1
|
Hayes AJ, Melrose J. Keratan Sulphate in the Tumour Environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:39-66. [PMID: 32266652 DOI: 10.1007/978-3-030-40146-7_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose β1→4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue-associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes.
Collapse
Affiliation(s)
- Anthony J Hayes
- Bioimaging Research Hub, Cardiff School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - James Melrose
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW, Australia. .,Raymond Purves Laboratory, Institute of Bone and Joint Research, Kolling Institute, Northern Sydney Local Health District, Royal North Shore Hospital, St. Leonards, NSW, Australia. .,Sydney Medical School, Northern, The University of Sydney, Faculty of Medicine and Health at Royal North Shore Hospital, St. Leonards, NSW, Australia.
| |
Collapse
|
2
|
Rios de la Rosa JM, Tirella A, Tirelli N. Receptor-Targeted Drug Delivery and the (Many) Problems We Know of: The Case of CD44 and Hyaluronic Acid. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Julio M. Rios de la Rosa
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Annalisa Tirella
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
| | - Nicola Tirelli
- NorthWest Centre for Advanced Drug Delivery (NoWCADD); School of Health Sciences; University of Manchester; Oxford Road Manchester M13 9PT UK
- Laboratory of Polymers and Biomaterials; Fondazione Istituto Italiano di Tecnologia; Genova 16163 Italy
| |
Collapse
|
3
|
Belvedere R, Bizzarro V, Parente L, Petrella F, Petrella A. Effects of Prisma® Skin dermal regeneration device containing glycosaminoglycans on human keratinocytes and fibroblasts. Cell Adh Migr 2017; 12:168-183. [PMID: 28795878 DOI: 10.1080/19336918.2017.1340137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prisma® Skin is a new pharmaceutical device developed by Mediolanum Farmaceutici S.p.a. It includes alginates, hyaluronic acid and mainly mesoglycan. The latter is a natural glycosaminoglycan preparation containing chondroitin sulfate, dermatan sulfate, heparan sulfate and heparin and it is used in the treatment of vascular disease. Glycosaminoglycans may contribute to the re-epithelialization in the skin wound healing, as components of the extracellular matrix. Here we describe, for the first time, the effects of Prisma® Skin in in vitro cultures of adult epidermal keratinocytes and dermal fibroblasts. Once confirmed the lack of cytotoxicity by mesoglycan and Prisma® Skin, we have shown the increase of S and G2 phases of fibroblasts cell cycle distribution. We further report the strong induction of cell migration rate and invasion capability on both cell lines, two key processes of wound repair. In support of these results, we found significant cytoskeletal reorganization, following the treatments with mesoglycan and Prisma® Skin, as confirmed by the formation of F-actin stress fibers. Additionally, together with a significant reduction of E-cadherin, keratinocytes showed an increase of CD44 expression and the translocation of ezrin to the plasma membrane, suggesting the involvement of CD44/ERM (ezrin-radixin-moesin) pathway in the induction of the analyzed processes. Furthermore, as showed by immunofluorescence assay, fibroblasts treated with mesoglycan and Prisma® Skin exhibited the increase of Fibroblast Activated Protein α and a remarkable change in shape and orientation, two common features of reactive stromal fibroblasts. In all experiments Prisma® Skin was slightly more potent than mesoglycan. In conclusion, based on these findings we suggest that Prisma® Skin may be able to accelerate the healing process in venous skin ulcers, principally enhancing re-epithelialization and granulation processes.
Collapse
Affiliation(s)
- Raffaella Belvedere
- a Department of Pharmacy , University of Salerno , Fisciano, Salerno , Italy
| | - Valentina Bizzarro
- a Department of Pharmacy , University of Salerno , Fisciano, Salerno , Italy
| | - Luca Parente
- a Department of Pharmacy , University of Salerno , Fisciano, Salerno , Italy
| | - Francesco Petrella
- b Primary Care - Wound Care Service , Health Local Agency Naples 3 South , Portici, Napoli , Italy
| | - Antonello Petrella
- a Department of Pharmacy , University of Salerno , Fisciano, Salerno , Italy
| |
Collapse
|
4
|
Toyoda M, Kaji H, Sawaki H, Togayachi A, Angata T, Narimatsu H, Kameyama A. Identification and characterization of sulfated glycoproteins from small cell lung carcinoma cells assisted by management of molecular charges. Glycoconj J 2016; 33:917-926. [PMID: 27318476 DOI: 10.1007/s10719-016-9700-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/03/2016] [Accepted: 06/05/2016] [Indexed: 01/17/2023]
Abstract
Proteins carrying sulfated glycans (i.e., sulfated glycoproteins) are known to be associated with diseases, such as cancer, cystic fibrosis, and osteoarthritis. Sulfated glycoproteins, however, have not been isolated or characterized from complex biological samples due to lack of appropriate tools for their enrichment. Here, we describe a method to identify and characterize sulfated glycoproteins that are involved in chemical modifications to control the molecular charge of the peptides. In this method, acetohydrazidation of carboxyl groups was performed to accentuate the negative charge of the sulfate group, and Girard's T modification of aspartic acid was performed to assist in protein identification by MS tagging. Using this approach, we identified and characterized the sulfated glycoproteins: Golgi membrane protein 1, insulin-like growth factor binding protein-like 1, and amyloid beta precursor-like protein 1 from H2171 cells, a small cell lung carcinoma cell line. These sulfated glycoproteins carry a complex-type N-glycan with a core fucose and 4'-O-sulfated LacdiNAc as the major glycan.
Collapse
Affiliation(s)
- Masaaki Toyoda
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Hiroyuki Kaji
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Hiromichi Sawaki
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Akira Togayachi
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Takashi Angata
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
| | - Akihiko Kameyama
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan.
| |
Collapse
|
5
|
Wongtrakul-Kish K, Kolarich D, Pascovici D, Joss JL, Deane E, Packer NH. Characterization of N- and O-linked glycosylation changes in milk of the tammar wallaby (Macropus eugenii) over lactation. Glycoconj J 2012; 30:523-36. [DOI: 10.1007/s10719-012-9452-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/06/2012] [Accepted: 09/11/2012] [Indexed: 02/02/2023]
|
6
|
Alves CS, Konstantopoulos K. PDGF suppresses the sulfation of CD44v and potentiates CD44v-mediated binding of colon carcinoma cells to fibrin under flow. PLoS One 2012; 7:e41472. [PMID: 23056168 PMCID: PMC3466257 DOI: 10.1371/journal.pone.0041472] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 06/26/2012] [Indexed: 12/23/2022] Open
Abstract
Fibrin(ogen) mediates sustained tumor cell adhesion and survival in the pulmonary vasculature, thereby facilitating the metastatic dissemination of tumor cells. CD44 is the major functional fibrin receptor on colon carcinoma cells. Growth factors, such as platelet-derived growth factor (PDGF), induce post-translational protein modifications, which modulate ligand binding activity. In view of the roles of PDGF, fibrin(ogen) and CD44 in cancer metastasis, we aimed to delineate the effect of PDGF on CD44-fibrin recognition. By immunoprecipitating CD44 from PDGF-treated and untreated LS174T colon carcinoma cells, which express primarily CD44v, we demonstrate that PDGF enhances the adhesion of CD44v-coated beads to immobilized fibrin. Enzymatic inhibition studies coupled with flow-based adhesion assays and autoradiography reveal that PDGF augments the binding of CD44v to fibrin by significantly attenuating the extent of CD44 sulfation primarily on chondroitin and dermatan sulfate chains. Surface plasmon resonance assays confirm that PDGF enhances the affinity of CD44v-fibrin binding by markedly reducing its dissociation rate while modestly increasing the association rate. PDGF mildly reduces the affinity of CD44v-hyaluronan binding without affecting selectin-CD44v recognition. The latter is attributed to the fact that CD44v binds to selectins via sialofucosylated O-linked residues independent of heparan, dermatan and chondroitin sulfates. Interestingly, PDGF moderately reduces the sulfation of CD44s and CD44s-fibrin recognition. Collectively, these data offer a novel perspective into the mechanism by which PGDF regulates CD44-dependent binding of metastatic colon carcinoma cells to fibrin(ogen).
Collapse
Affiliation(s)
- Christina S. Alves
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Johns Hopkins Physical Sciences, Oncology Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
- Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
7
|
Sakuma K, Chen GY, Aoki M, Kannagi R. Induction of 6-sulfated glycans with cell adhesion activity via T-bet and GATA-3 in human helper T cells. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:841-8. [PMID: 22446378 DOI: 10.1016/j.bbagen.2012.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 03/07/2012] [Accepted: 03/08/2012] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cell surface 6-sulfated glycans play important roles in various immunological events through cell-to-cell interactions. The 6-sulfation process is mediated by 6-sulfotransferase family isoenzymes. We previously demonstrated that GlcNAc6ST-1, one of the isoenzyme genes, is induced by GATA-3 and NF-κB in human helper T (Th) cells. However, transcriptional regulation of HEC-GlcNAc6ST, another isoenzyme important in Th cells, remains unclear. METHODS 5'-RACE analysis, chromatin immunoprecipitation, and reporter assays were performed to reveal transcriptional regulation of HEC-GlcNAc6ST. RNA-knockdown and forced expression experiments were performed to demonstrate the contribution of HEC-GlcNAc6ST to the 6-sulfated glycan expression. RESULTS We identified potential binding sites of Sp1, T-bet, and GATA-3 in the HEC-GlcNAc6ST promoter. Reporter assays indicated that transfection of Sp1 enhanced the activity, whereas mithramycin A, an Sp1-specific inhibitor, repressed it. Transfection of T-bet increased the activity, which was inhibited by introducing a mutation into the potential T-bet binding site. GATA-3 alone could not elevate the activity, although co-transfection of protein kinase A, which is known to enhance IL-5 transcription in Th2 cells through phosphorylation of GATA-3, caused elevation. RNA-knockdown and forced expression of HEC-GlcNAc6ST in Jurkat cells down- and up-regulated α2,6-sialylated 6-sulfo N-acetyllactosamine, a preferential ligand for B-cell-specific CD22 antigen, respectively. From these results, we concluded that T-bet and GATA-3 as well as Sp1 control the expression of glycan with cell-adhesion activity by regulating HEC-GlcNAc6ST transcription in Th cells. GENERAL SIGNIFICANCE These results may provide a clue to biological regulation of Th-cell interaction with selectins and other carbohydrate-recognition molecules by T-bet and GATA-3.
Collapse
Affiliation(s)
- Keiichiro Sakuma
- Division of Molecular Pathology, Aichi Cancer Center, Nagoya, Aichi 464-8681, Japan
| | | | | | | |
Collapse
|
8
|
|
9
|
Amano M, Hashimoto R, Nishimura SI. Effects of single genetic damage in carbohydrate-recognizing proteins in mouse serum N-glycan profile revealed by simple glycotyping analysis. Chembiochem 2012; 13:451-64. [PMID: 22271523 DOI: 10.1002/cbic.201100595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Indexed: 12/29/2022]
Abstract
Gene knock-out of C-type lectin receptors expressed in dendritic cells induced significant alteration of serum N-glycans compared with that of gender-matched controls. Glycotyping analysis suggested that putative-core fucosylation is strongly influenced by differences in the dominant mechanisms after carbohydrate recognition by pattern-recognition receptors, endocytosis of ligands, or induction of cytokines/chemokines. However, the loss of galectin-9, a ligand for T-helper type 1-specific cell-surface molecule, did not affect most N-glycan profiles. Interestingly, lack of the Chst3 gene (chondroitin 6-sulfotransferase) appeared to influence markedly the expression of most N-glycans, especially highly modified glycoforms bearing multiple Neu5Gc, Fuc, and LacNAc units. In contrast, genetic mutations in B4galnt1 and B4galnt2 (GalNAc transferase, responsible for the synthesis of many gangliosides) induced no discernable alteration. These results indicate that the biosynthesis of N-glycans of serum glycoproteins can be affected not only by direct genetic mutations in the glycosyltransferases but also by changes in metabolite availability in sugar nucleotide synthesis and Golgi N-glycosylation pathways caused concertedly in whole cells, tissues, and organs by milder deficiencies in immune cell-surface lectins. Many common chronic conditions, such as autoimmunity, metabolic syndrome, and aging/dementia result.
Collapse
Affiliation(s)
- Maho Amano
- Field of Drug Discovery Research, Faculty of Advanced Life Science, Graduate School of Life Sciences, Hokkaido University, Sapporo 001-0021, Japan.
| | | | | |
Collapse
|
10
|
Jacobs PP, Sackstein R. CD44 and HCELL: preventing hematogenous metastasis at step 1. FEBS Lett 2011; 585:3148-58. [PMID: 21827751 DOI: 10.1016/j.febslet.2011.07.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Accepted: 07/21/2011] [Indexed: 12/23/2022]
Abstract
Despite great strides in our knowledge of the genetic and epigenetic changes underlying malignancy, we have limited information on the molecular basis of metastasis. Over 90% of cancer deaths are caused by spread of tumor cells from a primary site to distant organs and tissues, highlighting the pressing need to define the molecular effectors of cancer metastasis. Mounting evidence suggests that circulating tumor cells (CTCs) home to specific tissues by hijacking the normal leukocyte trafficking mechanisms. Cancer cells characteristically express CD44, and there is increasing evidence that hematopoietic cell E-/L-selectin ligand (HCELL), a sialofucosylated glycoform of CD44, serves as the major selectin ligand on cancer cells, allowing interaction of tumor cells with endothelium, leukocytes, and platelets. Here, we review the structural biology of CD44 and of HCELL, and present current data on the function of these molecules in mediating organ-specific homing/metastasis of CTCs.
Collapse
Affiliation(s)
- Pieter P Jacobs
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
11
|
Increased survival and reduced neutrophil infiltration of the liver in Rab27a- but not Munc13-4-deficient mice in lipopolysaccharide-induced systemic inflammation. Infect Immun 2011; 79:3607-18. [PMID: 21746860 DOI: 10.1128/iai.05043-11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Genetic defects in the Rab27a or Munc13-4 gene lead to immunodeficiencies in humans, characterized by frequent viral and bacterial infections. However, the role of Rab27a and Munc13-4 in the regulation of systemic inflammation initiated by Gram-negative bacterium-derived pathogenic molecules is currently unknown. Using a model of lipopolysaccharide-induced systemic inflammation, we show that Rab27a-deficient (Rab27a(ash/ash)) mice are resistant to lipopolysaccharide (LPS)-induced death, while Munc13-4-deficient (Munc13-4(jinx/jinx)) mice show only moderate protection. Rab27a(ash/ash) but not Munc13-4(jinx/jinx) mice showed significantly decreased tumor necrosis factor alpha (TNF-α) plasma levels after LPS administration. Neutrophil sequestration in lungs from Rab27a(ash/ash) and Munc13-4(jinx/jinx) LPS-treated mice was similar to that observed for wild-type mice. In contrast, Rab27a- but not Munc13-4-deficient mice showed decreased neutrophil infiltration in liver and failed to undergo LPS-induced neutropenia. Decreased liver infiltration in Rab27a(ash/ash) mice was accompanied by lower CD44 but normal CD11a and CD11b expression in neutrophils. Both Rab27a- and Munc13-4-deficient mice showed decreased azurophilic granule secretion in vivo, suggesting that impaired liver infiltration and improved survival in Rab27a(ash/ash) mice is not fully explained by deficient exocytosis of this granule subset. Altogether, our data indicate that Rab27a but not Munc13-4 plays an important role in neutrophil recruitment to liver and LPS-induced death during endotoxemia, thus highlighting a previously unrecognized role for Rab27a in LPS-mediated systemic inflammation.
Collapse
|
12
|
Radhakrishnan P, Chachadi V, Lin MF, Singh R, Varki A, Kannagi R, Cheng PW. TNFα enhances the motility and invasiveness of prostatic cancer cells by stimulating the expression of selective glycosyl- and sulfotransferase genes involved in the synthesis of selectin ligands. Biochem Biophys Res Commun 2011; 409:436-41. [PMID: 21596021 PMCID: PMC4011552 DOI: 10.1016/j.bbrc.2011.05.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 01/19/2023]
Abstract
Sialyl Lewis x (sLe(x)) plays an important role in cancer metastasis. But, the mechanism for its production in metastatic cancers remains unclear. The objective of current study was to examine the effects of a proinflammatory cytokine on the expression of glycosyltransferase and sulfotransferase genes involved in the synthesis of selectin ligands in a prostate cancer cell line. Androgen-independent human lymph node-derived metastatic prostate cancer cells (C-81 LNCaP), which express functional androgen receptor and mimic the castration-resistant advanced prostate cancer, were used. TNFα treatment of these cells increased their binding to P-, E- and L-selectins, anti-sLe(x) antibody, and anti-6-sulfo-sialyl Lewis x antibody by 12%, 240%, 43%, 248% and 21%, respectively. Also, the expression of C2GnT-1, B4GalT1, GlcNAc6ST3, and ST3Gal3 genes was significantly upregulated. Further treatment of TNFα-treated cells with either anti-sLe(x) antibody or E-selectin significantly suppressed their in vitro migration (81% and 52%, respectively) and invasion (45% and 56%, respectively). Our data indicate that TNFα treatment enhances the motility and invasion properties of LNCaP C-81 cells by increasing the formation of selectin ligands through stimulation of the expression of selective glycosyl- and sulfotransferase genes. These results support the hypothesis that inflammation contributes to cancer metastasis.
Collapse
Affiliation(s)
- Prakash Radhakrishnan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Vishwanath Chachadi
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198
| | - Ming-Fong Lin
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198
- Eppley Cancer Center for Research in Cancer and Allied diseases, University of Nebraska Medical Center, Omaha, NE 68198
| | - Rakesh Singh
- Eppley Cancer Center for Research in Cancer and Allied diseases, University of Nebraska Medical Center, Omaha, NE 68198
- Department of Pathology and Microbiology University of Nebraska Medical Center, Omaha, NE 68198
| | - Ajit Varki
- University of California at San Diego, San Diego, CA
| | | | - Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198
- Eppley Cancer Center for Research in Cancer and Allied diseases, University of Nebraska Medical Center, Omaha, NE 68198
| |
Collapse
|
13
|
Ruffell B, Poon GFT, Lee SSM, Brown KL, Tjew SL, Cooper J, Johnson P. Differential use of chondroitin sulfate to regulate hyaluronan binding by receptor CD44 in Inflammatory and Interleukin 4-activated Macrophages. J Biol Chem 2011; 286:19179-90. [PMID: 21471214 PMCID: PMC3103297 DOI: 10.1074/jbc.m110.200790] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Revised: 03/23/2011] [Indexed: 11/06/2022] Open
Abstract
CD44 is a cell surface receptor for the extracellular matrix glycosaminoglycan hyaluronan and is involved in processes ranging from leukocyte recruitment to wound healing. In the immune system, the binding of hyaluronan to CD44 is tightly regulated, and exposure of human peripheral blood monocytes to inflammatory stimuli increases CD44 expression and induces hyaluronan binding. Here we sought to understand how mouse macrophages regulate hyaluronan binding upon inflammatory and anti-inflammatory stimuli. Mouse bone marrow-derived macrophages stimulated with tumor necrosis factor α or lipopolysaccharide and interferon-γ (LPS/IFNγ) induced hyaluronan binding by up-regulating CD44 and down-regulating chondroitin sulfation on CD44. Hyaluronan binding was induced to a lesser extent in interleukin-4 (IL-4)-activated macrophages despite increased CD44 expression, and this was attributable to increased chondroitin sulfation on CD44, as treatment with β-d-xyloside to prevent chondroitin sulfate addition significantly enhanced hyaluronan binding. These changes in the chondroitin sulfation of CD44 were associated with changes in mRNA expression of two chondroitin sulfotransferases, CHST3 and CHST7, which were decreased in LPS/IFNγ-stimulated macrophages and increased in IL-4-stimulated macrophages. Thus, inflammatory and anti-inflammatory stimuli differentially regulate the chondroitin sulfation of CD44, which is a dynamic physiological regulator of hyaluronan binding by CD44 in mouse macrophages.
Collapse
Affiliation(s)
- Brian Ruffell
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Grace F. T. Poon
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sally S. M. Lee
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kelly L. Brown
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Sie-Lung Tjew
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jessie Cooper
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Pauline Johnson
- From the Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
14
|
Toyoda M, Narimatsu H, Kameyama A. Enrichment method of sulfated glycopeptides by a sulfate emerging and ion exchange chromatography. Anal Chem 2010; 81:6140-7. [PMID: 19572564 DOI: 10.1021/ac900592t] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sulfated glycoproteins are of growing importance for biomarker discovery, as well as for investigating molecular recognition processes. Mass spectrometry (MS) has become a powerful technique for the characterization of glycans and glycoproteins. However, characterization and detection of sulfated glycopeptides by MS is difficult because of the low abundance and low ionization efficiency of these molecules. To overcome this problem, we developed a novel enrichment procedure for sulfated glycopeptides. The procedure consists of anion exchange chromatography and a sulfate emerging (SE) method which controls the net charge of peptides by utilizing limited proteolyzes and modification with acetohydrazide. Using this procedure, we are able to enrich and characterize the sulfated glycopeptides of bovine luteinizing hormone (bLH). Furthermore, we demonstrate the enrichment and detection of sulfated glycopeptides from a complex mixture comprising human serum spiked with bLH at a concentration of 0.1%.
Collapse
Affiliation(s)
- Masaaki Toyoda
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| | | | | |
Collapse
|
15
|
Tateno H, Ohnishi K, Yabe R, Hayatsu N, Sato T, Takeya M, Narimatsu H, Hirabayashi J. Dual specificity of Langerin to sulfated and mannosylated glycans via a single C-type carbohydrate recognition domain. J Biol Chem 2009; 285:6390-400. [PMID: 20026605 DOI: 10.1074/jbc.m109.041863] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Langerin is categorized as a C-type lectin selectively expressed in Langerhans cells, playing roles in the first line of defense against pathogens and in Birbeck granule formation. Although these functions are thought to be exerted through glycan-binding activity of the C-type carbohydrate recognition domain, sugar-binding properties of Langerin have not been fully elucidated in relation to its biological functions. Here, we investigated the glycan-binding specificity of Langerin using comprehensive glycoconjugate microarray, quantitative frontal affinity chromatography, and conventional cell biological analyses. Langerin showed outstanding affinity to galactose-6-sulfated oligosaccharides, including keratan sulfate, while it preserved binding activity to mannose, as a common feature of the C-type lectins with an EPN motif. By a mutagenesis study, Lys-299 and Lys-313 were found to form extended binding sites for sulfated glycans. Consistent with the former observation, the sulfated Langerin ligands were found to be expressed in brain and spleen, where the transcript of keratan sulfate 6-O-sulfotransferase is expressed. Moreover, such sulfated ligands were up-regulated in glioblastoma relative to normal brain tissues, and Langerin-expressing cells were localized in malignant brain tissues. Langerin also recognized pathogenic fungi, such as Candida and Malassezia, expressing heavily mannosylated glycans. These observations provide strong evidence that Langerin mediates diverse functions on Langerhans cells through dual recognition of sulfated as well as mannosylated glycans by its uniquely evolved C-type carbohydrate-recognition domain.
Collapse
Affiliation(s)
- Hiroaki Tateno
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central 2, 1-1-1 Umezono, Ibaraki 305-8568, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The lymphatic system is best known for draining interstitial fluid from the tissues and returning it to the blood circulation. However, the lymphatic system also provides the means for immune surveillance in the immune system, acting as conduits that convey soluble antigens and antigen-presenting cells from the tissues to the lymph nodes, where primary lymphocyte responses are generated. One macromolecule that potentially unites these two functions is the large extracellular matrix glycosaminoglycan hyaluronan (HA), a chemically simple copolymer of GlcNAc and GlcUA that fulfills a diversity of functions from danger signal to adhesive substratum, depending upon chain length and particular interaction with its many different binding proteins and a small but important group of receptors. The two most abundant of these receptors are CD44, which is expressed on leukocytes that traffic through the lymphatics, and LYVE-1, which is expressed almost exclusively on lymphatic endothelium. Curiously, much of the HA within the tissues is turned over and degraded in lymph nodes, by a poorly understood process that occurs in the medullary sinuses. Indeed there are several mysterious aspects to HA in the lymphatics. Here we cover some of these by reviewing recent findings in the biology of lymphatic endothelial cells and their possible roles in HA homeostasis together with fresh insights into the complex and enigmatic nature of LYVE-1, its regulation of HA binding by sialylation and self-association, and its potential function in leukocyte trafficking.
Collapse
Affiliation(s)
- David G Jackson
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK. David.
| |
Collapse
|
17
|
Lim KT, Miyazaki K, Kimura N, Izawa M, Kannagi R. Clinical application of functional glycoproteomics - dissection of glycotopes carried by soluble CD44 variants in sera of patients with cancers. Proteomics 2008; 8:3263-73. [PMID: 18690645 DOI: 10.1002/pmic.200800147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We provide here an example of clinical application of functional glycoproteomics for cancer diagnosis. Sialyl Lewis a and sialyl Lewis x glycotopes, which are the specific ligands for selectins, and variant forms of CD44, which are the adhesion molecules recognizing hyaluronate, are both implicated in cancer metastasis. The CD44 variants modified by the sialyl Lewis a and sialyl Lewis x glycotopes are expected to have dual functions, serving as ligands for vascular selectins, and simultaneously having binding activity to vascular bed hyaluronate, and are expected to figure heavily in cancer metastasis. We developed a heterogeneous sandwich assay system to detect soluble CD44v specifically modified by the cancer-associated sialyl Lewis a/x glycotopes, using the extracellular domain of CD44v cleaved by the metalloproteinase ADAM10 as standard molecules. We also developed the assay system for CD44v modified by normal epithelial glycotopes including disialyl Lewis a and sialyl 6-sulfo Lewis x. The results indicated that serum levels of soluble CD44v modified by cancer-associated glycotopes were frequently increased in patients with cancers, while those of CD44v modified by the nonmalignant glycotopes tended to be elevated in patients with benign disorders.
Collapse
Affiliation(s)
- Khe-Ti Lim
- Department of Molecular Pathology, Research Institute, Aichi Cancer Center, Nagoya, Japan
| | | | | | | | | |
Collapse
|
18
|
Chen GY, Sakuma K, Kannagi R. Significance of NF-kappaB/GATA axis in tumor necrosis factor-alpha-induced expression of 6-sulfated cell recognition glycans in human T-lymphocytes. J Biol Chem 2008; 283:34563-70. [PMID: 18849568 PMCID: PMC3259878 DOI: 10.1074/jbc.m804271200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/15/2008] [Indexed: 11/06/2022] Open
Abstract
Sulfated glycans play critical roles in various cell recognition events among leukocytes. The 6-sulfated lactosamine glycans in particular have been widely noted for their importance because they are involved in cell recognition events mediated by cell-adhesion molecules such as selectins and sialic acid-recognizing molecules such as siglecs and also in the activation of CD44 in binding to extracellular matrix hyaluronate. A pro-inflammatory cytokine, tumor necrosis factor-alpha, induces expression of 6-sulfated glycans on human leukocytes. Here we report that the transcription of the GlcNAc6ST-1 gene, the gene encoding a sulfotransferase for 6-sulfated glycan synthesis, is induced in human T-lymphoid cells through tandem NF-kappaB and GATA motifs in its 5'-regulatory region. Results of our reporter assays, immunoprecipitation, and chromatin immunoprecipitation analyses indicated that GATA-3 and/or GATA-2, but not GATA-1, associates with NF-kappaB in a transcription factor complex on the 5'-regulatory region of the gene and acts synergistically with NF-kappaB in triggering GlcNAc6ST-1 transcription. Recently, a skin-homing subset of helper memory T cells exhibiting the Th2 marker CCR4 was shown to specifically express 6-sulfated glycans. The transactivation mechanism described here suggested that GlcNAc6ST-1 transcription is coordinated with the NF-kappaB/GATA-3 axis, which is known to figure heavily in Th2 cell differentiation. In line with this, in vitro differentiation of human T cells to Th2 cells was found to significantly induce GlcNAc6ST-1 transcription and 6-sulfated glycan expression.
Collapse
Affiliation(s)
- Guo-Yun Chen
- Department of Molecular Pathology, Aichi Cancer Center, Nagoya 464-8681, Japan
| | | | | |
Collapse
|
19
|
Alliende C, Kwon YJ, Brito M, Molina C, Aguilera S, Pérez P, Leyton L, Quest AFG, Mandel U, Veerman E, Espinosa M, Clausen H, Leyton C, Romo R, González MJ. Reduced sulfation of muc5b is linked to xerostomia in patients with Sjögren syndrome. Ann Rheum Dis 2008; 67:1480-7. [PMID: 17998215 DOI: 10.1136/ard.2007.078246] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES MUC5B contains sulfated and sialylated oligosaccharides that sequester water required for moisturising the oral mucosa. Xerostomia, in patients with Sjögren syndrome, is generally associated with reduced quantities, rather than altered properties, of saliva. Here, we determined the amount of MUC5B (mRNA and protein) as well as sulfation levels in salivary glands of patients with normal or altered unstimulated salivary flow. Localisation of MUC5B and sulfated MUC5B, as well as total levels sulfated groups were determined and compared with acini basal lamina disorganisation. PATIENTS AND METHODS In all, 18 patients with normal or altered unstimulated salivary flow and 16 controls were studied. MUC5B mRNA and protein were evaluated in salivary glands by semiquantitative RT-PCR and Western blot analysis. MUC5B sulfation was determined by Western blotting. MUC5B and sulfo-Lewis(a) antigen localisation were assessed by immunohistochemistry. The total amount of sulfated oligosaccharides was determined microdensitometrically. RESULTS No significant differences were detected in MUC5B mRNA and protein levels between controls and patients, while sulfo-Lewis(a) antigen levels were lower in patients. The number of sulfo-Lewis(a) positive mucous acini was reduced in patients but no correlation was observed between lower levels of sulfation and unstimulated salivary flow. Microdensitometric data confirmed the presence of reduced sulfated oligosaccharides levels in mucous acini from patients with highly disorganised basal lamina. CONCLUSION Disorganisation of the basal lamina observed in patients with Sjögren syndrome may lead to dedifferentiation of acinar mucous cells and, as a consequence, alter sulfation of MUC5B. These changes are suggested to represent a novel mechanism that may explain xerostomia in these patients.
Collapse
|
20
|
Hilvo M, Baranauskiene L, Salzano AM, Scaloni A, Matulis D, Innocenti A, Scozzafava A, Monti SM, Di Fiore A, De Simone G, Lindfors M, Jänis J, Valjakka J, Pastoreková S, Pastorek J, Kulomaa MS, Nordlund HR, Supuran CT, Parkkila S. Biochemical characterization of CA IX, one of the most active carbonic anhydrase isozymes. J Biol Chem 2008; 283:27799-27809. [PMID: 18703501 DOI: 10.1074/jbc.m800938200] [Citation(s) in RCA: 236] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrase IX (CA IX) is an exceptional member of the CA protein family; in addition to its classical role in pH regulation, it has also been proposed to participate in cell proliferation, cell adhesion, and tumorigenic processes. To characterize the biochemical properties of this membrane protein, two soluble recombinant forms were produced using the baculovirus-insect cell expression system. The recombinant proteins consisted of either the CA IX catalytic domain only (CA form) or the extracellular domain, which included both the proteoglycan and catalytic domains (PG + CA form). The produced proteins lacked the small transmembrane and intracytoplasmic regions of CA IX. Stopped-flow spectrophotometry experiments on both proteins demonstrated that in the excess of certain metal ions the PG + CA form exhibited the highest catalytic activity ever measured for any CA isozyme. Investigations on the oligomerization and stability of the enzymes revealed that both recombinant proteins form dimers that are stabilized by intermolecular disulfide bond(s). Mass spectrometry experiments showed that CA IX contains an intramolecular disulfide bridge (Cys(119)-Cys(299)) and a unique N-linked glycosylation site (Asn(309)) that bears high mannose-type glycan structures. Parallel experiments on a recombinant protein obtained by a mammalian cell expression system demonstrated the occurrence of an additional O-linked glycosylation site (Thr(78)) and characterized the nature of the oligosaccharide structures. This study provides novel information on the biochemical properties of CA IX and may help characterize the various cellular and pathophysiological processes in which this unique enzyme is involved.
Collapse
Affiliation(s)
- Mika Hilvo
- Institute of Medical Technology, FI-33014 Tampere, Finland.
| | - Lina Baranauskiene
- Laboratory of Biothermodynamics and Drug Design, Institute of Biotechnology, LT-02241 Vilnius, Lithuania
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Daumantas Matulis
- Laboratory of Biothermodynamics and Drug Design, Institute of Biotechnology, LT-02241 Vilnius, Lithuania
| | - Alessio Innocenti
- Bioinorganic Chemistry Laboratory, University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| | - Andrea Scozzafava
- Bioinorganic Chemistry Laboratory, University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| | - Simona Maria Monti
- Institute of Biostructures and Bioimages, National Research Council, 80134 Naples, Italy
| | - Anna Di Fiore
- Institute of Biostructures and Bioimages, National Research Council, 80134 Naples, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimages, National Research Council, 80134 Naples, Italy
| | | | - Janne Jänis
- Department of Chemistry, University of Joensuu, FI-80101 Joensuu, Finland
| | | | - Silvia Pastoreková
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, 84505 Bratislava, Slovak Republic
| | - Jaromir Pastorek
- Centre of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, 84505 Bratislava, Slovak Republic
| | | | | | - Claudiu T Supuran
- Bioinorganic Chemistry Laboratory, University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| | - Seppo Parkkila
- Institute of Medical Technology, FI-33014 Tampere, Finland; School of Medicine, University of Tampere and Tampere University Hospital, FI-33014 Tampere, Finland
| |
Collapse
|
21
|
Imami K, Ishihama Y, Terabe S. On-line selective enrichment and ion-pair reaction for structural determination of sulfated glycopeptides by capillary electrophoresis–mass spectrometry. J Chromatogr A 2008; 1194:237-42. [DOI: 10.1016/j.chroma.2008.04.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Revised: 04/16/2008] [Accepted: 04/18/2008] [Indexed: 11/28/2022]
|
22
|
Irungu J, Dalpathado DS, Go EP, Jiang H, Ha HV, Bousfield GR, Desaire H. Method for characterizing sulfated glycoproteins in a glycosylation site-specific fashion, using ion pairing and tandem mass spectrometry. Anal Chem 2007; 78:1181-90. [PMID: 16478110 DOI: 10.1021/ac051554t] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural analysis of sulfated glycans is essential in understanding their biological significance. Here, we present a new approach to characterize sulfated glycans present on glycoproteins. The analysis is performed on glycopeptides, so information about the sulfated species is obtained in a glycosylation site-specific manner. This method employs an ion-pairing reagent to stabilize the SO3 group of the glycopeptide, allowing useful information to be obtained during MS/MS experiments. The amount of structural information obtained from (+)ESI-MS/MS of the ion-pair complexes for sulfated glycopeptides of equine thyroid stimulating hormone is compared with information obtained by (-)ESI-MS/MS of the underivatized, sulfated glycopeptides. The results indicate that this new method provides detailed insights into the sequence, branching, and type of N-glycans present, compared to analysis via (-)ESI-MS/MS.
Collapse
Affiliation(s)
- Janet Irungu
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Zhang Y, Jiang H, Go EP, Desaire H. Distinguishing phosphorylation and sulfation in carbohydrates and glycoproteins using ion-pairing and mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2006; 17:1282-8. [PMID: 16820302 DOI: 10.1016/j.jasms.2006.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Revised: 05/23/2006] [Accepted: 05/23/2006] [Indexed: 05/10/2023]
Abstract
Phosphorylation and sulfation are important modifications affecting the biological properties of carbohydrates, proteins, and glycoproteins. Identification of these two functional groups facilitates the understanding of the structure/function relationship in various species. Mass spectrometry is one of the methods used to detect the presence of these two modifications in complex biological mixtures. However, phosphorylated and sulfated structures are isobaric; thus, differentiation between them in routinely used mass spectrometers is problematic. Herein, we demonstrate that these two groups can be discriminated by using ion-pairing in conjunction with MS/MS experiments. The characteristic product ions are used to successfully identify the phosphorylation and sulfation present in mono-, disaccharides, and the highly sulfated glycoprotein, ovine luteinizing hormone. This method is a robust approach to differentiate the two isobaric functional groups.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
24
|
Zhang Y, Go EP, Jiang H, Desaire H. A novel mass spectrometric method to distinguish isobaric monosaccharides that are phosphorylated or sulfated using ion-pairing reagents. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1827-39. [PMID: 16185888 DOI: 10.1016/j.jasms.2005.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 06/16/2005] [Accepted: 07/08/2005] [Indexed: 05/04/2023]
Abstract
Phosphorylation and sulfation are two important biological modifications present in carbohydrates, proteins, and glycoproteins. Typically, sulfation and phosphorylation cause different biological responses, so differentiating these two functional groups is important for understanding structure/function relationships in proteins, carbohydrates, and metabolites. Since phosphorylated and sulfated compounds are isobaric, their discrimination is not possible in routinely utilized mass spectrometers. Thus, a novel mass spectrometric method to distinguish them has been developed. Herein, we utilize basic peptides as ion-pairing reagents to complex to phosphorylated and sulfated carbohydrates via noncovalent interactions. By performing ESI-MS/MS on the ion-pair complexes, the isobaric compounds can be distinguished. This is the first study demonstrating that ion-pairing can be used for the detection of phosphorylated compounds and the first study to use ion-pairing in conjunction with MS/MS to obtain structural information about the analytes.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, KS 66045, USA
| | | | | | | |
Collapse
|
25
|
Tjew SL, Brown KL, Kannagi R, Johnson P. Expression of N-acetylglucosamine 6-O-sulfotransferases (GlcNAc6STs)-1 and -4 in human monocytes: GlcNAc6ST-1 is implicated in the generation of the 6-sulfo N-acetyllactosamine/Lewis x epitope on CD44 and is induced by TNF-alpha. Glycobiology 2005; 15:7C-13C. [PMID: 15728736 DOI: 10.1093/glycob/cwi050] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Sulfation at the 6-O position of N-acetylglucosamine (GlcNAc) in the context of sialyl 6-sulfo Lewis x occurs constitutively on specific glycoproteins present on high-walled endothelial venules (HEV) and is important for L-selectin dependent homing of lymphocytes. Here, the proinflammatory cytokine, TNF-alpha, induced the expression of 6-sulfo N-acetyllactosamine (LacNAc)/Lewis x on human peripheral blood monocytes (PBM). This epitope was detected by monoclonal antibody (mAb) AG107 after neuraminidase treatment suggesting a sialylated epitope, which was present on the cell adhesion molecule, CD44. Treatment of human PBM with TNF-alpha up-regulated the expression of N-acetylglucosamine 6-O-sulfotransferase-1 (GlcNAc6ST-1) and GlcNAc6ST-4, as determined by reverse transcriptase polymerase chain reaction (RT-PCR). However, only GlcNAc6ST-1 was induced by TNF-alpha in the human SR91 cell line, which also up-regulated the AG107 epitope. In ECV304 cells, the expression of GlcNAc6ST-4 alone was insufficient to generate the AG107 epitope. However, the transfection of GlcNAc6ST-1 resulted in significant sulfate incorporation into CD44 and generated the 6-sulfo LacNAc/Lewis x epitope on CD44, which was present largely on N-linked glycans. This demonstrates the induction of GlcNAc6STs in human monocytes in response to TNF-alpha and implicates GlcNAc6ST-1 in the generation of the 6-sulfo LacNAc/Lewis x epitope on CD44.
Collapse
Affiliation(s)
- Sie Lung Tjew
- Department of Microbiology and Immunology, University of British Columbia, 300-6174 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z3
| | | | | | | |
Collapse
|
26
|
Yang X, Lehotay M, Anastassiades T, Harrison M, Brockhausen I. The effect of TNF-alpha on glycosylation pathways in bovine synoviocytes. Biochem Cell Biol 2005; 82:559-68. [PMID: 15499384 DOI: 10.1139/o04-058] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synoviocytes are fibroblastic cells that line joint cavities. These cells synthesize numerous cell-surface and extracellular-matrix glycoproteins that are required for maintenance of the joint. Joint inflammation, such as occurs in arthritis, has been shown to have major effects on synoviocyte proliferation and on the biosynthesis of glycoproteins. The structures of the carbohydrate moieties of glycoproteins, however, and the enzymes involved in their synthesis have not yet been described for synoviocytes. Therefore, to characterize the cell-surface glycoconjugates, synoviocytes were isolated from bovine ankles, and the cells were grown in primary cultures. Lectin-binding assays were used to identify exposed N- and O-glycan carbohydrate determinants on synoviocytes, and specific enzyme assays were used to identify some of the glycosyltransferases involved in the synthesis of the glycan chains. A number of the enzymes that synthesize N- and O-linked oligosaccharides were found to be active in cell-free extracts of synoviocytes, including those that synthesize core-1-based O-glycans and the more complex bi-antennary N-glycans. To understand the molecular events underlying the inflammatory response in the synovium of arthritis patients, we examined the effect of the inflammatory cytokine tumour necrosis factor alpha (TNF-alpha) on synoviocytes and on glycosylation profiles. TNF-alpha treatment, which induces apoptosis in synoviocytes, was accompanied by changes in lectin-binding patterns, indicating alterations in the expression of cell-surface oligosaccharides. Concurrently, changes in specific enzyme activities were observed in treated cells. Two enzymes potentially important to the inflammatory process, core 2 beta6-GlcNAc-transferase and beta4-Gal-transferase, increased after TNF-alpha treatment. This is the first study of glycoprotein biosynthesis in synoviocytes, and it shows that synoviocytes have a characteristic glycosylation phenotype that is altered in the presence of inflammatory cytokines.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Medicine, The Arthritis Center and Human Mobility Research Center, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | | | | | | |
Collapse
|
27
|
Brown KL, Birkenhead D, Lai JCY, Li L, Li R, Johnson P. Regulation of hyaluronan binding by F-actin and colocalization of CD44 and phosphorylated ezrin/radixin/moesin (ERM) proteins in myeloid cells. Exp Cell Res 2005; 303:400-14. [PMID: 15652352 DOI: 10.1016/j.yexcr.2004.10.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 10/08/2004] [Indexed: 11/28/2022]
Abstract
Proinflammatory cytokines such as TNF-alpha up-regulate the expression of the cell adhesion molecule, CD44, and induce hyaluronan (HA) binding in peripheral blood monocytes (PBM). Here we show that in PBM, TNF-alpha induced cytoskeletal rearrangement, increased threonine phosphorylation of ERM proteins, and induced the redistribution and colocalization of phospho-ERM proteins (P-ERM) with CD44. In the myeloid progenitor cell line, KG1a, hyaluronan binding occurred in the pseudopod where CD44, P-ERM, and F-actin were highly localized. Hyaluronan binding correlated with high expression of both CD44 and P-ERM clustered in a single pseudopod. Disruption of polymerized actin reduced hyaluronan binding in both PBM and KG1a cells and abolished CD44 clustering and the pseudopod in KG1a cells. The pseudopod was not required for the clustering of CD44, the colocalization with P-ERM, or hyaluronan binding. However, treatment with a kinase inhibitor abolished ERM phosphorylation and reduced hyaluronan binding. Furthermore, expression of CD44 lacking the putative ERM binding site resulted in reduced hyaluronan binding. Taken together, these data suggest that CD44-mediated hyaluronan binding in human myeloid cells is regulated by P-ERM and the actin cytoskeleton.
Collapse
Affiliation(s)
- Kelly L Brown
- Department of Microbiology and Immunology, University of British Columbia, #300-6174 University Boulevard, Vancouver, B.C., Canada, V6T 1Z3
| | | | | | | | | | | |
Collapse
|
28
|
Jiang H, Irungu J, Desaire H. Enhanced detection of sulfated glycosylation sites in glycoproteins. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:340-348. [PMID: 15734327 DOI: 10.1016/j.jasms.2004.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2004] [Revised: 11/24/2004] [Accepted: 11/29/2004] [Indexed: 05/24/2023]
Abstract
We demonstrate a method that enhances the mass spectral signal of mono- and disulfated glycopeptides, present in glycoproteins that contain many other nonsulfated glycoforms. This method utilizes the tripeptide Lys-Lys-Lys as an ion-pairing reagent to complex selectively to sulfated species, and enhance their ion signal. The method is applied to the analysis of glycopeptides released from the enzymatic digestion of ovine luteinizing hormone. In this analysis, a disulfated glycopeptide is identified that was previously not detectable by MS assays, and a monosulfated glycoform, present at less than 1% abundance, is identified without any separation or enrichment of these species prior to analysis. In addition to enhancing the ion signal of sulfated glycopeptides, the ion-pairing technique is useful in obtaining structural information about the sulfated species.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66054, USA
| | | | | |
Collapse
|