1
|
Dixit B, Vranken W, Ghysels A. Conformational dynamics of α-1 acid glycoprotein (AGP) in cancer: A comparative study of glycosylated and unglycosylated AGP. Proteins 2024; 92:246-264. [PMID: 37837263 DOI: 10.1002/prot.26607] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
α-1 acid glycoprotein (AGP) is one of the most abundant plasma proteins. It fulfills two important functions: immunomodulation, and binding to various drugs and receptors. These different functions are closely associated and modulated via changes in glycosylation and cancer missense mutations. From a structural point of view, glycans alter the local biophysical properties of the protein leading to a diverse ligand-binding spectrum. However, glycans can typically not be observed in the resolved X-ray crystallography structure of AGP due to their high flexibility and microheterogeneity, so limiting our understanding of AGP's conformational dynamics 70 years after its discovery. We here investigate how mutations and glycosylation interfere with AGP's conformational dynamics changing its biophysical behavior, by using molecular dynamics (MD) simulations and sequence-based dynamics predictions. The MD trajectories show that glycosylation decreases the local backbone flexibility of AGP and increases the flexibility of distant regions through allosteric effects. We observe that mutations near the glycosylation site affect glycan's conformational preferences. Thus, we conclude that mutations control glycan dynamics which modulates the protein's backbone flexibility directly affecting its accessibility. These findings may assist in the drug design targeting AGP's glycosylation and mutations in cancer.
Collapse
Affiliation(s)
- Bhawna Dixit
- IBiTech-BioMMeda Group, Ghent University, Ghent, Belgium
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Wim Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - An Ghysels
- IBiTech-BioMMeda Group, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Penn DJ, Zala SM, Luzynski KC. Regulation of Sexually Dimorphic Expression of Major Urinary Proteins. Front Physiol 2022; 13:822073. [PMID: 35431992 PMCID: PMC9008510 DOI: 10.3389/fphys.2022.822073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/21/2022] [Indexed: 11/15/2022] Open
Abstract
Male house mice excrete large amounts of protein in their urinary scent marks, mainly composed of Major Urinary Proteins (MUPs), and these lipocalins function as pheromones and pheromone carriers. Here, we review studies on sexually dimorphic MUP expression in house mice, including the proximate mechanisms controlling MUP gene expression and their adaptive functions. Males excrete 2 to 8 times more urinary protein than females, though there is enormous variation in gene expression across loci in both sexes. MUP expression is dynamically regulated depending upon a variety of factors. Males regulate MUP expression according to social status, whereas females do not, and males regulate expression depending upon health and condition. Male-biased MUP expression is regulated by pituitary secretion of growth hormone (GH), which binds receptors in the liver, activating the JAK2-STAT5 signaling pathway, chromatin accessibility, and MUP gene transcription. Pulsatile male GH secretion is feminized by several factors, including caloric restriction, microbiota depletion, and aging, which helps explain condition-dependent MUP expression. If MUP production has sex-specific fitness optima, then this should generate sexual antagonism over allelic expression (intra-locus sexual conflict) selectively favoring sexually dimorphic expression. MUPs influence the sexual attractiveness of male urinary odor and increased urinary protein excretion is correlated with the reproductive success of males but not females. This finding could explain the selective maintenance of sexually dimorphic MUP expression. Producing MUPs entails energetic costs, but increased excretion may reduce the net energetic costs and predation risks from male scent marking as well as prolong the release of chemical signals. MUPs may also provide physiological benefits, including regulating metabolic rate and toxin removal, which may have sex-specific effects on survival. A phylogenetic analysis on the origins of male-biased MUP gene expression in Mus musculus suggests that this sexual dimorphism evolved by increasing male MUP expression rather than reducing female expression.
Collapse
Affiliation(s)
- Dustin J. Penn
- Department of Interdisciplinary Life Sciences, Konrad Lorenz Institute of Ethology, University of Veterinary Medicine Vienna, Vienna, Austria
| | | | | |
Collapse
|
3
|
Harvey DJ. NEGATIVE ION MASS SPECTROMETRY FOR THE ANALYSIS OF N-LINKED GLYCANS. MASS SPECTROMETRY REVIEWS 2020; 39:586-679. [PMID: 32329121 DOI: 10.1002/mas.21622] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/13/2019] [Accepted: 12/22/2019] [Indexed: 05/03/2023]
Abstract
N-glycans from glycoproteins are complex, branched structures whose structural determination presents many analytical problems. Mass spectrometry, usually conducted in positive ion mode, often requires extensive sample manipulation, usually by derivatization such as permethylation, to provide the necessary structure-revealing fragment ions. The newer but, so far, lesser used negative ion techniques, on the contrary, provide a wealth of structural information not present in positive ion spectra that greatly simplify the analysis of these compounds and can usually be conducted without the need for derivatization. This review describes the use of negative ion mass spectrometry for the structural analysis of N-linked glycans and emphasises the many advantages that can be gained by this mode of operation. Biosynthesis and structures of the compounds are described followed by methods for release of the glycans from the protein. Methods for ionization are discussed with emphasis on matrix-assisted laser desorption/ionization (MALDI) and methods for producing negative ions from neutral compounds. Acidic glycans naturally give deprotonated species under most ionization conditions. Fragmentation of negative ions is discussed next with particular reference to those ions that are diagnostic for specific features such as the branching topology of the glycans and substitution positions of moieties such as fucose and sulfate, features that are often difficult to identify easily by conventional techniques such as positive ion fragmentation and exoglycosidase digestions. The advantages of negative over positive ions for this structural work are emphasised with an example of a series of glycans where all other methods failed to produce a structure. Fragmentation of derivatized glycans is discussed next, both with respect to derivatives at the reducing terminus of the molecules, and to methods for neutralization of the acidic groups on sialic acids to both stabilize them for MALDI analysis and to produce the diagnostic fragments seen with the neutral glycans. The use of ion mobility, combined with conventional mass spectrometry is described with emphasis on its use to extract clean glycan spectra both before and after fragmentation, to separate isomers and its use to extract additional information from separated fragment ions. A section on applications follows with examples of the identification of novel structures from lower organisms and tables listing the use of negative ions for structural identification of specific glycoproteins, glycans from viruses and uses in the biopharmaceutical industry and in medicine. The review concludes with a summary of the advantages and disadvantages of the technique. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
- Centre for Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
4
|
Diversity of major urinary proteins (MUPs) in wild house mice. Sci Rep 2016; 6:38378. [PMID: 27922085 PMCID: PMC5138617 DOI: 10.1038/srep38378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 11/09/2016] [Indexed: 11/21/2022] Open
Abstract
Major urinary proteins (MUPs) are often suggested to be highly polymorphic, and thereby provide unique chemical signatures used for individual and genetic kin recognition; however, studies on MUP variability have been lacking. We surveyed populations of wild house mice (Mus musculus musculus), and examined variation of MUP genes and proteins. We sequenced several Mup genes (9 to 11 loci) and unexpectedly found no inter-individual variation. We also found that microsatellite markers inside the MUP cluster show remarkably low levels of allelic diversity, and significantly lower than the diversity of markers flanking the cluster or other markers in the genome. We found low individual variation in the number and types of MUP proteins using a shotgun proteomic approach, even among mice with variable MUP electrophoretic profiles. We identified gel bands and spots using high-resolution mass spectrometry and discovered that gel-based methods do not separate MUP proteins, and therefore do not provide measures of MUP diversity, as generally assumed. The low diversity and high homology of Mup genes are likely maintained by purifying selection and gene conversion, and our results indicate that the type of selection on MUPs and their adaptive functions need to be re-evaluated.
Collapse
|
5
|
IL-17 Induction by ArtinM is Due to Stimulation of IL-23 and IL-1 Release and/or Interaction with CD3 in CD4+ T Cells. PLoS One 2016; 11:e0149721. [PMID: 26901413 PMCID: PMC4767177 DOI: 10.1371/journal.pone.0149721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/04/2016] [Indexed: 01/12/2023] Open
Abstract
ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-β mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production of IL-17 by CD4+ T cells in two major ways: (I) through the induction of IL-23 and IL-1 by APCs and (II) through the direct interaction with CD3 on the CD4+ T cells. This study contributes to elucidation of mechanisms accounting for the property of ArtinM in inducing Th17 immunity and opens new perspectives in designing strategies for modulating immunity by using carbohydrate recognition agents.
Collapse
|
6
|
Mastrogiacomo R, D′Ambrosio C, Niccolini A, Serra A, Gazzano A, Scaloni A, Pelosi P. An odorant-binding protein is abundantly expressed in the nose and in the seminal fluid of the rabbit. PLoS One 2014; 9:e111932. [PMID: 25391153 PMCID: PMC4229146 DOI: 10.1371/journal.pone.0111932] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/02/2014] [Indexed: 11/19/2022] Open
Abstract
We have purified an abundant lipocalin from the seminal fluid of the rabbit, which shows significant similarity with the sub-class of pheromone carriers “urinary” and “salivary” and presents an N-terminal sequence identical with that of an odorant-binding protein (rabOBP3) expressed in the nasal tissue of the same species. This protein is synthesised in the prostate and found in the seminal fluid, but not in sperm cells. The same protein is also expressed in the nasal epithelium of both sexes, but is completely absent in female reproductive organs. It presents four cysteines, among which two are arranged to form a disulphide bridge, and is glycosylated. This is the first report of an OBP identified at the protein level in the seminal fluid of a vertebrate species. The protein purified from seminal fluid is bound to some organic chemicals whose structure is currently under investigation. We reasonably speculate that, like urinary and salivary proteins reported in other species of mammals, this lipocalin performs a dual role, as carrier of semiochemicals in the seminal fluid and as detector of chemical signals in the nose.
Collapse
Affiliation(s)
- Rosa Mastrogiacomo
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Chiara D′Ambrosio
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | | | - Andrea Serra
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Angelo Gazzano
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
- * E-mail: (A. Scaloni); (PP)
| | - Paolo Pelosi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
- * E-mail: (A. Scaloni); (PP)
| |
Collapse
|
7
|
Abstract
High-precision quantitative profiling of volatile organic constituents in rodent physiological fluids and glandular secretions is needed to relate olfactory signals to physiology and behavior. Whereas capillary gas chromatography-mass spectrometry (GC-MS) analysis has become the most widely applied in such investigations, the extraction and preconcentration of volatile organics is arguably the most critical step in the overall analytical task. In this chapter, we describe technical details of two main sample extraction procedures used in our laboratory: dynamic headspace trapping, and stir bar sorptive extraction (SBSE). They have been demonstrated here for the chromatographic analysis of mouse urine, serum, saliva, and preputial gland specimens.
Collapse
|
8
|
Tian Y, Zhang H. Glycoproteomics and clinical applications. Proteomics Clin Appl 2009; 4:124-32. [PMID: 21137038 DOI: 10.1002/prca.200900161] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/27/2009] [Accepted: 11/05/2009] [Indexed: 11/11/2022]
Abstract
Glycosylation is the most structurally complicated and diverse type of protein modifications. Protein glycosylation has long been recognized to play fundamental roles in many biological processes, as well as in disease genesis and progression. Glycoproteomics focuses on characterization of proteins modified by carbohydrates. Glycoproteomic studies normally include strategies to enrich glycoproteins containing particular carbohydrate structures from protein mixtures followed by quantitative proteomic analysis. These glycoproteomic studies determine which proteins are glycosylated, the glycosylation sites, the carbohydrate structures, as well as the abundance and function of the glycoproteins in different biological and pathological processes. Here we review the recent development in methods used in glycoproteomic analysis. These techniques are essential in elucidation of the relationships between protein glycosylation and disease states. We also review the clinical applications of different glycoproteomic methods.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
9
|
Temporini C, Calleri E, Massolini G, Caccialanza G. Integrated analytical strategies for the study of phosphorylation and glycosylation in proteins. MASS SPECTROMETRY REVIEWS 2008; 27:207-236. [PMID: 18335498 DOI: 10.1002/mas.20164] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The post-translational modification (PTM) of proteins is a common biological mechanism for regulating protein localization, function, and turnover. The direct analysis of modifications is required because they are not coded by genes, and thus are not predictable. Different MS-based proteomic strategies are used for the analysis of PTMs, such as phosphorylation and glycosylation, and are composed of a structural simplification step of the protein followed by specific isolation step to extract the classes of modified peptides (also called "sub-proteomes") before mass spectrometry. This specific isolation step is necessary because PTMs occur at a sub-stoichiometric level and signal suppression of the modified fractions in the mass spectrometer occurs in the presence of the more-abundant non-modified counterpart. The request of innovative analytical strategies in PTM studies is the capability to localize the modification sites, give detailed structural information on the modification, and determine the isoform composition with increased selectivity, sensitivity, and throughput. This review focuses on the description of recent integrated analytical systems proposed for the analysis of PTMs in proteins, and their application to profile the glycoproteome and the phosphoproteome in biological samples. Comments on the difficulties and usefulness of the analytical strategies are given.
Collapse
Affiliation(s)
- Caterina Temporini
- Department of Pharmaceutical Chemistry, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| | | | | | | |
Collapse
|
10
|
Abstract
Posttranslational modifications (PTM) of proteins are among the key biological regulators of function, activity, localization, and interaction. The fact that no more than 30,000-50,000 proteins are encoded by the human genome underlines the importance of posttranslational modifications in modulating the activities and functions of proteins in health and disease. With approximately 50% of all proteins now considered to be glycosylated, its physiological importance in mammalian systems is imperative. Aberrant glycosylation has now been recognized as an attribute of many mammalian diseases, including hereditary disorders, immune deficiencies, neurodegenerative diseases, cardiovascular conditions, and cancer. As many potential disease biomarkers may be glycoproteins present in only minute quantities in tissue extracts and physiological fluids, glycoprotein isolation and enrichment may be critical in a search for such biomarkers. For decades, efforts have been focused on the development of glycoprotein enrichment from complex biological samples. Logically, the great majority of these enrichment methodologies rely on the use of immobilized lectins, which permit selective enrichment of the pools of glycoproteins for proteomic/glycomic studies. In this chapter, lectin affinity chromatography in different formats are described, including tubes; packed columns, and microfluidic channels.
Collapse
|
11
|
Toll H, Berger P, Hofmann A, Hildebrandt A, Oberacher H, Lenhof HP, Huber CG. Glycosylation patterns of human chorionic gonadotropin revealed by liquid chromatography-mass spectrometry and bioinformatics. Electrophoresis 2006; 27:2734-46. [PMID: 16817158 DOI: 10.1002/elps.200600022] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Due to their extensive structural heterogeneity, the elucidation of glycosylation patterns in glycoproteins such as the subunits of human chorionic gonadotropin (hCG), hCG-alpha, and hCG-beta, remains one of the most challenging problems in the proteomic analysis of post-translational modifications. In consequence, glycosylation is usually studied after decomposition of the intact proteins to the proteolytic peptide level. However, by this approach all information about the combination of the different glycopeptides in the intact protein is lost. In this study we have, therefore, attempted to combine the results of glycan identification after tryptic digestion with molecular mass measurements on the native starting material of the new first WHO Reference Reagents (RR) for hCG-alpha (99/720) and hCG-beta (99/650). Despite the extremely high number of possible combinations of the glycans identified in the tryptic peptides by HPLC-MS (>1000 for hCG-alpha and >10 000 for hCG-beta), the mass spectra of intact hCG-alpha and hCG-beta revealed only a limited number of glycoforms present in hCG preparations from pools of pregnancy urines. Peak annotations for hCG-alpha were performed with the help of a bioinformatic algorithm that generated a database containing all possible modifications of the proteins, including modifications possibly introduced during sample preparation such as oxidation or truncation, for subsequent searches for combinations fitting the mass difference between the polypeptide backbone and the measured molecular masses. Fourteen different glycoforms of hCG-alpha, containing biantennary, partly sialylized hybrid-type glycans, including methionine-oxidized and N-terminally truncated forms, were identified. Mass spectra of high quality were also obtained for hCG-beta, however, a database search mass accuracy of +/-5 Da was insufficient to unambiguously assign the possible combinations of post-translational modifications. In summary, mass spectrometric fingerprints of intact molecules were shown to be highly useful for the characterization of glycosylation patterns of different hCG preparations such as the new first WHO RR for immunoassays and could be the first step in establishing biophysical reference methods for hCG and related molecules.
Collapse
Affiliation(s)
- Hansjörg Toll
- Department of Chemistry, Instrumental Analysis and Bioanalysis, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 1999-2000. MASS SPECTROMETRY REVIEWS 2006; 25:595-662. [PMID: 16642463 DOI: 10.1002/mas.20080] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This review describes the use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates and continues coverage of the field from the previous review published in 1999 (D. J. Harvey, Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates, 1999, Mass Spectrom Rev, 18:349-451) for the period 1999-2000. As MALDI mass spectrometry is acquiring the status of a mature technique in this field, there has been a greater emphasis on applications rather than to method development as opposed to the previous review. The present review covers applications to plant-derived carbohydrates, N- and O-linked glycans from glycoproteins, glycated proteins, mucins, glycosaminoglycans, bacterial glycolipids, glycosphingolipids, glycoglycerolipids and related compounds, and glycosides. Applications of MALDI mass spectrometry to the study of enzymes acting on carbohydrates (glycosyltransferases and glycosidases) and to the synthesis of carbohydrates, are also covered.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford OX1 3QU, United Kingdom.
| |
Collapse
|
13
|
Abstract
High-sensitivity glycoprotein analyses are of particular interest in modern biomedical and clinical research, as well as in the development of recombinant protein products. The evolution of new hyphenated methodologies in high-sensitivity glycoprotein analysis is highlighted in this thematic review. These methodologies include, in particular, capillary LC/MALDI/TOF/TOF MS in conjunction with online permethylation platform, and silica-based lectin microcolumns interfaced to MS. The potential of these methodologies in glycomic and glycoproteomic analysis is demonstrated for model glycoproteins as well as total glycomes and glycoproteomes derived from biological samples. Additionally, the applications of CE-MS, CEC, and nanoLC with graphitized carbon in the areas of glycomics and glycoproteomics are described.
Collapse
Affiliation(s)
- Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington 47405, USA.
| | | |
Collapse
|
14
|
Madera M, Mechref Y, Novotny MV. Combining lectin microcolumns with high-resolution separation techniques for enrichment of glycoproteins and glycopeptides. Anal Chem 2005; 77:4081-90. [PMID: 15987113 PMCID: PMC1472620 DOI: 10.1021/ac050222l] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silica-based lectin microcolumns are described in this study together with the chemical procedures necessary for their preparation. The analytical merits of Canavalia ensiformis and Sambucus nigra lectins, [immobilized on activated macroporous silica], such as binding capacity, trapping reproducibility, and substrate selectivity, have been evaluated using model glycoproteins. The described microcolumns are applicable to high-pressure analytical schemes utilizing microvalving procedures, washing steps, and quantitative desorption for LC/MS analysis. The described analytical systems are amenable to the applications aiming at fractionation of complex glycopeptide mixtures and determination of the sites of glycosylation.
Collapse
Affiliation(s)
- Milan Madera
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
15
|
Valkova N, Yunis R, Mak SK, Kang K, Kültz D. Nek8 mutation causes overexpression of galectin-1, sorcin, and vimentin and accumulation of the major urinary protein in renal cysts of jck mice. Mol Cell Proteomics 2005; 4:1009-18. [PMID: 15872312 DOI: 10.1074/mcp.m500091-mcp200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The jck murine model, which results from a double point mutation in the nek8 gene, has been used to study the mechanism of autosomal recessive polycystic kidney disease (ARPKD). The renal proteome of jck mice was characterized by two-dimensional gel electrophoresis combined with mass spectrometry (MALDI-TOF/TOF). Four newly identified proteins were found to accumulate in the kidneys of jck mice with polycystic kidney disease (PKD) compared with their wild-type littermates. The proteins galectin-1, sorcin, and vimentin were found to be induced 9-, 9-, and 25-fold, respectively, in the PKD proteome relative to the wild type. The identity of these proteins was established by peptide mass fingerprinting and de novo MS/MS sequencing of selected peptides. Up-regulation of these three proteins may be due to the nek8 mutation, and their function may be related to the signaling and structural processes in the primary cilium. Additionally a series of protein isoforms observed only in the ARPKD kidney was identified as the major urinary protein (MUP). Peptide sequencing demonstrated that the isoforms MUP1, MUP2, and MUP6 are contained in this series. The MUP series showed a number of male-specific isoforms and a phosphorylation of the entire series with an increasing degree of phosphorylation of the acidic isoforms. In addition, the MUP series was localized to the cyst fluid of PKD mice, and a cellular mislocalization of galectin-1, sorcin, and vimentin in PKD tubular epithelial cells was shown. The abnormal and extremely high accumulation of the MUPs in the ARPKD kidney may be linked to a defect in protein transport and secretion. The discovery of these proteins will provide new information on the molecular and cellular processes associated with the mechanism of ARPKD.
Collapse
Affiliation(s)
- Nelly Valkova
- Physiological Genomics Group, Department of Animal Science, University of California, Davis, California 95616, USA
| | | | | | | | | |
Collapse
|
16
|
Kang P, Mechref Y, Klouckova I, Novotny MV. Solid-phase permethylation of glycans for mass spectrometric analysis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:3421-8. [PMID: 16252310 PMCID: PMC1470644 DOI: 10.1002/rcm.2210] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A miniaturized approach was developed for quantitative permethylation of oligosaccharides, which involves packing of sodium hydroxide powder in microspin columns or fused-silica capillaries (500 microm i.d.), permitting effective derivatization in less than a minute at microscale. Prior to mass spectrometry, analytes are mixed with methyl iodide in dimethyl sulfoxide solution containing traces of water before infusing through the microreactors. This procedure minimizes oxidative degradation and peeling reactions and avoids the need of excessive clean-up. Picomole amounts of linear and branched, sialylated and neutral glycan samples were rapidly and efficiently permethylated by this approach and analyzed by matrix-assisted laser desorption/ionization mass spectrometry.
Collapse
Affiliation(s)
| | | | | | - Milos V. Novotny
- *Correspondence to: M. V. Novotny, Department of Chemistry, Indiana University, 800 E Kirkwood Ave, Bloomington, IN 47405, USA. E-mail:
| |
Collapse
|
17
|
Affiliation(s)
- Yehia Mechref
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
18
|
Hong M, Cassely A, Mechref Y, Novotny MV. Sugar-lectin interactions investigated through affinity capillary electrophoresis. JOURNAL OF CHROMATOGRAPHY. B, BIOMEDICAL SCIENCES AND APPLICATIONS 2001; 752:207-16. [PMID: 11270862 DOI: 10.1016/s0378-4347(00)00564-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The affinity interactions of Concanavalin A (Con A) with various saccharide oligomers (dextrins, dextrans, and selected N-linked glycans from various glycoproteins) have been investigated through a capillary electrophoresis approach. Con A has shown a notable binding discrimination between the alpha-1,6-linked dextran and alpha-1,4-linked dextrin oligomers. Both the binding capacity and binding discrimination appear to decrease with an increase in sugar chainlength. While the core structure of N-linked glycans is deemed to be responsible for the overall binding of various glycans to Con A, the presence of mannose units at the non-reducing ends was found to be very beneficial to the affinity interaction with Con A. Finally, a connection between the glycan-lectin interaction and glycoprotein-lectin interaction has also been suggested.
Collapse
Affiliation(s)
- M Hong
- Department of Chemistry, Indiana University, Bloomington 47405, USA
| | | | | | | |
Collapse
|