1
|
Ramström M, Lavén M, Amini A, Holst BS. Pregnancy-related changes in the canine serum N-glycosylation pattern studied by Rapifluor HILIC-UPLC-FLR-MS. Sci Rep 2024; 14:20861. [PMID: 39242599 PMCID: PMC11379866 DOI: 10.1038/s41598-024-71352-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
Canine reproduction differs from that of many other domestic animals, and increased knowledge on biochemical changes during canine pregnancy is important for investigations of infertility or subfertility. The total glycosylation pattern, i.e., the glycome, of body fluids reflects cellular status in health and disease. The aim of the present pilot study was to investigate pregnancy-related changes of the serum N-glycome in bitches. A method based on Rapifluor HILIC-UPLC-FLR-MS was optimized and applied for analysis and quantification of N-glycans in canine serum. Serum samples from six pregnant and five non-pregnant bitches, collected at four well-defined time points, were included. The levels of sialylated and galactosylated complex glycans were significantly elevated in serum from pregnant bitches, consistent with previous reports on human pregnancy. The levels of fucosylated and agalactosylated glycans decreased significantly in pregnant dogs. In non-pregnant dogs, the glycosylation pattern did not change during the cycle. Pregnancy is an inflammatory state, but our findings during canine pregnancy are quite the opposite to changes that have previously been described for dogs with a known parasitic infection. Evaluation of the canine glycome may thus be valuable in studies of canine pregnancy, possibly differing inflammatory changes related to pregnancy to those caused by an infection.
Collapse
Affiliation(s)
| | - Martin Lavén
- Swedish Medical Products Agency, P. O. Box 26, 751 03, Uppsala, Sweden
| | - Ahmad Amini
- Swedish Medical Products Agency, P. O. Box 26, 751 03, Uppsala, Sweden
| | - Bodil Ström Holst
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, P. O. Box 7054, 750 07, Uppsala, Sweden.
| |
Collapse
|
2
|
Wang Y, Liu Y, Liu S, Cheng L, Liu X. Recent advances in N-glycan biomarker discovery among human diseases. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1156-1171. [PMID: 38910518 PMCID: PMC11464920 DOI: 10.3724/abbs.2024101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
N-glycans play important roles in a variety of biological processes. In recent years, analytical technologies with high resolution and sensitivity have advanced exponentially, enabling analysts to investigate N-glycomic changes in different states. Specific glycan and glycosylation signatures have been identified in multiple diseases, including cancer, autoimmune diseases, nervous system disorders, and metabolic and cardiovascular diseases. These glycans demonstrate comparable or superior indicating capability in disease diagnosis and prognosis over routine biomarkers. Moreover, synchronous glycan alterations concurrent with disease initiation and progression provide novel insights into pathogenetic mechanisms and potential treatment targets. This review elucidates the biological significance of N-glycans, compares the existing glycomic technologies, and delineates the clinical performance of N-glycans across a range of diseases.
Collapse
Affiliation(s)
- Yi Wang
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Yuanyuan Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Si Liu
- Department of Epidemiology and Health StatisticsSchool of Public HealthFujian Medical UniversityFuzhou350122China
| | - Liming Cheng
- Department of Laboratory MedicineTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Xin Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key LaboratorySystems Biology ThemeDepartment of Biomedical EngineeringCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
3
|
Gaudreault J, Forest-Nault C, Gilbert M, Durocher Y, Henry O, De Crescenzo G. A low-temperature SPR-based assay for monoclonal antibody galactosylation and fucosylation assessment using FcγRIIA/B. Biotechnol Bioeng 2024; 121:1659-1673. [PMID: 38351869 DOI: 10.1002/bit.28673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
Monoclonal antibodies (MAbs) are powerful therapeutic tools in modern medicine and represent a rapidly expanding multibillion USD market. While bioprocesses are generally well understood and optimized for MAbs, online quality control remains challenging. Notably, N-glycosylation is a critical quality attribute of MAbs as it affects binding to Fcγ receptors (FcγRs), impacting the efficacy and safety of MAbs. Traditional N-glycosylation characterization methods are ill-suited for online monitoring of a bioreactor; in contrast, surface plasmon resonance (SPR) represents a promising avenue, as SPR biosensors can record MAb-FcγR interactions in real-time and without labeling. In this study, we produced five lots of differentially glycosylated Trastuzumab (TZM) and finely characterized their glycosylation profile by HILIC-UPLC chromatography. We then compared the interaction kinetics of these MAb lots with four FcγRs including FcγRIIA and FcγRIIB at 5°C and 25°C. When interacting with FcγRIIA/B at low temperature, the differentially glycosylated MAb lots exhibited distinct kinetic behaviors, contrary to room-temperature experiments. Galactosylated TZM (1) and core fucosylated TZM (2) could be discriminated and even quantified using an analytical technique based on the area under the curve of the signal recorded during the dissociation phase of a SPR sensorgram describing the interaction with FcγRIIA (1) or FcγRII2B (2). Because of the rapidity of the proposed method (<5 min per measurement) and the small sample concentration it requires (as low as 30 nM, exact concentration not required), it could be a valuable process analytical technology for MAb glycosylation monitoring.
Collapse
Affiliation(s)
- Jimmy Gaudreault
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | | | - Michel Gilbert
- Human Health Therapeutics Research Center, National Research Council Canada, Ottawa, Ontario, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Center, National Research Council Canada, Montréal, Québec, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Quebec, Canada
| |
Collapse
|
4
|
Mancera-Arteu M, Benavente F, Sanz-Nebot V, Giménez E. Sensitive Analysis of Recombinant Human Erythropoietin Glycopeptides by On-Line Phenylboronic Acid Solid-Phase Extraction Capillary Electrophoresis Mass Spectrometry. J Proteome Res 2023; 22:826-836. [PMID: 36763563 PMCID: PMC9990126 DOI: 10.1021/acs.jproteome.2c00569] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
In this study, several chromatographic sorbents: porous graphitic carbon (PGC), aminopropyl hydrophilic interaction (aminopropyl-HILIC), and phenylboronic acid (PBA) were assessed for the analysis of glycopeptides by on-line solid-phase extraction capillary electrophoresis mass spectrometry (SPE-CE-MS). As the PBA sorbent provided the most promising results, a PBA-SPE-CE-MS method was developed for the selective and sensitive preconcentration of glycopeptides from enzymatic digests of glycoproteins. Recombinant human erythropoietin (rhEPO) was selected as the model glycoprotein and subjected to enzymatic digestion with several proteases. The tryptic O126 and N83 glycopeptides from rhEPO were targeted to optimize the methodology. Under the optimized conditions, intraday precision, linearity, limits of detection (LODs), and microcartridge lifetime were evaluated, obtaining improved results compared to that from a previously reported TiO2-SPE-CE-MS method, especially for LODs of N-glycopeptides (up to 500 times lower than by CE-MS and up to 200 times lower than by TiO2-SPE-CE-MS). Moreover, rhEPO Glu-C digests were also analyzed by PBA-SPE-CE-MS to better characterize N24 and N38 glycopeptides. Finally, the established method was used to analyze two rhEPO products (EPOCIM and NeuroEPO plus), demonstrating its applicability in biopharmaceutical analysis. The sensitivity of the proposed PBA-SPE-CE-MS method improves the existing CE-MS methodologies for glycopeptide analysis and shows a great potential in glycoprotein analysis to deeply characterize protein glycosites even at low concentrations of the protein digest.
Collapse
Affiliation(s)
- Montserrat Mancera-Arteu
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Fernando Benavente
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Victoria Sanz-Nebot
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Estela Giménez
- Department of Chemical Engineering and Analytical Chemistry, Institute for Research on Nutrition and Food Safety (INSA·UB), University of Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| |
Collapse
|
5
|
Trbojević-Akmačić I, Lageveen-Kammeijer GSM, Heijs B, Petrović T, Deriš H, Wuhrer M, Lauc G. High-Throughput Glycomic Methods. Chem Rev 2022; 122:15865-15913. [PMID: 35797639 PMCID: PMC9614987 DOI: 10.1021/acs.chemrev.1c01031] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glycomics aims to identify the structure and function of the glycome, the complete set of oligosaccharides (glycans), produced in a given cell or organism, as well as to identify genes and other factors that govern glycosylation. This challenging endeavor requires highly robust, sensitive, and potentially automatable analytical technologies for the analysis of hundreds or thousands of glycomes in a timely manner (termed high-throughput glycomics). This review provides a historic overview as well as highlights recent developments and challenges of glycomic profiling by the most prominent high-throughput glycomic approaches, with N-glycosylation analysis as the focal point. It describes the current state-of-the-art regarding levels of characterization and most widely used technologies, selected applications of high-throughput glycomics in deciphering glycosylation process in healthy and disease states, as well as future perspectives.
Collapse
Affiliation(s)
| | | | - Bram Heijs
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Tea Petrović
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Helena Deriš
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
| | - Manfred Wuhrer
- Center
for Proteomics and Metabolomics, Leiden
University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Gordan Lauc
- Genos,
Glycoscience Research Laboratory, Borongajska cesta 83H, 10 000 Zagreb, Croatia
- Faculty
of Pharmacy and Biochemistry, University
of Zagreb, A. Kovačića 1, 10 000 Zagreb, Croatia
| |
Collapse
|
6
|
Deriš H, Tominac P, Vučković F, Briški N, Astrup A, Blaak EE, Lauc G, Gudelj I. Effects of low-calorie and different weight-maintenance diets on IgG glycome composition. Front Immunol 2022; 13:995186. [PMID: 36211377 PMCID: PMC9535357 DOI: 10.3389/fimmu.2022.995186] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/31/2022] [Indexed: 11/20/2022] Open
Abstract
Obesity-induced inflammation activates the adaptive immune system by altering immunoglobulin G (IgG) glycosylation in a way to produce more proinflammatory antibodies. The IgG glycome has already been well studied, and its alterations are correlated with a high body mass index (BMI) and central adiposity. Still, the IgG N-glycome susceptibility to different dietary regimes for weight control after the initial weight loss has not been studied. To explore changes in IgG glycosylation induced by weight loss and subsequent weight-maintenance diets, we analyzed 1,850 IgG glycomes from subjects in a dietary intervention Diogenes study. In this study, participants followed a low-calorie diet (LCD) providing 800 kcal/d for 8 weeks, followed by one of five weight-maintenance diets over a 6-month period. The most significant alteration of the IgG N-glycome was present 8 weeks after the subjects underwent an LCD, a statistically significant decrease of agalactosylated and the increase of sialylated N glycans. In the follow-up period, the increase in glycans with bisecting GlcNAc and the decrease in sialylated glycans were observed. Those changes were present regardless of the diet type, and we did not observe significant changes between different diets. However, it should be noted that in all five diet groups, there were individuals who prominently altered their IgG glycome composition in either proinflammatory or anti-inflammatory directions.
Collapse
Affiliation(s)
- Helena Deriš
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Petra Tominac
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | | | - Nina Briški
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
| | - Arne Astrup
- Centre for Healthy Weigh, The Novo Nordisk Foundation, Hellerup, Denmark
| | - Ellen E. Blaak
- Department of Human Biology, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- *Correspondence: Gordan Lauc, ; Ivan Gudelj,
| | - Ivan Gudelj
- Genos Glycoscience Research Laboratory, Zagreb, Croatia
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
- *Correspondence: Gordan Lauc, ; Ivan Gudelj,
| |
Collapse
|