present review underlines the connection between TL and the pathophysiology of the diseases associated with telomere attrition. METHODS We performed a structured search of the PubMed database for peer-reviewed research of the literature regarding leukocyte TL and cardiovascular diseases (CVD), more specifically stroke and heart disease, and focused on the relevant articles published during the last 5 years. We also applied Hill's criteria of causation to strengthen this association. RESULTS We analyzed the recent literature regarding TL length, stroke, and CVD. Although approximately one-third of the available studies support the connection, the results of different studies seem to be rather conflicting as a result of different study designs, divergent methods of TL determination, small study samples, and patient population heterogeneity. After applying Hill's criteria, we can observe that the literature conforms to them weakly, with chronology being the only Hill criterion of causality that probably cannot be contested. CONCLUSION The present review attempted to examine the purported relation between leukocyte TL and age-related diseases such as CVD and more specific stroke and heart disease in view of the best established, comprehensive, medical and epidemiological criteria that have characterized the focused recent relevant research. Although several recommendations have been made that may contribute significantly to the field, a call for novel technical approaches and studies is mandatory to further elucidate the possible association.
Collapse
Affiliation(s)
- Stylianos Daios
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Antonia Anogeianaki
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Georgia Kaiafa
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Anastasia Kontana
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Stavroula Veneti
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Christiana Gogou
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Eleni Karlafti
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Dimitrios Pilalas
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Ilias Kanellos
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| | - Christos Savopoulos
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
25
|
Vetter VM, Sommerer Y, Kalies CH, Spira D, Bertram L, Demuth I. Vitamin D supplementation is associated with slower epigenetic aging. GeroScience 2022; 44:1847-1859. [PMID: 35562603 PMCID: PMC9213628 DOI: 10.1007/s11357-022-00581-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/26/2022] [Indexed: 11/21/2022] Open
Abstract
Adverse effects of low vitamin D level on mortality and morbidity are controversially discussed. Especially older people are at risk for vitamin D deficiency and therefore exposed to its potentially harmful consequences. A way of measuring differences in the biological age is through DNA methylation age (DNAm age) and its deviation from chronological age, DNAm age acceleration (DNAmAA). We previously reported on an association between vitamin D deficiency and higher 7-CpG DNAmAA in participants of the Berlin Aging Study II (BASE-II). In this study, we employ a quasi-interventional study design to assess the relationship between DNAmAA of five epigenetic clocks and vitamin D supplementation. Longitudinal data were available for 1,036 participants of BASE-II that were reexamined on average 7.4 years later in the GendAge study (mean age at follow-up: 75.6 years, SD = 3.8 years, age range: 64.9-94.1 years, 51.9% female). DNAmAA was estimated with the 7-CpG clock, Horvath's clock, Hannum's clock, PhenoAge, and GrimAge. Methylation data were obtained through methylation-sensitive single nucleotide primer extension (MS-SNuPE) or Illumina's Infinium "MethylationEPIC" array. Vitamin D-deficient participants who chose to start vitamin D supplementation after baseline examination showed a 2.6-year lower 7-CpG DNAmAA (p = 0.011) and 1.3-year lower Horvath DNAmAA (p = 0.042) compared to untreated and vitamin D-deficient participants. DNAmAA did not statistically differ between participants with successfully treated vitamin D deficiency and healthy controls (p > 0.16). Therefore, we conclude that intake of vitamin D supplement is associated with lower DNAmAA in participants with vitamin D deficiency.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Christian Humberto Kalies
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Dominik Spira
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway
| | - Ilja Demuth
- Biology of Aging Working Group, Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
- BCRT - Berlin Institute of Health Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- Biology of Aging Group, Lipid Clinic at the Interdisciplinary Metabolism Center, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|
26
|
Yousefi PD, Suderman M, Langdon R, Whitehurst O, Davey Smith G, Relton CL. DNA methylation-based predictors of health: applications and statistical considerations. Nat Rev Genet 2022; 23:369-383. [PMID: 35304597 DOI: 10.1038/s41576-022-00465-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
DNA methylation data have become a valuable source of information for biomarker development, because, unlike static genetic risk estimates, DNA methylation varies dynamically in relation to diverse exogenous and endogenous factors, including environmental risk factors and complex disease pathology. Reliable methods for genome-wide measurement at scale have led to the proliferation of epigenome-wide association studies and subsequently to the development of DNA methylation-based predictors across a wide range of health-related applications, from the identification of risk factors or exposures, such as age and smoking, to early detection of disease or progression in cancer, cardiovascular and neurological disease. This Review evaluates the progress of existing DNA methylation-based predictors, including the contribution of machine learning techniques, and assesses the uptake of key statistical best practices needed to ensure their reliable performance, such as data-driven feature selection, elimination of data leakage in performance estimates and use of generalizable, adequately powered training samples.
Collapse
Affiliation(s)
- Paul D Yousefi
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Matthew Suderman
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Ryan Langdon
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Oliver Whitehurst
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Bristol, UK.
| |
Collapse
|
27
|
Pearce EE, Alsaggaf R, Katta S, Dagnall C, Aubert G, Hicks BD, Spellman SR, Savage SA, Horvath S, Gadalla SM. Telomere length and epigenetic clocks as markers of cellular aging: a comparative study. GeroScience 2022; 44:1861-1869. [PMID: 35585300 DOI: 10.1007/s11357-022-00586-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 05/06/2022] [Indexed: 12/11/2022] Open
Abstract
Telomere length (TL) and DNA methylation-based epigenetic clocks are markers of biological age, but the relationship between the two is not fully understood. Here, we used multivariable regression models to evaluate the relationships between leukocyte TL (LTL; measured by qPCR [n = 635] or flow FISH [n = 144]) and five epigenetic clocks (Hannum, DNAmAge pan-tissue, PhenoAge, SkinBlood, or GrimAge clocks), or their epigenetic age acceleration measures in healthy adults (age 19-61 years). LTL showed statistically significant negative correlations with all clocks (qPCR: r = - 0.26 to - 0.32; flow FISH: r = - 0.34 to - 0.49; p < 0.001 for all). Yet, models adjusted for age, sex, and race revealed significant associations between three of five clocks (PhenoAge, GrimAge, and Hannum clocks) and LTL by flow FISH (p < 0.01 for all) or qPCR (p < 0.001 for all). Significant associations between age acceleration measures for the same three clocks and qPCR or flow FISH TL were also found (p < 0.01 for all). Additionally, LTL (by qPCR or flow FISH) showed significant associations with extrinsic epigenetic age acceleration (EEAA: p < 0.0001 for both), but not intrinsic epigenetic age acceleration (IEAA; p > 0.05 for both). In conclusion, the relationships between LTL and epigenetic clocks were limited to clocks reflecting phenotypic age. The observed association between LTL and EEAA reflects the ability of both measures to detect immunosenescence. The observed modest correlations between LTL and epigenetic clocks highlight a possible benefit from incorporating both measures in understanding disease etiology and prognosis.
Collapse
Affiliation(s)
- Emily E Pearce
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Rotana Alsaggaf
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shilpa Katta
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Casey Dagnall
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Geraldine Aubert
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, BC, V5Z 1L3, Canada
| | - Belynda D Hicks
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, 21701, USA
| | - Stephen R Spellman
- Center for International Blood and Marrow Transplant Research, Minneapolis, MN, 55401, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, 90095, USA
| | - Shahinaz M Gadalla
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
28
|
Pavanello S, Campisi M, Rigotti P, Bello MD, Nuzzolese E, Neri F, Furian L. DNA Methylation - and Telomere - Based Biological Age Estimation as Markers of Biological Aging in Donors Kidneys. Front Med (Lausanne) 2022; 9:832411. [PMID: 35402460 PMCID: PMC8984253 DOI: 10.3389/fmed.2022.832411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
The biological age of an organ may represent a valuable tool for assessing its quality, especially in the elder. We examined the biological age of the kidneys [right (RK) and left kidney (LK)] and blood leukocytes in the same subject and compared these to assess whether blood mirrors kidney biological aging. Biological age was studied in n = 36 donors (median age: 72 years, range: 19-92; male: 42%) by exploring mitotic and non-mitotic pathways, using telomere length (TL) and age-methylation changes (DNAmAge) and its acceleration (AgeAcc). RK and LK DNAmAge are older than blood DNAmAge (RK vs. Blood, p = 0.0271 and LK vs. Blood, p = 0.0245) and RK and LK AgeAcc present higher score (this mean the AgeAcc is faster) than that of blood leukocytes (p = 0.0271 and p = 0.0245) in the same donor. TL of RK and LK are instead longer than that of blood (p = 0.0011 and p = 0.0098) and the increase in Remuzzi-Karpinski score is strongly correlated with kidney TL attrition (p = 0.0046). Finally, blood and kidney TL (p < 0.01) and DNAmAge (p < 0.001) were correlated. These markers can be evaluated in further studies as indicators of biological age of donor organ quality and increase the usage of organs from donors of advanced age therefore offering a potential translational research inkidney transplantation.
Collapse
Affiliation(s)
- Sofia Pavanello
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Manuela Campisi
- Occupational Medicine, Department of Cardiac, Thoracic, and Vascular Sciences and Public Health, University Hospital of Padova, Padova, Italy
| | - Paolo Rigotti
- Kidney and Pancreas Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Marianna Di Bello
- Kidney and Pancreas Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Erica Nuzzolese
- Kidney and Pancreas Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Flavia Neri
- Kidney and Pancreas Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| | - Lucrezia Furian
- Kidney and Pancreas Transplantation Unit, Department of Surgery, Oncology and Gastroenterology, University Hospital of Padova, Padova, Italy
| |
Collapse
|
29
|
Vetter VM, Kalies CH, Sommerer Y, Bertram L, Demuth I. Seven-CpG DNA Methylation Age Determined by Single Nucleotide Primer Extension and Illumina's Infinium MethylationEPIC Array Provide Highly Comparable Results. Front Genet 2022; 12:759357. [PMID: 35111197 PMCID: PMC8802213 DOI: 10.3389/fgene.2021.759357] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
DNA methylation age (DNAm age, epigenetic clock) is a novel and promising biomarker of aging. It is calculated from the methylation fraction of specific cytosine phosphate guanine sites (CpG sites) of genomic DNA. Several groups have proposed epigenetic clock algorithms and these differ mostly regarding the number and location of the CpG sites considered and the method used to assess the methylation status. Most epigenetic clocks are based on a large number of CpGs, e.g. as measured by DNAm microarrays. We have recently evaluated an epigenetic clock based on the methylation fraction of seven CpGs that were determined by methylation-sensitive single nucleotide primer extension (MS-SNuPE). This method is more cost-effective when compared to array-based technologies as only a few CpGs need to be examined. However, there is only little data on the correspondence in epigenetic age estimation using the 7-CpG clock and other algorithms. To bridge this gap, in this study we measured the 7-CpG DNAm age using two methods, via MS-SNuPE and via the MethylationEPIC array, in a sample of 1,058 participants of the Berlin Aging Study II (BASE-II), assessed as part of the GendAge study. On average, participants were 75.6 years old (SD: 3.7, age range: 64.9-90.0, 52.6% female). Agreement between methods was assessed by Bland-Altman plots. DNAm age was highly correlated between methods (Pearson's r = 0.9) and Bland-Altman plots showed a difference of 3.1 years. DNAm age by the 7-CpG formula was 71.2 years (SD: 6.9 years, SNuPE) and 68.1 years (SD: 6.4 years, EPIC array). The mean of difference in methylation fraction between methods for the seven individual CpG sites was between 0.7 and 13 percent. To allow direct conversion of DNAm age obtained from both methods we developed an adjustment formula with a randomly selected training set of 529 participants using linear regression. After conversion of the Illumina data in a second and independent validation set, the adjusted DNAm age was 71.44 years (SD: 6.1 years, n = 529). In summary, we found the results of DNAm clocks to be highly comparable. Furthermore, we developed an adjustment formula that allows for direct conversion of DNAm age estimates between methods and enables one singular clock to be used in studies that employ either the Illumina or the SNuPE method.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Christian Humberto Kalies
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Dept of Psychology, University of Oslo, Oslo, Norway
| | - Ilja Demuth
- Department of Endocrinology and Metabolic Diseases (Including Division of Lipid Metabolism), Biology of Aging Working Group, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
30
|
Vetter VM, Kalies CH, Sommerer Y, Spira D, Drewelies J, Regitz-Zagrosek V, Bertram L, Gerstorf D, Demuth I. Relationship between five Epigenetic Clocks, Telomere Length and Functional Capacity assessed in Older Adults: Cross-sectional and Longitudinal Analyses. J Gerontol A Biol Sci Med Sci 2022; 77:1724-1733. [PMID: 35032170 DOI: 10.1093/gerona/glab381] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/14/2022] Open
Abstract
DNA methylation age acceleration (DNAmAA, derived from an epigenetic clock) and relative leukocyte telomere length (rLTL) are widely accepted biomarkers of aging. Nevertheless, it is still unclear which aspects of aging they represent best. Here we evaluated longitudinal associations between baseline rLTL and DNAmAA (estimated with 7-CpG clock) and functional assessments covering different domains of aging. Additionally, we made use of cross-sectional data on these assessments and examined their association with DNAmAA estimated by five different DNAm age measures. Two-wave longitudinal data was available for 1,083 participants of the Berlin Aging Study II (BASE-II) who were re-examined on average 7.4 years after baseline as part of the GendAge study. Functional outcomes were assessed with Fried's frailty score, Tinetti mobility test, falls in the past 12 months (yes/no), Finger-floor distance, Mini Mental State Examination (MMSE), Center for Epidemiologic Studies Depression Scale (CES-D), Activities of Daily Living (ADL), Instrumented ADL (IADL) and Mini Nutritional Assessment (MNA). Overall, we found no evidence for an association between the molecular biomarkers measured at baseline, rLTL and DNAmAA (7-CpG clock), and functional assessments assessed at follow-up. Similarly, a cross-sectional analyses of follow-up data did also not show evidence for associations of the various DNAmAA measures (7-CpG clock, Horvath's clock, Hannum's clock PhenoAge, and GrimAge) with functional assessments. In conclusion, neither rLTL nor 7-CpG DNAmAA were able to predict impairment in the analyzed assessments over a ~7-year time-course. Similarly, DNAmAA estimated from five epigenetic clocks was not a good cross-sectional marker of health deterioration either.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany.,Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Christian Humberto Kalies
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Yasmine Sommerer
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Dominik Spira
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Johanna Drewelies
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Cardiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany.,Center for Lifespan Changes in Brain and Cognition (LCBC), Dept of Psychology, University of Oslo, Oslo, Norway
| | - Denis Gerstorf
- Department of Psychology, Humboldt University Berlin, Berlin, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany.,Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| |
Collapse
|
31
|
Jawinski P, Markett S, Drewelies J, Düzel S, Demuth I, Steinhagen-Thiessen E, Wagner GG, Gerstorf D, Lindenberger U, Gaser C, Kühn S. Linking Brain Age Gap to Mental and Physical Health in the Berlin Aging Study II. Front Aging Neurosci 2022; 14:791222. [PMID: 35936763 PMCID: PMC9355695 DOI: 10.3389/fnagi.2022.791222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
From a biological perspective, humans differ in the speed they age, and this may manifest in both mental and physical health disparities. The discrepancy between an individual's biological and chronological age of the brain ("brain age gap") can be assessed by applying machine learning techniques to Magnetic Resonance Imaging (MRI) data. Here, we examined the links between brain age gap and a broad range of cognitive, affective, socioeconomic, lifestyle, and physical health variables in up to 335 adults of the Berlin Aging Study II. Brain age gap was assessed using a validated prediction model that we previously trained on MRI scans of 32,634 UK Biobank individuals. Our statistical analyses revealed overall stronger evidence for a link between higher brain age gap and less favorable health characteristics than expected under the null hypothesis of no effect, with 80% of the tested associations showing hypothesis-consistent effect directions and 23% reaching nominal significance. The most compelling support was observed for a cluster covering both cognitive performance variables (episodic memory, working memory, fluid intelligence, digit symbol substitution test) and socioeconomic variables (years of education and household income). Furthermore, we observed higher brain age gap to be associated with heavy episodic drinking, higher blood pressure, and higher blood glucose. In sum, our results point toward multifaceted links between brain age gap and human health. Understanding differences in biological brain aging may therefore have broad implications for future informed interventions to preserve mental and physical health in old age.
Collapse
Affiliation(s)
- Philippe Jawinski
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Markett
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johanna Drewelies
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.,Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany
| | - Sandra Düzel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ilja Demuth
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Elisabeth Steinhagen-Thiessen
- Division of Lipid Metabolism, Department of Endocrinology and Metabolic Diseases, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gert G Wagner
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,German Socio-Economic Panel Study (SOEP), Berlin, Germany.,Federal Institute for Population Research (BiB), Berlin, Germany
| | - Denis Gerstorf
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany.,German Socio-Economic Panel Study (SOEP), Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Christian Gaser
- Structural Brain Mapping Group, Department of Psychiatry and Neurology, Jena University Hospital, Jena, Germany
| | - Simone Kühn
- Lise Meitner Group for Environmental Neuroscience, Max Planck Institute for Human Development, Berlin, Germany.,Department of Psychiatry and Psychotherapy, University Clinic Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
32
|
Cardiovascular health is associated with the epigenetic clock in the Berlin Aging Study II (BASE-II). Mech Ageing Dev 2021; 201:111616. [PMID: 34879249 DOI: 10.1016/j.mad.2021.111616] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Abstract
The epigenetic clock parameter DNAm age acceleration is a promising biomarker of aging. We have recently described an epigenetic clock based on only seven cytosine-phosphate-guanine sites, which is highly associated with chronological age. The aim of this study was to examine this epigenetic clock with respect to its relationship with cardiovascular health (CVH) in older adults. We used data from the Berlin Aging Study II (BASE-II; 1,671 participants; 68.8 ± 3.7 years old). CVH was operationalized using two different CVH scores, the Framingham Risk Score (FRS), and the Life's simple 7 (LS7). To adjust for potential confounding, e.g. by sex, we performed regression analyses. The LS7 score was higher, i.e. more favorable, in woman than in men (8.8 ± 2 vs. 8.2 ± 2, p < 0.001). DNAm age acceleration was associated with the FRS (β = 0.122, p = 0.028) and with the LS7 (β = -0.804, p = 0.032). In more detail, physical activity (β = -0.461, p = 0.05), HDL-cholesterol (β = 0.343, p = 0.03) and total cholesterol (β = -0.364, p = 0.002) were associated with epigenetic age acceleration. We present evidence suggesting that better CVH is associated with decelerated biological aging measured by the epigenetic clock.
Collapse
|
33
|
Erdem HB, Bahsi T, Ergün MA. Function of telomere in aging and age related diseases. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103641. [PMID: 33774188 DOI: 10.1016/j.etap.2021.103641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Telomeres consist of specialized non-coding DNA repeat sequences. They are essential for preserving the integrity of the genome during cancer development, senescence. Mammalian telomeres might have 1-50 kb of telomeric DNA, which becomes 40-200 base pairs shorter after per cell cycle, and becomes 5-8 kilobase shorter during senescence. There are many studies on the correlation of telomere length and aging rate. However, as the differences in the methods used in the studies and the scarcity of prospective studies, factors affecting telomere length are not really well understood. Some of the age related diseases may develop due to telomere dysfunction and telomere shortness. The short telomere structure detected in both peripheral blood leukocytes and cells of the disease-related tissue has the feature of being a predictive marker for many age-related diseases. It is expected that with future research, telomere length analysis is expected to enter clinical practice.
Collapse
Affiliation(s)
- Haktan Bağış Erdem
- Department of Medical Genetics, University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Yenimahalle, Ankara, Turkey.
| | - Taha Bahsi
- Department of Medical Genetics, University of Health Sciences, Dr. Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital, Yenimahalle, Ankara, Turkey.
| | - Mehmet Ali Ergün
- Department of Medical Genetics, Faculty of Medicine, Gazi University, Besevler, Ankara, Turkey.
| |
Collapse
|
34
|
The association between telomere length and ischemic stroke risk and phenotype. Sci Rep 2021; 11:10967. [PMID: 34040069 PMCID: PMC8155040 DOI: 10.1038/s41598-021-90435-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/11/2021] [Indexed: 12/04/2022] Open
Abstract
The chronological age of a person is a key determinant of etiology and prognosis in the setting of ischemic stroke. Telomere length, an indicator of biological aging, progressively shortens with every cell cycle. Herein, we determined telomere length from peripheral blood leukocytes by Southern blot analyses in a prospective cohort of ischemic stroke patients (n = 163) and equal number of non-stroke controls and evaluated its association with various ischemic stroke features including etiology, severity, and outcome. A shorter telomere length (i.e. lowest quartile; ≤ 5.5 kb) was significantly associated with ischemic stroke (OR 2.95, 95% CI 1.70–5.13). This significant relationship persisted for all stroke etiologies, except for other rare causes of stroke. No significant association was present between admission lesion volume and telomere length; however, patients with shorter telomeres had higher admission National Institutes of Health Stroke Scale scores when adjusted for chronological age, risk factors, etiology, and infarct volume (p = 0.046). On the other hand, chronological age, but not telomere length, was associated with unfavorable outcome (modified Rankin scale > 2) and mortality at 90 days follow-up. The association between shorter telomere length and more severe clinical phenotype at the time of admission, might reflect reduced resilience of cerebral tissue to ischemia as part of biological aging.
Collapse
|
35
|
Xu L, Idrees M, Joo MD, Sidrat T, Wei Y, Song SH, Lee KL, Kong IK. Constitutive Expression of TERT Enhances β-Klotho Expression and Improves Age-Related Deterioration in Early Bovine Embryos. Int J Mol Sci 2021; 22:ijms22105327. [PMID: 34070219 PMCID: PMC8158768 DOI: 10.3390/ijms22105327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Age-associated decline in oocyte quality is one of the dominant factors of low fertility. Aging alters several key processes, such as telomere lengthening, cell senescence, and cellular longevity of granulosa cells surrounding oocyte. To investigate the age-dependent molecular changes, we examined the expression, localization, and correlation of telomerase reverse transcriptase (TERT) and β-Klotho (KLB) in bovine granulosa cells, oocytes, and early embryos during the aging process. Herein, cumulus-oocyte complexes (COCs) obtained from aged cows (>120 months) via ovum pick-up (OPU) showed reduced expression of β-Klotho and its co-receptor fibroblast growth factor receptor 1 (FGFR1). TERT plasmid injection into pronuclear zygotes not only markedly enhanced day-8 blastocysts’ development competence (39.1 ± 0.8%) compared to the control (31.1 ± 0.5%) and D-galactose (17.9 ± 1.0%) treatment groups but also enhanced KLB and FGFR1 expression. In addition, plasmid-injected zygotes displayed a considerable enhancement in blastocyst quality and implantation potential. Cycloastragenol (CAG), an extract of saponins, stimulates telomerase enzymes and enhances KLB expression and alleviates age-related deterioration in cultured primary bovine granulosa cells. In conclusion, telomerase activation or constitutive expression will increase KLB expression and activate the FGFR1/β-Klotho pathway in bovine granulosa cells and early embryos, inhibiting age-related malfunctioning.
Collapse
Affiliation(s)
- Lianguang Xu
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Muhammad Idrees
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
| | - Myeong-Don Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Tabinda Sidrat
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Yiran Wei
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
| | - Seok-Hwan Song
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (S.-H.S.); (K.-L.L.)
| | - Kyeong-Lim Lee
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (S.-H.S.); (K.-L.L.)
| | - Il-Keun Kong
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (L.X.); (M.I.); (M.-D.J.); (T.S.); (Y.W.)
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea
- The Kingkong Co., Ltd., Gyeongsang National University, Jinju 52828, Gyeongnam Province, Korea; (S.-H.S.); (K.-L.L.)
- Correspondence: ; Tel.: +82-55-772-1942
| |
Collapse
|
36
|
Vetter VM, Spira D, Banszerus VL, Demuth I. Epigenetic Clock and Leukocyte Telomere Length Are Associated with Vitamin D Status but not with Functional Assessments and Frailty in the Berlin Aging Study II. J Gerontol A Biol Sci Med Sci 2021; 75:2056-2063. [PMID: 32324874 DOI: 10.1093/gerona/glaa101] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Indexed: 12/14/2022] Open
Abstract
DNA methylation (DNAm) age acceleration, a parameter derived via the epigenetic clock, has recently been suggested as a biomarker of aging. We hypothesized that accelerated biological aging, measured by both this new and the established biomarker of aging, relative leukocyte telomere length (rLTL), are associated with vitamin D deficiency. Moreover, we tested for an association between rLTL/DNAm age acceleration and different clinical assessments for functional capacity, including the Fried frailty score. Cross-sectional data of 1,649 participants of the Berlin Aging Study II was available (~50% female, age: 22-37 and 60-84 years). A seven cytosine-phosphate-guanine clock was estimated to calculate the DNAm age acceleration. rLTL was measured by quantitative real-time polymerase chain reaction (PCR). 25-hydroxyvitamin D (25(OH)D) serum levels <25 nmol/L was defined as vitamin D deficiency and <50 nmol/L as vitamin D insufficiency. Vitamin D-sufficient individuals had a 1.4 years lower mean DNAm age acceleration (p < .05, analysis of variance [ANOVA]) and a 0.11 longer rLTL (p < .001, ANOVA) than vitamin D-deficient participants. Likewise, vitamin D-sufficient participants had lower DNAm age acceleration (β = 1.060, p = .001) and longer rLTL (β = -0.070; p < .001) than vitamin D nonsufficient subjects in covariate-adjusted analysis. Neither DNAm age acceleration nor rLTL were significantly associated with the Fried frailty score or the functional assessments. Only the clock drawing test was associated with DNAm age acceleration (subgroup of older men: β = 1.898, p = .002). Whether the analyzed biomarkers of aging can be used to predict an individual's functional capacity or will be associated with frailty in the advanced course of aging, will be clarified by future longitudinal analyses.
Collapse
Affiliation(s)
- Valentin Max Vetter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Dominik Spira
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Verena Laura Banszerus
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany
| | - Ilja Demuth
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Lipid Clinic at the Interdisciplinary Metabolism Center, Germany.,Charité - Universitätsmedizin Berlin, BCRT - Berlin Institute of Health Center for Regenerative Therapies, Germany
| |
Collapse
|
37
|
García-Giménez JL, Mena-Molla S, Tarazona-Santabalbina FJ, Viña J, Gomez-Cabrera MC, Pallardó FV. Implementing Precision Medicine in Human Frailty through Epigenetic Biomarkers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1883. [PMID: 33672064 PMCID: PMC7919465 DOI: 10.3390/ijerph18041883] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
The main epigenetic features in aging are: reduced bulk levels of core histones, altered pattern of histone post-translational modifications, changes in the pattern of DNA methylation, replacement of canonical histones with histone variants, and altered expression of non-coding RNA. The identification of epigenetic mechanisms may contribute to the early detection of age-associated subclinical changes or deficits at the molecular and/or cellular level, to predict the development of frailty, or even more interestingly, to improve health trajectories in older adults. Frailty reflects a state of increased vulnerability to stressors as a result of decreased physiologic reserves, and even dysregulation of multiple physiologic systems leading to adverse health outcomes for individuals of the same chronological age. A key approach to overcome the challenges of frailty is the development of biomarkers to improve early diagnostic accuracy and to predict trajectories in older individuals. The identification of epigenetic biomarkers of frailty could provide important support for the clinical diagnosis of frailty, or more specifically, to the evaluation of its associated risks. Interventional studies aimed at delaying the onset of frailty and the functional alterations associated with it, would also undoubtedly benefit from the identification of frailty biomarkers. Specific to the article yet reasonably common within the subject discipline.
Collapse
Affiliation(s)
- José Luis García-Giménez
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain; (J.L.G.-G.); (F.V.P.)
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| | - Salvador Mena-Molla
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| | | | - Jose Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain;
| | - Mari Carmen Gomez-Cabrera
- Freshage Research Group, Department of Physiology, Faculty of Medicine, Institute of Health Research-INCLIVA, University of Valencia and CIBERFES, 46010 Valencia, Spain;
| | - Federico V. Pallardó
- U733, Centre for Biomedical Network Research on Rare Diseases (CIBERER-ISCIII), 28029 Madrid, Spain; (J.L.G.-G.); (F.V.P.)
- Mixed Unit for Rare Diseases INCLIVA-CIPF, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, 46003 Valencia, Spain;
- EpiDisease S.L., Parc Cientific de la Universitat de València, 46980 Paterna, Spain
| |
Collapse
|
38
|
Vaiserman A, Krasnienkov D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front Genet 2021; 11:630186. [PMID: 33552142 PMCID: PMC7859450 DOI: 10.3389/fgene.2020.630186] [Citation(s) in RCA: 232] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 12/21/2020] [Indexed: 12/21/2022] Open
Abstract
Telomere shortening is a well-known hallmark of both cellular senescence and organismal aging. An accelerated rate of telomere attrition is also a common feature of age-related diseases. Therefore, telomere length (TL) has been recognized for a long time as one of the best biomarkers of aging. Recent research findings, however, indicate that TL per se can only allow a rough estimate of aging rate and can hardly be regarded as a clinically important risk marker for age-related pathologies and mortality. Evidence is obtained that other indicators such as certain immune parameters, indices of epigenetic age, etc., could be stronger predictors of the health status and the risk of chronic disease. However, despite these issues and limitations, TL remains to be very informative marker in accessing the biological age when used along with other markers such as indices of homeostatic dysregulation, frailty index, epigenetic clock, etc. This review article is aimed at describing the current state of the art in the field and at discussing recent research findings and divergent viewpoints regarding the usefulness of leukocyte TL for estimating the human biological age.
Collapse
Affiliation(s)
- Alexander Vaiserman
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, Kyiv, Ukraine
| | - Dmytro Krasnienkov
- Laboratory of Epigenetics, D.F. Chebotarev Institute of Gerontology, Kyiv, Ukraine
| |
Collapse
|
39
|
Cohen AA, Legault V, Fülöp T. What if there’s no such thing as “aging”? Mech Ageing Dev 2020; 192:111344. [DOI: 10.1016/j.mad.2020.111344] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/17/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022]
|
40
|
Nwanaji-Enwerem JC, Nwanaji-Enwerem U, Van Der Laan L, Galazka JM, Redeker NS, Cardenas A. A Longitudinal Epigenetic Aging and Leukocyte Analysis of Simulated Space Travel: The Mars-500 Mission. Cell Rep 2020; 33:108406. [PMID: 33242403 PMCID: PMC7786521 DOI: 10.1016/j.celrep.2020.108406] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/24/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Astronauts undertaking long-duration space missions may be vulnerable to unique stressors that can impact human aging. Nevertheless, few studies have examined the relationship of mission duration with DNA-methylation-based biomarkers of aging in astronauts. Using data from the six participants of the Mars-500 mission, a high-fidelity 520-day ground simulation experiment, we tested relationships of mission duration with five longitudinally measured blood DNA-methylation-based metrics: DNAmGrimAge, DNAmPhenoAge, DNA-methylation-based estimator of telomere length (DNAmTL), mitotic divisions (epigenetic mitotic clock [epiTOC2]), and pace of aging (PoA). We provide evidence that, relative to baseline, mission duration was associated with significant decreases in epigenetic aging. However, only decreases in DNAmPhenoAge remained significant 7 days post-mission. We also observed significant changes in estimated proportions of plasmablasts, CD4T, CD8 naive, and natural killer (NK) cells. Only decreases in NK cells remained significant post-mission. If confirmed more broadly, these findings contribute insights to improve the understanding of the biological aging implications for individuals experiencing long-duration space travel. Long-duration space travel is marked by a unique combination of stressors known to impact human aging. Using data from six participants of the Mars-500 mission, a high-fidelity 520-day ground simulation experiment, Nwanaji-Enwerem et al. report significant associations of mission duration with decreased biological aging measured via blood DNA methylation.
Collapse
Affiliation(s)
- Jamaji C Nwanaji-Enwerem
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, and MD/PhD Program, Harvard Medical School, Boston, MA 02115, USA; Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | | | - Lars Van Der Laan
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
41
|
Fries GR, Bauer IE, Scaini G, Valvassori SS, Walss-Bass C, Soares JC, Quevedo J. Accelerated hippocampal biological aging in bipolar disorder. Bipolar Disord 2020; 22:498-507. [PMID: 31746071 DOI: 10.1111/bdi.12876] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Evidence suggests accelerated aging mechanisms in bipolar disorder (BD), including DNA methylation (DNAm) aging in blood. However, it is unknown whether such mechanisms are also evident in the brain, in particular in association with other biological clocks. To investigate this, we interrogated genome-wide DNAm in postmortem hippocampus from 32 BD-I patients and 32 non-psychiatric controls group-matched for age and sex from the NIMH Human Brain Collection Core. METHODS DNAm age and epigenetic aging acceleration were estimated using the Horvath method. Telomere length (TL) and mitochondrial DNA (mtDNA) copy number were quantified by real-time PCR. Between-group differences were assessed by linear regression and univariate general linear models with age, sex, race, postmortem interval, tissue pH, smoking, and body mass index included as co-variates. RESULTS Groups did not differ for epigenetic aging acceleration when considering the entire sample. However, after splitting the sample by the median age, an epigenetic aging acceleration was detected in patients compared to controls among older subjects (P = .042). While TL did not differ between groups, a reduction in mtDNA copy number was observed in patients compared to controls (P = .047). In addition, significant correlations were observed between epigenetic aging acceleration and TL (r = -.337, P = .006), as well as between TL and mtDNA copy number (r = .274, P = .028). CONCLUSIONS Hippocampal aging may underlie neurocognitive dysfunctions observed in BD patients. Moreover, our results suggest a complex cross-talk between biological clocks in hippocampus that may underlie clinical manifestations of premature aging in BD.
Collapse
Affiliation(s)
- Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Isabelle E Bauer
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giselli Scaini
- Translational Psychiatry Program, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Consuelo Walss-Bass
- Translational Psychiatry Program, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jair C Soares
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Center of Excellence in Mood Disorders, Faillace Department of Psychiatry & Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.,Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| |
Collapse
|
42
|
Bergsma T, Rogaeva E. DNA Methylation Clocks and Their Predictive Capacity for Aging Phenotypes and Healthspan. Neurosci Insights 2020; 15:2633105520942221. [PMID: 32743556 PMCID: PMC7376380 DOI: 10.1177/2633105520942221] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/23/2020] [Indexed: 12/12/2022] Open
Abstract
The number of age predictors based on DNA methylation (DNAm) profile is rising
due to their potential in predicting healthspan and application in age-related
illnesses, such as neurodegenerative diseases. The cumulative assessment of DNAm
levels at age-related CpGs (DNAm clock) may reflect biological aging. Such DNAm
clocks have been developed using various training models and could mirror
different aspects of disease/aging mechanisms. Hence, evaluating several DNAm
clocks together may be the most effective strategy in capturing the complexity
of the aging process. However, various confounders may influence the outcome of
these age predictors, including genetic and environmental factors, as well as
technical differences in the selected DNAm arrays. These factors should be taken
into consideration when interpreting DNAm clock predictions. In the current
review, we discuss 15 reported DNAm clocks with consideration for their utility
in investigating neurodegenerative diseases and suggest research directions
towards developing a more optimal measure for biological aging.
Collapse
Affiliation(s)
- Tessa Bergsma
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Amenyah SD, Ward M, Strain JJ, McNulty H, Hughes CF, Dollin C, Walsh CP, Lees-Murdock DJ. Nutritional Epigenomics and Age-Related Disease. Curr Dev Nutr 2020; 4:nzaa097. [PMID: 32666030 PMCID: PMC7335360 DOI: 10.1093/cdn/nzaa097] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
Recent advances in epigenetic research have enabled the development of epigenetic clocks, which have greatly enhanced our ability to investigate molecular processes that contribute to aging and age-related disease. These biomarkers offer the potential to measure the effect of environmental exposures linked to dynamic changes in DNA methylation, including nutrients, as factors in age-related disease. They also offer a compelling insight into how imbalances in the supply of nutrients, particularly B-vitamins, or polymorphisms in regulatory enzymes involved in 1-carbon metabolism, the key pathway that supplies methyl groups for epigenetic reactions, may influence epigenetic age and interindividual disease susceptibility. Evidence from recent studies is critically reviewed, focusing on the significant contribution of the epigenetic clock to nutritional epigenomics and its impact on health outcomes and age-related disease. Further longitudinal studies and randomized nutritional interventions are required to advance the field.
Collapse
Affiliation(s)
- Sophia D Amenyah
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Mary Ward
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - J J Strain
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Helene McNulty
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Catherine F Hughes
- Nutrition Innovation Centre for Food and Health (NICHE), School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom. BT52 1SA
| | - Caitlin Dollin
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| | - Colum P Walsh
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| | - Diane J Lees-Murdock
- Genomic Medicine Research Group , School of Biomedical Sciences, Ulster University, Northern Ireland, United Kingdom. BT52 1SA
| |
Collapse
|
44
|
Pohl E, Muschal S, Kliesch S, Zitzmann M, Rohayem J, Gromoll J, Laurentino S. Molecular Aging Markers in Patients with Klinefelter Syndrome. Aging Dis 2020; 11:470-476. [PMID: 32489693 PMCID: PMC7220296 DOI: 10.14336/ad.2019.0801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/01/2019] [Indexed: 01/13/2023] Open
Abstract
Molecular aging markers provide the opportunity for biological age determination in humans and to study factors, such as genetic determinants, affecting the ageing process. In males with Klinefelter syndrome (KS, non-mosaic karyotype 47, XXY), which is the most common sex chromosome aneuploidy, age-related morbidity and mortality are increased, and a significantly reduced life span has been observed. The aim of this study was to investigate whether Klinefelter patients exhibit molecular signs of premature ageing. We studied, specifically, age-associated DNA methylation patterns (by pyrosequencing) and relative telomere length (TL; by quantitative polymerase chain reaction) in blood in a cohort of Klinefelter patients (n=178 and 266 for DNA methylation and TL, respectively) aged 18-71 years and compared them to the data of age-matched healthy male (n = 184 and 196 for DNA methylation and TL, respectively) and female controls (n = 50). Age-associated DNA methylation patterns were not indicative of accelerated ageing in Klinefelter men. Significantly longer telomeres were found in the young Klinefelter subjects aged 18-24 years (mean=1.51 vs. 1.09 and 1.26 in female and male controls, respectively). However, telomere length in subsequent age groups showed no difference to controls. Gonosomal aneuploidy in Klinefelter syndrome is associated with higher baseline TL at adolescent age, but comparable TL with progressive age in other age groups.
Collapse
Affiliation(s)
- Eva Pohl
- 1Institute for Human Genetics, University of Münster, 48149 Münster, Germany
| | - Sina Muschal
- 2Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University of Münster, 48149 Münster, Germany
| | - Sabine Kliesch
- 2Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University of Münster, 48149 Münster, Germany
| | - Michael Zitzmann
- 2Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University of Münster, 48149 Münster, Germany
| | - Julia Rohayem
- 2Department of Clinical and Surgical Andrology, Centre of Reproductive Medicine and Andrology, University of Münster, 48149 Münster, Germany
| | - Jörg Gromoll
- 3Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, 48149 Münster, Germany
| | - Sandra Laurentino
- 3Institute of Reproductive and Regenerative Biology, Centre of Reproductive Medicine and Andrology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
45
|
Raj K, Horvath S. Current perspectives on the cellular and molecular features of epigenetic ageing. Exp Biol Med (Maywood) 2020; 245:1532-1542. [PMID: 32276545 DOI: 10.1177/1535370220918329] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT The field of epigenetic ageing is relatively new, and the speed of its expansion presents a challenge in keeping abreast with new discoveries and their implications. Several reviews have already addressed the great number of pathologies, health conditions, life-style, and external stressors that are associated with changes to the rate of epigenetic ageing. While these associations highlight and affirm the ability of epigenetic clock to capture biologically meaningful changes associated with age, they do not inform us about the underlying mechanisms. In this very early period since the development of the clock, there have been rather limited experimental research that are aimed at uncovering the mechanism. Hence, the perspective that we proffer is derived from available but nevertheless limited lines of evidence that together provide a seemingly coherent narrative that can be tested. This, we believe would be helpful towards uncovering the workings of the epigenetic clock.
Collapse
Affiliation(s)
- Kenneth Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, CA 90095, USA and Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, CA 90095, USA
| |
Collapse
|
46
|
Li X, Ploner A, Wang Y, Magnusson PKE, Reynolds C, Finkel D, Pedersen NL, Jylhävä J, Hägg S. Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. eLife 2020; 9:e51507. [PMID: 32041686 PMCID: PMC7012595 DOI: 10.7554/elife.51507] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022] Open
Abstract
Biological age measurements (BAs) assess aging-related physiological change and predict health risks among individuals of the same chronological age (CA). Multiple BAs have been proposed and are well studied individually but not jointly. We included 845 individuals and 3973 repeated measurements from a Swedish population-based cohort and examined longitudinal trajectories, correlations, and mortality associations of nine BAs across 20 years follow-up. We found the longitudinal growth of functional BAs accelerated around age 70; average levels of BA curves differed by sex across the age span (50-90 years). All BAs were correlated to varying degrees; correlations were mostly explained by CA. Individually, all BAs except for telomere length were associated with mortality risk independently of CA. The largest effects were seen for methylation age estimators (GrimAge) and the frailty index (FI). In joint models, two methylation age estimators (Horvath and GrimAge) and FI remained predictive, suggesting they are complementary in predicting mortality.
Collapse
Affiliation(s)
- Xia Li
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Alexander Ploner
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Yunzhang Wang
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Patrik KE Magnusson
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Chandra Reynolds
- Department of PsychologyUniversity of California, RiversideRiversideUnited States
| | - Deborah Finkel
- Department of PsychologyIndiana University SoutheastNew AlbanyUnited States
- Institute for GerontologyJönköping UniversityJönköpingSweden
| | - Nancy L Pedersen
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Juulia Jylhävä
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| | - Sara Hägg
- Department of Medical Epidemiology and BiostatisticsKarolinska InstitutetStockholmSweden
| |
Collapse
|
47
|
Hematopoietic cellular aging is not accelerated during the first 2 years of life in children born preterm. Pediatr Res 2020; 88:903-909. [PMID: 32170191 PMCID: PMC7086539 DOI: 10.1038/s41390-020-0833-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Prematurity in itself and exposure to neonatal intensive care triggers inflammatory processes and oxidative stress, leading to risk for disease later in life. The effects on cellular aging processes are incompletely understood. METHODS Relative telomere length (RTL) was measured by qPCR in this longitudinal cohort study with blood samples taken at birth and at 2 years of age from 60 children (16 preterm and 44 term). Viral respiratory infections the first year were evaluated. Epigenetic biological DNA methylation (DNAm) age was predicted based on methylation array data in 23 children (11 preterm and 12 term). RTL change/year and DNAm age change/year was compared in preterm and term during the 2 first years of life. RESULTS Preterm infants had longer telomeres than term born at birth and at 2 years of age, but no difference in telomere attrition rate could be detected. Predicted epigenetic DNAm age was younger in preterm infants, but rate of DNAm aging was similar in both groups. CONCLUSIONS Despite early exposure to risk factors for accelerated cellular aging, children born preterm exhibited preserved telomeres. Stress during the neonatal intensive care period did not reflect accelerated epigenetic DNAm aging. Early-life aging was not explained by preterm birth. IMPACT Preterm birth is associated with elevated disease risk later in life. Preterm children often suffer from inflammation early in life. Stress-related telomere erosion during neonatal intensive care has been proposed. Inflammation-accelerated biological aging in preterm is unknown. We find no accelerated aging due to prematurity or infections during the first 2 years of life.
Collapse
|
48
|
Lu AT, Seeboth A, Tsai PC, Sun D, Quach A, Reiner AP, Kooperberg C, Ferrucci L, Hou L, Baccarelli AA, Li Y, Harris SE, Corley J, Taylor A, Deary IJ, Stewart JD, Whitsel EA, Assimes TL, Chen W, Li S, Mangino M, Bell JT, Wilson JG, Aviv A, Marioni RE, Raj K, Horvath S. DNA methylation-based estimator of telomere length. Aging (Albany NY) 2019; 11:5895-5923. [PMID: 31422385 PMCID: PMC6738410 DOI: 10.18632/aging.102173] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/05/2019] [Indexed: 12/13/2022]
Abstract
Telomere length (TL) is associated with several aging-related diseases. Here, we present a DNA methylation estimator of TL (DNAmTL) based on 140 CpGs. Leukocyte DNAmTL is applicable across the entire age spectrum and is more strongly associated with age than measured leukocyte TL (LTL) (r ~-0.75 for DNAmTL versus r ~ -0.35 for LTL). Leukocyte DNAmTL outperforms LTL in predicting: i) time-to-death (p=2.5E-20), ii) time-to-coronary heart disease (p=6.6E-5), iii) time-to-congestive heart failure (p=3.5E-6), and iv) association with smoking history (p=1.21E-17). These associations are further validated in large scale methylation data (n=10k samples) from the Framingham Heart Study, Women's Health Initiative, Jackson Heart Study, InChianti, Lothian Birth Cohorts, Twins UK, and Bogalusa Heart Study. Leukocyte DNAmTL is also associated with measures of physical fitness/functioning (p=0.029), age-at-menopause (p=0.039), dietary variables (omega 3, fish, vegetable intake), educational attainment (p=3.3E-8) and income (p=3.1E-5). Experiments in cultured somatic cells show that DNAmTL dynamics reflect in part cell replication rather than TL per se. DNAmTL is not only an epigenetic biomarker of replicative history of cells, but a useful marker of age-related pathologies that are associated with it.
Collapse
Affiliation(s)
- Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anne Seeboth
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Pei-Chien Tsai
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
- Department of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Austin Quach
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alex P. Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Lifang Hou
- Center for Population Epigenetics, Robert H. Lurie Comprehensive Cancer Center and Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Andrea A. Baccarelli
- Laboratory of Environmental Epigenetics, Departments of Environmental Health Sciences Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Yun Li
- Departments of Genetics, Biostatistics, Computer Science, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Janie Corley
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Adele Taylor
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
- Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - James D. Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric A. Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Themistocles L. Assimes
- VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Wei Chen
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Shengxu Li
- Children’s Minnesota Research Institute, Children’s Hospitals and Clinics of Minnesota, Minneapolis, MN 55404, USA
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - Jordana T. Bell
- Department of Twin Research and Genetic Epidemiology, Kings College London, London SE1 7EH, UK
| | - James G. Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Abraham Aviv
- Center of Development and Aging, New Jersey Medical School, Rutgers State University of New Jersey, Newark, NJ 07103, USA
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Kenneth Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, Oxfordshire OX11 0RQ, UK
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
49
|
Ullah M, Sun Z. Klotho Deficiency Accelerates Stem Cells Aging by Impairing Telomerase Activity. J Gerontol A Biol Sci Med Sci 2019; 74:1396-1407. [PMID: 30452555 PMCID: PMC6696722 DOI: 10.1093/gerona/gly261] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Indexed: 01/01/2023] Open
Abstract
Understanding the effect of molecular pathways involved in the age-dependent deterioration of stem cell function is critical for developing new therapies. The overexpression of Klotho (KL), an antiaging protein, causes treated animal models to enjoy extended life spans. Now, the question stands: Does KL deficiency accelerate stem cell aging and telomere shortening? If so, what are the specific mechanisms by which it does this, and is cycloastragenol (CAG) treatment enough to restore telomerase activity in aged stem cells? We found that KL deficiency diminished telomerase activity by altering the expression of TERF1 and TERT, causing impaired differentiation potential, pluripotency, cellular senescence, and apoptosis in stem cells. Telomerase activity decreased with KL-siRNA knockdown. This suggests that both KL and telomeres regulate the stem cell aging process through telomerase subunits TERF1, POT1, and TERT using the TGFβ, Insulin, and Wnt signaling. These pathways can rejuvenate stem cell populations in a CD90-dependent mechanism. Stem cell dysfunctions were largely provoked by KL deficiency and telomere shortening, owing to altered expression of TERF1, TGFβ1, CD90, POT1, TERT, and basic fibroblast growth factor (bFGF). The CAG treatment partially rescued telomerase deterioration, suggesting that KL plays a critical role in life-extension by regulating telomere length and telomerase activity.
Collapse
Affiliation(s)
- Mujib Ullah
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Biomedical Research Center, Oklahoma City
- Interventional Regenerative Therapies lab, Department of Medicine, Stanford University, Palo Alto, California
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Biomedical Research Center, Oklahoma City
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
50
|
Han LKM, Verhoeven JE, Tyrka AR, Penninx BWJH, Wolkowitz OM, Månsson KNT, Lindqvist D, Boks MP, Révész D, Mellon SH, Picard M. Accelerating research on biological aging and mental health: Current challenges and future directions. Psychoneuroendocrinology 2019; 106:293-311. [PMID: 31154264 PMCID: PMC6589133 DOI: 10.1016/j.psyneuen.2019.04.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/22/2019] [Accepted: 04/02/2019] [Indexed: 12/13/2022]
Abstract
Aging is associated with complex biological changes that can be accelerated, slowed, or even temporarily reversed by biological and non-biological factors. This article focuses on the link between biological aging, psychological stressors, and mental illness. Rather than comprehensively reviewing this rapidly expanding field, we highlight challenges in this area of research and propose potential strategies to accelerate progress in this field. This effort requires the interaction of scientists across disciplines - including biology, psychiatry, psychology, and epidemiology; and across levels of analysis that emphasize different outcome measures - functional capacity, physiological, cellular, and molecular. Dialogues across disciplines and levels of analysis naturally lead to new opportunities for discovery but also to stimulating challenges. Some important challenges consist of 1) establishing the best objective and predictive biological age indicators or combinations of indicators, 2) identifying the basis for inter-individual differences in the rate of biological aging, and 3) examining to what extent interventions can delay, halt or temporarily reverse aging trajectories. Discovering how psychological states influence biological aging, and vice versa, has the potential to create novel and exciting opportunities for healthcare and possibly yield insights into the fundamental mechanisms that drive human aging.
Collapse
Affiliation(s)
- Laura K M Han
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute, Oldenaller 1, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Josine E Verhoeven
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute, Oldenaller 1, the Netherlands
| | - Audrey R Tyrka
- Butler Hospital and the Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Brenda W J H Penninx
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Public Health Research Institute, Oldenaller 1, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Owen M Wolkowitz
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Kristoffer N T Månsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychology, Stockholm University, Stockholm, Sweden; Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Daniel Lindqvist
- Faculty of Medicine, Department of Clinical Sciences, Psychiatry, Lund University, Lund, Sweden; Department of Psychiatry, University of California San Francisco (UCSF) School of Medicine, San Francisco, CA, USA; Psychiatric Clinic, Lund, Division of Psychiatry, Lund, Sweden
| | - Marco P Boks
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
| | - Dóra Révész
- Center of Research on Psychology in Somatic diseases (CoRPS), Department of Medical and Clinical Psychology, Tilburg University, Tilburg, the Netherlands
| | - Synthia H Mellon
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Medical Center, New York, NY, USA; Department of Neurology, H. Houston Merritt Center, Columbia Translational Neuroscience Initiative, Columbia University Medical Center, New York, NY, USA; Columbia Aging Center, Columbia University, New York, NY, USA.
| |
Collapse
|