1
|
Sabbahi R, Hock V, Azzaoui K, Hammouti B. Leishmania-sand fly interactions: exploring the role of the immune response and potential strategies for Leishmaniasis control. J Parasit Dis 2024; 48:655-670. [PMID: 39493480 PMCID: PMC11528092 DOI: 10.1007/s12639-024-01684-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 11/05/2024] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of the genus Leishmania, affecting millions of people worldwide. The disease is transmitted by the bite of infected female sand flies, which act as vectors and hosts for the parasites. The interaction between Leishmania parasites and sand flies is complex and dynamic, involving various factors that influence parasite development, survival and transmission. This review examines how the immune response of sand flies affects vector competence and transmission of Leishmania parasites, and what the potential strategies are to prevent or reduce infection. The review also summarizes the main findings and conclusions of the existing literature and discusses implications and recommendations for future research and practice. The study reveals that the immune response of sand flies is a key determinant of vector competence and transmission of Leishmania parasites, and that several molecular and cellular mechanisms are involved in the interaction between parasite and vector. The study also suggests that there are potential strategies for controlling leishmaniasis, such as interfering with parasite development, modulating the vector's immune response or reducing the vector population. However, the study also identifies several gaps and limitations in current knowledge and calls for more comprehensive and systematic studies on vector-parasite interaction and its impact on leishmaniasis transmission and control.
Collapse
Affiliation(s)
- Rachid Sabbahi
- Research Team in Science and Technology, Higher School of Technology, Ibn Zohr University, 70000 Laayoune, Morocco
- Euro-Mediterranean University of Fez, P.O. Box 15, Fez, Morocco
| | - Virginia Hock
- Department of Biology, Dawson College, 3040 Sherbrooke St. W, Montreal, QC H3Z 1A4 Canada
| | - Khalil Azzaoui
- Euro-Mediterranean University of Fez, P.O. Box 15, Fez, Morocco
- Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, 30000 Fez, Morocco
| | | |
Collapse
|
2
|
Nandy K, Tamakloe C, Sonenshine DE, Sultana H, Neelakanta G. Anti-tick vaccine candidate subolesin is important for blood feeding and innate immune gene expression in soft ticks. PLoS Negl Trop Dis 2023; 17:e0011719. [PMID: 37934730 PMCID: PMC10629623 DOI: 10.1371/journal.pntd.0011719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Subolesin is a conserved molecule in both hard and soft ticks and is considered as an effective candidate molecule for the development of anti-tick vaccine. Previous studies have reported the role of subolesin in blood feeding, reproduction, development, and gene expression in hard ticks. However, studies addressing the role of subolesin in soft ticks are limited. In this study, we report that subolesin is not only important in soft tick Ornithodoros turicata americanus blood feeding but also in the regulation of innate immune gene expression in these ticks. We identified and characterized several putative innate immune genes including Toll, Lysozyme precursor (Lp), fibrinogen-domain containing protein (FDP), cystatin and ML-domain containing protein (MLD) in O. turicata americanus ticks. Quantitative real-time polymerase chain reaction analysis revealed the expression of these genes in both O. turicata americanus salivary glands and midgut and in all developmental stages of these soft ticks. Significantly increased expression of fdp was noted in salivary glands and midgut upon O. turicata americanus blood feeding. Furthermore, RNAi-mediated knockdown of O. turicata americanus subolesin expression affected blood feeding and innate immune gene expression in these ticks. Significant downregulation of toll, lp, fdp, cystatin, and mld transcripts was evident in sub-dsRNA-treated ticks when compared to the levels noted in mock-dsRNA-treated control. Collectively, our study not only reports identification and characterization of various innate immune genes in O. turicata americanus ticks but also provides evidence on the role of subolesin in blood feeding and innate immune gene expression in these medically important ticks.
Collapse
Affiliation(s)
- Krittika Nandy
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Comfort Tamakloe
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- The University of Queensland- Ochsner Clinical School, Jefferson, Loiusiana, United States of America
| | - Daniel E. Sonenshine
- Department of Biological Sciences, Old Dominion University, Norfolk, Virginia, United States of America
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Hameeda Sultana
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Girish Neelakanta
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
3
|
Bhuvaragavan S, Sruthi K, Nivetha R, Ramaraj P, Hilda K, Meenakumari M, Janarthanan S. Insect galectin stimulates the human CD4+ T cell proliferation by regulating inflammation (T cell and monocyte) through Th2 immune response. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Sharma SR, Crispell G, Mohamed A, Cox C, Lange J, Choudhary S, Commins SP, Karim S. Alpha-Gal Syndrome: Involvement of Amblyomma americanum α-D-Galactosidase and β-1,4 Galactosyltransferase Enzymes in α-Gal Metabolism. Front Cell Infect Microbiol 2021; 11:775371. [PMID: 34926322 PMCID: PMC8671611 DOI: 10.3389/fcimb.2021.775371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Alpha-Gal Syndrome (AGS) is an IgE-mediated delayed-type hypersensitivity reaction to the oligosaccharide galactose-α-1, 3-galactose (α-gal) injected into humans from the lone-star tick (Amblyomma americanum) bite. Indeed, α-gal is discovered in salivary glands of lone-star tick; however, the tick's specific intrinsic factors involved in endogenous α-gal production and presentation to host during hematophagy are poorly understood. This study aimed to investigate the functional role of two tick enzymes, α-D-galactosidase (ADGal) and β-1,4 galactosyltransferases (β-1,4GalT), in endogenous α-gal production, carbohydrate metabolism, and N-glycan profile in lone-star tick. The ADGal enzyme cleaves terminal α-galactose moieties from glycoproteins and glycolipids, whereas β-1,4GalT transfers α-galactose to a β1,4 terminal linkage acceptor sugars-GlcNAc, Glc, and Xyl-in various processes of glycoconjugate synthesis. An RNA interference approach was utilized to silence ADGal and β-1,4GalT in Am. americanum to examine their function in α-gal metabolism in tick and AGS onset. Silencing of ADGal led to the significant downregulation of genes involved in galactose metabolism and transport in Am. americanum. Immunoblot and N-glycan analysis of the Am. americanum salivary glands showed a significant reduction in α-gal levels in silenced tissues. However, there was no significant difference in the level of α-gal in β-1,4GalT-silenced tick salivary glands. A basophil-activation test showed a decrease in the frequency of activated basophil by ADGal-silenced salivary glands. These results provide an insight into the roles of ADGal and β-1,4GalT in α-gal production and presentation in ticks and the probable involvement in the onset of AGS.
Collapse
Affiliation(s)
- Surendra Raj Sharma
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Gary Crispell
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Ahmed Mohamed
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Cameron Cox
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Joshua Lange
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shailesh Choudhary
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Scott P. Commins
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Shahid Karim
- School of Biological, Environment and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
- Center for Molecular and Cellular Biosciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
5
|
Hu E, Meng Y, Ma Y, Song R, Hu Z, Li M, Hao Y, Fan X, Wei L, Fan S, Chen S, Zhai X, Li Y, Zhang W, Zhang Y, Guo Q, Bayin C. De novo assembly and analysis of the transcriptome of the Dermacentor marginatus genes differentially expressed after blood-feeding and long-term starvation. Parasit Vectors 2020; 13:563. [PMID: 33172483 PMCID: PMC7654163 DOI: 10.1186/s13071-020-04442-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
Background The ixodid tick Dermacentor marginatus is a vector of many pathogens wide spread in Eurasia. Studies of gene sequence on many tick species have greatly increased the information on tick protective antigen which might have the potential to function as effective vaccine candidates or drug targets for eco-friendly acaricide development. In the current study, RNA-seq was applied to identify D. marginatus sequences and analyze differentially expressed unigenes. Methods To obtain a broader picture of gene sequences and changes in expression level, RNA-seq was performed to obtain the whole-body transcriptome data of D. marginatus adult female ticks after engorgement and long-term starvation. Subsequently, the real-time quantitative PCR (RT-qPCR) was applied to validate the RNA-seq data. Results RNA-seq produced 30,251 unigenes, of which 32% were annotated. Gene expression was compared among groups that differed by status as newly molted, starved and engorged female adult ticks. Nearly one third of the unigenes in each group were differentially expressed compared to the other two groups, and the most numerous were genes encoding proteins involved in catalytic and binding activities and apoptosis. Selected up-regulated differentially expressed genes in each group were associated to protein, lipids, carbohydrate and chitin metabolism. Blood-feeding and long-term starvation also caused genes differentially expressed in the defense response and antioxidant response. RT-qPCR results indicated 6 differentially expressed transcripts showed similar trends in expression changes with RNA-seq results confirming that the gene expression profiles in transcriptome data is in consistent with RT-qPCR validation. Conclusions Obtaining the sequence information of D. marginatus and characterizing the expression pattern of the genes involved in blood-feeding and during starvation would be helpful in understanding molecular physiology of D. marginatus and provides data for anti-tick vaccine and drug development for controlling the tick.![]()
Collapse
Affiliation(s)
- Ercha Hu
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yuan Meng
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, Shandong Province, People's Republic of China
| | - Ying Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Ruiqi Song
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Zhengxiang Hu
- Bayingol Vocational and Technical College, Korla, 841000, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Min Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yunwei Hao
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xinli Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Liting Wei
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Shilong Fan
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Songqin Chen
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Xuejie Zhai
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yongchang Li
- College of Animal Science, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, 080-8555, Japan
| | - Wei Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Yang Zhang
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Qingyong Guo
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.
| | - Chahan Bayin
- College of Veterinary Medicine, Xinjiang Agricultural University, Ürümqi, 830052, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
6
|
Yuan C, Wu J, Peng Y, Li Y, Shen S, Deng F, Hu Z, Zhou J, Wang M, Zou Z. Transcriptome analysis of the innate immune system of Hyalomma asiaticum. J Invertebr Pathol 2020; 177:107481. [PMID: 33035534 DOI: 10.1016/j.jip.2020.107481] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/27/2020] [Accepted: 10/02/2020] [Indexed: 01/16/2023]
Abstract
Ticks are considered to be the second most important vectors of human infectious diseases. The innate immune system is the key factor that affects its vector competence. Hyalomma asiaticum is the primary vector of Crimean-Congo hemorrhagic fever virus (CCHFV). However, the immune system of H. asiaticum remains virtually unknown. Here, a high throughput full-length mRNA sequencing method was adopted to define the immunotranscriptome of H. asiaticum infected with the fungal pathogen Beauveria bassiana and gram-negative bacterium Enterobacter cloacae. The analysis yielded 22,300 isoforms with an average length of 3233 bps. In total, 68 potential immunity-related genes were identified based on similarity to the homologs known to be involved in immunity. These included most members of the Toll and JAK/STAT signaling pathways, but not the IMD signaling pathway. Moreover, two copies of Dicer-2 and five copies of Argonaute-2 were detected. These genes are postulated to be involved in the RNA interference (RNAi) pathway, which is an important defense against RNA viruses. Overall, this study provides the foundation for understanding the immune response of H. asiaticum to CCHFV.
Collapse
Affiliation(s)
- Chuanfei Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jia Wu
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yun Peng
- Wuhan National Biosafety Laboratory, Mega-Science Center for Bio-Safety Research, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yufeng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Manli Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Tropical Medicine and Laboratory Medicine, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
7
|
Crispell G, Commins SP, Archer-Hartman SA, Choudhary S, Dharmarajan G, Azadi P, Karim S. Discovery of Alpha-Gal-Containing Antigens in North American Tick Species Believed to Induce Red Meat Allergy. Front Immunol 2019; 10:1056. [PMID: 31156631 PMCID: PMC6533943 DOI: 10.3389/fimmu.2019.01056] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/24/2019] [Indexed: 01/01/2023] Open
Abstract
Development of specific IgE antibodies to the oligosaccharide galactose-α-1, 3-galactose (α-gal) following tick bites has been shown to be the source of red meat allergy. In this study, we investigated the presence of α-gal in four tick species: the lone-star tick (Amblyomma americanum), the Gulf-Coast tick (Amblyomma maculatum), the American dog tick (Dermacentor variabilis), and the black-legged tick (Ixodes scapularis) by using a combination of immunoproteomic approach and, carbohydrate analysis. Anti-α-gal antibodies identified α-gal in the salivary glands of both Am. americanum and Ix. scapularis, while Am. maculatum and De. variabilis appeared to lack the carbohydrate. PNGase F treatment confirmed the deglycosylation of N-linked α-gal-containing proteins in tick salivary glands. Immunolocalization of α-gal moieties to the salivary secretory vesicles of the salivary acini also confirmed the secretory nature of α-gal-containing antigens in ticks. Am. americanum ticks were fed on human blood (lacks α-gal) using a silicone membrane system to determine the source of the α-gal. N-linked glycan analysis revealed that Am. americanum and Ix. scapularis have α-gal in their saliva and salivary glands, but Am. maculatum contains no detectable quantity. Consistent with the glycan analysis, salivary samples from Am. americanum and Ix. scapularis stimulated activation of basophils primed with plasma from α-gal allergic subjects. Together, these data support the idea that bites from certain tick species may specifically create a risk for the development of α-gal-specific IgE and hypersensitivity reactions in humans. Alpha-Gal syndrome challenges the current food allergy paradigm and broadens opportunities for future research.
Collapse
Affiliation(s)
- Gary Crispell
- Department of Cell and Molecular Biology, School of Biological, Environment, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Scott P Commins
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | | | - Shailesh Choudhary
- Department of Medicine and Pediatrics, University of North Carolina, Chapel Hill, NC, United States
| | - Guha Dharmarajan
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Shahid Karim
- Department of Cell and Molecular Biology, School of Biological, Environment, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
8
|
Vechtova P, Sterbova J, Sterba J, Vancova M, Rego ROM, Selinger M, Strnad M, Golovchenko M, Rudenko N, Grubhoffer L. A bite so sweet: the glycobiology interface of tick-host-pathogen interactions. Parasit Vectors 2018; 11:594. [PMID: 30428923 PMCID: PMC6236881 DOI: 10.1186/s13071-018-3062-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 08/14/2018] [Indexed: 11/10/2022] Open
Abstract
Vector-borne diseases constitute 17% of all infectious diseases in the world; among the blood-feeding arthropods, ticks transmit the highest number of pathogens. Understanding the interactions between the tick vector, the mammalian host and the pathogens circulating between them is the basis for the successful development of vaccines against ticks or the tick-transmitted pathogens as well as for the development of specific treatments against tick-borne infections. A lot of effort has been put into transcriptomic and proteomic analyses; however, the protein-carbohydrate interactions and the overall glycobiology of ticks and tick-borne pathogens has not been given the importance or priority deserved. Novel (bio)analytical techniques and their availability have immensely increased the possibilities in glycobiology research and thus novel information in the glycobiology of ticks and tick-borne pathogens is being generated at a faster pace each year. This review brings a comprehensive summary of the knowledge on both the glycosylated proteins and the glycan-binding proteins of the ticks as well as the tick-transmitted pathogens, with emphasis on the interactions allowing the infection of both the ticks and the hosts by various bacteria and tick-borne encephalitis virus.
Collapse
Affiliation(s)
- Pavlina Vechtova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic.
| | - Jarmila Sterbova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Jan Sterba
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Marie Vancova
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Ryan O M Rego
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Selinger
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Martin Strnad
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| | - Maryna Golovchenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Nataliia Rudenko
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic
| | - Libor Grubhoffer
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, CZ-37005, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-37005, České Budějovice, Czech Republic
| |
Collapse
|
9
|
Robinson BS, Arthur CM, Kamili NA, Stowell SR. Galectin Regulation of Host Microbial Interactions. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1738.1se] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Brian S. Robinson
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Connie M. Arthur
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Nourine A. Kamili
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| | - Sean R. Stowell
- Center for Transfusion Medicine and Cellular Therapies, Department of Laboratory Medicine and Pathology, Emory University School of Medicine
| |
Collapse
|
10
|
Hirabayashi J, Tateno H, Shikanai T, Aoki-Kinoshita KF, Narimatsu H. The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography. Molecules 2015; 20:951-73. [PMID: 25580689 PMCID: PMC6272529 DOI: 10.3390/molecules20010951] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 12/31/2014] [Indexed: 12/03/2022] Open
Abstract
Lectins are a large group of carbohydrate-binding proteins, having been shown to comprise at least 48 protein scaffolds or protein family entries. They occur ubiquitously in living organisms—from humans to microorganisms, including viruses—and while their functions are yet to be fully elucidated, their main underlying actions are thought to mediate cell-cell and cell-glycoconjugate interactions, which play important roles in an extensive range of biological processes. The basic feature of each lectin’s function resides in its specific sugar-binding properties. In this regard, it is beneficial for researchers to have access to fundamental information about the detailed oligosaccharide specificities of diverse lectins. In this review, the authors describe a publicly available lectin database named “Lectin frontier DataBase (LfDB)”, which undertakes the continuous publication and updating of comprehensive data for lectin-standard oligosaccharide interactions in terms of dissociation constants (Kd’s). For Kd determination, an advanced system of frontal affinity chromatography (FAC) is used, with which quantitative datasets of interactions between immobilized lectins and >100 fluorescently labeled standard glycans have been generated. The FAC system is unique in its clear principle, simple procedure and high sensitivity, with an increasing number (>67) of associated publications that attest to its reliability. Thus, LfDB, is expected to play an essential role in lectin research, not only in basic but also in applied fields of glycoscience.
Collapse
Affiliation(s)
- Jun Hirabayashi
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Hiroaki Tateno
- Research Center for Stem Cell Engineering, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Toshihide Shikanai
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| | - Kiyoko F Aoki-Kinoshita
- Department of Bioinformatics, Faculty of Engineering, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| | - Hisashi Narimatsu
- Research Center for Medical Glycoscience, National Institute of Advanced Industrial Science and Technology, Central-2, 1-1-1, Umezono, Tsukuba, Ibaraki 305-8568, Japan.
| |
Collapse
|
11
|
Wang Z, Jian J, Lu Y, Wang B, Wu Z. A tandem-repeat galectin involved in innate immune response of the pearl oyster Pinctada fucata. Mar Genomics 2011; 4:229-36. [DOI: 10.1016/j.margen.2011.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/14/2011] [Accepted: 06/22/2011] [Indexed: 12/01/2022]
|
12
|
Sterba J, Dupejova J, Fiser M, Vancova M, Grubhoffer L. Fibrinogen-related proteins in ixodid ticks. Parasit Vectors 2011; 4:127. [PMID: 21729260 PMCID: PMC3141747 DOI: 10.1186/1756-3305-4-127] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 07/05/2011] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Fibrinogen-related proteins with lectin activity are believed to be part of the tick innate immune system. Several fibrinogen-related proteins have been described and characterised mainly on the basis of their cDNA sequences while direct biochemical evidence is missing. One of them, the haemolymph lectin Dorin M from the tick Ornithodoros moubata was isolated and characterised in more depth. RESULTS Several fibrinogen-related proteins were detected in the haemolymph of ixodid ticks Dermacentor marginatus, Rhipicephalus appendiculatus, R. pulchellus, and R. sanguineus. These proteins were recognised by sera directed against the tick lectin Dorin M and the haemagglutination activity of the ticks R. appendiculatus and D. marginatus. Cross-reactivity of the identified proteins with antibodies against the fibrinogen domain of the human ficolin was also shown. The carbohydrate-binding ability of tick haemolymph was confirmed by haemagglutination activity assays, and this activity was shown to be inhibited by neuraminic acid and sialylated glycoproteins as well as by N-acetylated hexosamines. The fibrinogen-related proteins were shown to be glycosylated and they were localised in salivary glands, midguts, and haemocytes of D. marginatus. Hemelipoglycoprotein was also recognised by sera directed against the fibrinogen-related proteins in all three Rhipicephalus species as well as in D. marginatus. However, this protein does not contain the fibrinogen domain and thus, the binding possibly results from the structure similarity between hemelipoglycoprotein and the fibrinogen domain. CONCLUSIONS The presence of fibrinogen-related proteins was shown in the haemolymph of four tick species in high abundance. Reactivity of antibodies directed against ficolin or fibrinogen-related proteins with proteins which do not contain the fibrinogen domain points out the importance of sequence analysis of the identified proteins in further studies. Previously observed expression of fibrinogen-related proteins in haemocytes together with the results of this study suggest involvement of fibrinogen-related proteins in tick immunity processes. Thus, they have potential as targets for anti-tick vaccines and as antimicrobial proteins in pharmacology. Research on fibrinogen-related proteins could reveal further details of tick innate immunity processes.
Collapse
Affiliation(s)
- Jan Sterba
- Faculty of Sciences, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Jarmila Dupejova
- Faculty of Sciences, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Miroslav Fiser
- Faculty of Sciences, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Marie Vancova
- Faculty of Sciences, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Libor Grubhoffer
- Faculty of Sciences, University of South Bohemia, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
13
|
Iwaki J, Tateno H, Nishi N, Minamisawa T, Nakamura-Tsuruta S, Itakura Y, Kominami J, Urashima T, Nakamura T, Hirabayashi J. The Galβ-(syn)-gauche configuration is required for galectin-recognition disaccharides. Biochim Biophys Acta Gen Subj 2011; 1810:643-51. [DOI: 10.1016/j.bbagen.2011.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 03/15/2011] [Accepted: 04/06/2011] [Indexed: 12/11/2022]
|
14
|
Morga B, Arzul I, Faury N, Segarra A, Chollet B, Renault T. Molecular responses of Ostrea edulis haemocytes to an in vitro infection with Bonamia ostreae. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:323-333. [PMID: 21073892 DOI: 10.1016/j.dci.2010.10.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 10/12/2010] [Accepted: 10/15/2010] [Indexed: 05/30/2023]
Abstract
Bonamiosis due to the parasite Bonamia ostreae is a disease affecting the flat oyster Ostrea edulis. B. ostreae is a protozoan, affiliated to the order of haplosporidia and to the cercozoan phylum. This parasite is mainly intracellular, infecting haemocytes, cells notably involved in oyster defence mechanisms. Suppression subtractive hybridisation (SSH) was carried out in order to identify oyster genes differentially expressed during an infection of haemocytes with B. ostreae. Forward and reverse banks allowed obtaining 1104 and 1344 clones respectively, among which 391 and 480 clones showed a differential expression between both tested conditions (haemocytes alone versus haemocytes in contact with parasites). ESTs of interest including genes involved in cytoskeleton, respiratory chain, detoxification membrane receptors, and immune system were identified. The open reading frames of two selected genes (galectin and IRF-like) were completely sequenced and characterized. Real time PCR assays were developed to study the relative expression of candidate ESTs during an in vitro infection of haemocytes by live and dead parasites. Haemocyte infection with B. ostreae induced an increased expression of omega glutathione S-transferase (OGST), superoxide dismutase (SOD), tissue inhibitor of metalloproteinase (TIMP), galectin, interferon regulatory factor (IRF-like) and filamin genes.
Collapse
Affiliation(s)
- Benjamin Morga
- Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER), Laboratoire de Génétique et Pathologie (LGP), Avenue de Mus de Loup, 17390 La Tremblade, France
| | | | | | | | | | | |
Collapse
|
15
|
Kopáček P, Hajdušek O, Burešová V, Daffre S. Tick Innate Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-8059-5_8] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Abstract
Galectins, which were first characterized in the mid-1970s, were assigned a role in the recognition of endogenous ('self') carbohydrate ligands in embryogenesis, development and immune regulation. Recently, however, galectins have been shown to bind glycans on the surface of potentially pathogenic microorganisms, and function as recognition and effector factors in innate immunity. Some parasites subvert the recognition roles of the vector or host galectins to ensure successful attachment or invasion. This Review discusses the role of galectins in microbial infection, with particular emphasis on adaptations of pathogens to evasion or subversion of host galectin-mediated immune responses.
Collapse
Affiliation(s)
- Gerardo R Vasta
- University of Maryland Biotechnology Institute, Center of Marine Biotechnology, Columbus Center, Baltimore, 21202, USA.
| |
Collapse
|
17
|
Roberts S, Goetz G, White S, Goetz F. Analysis of genes isolated from plated hemocytes of the Pacific oyster, Crassostreas gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2009; 11:24-44. [PMID: 18622569 DOI: 10.1007/s10126-008-9117-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 05/21/2008] [Indexed: 05/26/2023]
Abstract
A complementary deoxyribonucleic acid library was constructed from hemocytes of Crassostrea gigas that had been plated on poly-lysine plates for 24 h. From this library, 2,198 expressed sequence tags (ESTs) of greater than or equal to 100 bp were generated and analyzed. A large number of genes that potentially could be involved in the physiology of the oyster hemocyte were uncovered. They included proteins involved in cytoskeleton rearrangement, proteases and antiproteases, regulators of transcription and translation, cell death regulators, receptors and their associated protein factors, lectins, signal transduction proteins, and enzymes involved in eicosanoid and steroid synthesis and xenobiotic metabolism. Based on their relationship with innate immunity, the expression of selected genes was analyzed by quantitative polymerase chain reaction in gills from bacterial-challenged oysters. Several genes observed in the library were significantly upregulated by bacterial challenge including interleukin 17, astacin, cystatin B, the EP4 receptor for prostaglandin E, the ectodysplasin receptor, c-jun, and the p100 subunit of nuclear factor-kB. Using a similar approach, we have been analyzing the genes expressed in trout macrophages. While there are significant differences between the types of genes present in vertebrate macrophages compared with oyster hemocytes, there are some striking similarities including proteins involved in cytoskeletal rearrangement, proteases and antiproteases, and genes involved in certain signal transduction pathways underlying immune processes such as phagocytosis. Finally, C. virginica homologs of some of the C. gigas genes uncovered in the ESTs were obtained by aligning the ESTs reported here, against the assembled C. virginica ESTs at the National Center for Biotechnology Information.
Collapse
Affiliation(s)
- Steven Roberts
- School of Aquatic and Fishery Sciences, University of Washington-Seattle, 1122 NE Boat Street, Seattle, WA 98105, USA
| | | | | | | |
Collapse
|
18
|
Kim JY, Kim YM, Cho SK, Choi KS, Cho M. Noble tandem-repeat galectin of Manila clam Ruditapes philippinarum is induced upon infection with the protozoan parasite Perkinsus olseni. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:1131-1141. [PMID: 18440068 DOI: 10.1016/j.dci.2008.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/05/2008] [Accepted: 03/05/2008] [Indexed: 05/26/2023]
Abstract
The galectin family of lectins plays crucial roles in the innate immunity systems of vertebrates and invertebrates. Noble galectin (MCGal) was cloned from the marine invertebrate Ruditapes philippinarum and characterized. This protein has an open reading frame of 918 nucleotides, with 309 amino acid residues, and a predicted molecular weight of 33.9kDa. Similar to other galectins, MCGal has neither a signal peptide nor a transmembrane domain, but it contains tandemly repeated carbohydrate recognition domains (CRDs), with typical conserved motifs that are important for carbohydrate recognition. Carbohydrate recognition by the recombinant MCGal (rMCGal), as determined by hapten inhibition of hemagglutination, revealed that rMCGal has features common to the galectin family, i.e., significant affinity for galactose and N-acetylgalactosamine. MCGal mRNA expression was detected mainly in the heart, mantle, foot, adductor, palp, and siphon tissues. Immunohistochemistry (IHC) using an anti-MCGal antibody confirmed MCGal expression in these tissues and in hemocytes. Temporal expression of MCGal mRNA in Manila clams challenged with Perkinsus or Vibrio species was up-regulated as compared with non-challenged healthy clams. rMCGal agglutinated Vibrio tapetis, and agglutination was inhibited by incubation with alpha-lactose. rMCGal also bound to the surface of Perkinsus olseni. MCGal plays a crucial role in Manila clam defense, particularly with respect to pathogen recognition.
Collapse
Affiliation(s)
- Jin Young Kim
- Department of Biochemistry, College of Medicine, Cheju National University, Jeju 690-756, Republic of Korea
| | | | | | | | | |
Collapse
|
19
|
Hirabayashi J. Concept, Strategy and Realization of Lectin-based Glycan Profiling. J Biochem 2008; 144:139-47. [DOI: 10.1093/jb/mvn043] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Molecular and functional characterization of a tandem-repeat galectin from the freshwater snail Biomphalaria glabrata, intermediate host of the human blood fluke Schistosoma mansoni. Gene 2008; 411:46-58. [PMID: 18280060 DOI: 10.1016/j.gene.2008.01.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Revised: 12/19/2007] [Accepted: 01/07/2008] [Indexed: 10/22/2022]
Abstract
In the present study, a tandem-repeat type galectin was characterized from an embryonic cell line (Bge) and circulating hemocytes of the snail Biomphalaria glabrata, intermediate host of the human blood fluke Schistosoma mansoni. The predicted B. glabrata galectin (BgGal) protein of 32 kDa possessed 2 carbohydrate recognition domains, each displaying 6 of 8 conserved amino acids involved in galactoside-binding activity. A recombinant BgGal (rBgGal) demonstrated hemagglutinating activity against rabbit erythrocytes, which was specifically inhibited by galactose-containing sugars (lacNAc/lac>galNAc/gal). Although native galectin was immunolocalized in the cytoplasm of Bge cells and the plasma membrane of a subset of snail hemocytes (60%), it was not detected in cell-free plasma by Western blot analysis. The findings that rBgGal selectively recognizes the schistosome-related sugar, lacNAc, and strongly binds to hemocytes and the tegument of S. mansoni sporocysts in a sugar-inhibitable fashion suggest that hemocyte-bound galectin may be serving as a pattern recognition receptor for this, or other pathogens possessing appropriate sugar ligands. Based on molecular and functional features, BgGal represents an authentic galectin, the first to be fully characterized in the medically-important molluscan Class Gastropoda.
Collapse
|
21
|
Man P, Kovár V, Sterba J, Strohalm M, Kavan D, Kopácek P, Grubhoffer L, Havlícek V. Deciphering Dorin M glycosylation by mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2008; 14:345-354. [PMID: 19136723 DOI: 10.1255/ejms.979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The soft tick, Ornithodoros moubata, is a vector of several bacterial and viral pathogens including Borrelia duttoni, a causative agent of relapsing fever and African swine fever virus. Previously, a sialic acid-specific lectin Dorin M was isolated from its hemolymph. Here, we report on the complete characterization of the primary sequence of Dorin M. Using liquid chromatography coupled to mass spectrometry, we identified three different glycopeptides in the tryptic digest of Dorin M. The peptide, as well as the glycan part of all glycopeptides, were further fully sequenced by means of tandem mass spectrometry (MS2) and multiple-stage mass spectrometry (MS3). Two classical N-glycosylation sites were modified by high-mannose-type glycans containing up to nine mannose residues. The third site bore a glycan with four to five mannose residues and a deoxyhexose (fucose) attached to the proximal N-acetylglycosamine. The microheterogeneity at each site was estimated based on chromatographic behavior of different glycoforms. The fourth, a non-classical N-glycosylation site (Asn-Asn-Cys), was not glycosylated, probably due to the involvement of the cysteine residue in a disulfide bridge.
Collapse
Affiliation(s)
- Petr Man
- Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i., Vídenská 1083, 142 20 Praha 4, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Oleaga A, Escudero-Población A, Camafeita E, Pérez-Sánchez R. A proteomic approach to the identification of salivary proteins from the argasid ticks Ornithodoros moubata and Ornithodoros erraticus. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2007; 37:1149-1159. [PMID: 17916501 DOI: 10.1016/j.ibmb.2007.07.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Revised: 06/26/2007] [Accepted: 07/03/2007] [Indexed: 05/25/2023]
Abstract
The saliva of ticks contains anti-haemostatic, anti-inflammatory and immunomodulatory molecules that allow these parasites to obtain a blood meal from the host and help tick-borne pathogens to infect the vertebrate host more efficiently. This makes the salivary molecules attractive targets to control ticks and tick-borne pathogens. Although Ornithodoros moubata and O. erraticus are important argasid ticks that transmit severe diseases, to date only a few of their salivary proteins have been identified. Here we report our initial studies using proteomic approaches to characterize the protein profiles of salivary gland extracts (SGE) from these two argasids. The present work describes the proteome of the SGEs of both tick species, their antigenic spots, and the identification of several of their proteins. The whole number of identifications was low despite the good general quality of the peptide mass maps obtained. In the O. moubata SGE, 18 isoforms of a protein similar to O. savignyi TSGP1 were identified. In the O. erraticus SGE we identified 6 novel proteins similar to unknown secreted protein DS-1 precursor, NADPH dehydrogenase subunit 5, proteasome alpha subunit, ATP synthase F0 subunit 6, lipocalin and alpha tubulin. Finally, the current drawbacks of proteomics when applied to the identification of acarine peptides and proteins are discussed.
Collapse
Affiliation(s)
- Ana Oleaga
- Instituto de Recursos Naturales y Agrobiología (CSIC), Unidad de Patología Animal, Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | | | | | | |
Collapse
|