1
|
Wang Y, Zhang P, Luo Z, Huang C. Insights into the role of glycosyltransferase in the targeted treatment of gastric cancer. Biomed Pharmacother 2024; 178:117194. [PMID: 39137647 DOI: 10.1016/j.biopha.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
Gastric cancer is a remarkably heterogeneous tumor. Despite some advances in the diagnosis and treatment of gastric cancer in recent years, the precise treatment and curative outcomes remain unsatisfactory. Poor prognosis continues to pose a major challenge in gastric cancer. Therefore, it is imperative to identify effective targets to improve the treatment and prognosis of gastric cancer patients. It should be noted that glycosylation, a novel form of posttranslational modification, is a process capable of regulating protein function and influencing cellular activities. Currently, numerous studies have shown that glycosylation plays vital roles in the occurrence and progression of gastric cancer. As crucial enzymes that regulate glycan synthesis in glycosylation processes, glycosyltransferases are potential targets for treating GC. Hence, investigating the regulation of glycosyltransferases and the expression of associated proteins in gastric cancer cells is highly important. In this review, the related glycosyltransferases and their related signaling pathways in gastric cancer, as well as the existing inhibitors of glycosyltransferases, provide more possibilities for targeted therapies for gastric cancer.
Collapse
Affiliation(s)
- Yueling Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Pengshan Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Chen Huang
- Wuxi School of Medicine, Jiangnan University, Wuxi 214028, China; Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
2
|
Canales A, Sastre J, Orduña JM, Spruit CM, Pérez-Castells J, Domínguez G, Bouwman KM, van der Woude R, Cañada FJ, Nycholat CM, Paulson JC, Boons GJ, Jiménez-Barbero J, de Vries RP. Revealing the Specificity of Human H1 Influenza A Viruses to Complex N-Glycans. JACS AU 2023; 3:868-878. [PMID: 37006776 PMCID: PMC10052259 DOI: 10.1021/jacsau.2c00664] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 05/18/2023]
Abstract
Influenza virus infection remains a threat to human health since viral hemagglutinins are constantly drifting, escaping infection and vaccine-induced antibody responses. Viral hemagglutinins from different viruses display variability in glycan recognition. In this context, recent H3N2 viruses have specificity for α2,6 sialylated branched N-glycans with at least three N-acetyllactosamine units (tri-LacNAc). In this work, we combined glycan arrays and tissue binding analyses with nuclear magnetic resonance experiments to characterize the glycan specificity of a family of H1 variants, including the one responsible for the 2009 pandemic outbreak. We also analyzed one engineered H6N1 mutant to understand if the preference for tri-LacNAc motifs could be a general trend in human-type receptor-adapted viruses. In addition, we developed a new NMR approach to perform competition experiments between glycans with similar compositions and different lengths. Our results point out that pandemic H1 viruses differ from previous seasonal H1 viruses by a strict preference for a minimum of di-LacNAc structural motifs.
Collapse
Affiliation(s)
- Angeles Canales
- Department
of Organic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, Avd. Complutense s/n, Madrid 28040, Spain
| | - Javier Sastre
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, C/Ramiro de Maetzu 9, Madrid 28040, Spain
| | - Jose M. Orduña
- Department
of Chemistry and Biochemistry Facultad de Farmacia, Universidad San
Pablo-CEU, CEU Universities Urbanización
Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Cindy M. Spruit
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Javier Pérez-Castells
- Department
of Chemistry and Biochemistry Facultad de Farmacia, Universidad San
Pablo-CEU, CEU Universities Urbanización
Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Gema Domínguez
- Department
of Chemistry and Biochemistry Facultad de Farmacia, Universidad San
Pablo-CEU, CEU Universities Urbanización
Montepríncipe, Boadilla del Monte, Madrid 28660, Spain
| | - Kim M. Bouwman
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Roosmarijn van der Woude
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Francisco Javier Cañada
- Centro
de Investigaciones Biológicas Margarita Salas, CSIC, C/Ramiro de Maetzu 9, Madrid 28040, Spain
- Centro
de Investigación Biomédica en Red-Enfermedades Respiratorias
(CIBERES), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón
11, Madrid 28029, Spain
| | - Corwin M. Nycholat
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - James C. Paulson
- Department
of Molecular Medicine, The Scripps Research
Institute, La Jolla, California 92037, United States
| | - Geert-Jan Boons
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Jesús Jiménez-Barbero
- Centro
de Investigación Biomédica en Red-Enfermedades Respiratorias
(CIBERES), Instituto de Salud Carlos III, C/ Monforte de Lemos 3-5, Pabellón
11, Madrid 28029, Spain
- CIC
bioGUNE, Bizkaia Science and Technology
Park, Bilbao 48160, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain
- Department
of Organic Chemistry, II Faculty of Science
and Technology University of the Basque Country, EHU-UPV, Leioa 48940, Spain
| | - Robert P. de Vries
- Department
of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Utrecht 3584 CG, The Netherlands
| |
Collapse
|
3
|
N-Glycosylation of LRP6 by B3GnT2 Promotes Wnt/β-Catenin Signalling. Cells 2023; 12:cells12060863. [PMID: 36980204 PMCID: PMC10047360 DOI: 10.3390/cells12060863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Reception of Wnt signals by cells is predominantly mediated by Frizzled receptors in conjunction with a co-receptor, the latter being LRP6 or LRP5 for the Wnt/β-catenin signalling pathway. It is important that cells maintain precise control of receptor activation events in order to properly regulate Wnt/β-catenin signalling as aberrant signalling can result in disease in humans. Phosphorylation of the intracellular domain (ICD) of LRP6 is well known to regulate Wntβ-catenin signalling; however, less is known for regulatory post-translational modification events within the extracellular domain (ECD). Using a cell culture-based expression screen for functional regulators of LRP6, we identified a glycosyltransferase, B3GnT2-like, from a teleost fish (medaka) cDNA library, that modifies LRP6 and regulates Wnt/β-catenin signalling. We provide both gain-of-function and loss-of-function evidence that the single human homolog, B3GnT2, promotes extension of polylactosamine chains at multiple N-glycans on LRP6, thereby enhancing trafficking of LRP6 to the plasma membrane and promoting Wnt/β-catenin signalling. Our findings further highlight the importance of LRP6 as a regulatory hub in Wnt signalling and provide one of the few examples of how a specific glycosyltransferase appears to selectively target a signalling pathway component to alter cellular signalling events.
Collapse
|
4
|
Cornman RS, Cryan PM. Positively selected genes in the hoary bat ( Lasiurus cinereus) lineage: prominence of thymus expression, immune and metabolic function, and regions of ancient synteny. PeerJ 2022; 10:e13130. [PMID: 35317076 PMCID: PMC8934532 DOI: 10.7717/peerj.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
Background Bats of the genus Lasiurus occur throughout the Americas and have diversified into at least 20 species among three subgenera. The hoary bat (Lasiurus cinereus) is highly migratory and ranges farther across North America than any other wild mammal. Despite the ecological importance of this species as a major insect predator, and the particular susceptibility of lasiurine bats to wind turbine strikes, our understanding of hoary bat ecology, physiology, and behavior remains poor. Methods To better understand adaptive evolution in this lineage, we used whole-genome sequencing to identify protein-coding sequence and explore signatures of positive selection. Gene models were predicted with Maker and compared to seven well-annotated and phylogenetically representative species. Evolutionary rate analysis was performed with PAML. Results Of 9,447 single-copy orthologous groups that met evaluation criteria, 150 genes had a significant excess of nonsynonymous substitutions along the L. cinereus branch (P < 0.001 after manual review of alignments). Selected genes as a group had biased expression, most strongly in thymus tissue. We identified 23 selected genes with reported immune functions as well as a divergent paralog of Steep1 within suborder Yangochiroptera. Seventeen genes had roles in lipid and glucose metabolic pathways, partially overlapping with 15 mitochondrion-associated genes; these adaptations may reflect the metabolic challenges of hibernation, long-distance migration, and seasonal variation in prey abundance. The genomic distribution of positively selected genes differed significantly from background expectation by discrete Kolmogorov-Smirnov test (P < 0.001). Remarkably, the top three physical clusters all coincided with islands of conserved synteny predating Mammalia, the largest of which shares synteny with the human cat-eye critical region (CECR) on 22q11. This observation coupled with the expansion of a novel Tbx1-like gene family may indicate evolutionary innovation during pharyngeal arch development: both the CECR and Tbx1 cause dosage-dependent congenital abnormalities in thymus, heart, and head, and craniodysmorphy is associated with human orthologs of other positively selected genes as well.
Collapse
|
5
|
Luo Z, Hu Q, Tang Y, Leng Y, Tian T, Tian S, Huang C, Liu A, Deng X, Shen L. Construction and investigation of β3GNT2-associated regulatory network in esophageal carcinoma. Cell Mol Biol Lett 2022; 27:8. [PMID: 35073841 PMCID: PMC8903709 DOI: 10.1186/s11658-022-00306-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Glycosyltransferases play a crucial role in various cancers. β1, 3-N-acetylglucosaminyltransferase 2, a polylactosamine synthase, is an important member of the glycosyltransferase family. However, the biological function and regulatory mechanism of β3GNT2 in esophageal carcinoma (ESCA) is still poorly understood. Methods The Cancer Genome Atlas and Genotype-Tissue Expression databases were used for gene expression and prognosis analysis. Quantitative real-time PCR, Western blot, and immunohistochemistry were performed to detect the expression of β3GNT2 in ESCA cell lines and tissues. In vitro assays and xenograft tumor models were utilized to evaluate the impact of β3GNT2 on ESCA progression. The downstream effectors and upstream regulators of β3GNT2 were predicted by online software and verified by functional experiments. Results We found that β3GNT2 was highly expressed in ESCA tissues and positively correlated with poor prognosis in ESCA patients. β3GNT2 expression was closely associated with the tumor size, TNM stage, and overall survival of ESCA patients. Functionally, β3GNT2 promoted ESCA cell growth, migration, and invasion in vitro, as well as tumorigenesis in vivo. Mechanistically, β3GNT2 knockdown decreased the expression of the polylactosamine on EGFR. Knockdown of β3GNT2 also inhibited the JAK/STAT signaling pathway. Meanwhile, the JAK/STAT inhibitor could partly reverse the biological effects caused by β3GNT2 overexpression. Moreover, β3GNT2 expression was positively regulated by CREB1 and negatively regulated by miR-133b. Both CREB1 and miR-133b was involved in the β3GNT2-mediated ESCA progression. Conclusions Our study, for the first time, reveals the importance of β3GNT2 in ESCA progression and offers a potential therapeutic target for ESCA. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-022-00306-y.
Collapse
|
6
|
Wang CM, Jan Wu YJ, Lin JC, Huang LY, Wu J, Chen JY. Genetic effects of B3GNT2 on ankylosing spondylitis susceptibility and clinical manifestations in Taiwanese. J Formos Med Assoc 2021; 121:1283-1294. [PMID: 34645591 DOI: 10.1016/j.jfma.2021.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/PURPOSE The intergenic SNP rs10865331 at 2p15 was identified as a major risk factor for ankylosing spondylitis (AS) susceptibility in genome-wide association studies (GWAS). B3GNT2 gene regulates polylactosamine synthesis is potentially functionally relevant to AS disease development. We investigated whether SNP rs10865331 and two B3GNT2 SNPs (rs11900673 and rs1136151) are associated with AS susceptibility and disease severity in Taiwanese. METHODS Distributions of genotypes, alleles, and haplotypes of three SNPs were compared between 1,472 AS patients and 2,117 healthy blood donors and among AS patients stratified by clinical characteristics. RESULTS The intergenic SNP rs10865331 was significantly associated with AS (PFDR = 1.02E-05) in Taiwanese. In AS patients stratified by positivity of HLA-B27 and syndesmophyte formation, all three B3GNT2 locus SNPs (rs11900673, rs1136151, and rs10865331) were significantly associated with syndesmophyte formation among HLA-B27 positive AS patients. Haplotype analyses revealed that the "CTA" (rs11900673C/rs1136151T/rs10865331A) haplotype was significantly associated with AS susceptibility (Padj = 0.0177) and syndesmophyte formation (Padj = 0.016) in HLA-B27 positive patients. In contrast, "TCG" (rs11900673T/rs1136151C/rs10865331G) haplotype showed protection against AS development (Padj = 0.0005 for HLA-B27 positive and Padj = 0.004 for HLA-B27 negative, respectively) and syndesmophyte formation (Padj = 0.0017) in HLA-B27 positive patients. Furthermore, B3GNT2 mRNA expressions were negatively associated with erythrocyte sedimentation rate (ESR, P = 0.0103), C-reactive protein (CRP, P = 0.0353), Bath ankylosing spondylitis functional index (BASFI, P = 0.0171), and syndesmophyte formation (P = 0.0148). CONCLUSION Our data suggest that B3GNT2 gene may contribute to AS development and affect AS severity by interacting with HLA-B27 in Taiwanese.
Collapse
Affiliation(s)
- Chin-Man Wang
- Department of Physical Medicine Rehabilitation, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Yeong-Jian Jan Wu
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Jing-Chi Lin
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Li-Yu Huang
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan
| | - Jianming Wu
- Dept. of Veterinary and Biomedical Sciences, Dept. of Medicine, University of Minnesota, USA
| | - Ji-Yih Chen
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taiwan.
| |
Collapse
|
7
|
Wang Q, Wang T, Yang S, Sha S, Wu WW, Chen Y, Paul JT, Shen RF, Cipollo JF, Betenbaugh MJ. Metabolic engineering challenges of extending N-glycan pathways in Chinese hamster ovary cells. Metab Eng 2020; 61:301-314. [PMID: 32663509 DOI: 10.1016/j.ymben.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/28/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
In mammalian cells, N-glycans may include multiple N-acetyllactosamine (poly-LacNAc) units that can play roles in various cellular functions and properties of therapeutic recombinant proteins. Previous studies indicated that β-1,3-N-acetylglucosaminyltransferase 2 (B3GNT2) and β-1,4-galactotransferase 1 (B4GALT1) are two of the primary glycosyltransferases involved in generating LacNAc units. In the current study, knocking out sialyltransferase genes slightly enhanced the LacNAc content (≥4 repeats per glycan) on recombinant EPO protein. Next, the role of single and dual-overexpression of B3GNT2 and B4GALT1 was explored in recombinant EPO-expressing Chinese hamster ovary (CHO) cells. While overexpression of B4GALT1 slightly enhanced the levels of large glycans on recombinant EPO, overexpression of B3GNT2 in EPO-expressing CHO cells significantly decreased the recombinant EPO LacNAc content, resulting in N-glycans terminating primarily with GlcNAc structures, a limited number of Gals, and nearly undetectable sialylation, which was also observed in sialyltransferases knock-out-B3GNT2 overexpression cell lines. Considering the nature of the binding domain motifs present on B3GNT2, which evolved from β1,3-galactosyltransferases, its overexpression may have competed and inhibited endogenous β1,4-galactosyltransferases for exposed GlcNAc residues on the N-glycans, resulting in premature termination of many N-glycans at GlcNAc. Furthermore, B3GNT2 overexpression enhanced intracellular UDP-GlcNAc and CMP-Neu5Ac content while slightly lowering UDP-Gal content. The presence of a sink for UDP-GlcNAc in the form of B3GNT2 with no disposition may have also elevated the intracellular levels of this nucleotide as well as its downstream product, CMP-Neu5Ac. Furthermore, we were unable to overexpress B4GALT1 at either the transcriptional or translational levels following initial B3GNT2 expression. Expression of B3GNT2 following initial expression of B4GALT1 was also problematic in that transcriptional and translational analysis indicated the accumulation of truncated B3GNT2 missing a section of the B3GNT2 trans-Golgi lumen domain while transmembrane and cytoplasmic domains were present. Given that glycosylation is a very complex intra-network process, the addition of one or more recombinant glycosyltransferases may have an unexpected influence on the expression and activities of glycosyltransferases, which can disrupt the nucleotide sugar levels and lead to unexpected modifications of the resulting N-glycan patterns.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Shuang Yang
- Laboratory for Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products (DBPAP), Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Sha Sha
- Center for Biomedical Innovation, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Yiqun Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson T Paul
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - John F Cipollo
- Laboratory for Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products (DBPAP), Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
8
|
A Markov model of glycosylation elucidates isozyme specificity and glycosyltransferase interactions for glycoengineering. CURRENT RESEARCH IN BIOTECHNOLOGY 2020; 2:22-36. [PMID: 32285041 DOI: 10.1016/j.crbiot.2020.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Glycosylated biopharmaceuticals are important in the global pharmaceutical market. Despite the importance of their glycan structures, our limited knowledge of the glycosylation machinery still hinders controllability of this critical quality attribute. To facilitate discovery of glycosyltransferase specificity and predict glycoengineering efforts, here we extend the approach to model N-linked protein glycosylation as a Markov process. Our model leverages putative glycosyltransferase (GT) specificity to define the biosynthetic pathways for all measured glycans, and the Markov chain modelling is used to learn glycosyltransferase isoform activities and predict glycosylation following glycosyltransferase knock-in/knockout. We apply our methodology to four different glycoengineered therapeutics (i.e., Rituximab, erythropoietin, Enbrel, and alpha-1 antitrypsin) produced in CHO cells. Our model accurately predicted N-linked glycosylation following glycoengineering and further quantified the impact of glycosyltransferase mutations on reactions catalyzed by other glycosyltransferases. By applying these learned GT-GT interaction rules identified from single glycosyltransferase mutants, our model further predicts the outcome of multi-gene glycosyltransferase mutations on the diverse biotherapeutics. Thus, this modeling approach enables rational glycoengineering and the elucidation of relationships between glycosyltransferases, thereby facilitating biopharmaceutical research and aiding the broader study of glycosylation to elucidate the genetic basis of complex changes in glycosylation.
Collapse
|
9
|
Krushkal J, Zhao Y, Hose C, Monks A, Doroshow JH, Simon R. Longitudinal Transcriptional Response of Glycosylation-Related Genes, Regulators, and Targets in Cancer Cell Lines Treated With 11 Antitumor Agents. Cancer Inform 2017; 16:1176935117747259. [PMID: 29276373 PMCID: PMC5734428 DOI: 10.1177/1176935117747259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/18/2017] [Indexed: 01/25/2023] Open
Abstract
Cellular glycosylation processes are vital to cell functioning. In malignant cells, they are profoundly altered. We used time-course gene expression data from the NCI-60 cancer cell lines treated with 11 antitumor agents to analyze expression changes of genes involved in glycosylation pathways, genes encoding glycosylation targets or regulators, and members of cancer pathways affected by glycosylation. We also identified glycosylation genes for which pretreatment expression levels or changes after treatment were correlated with drug sensitivity. Their products are involved in N-glycosylation and O-glycosylation, fucosylation, biosynthesis of poly-N-acetyllactosamine, removal of misfolded proteins, binding to hyaluronic acid and other glycans, and cell adhesion. Tumor cell sensitivity to multiple agents was correlated with transcriptional response of C1GALT1C1, FUCA1, SDC1, MUC1; members of the MGAT, GALNT, B4GALT, B3GNT, MAN, and EDEM families; and other genes. These genes may be considered as potential candidates for drug targeting in combination therapy to enhance treatment response.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| | - Curtis Hose
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Anne Monks
- Molecular Pharmacology Group, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis and Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Richard Simon
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
10
|
Chiu LD, Ichimura T, Sekiya T, Machiyama H, Watanabe T, Fujita H, Ozawa T, Fujita K. Protein expression guided chemical profiling of living cells by the simultaneous observation of Raman scattering and anti-Stokes fluorescence emission. Sci Rep 2017; 7:43569. [PMID: 28272392 PMCID: PMC5341087 DOI: 10.1038/srep43569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/25/2017] [Indexed: 01/02/2023] Open
Abstract
Our current understanding of molecular biology provides a clear picture of how the genome, transcriptome and proteome regulate each other, but how the chemical environment of the cell plays a role in cellular regulation remains much to be studied. Here we show an imaging method using hybrid fluorescence-Raman microscopy that measures the chemical micro-environment associated with protein expression patterns in a living cell. Simultaneous detection of fluorescence and Raman signals, realised by spectrally separating the two modes through the single photon anti-Stokes fluorescence emission of fluorescent proteins, enables the accurate correlation of the chemical fingerprint of a specimen to its physiological state. Subsequent experiments revealed the slight chemical differences that enabled the chemical profiling of mouse embryonic stem cells with and without Oct4 expression. Furthermore, using the fluorescent probe as localisation guide, we successfully analysed the detailed chemical content of cell nucleus and Golgi body. The technique can be further applied to a wide range of biomedical studies for the better understanding of chemical events during biological processes.
Collapse
Affiliation(s)
- Liang-da Chiu
- Department of Chemistry, the University of Tokyo, Tokyo, Japan.,Department of Applied Physics, Osaka University, Osaka, Japan
| | | | - Takumasa Sekiya
- Department of Applied Physics, Osaka University, Osaka, Japan
| | | | | | - Hideaki Fujita
- Quantitative Biology Center, RIKEN, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takeaki Ozawa
- Department of Chemistry, the University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
11
|
Timbers TA, Garland SJ, Mohan S, Flibotte S, Edgley M, Muncaster Q, Au V, Li-Leger E, Rosell FI, Cai J, Rademakers S, Jansen G, Moerman DG, Leroux MR. Accelerating Gene Discovery by Phenotyping Whole-Genome Sequenced Multi-mutation Strains and Using the Sequence Kernel Association Test (SKAT). PLoS Genet 2016; 12:e1006235. [PMID: 27508411 PMCID: PMC4980031 DOI: 10.1371/journal.pgen.1006235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/11/2016] [Indexed: 11/25/2022] Open
Abstract
Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy. Model organisms are useful tools for uncovering new genes involved in a biological process via genetic screens. Such an approach is powerful, but suffers from drawbacks that can slow down gene discovery. In forward genetics screens, difficult-to-map phenotypes present daunting challenges, and whole-genome coverage can be equally challenging for reverse genetic screens where typically only a single gene’s function is assayed per strain. Here, we show a different approach which includes positive aspects of forward (high-coverage, randomly-induced mutations) and reverse genetics (prior knowledge of gene disruption) to accelerate gene discovery. We paired a whole-genome sequenced multi-mutation C. elegans library with a rare-variant associated test to rapidly identify genes associated with a phenotype of interest: defects in sensory neurons bearing sensory organelles called cilia, via a simple dye-filling assay to probe the form and function of these cells. We found two well characterised dye-filling genes and three genes, not previously linked to ciliated sensory neuron development or function, that were associated with dye-filling defects. We reveal that disruption of one of these (BGNT-1.1), whose human orthologue is associated with Walker-Warburg syndrome, results in abrogated uptake of dye and cilia length defects. We believe that our novel approach is useful for any organism with a small genome that can be quickly sequenced and where many mutant strains can be easily isolated and phenotyped, such as Drosophila and Arabidopsis.
Collapse
Affiliation(s)
- Tiffany A. Timbers
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephanie J. Garland
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Swetha Mohan
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Stephane Flibotte
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark Edgley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Quintin Muncaster
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Vinci Au
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erica Li-Leger
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Federico I. Rosell
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jerry Cai
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Gert Jansen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Donald G. Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michel R. Leroux
- Department of Molecular Biology and Biochemistry and Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada
- * E-mail:
| |
Collapse
|
12
|
Qiu H, Duan WM, Shu J, Cheng HX, Wang WP, Huang XE, Chen HL. B3GNT2, a polylactosamine synthase, regulates glycosylation of EGFR in H7721 human hepatocellular carcinoma cells. Asian Pac J Cancer Prev 2015; 15:10875-8. [PMID: 25605193 DOI: 10.7314/apjcp.2014.15.24.10875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is an important surface receptor with N-glycans in its extracellular domain, whose glycosylation is essential for its function, especially in tumor cells. Here, we demonstrated that polylactosamine is markedly increased in H7721 hepatocellular carcinoma cells after treatment with EGF, while it apparently declined after exposure to all-trans retinoic acid (ATRA). In the study of the enzymatic mechanism of this phenomenon, we explored changes in the expression of poly-N-acetyllactosamine (PLN) branching glycosyltransferases using RT-PCR. Among the four glycosyltransferases with altered expression, GnT-V was most elevated by EGF, while GnT-V and B3GNT2 were most declined by ATRA. Next, we conducted co-immunoprecipitation experiments to test whether B3GNT2 and EGFR associate with each other. We observed that EGFR is a B3GNT2-targeting protein in H7721 cells. Taken together, these findings indicated that the altered expression of B3GNT2 will remodel the PLN stucture of EGFR in H7721 cells, which may modify downstream signal transduction.
Collapse
Affiliation(s)
- Hao Qiu
- Department of Biochemistry and Molecular Biology, Medical School of Soochow University, Suzhou, China E-mail : ;
| | | | | | | | | | | | | |
Collapse
|
13
|
Lin TW, Chang HT, Chen CH, Chen CH, Lin SW, Hsu TL, Wong CH. Galectin-3 Binding Protein and Galectin-1 Interaction in Breast Cancer Cell Aggregation and Metastasis. J Am Chem Soc 2015; 137:9685-93. [PMID: 26168351 DOI: 10.1021/jacs.5b04744] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Galectin-3 binding protein (Gal-3BP) is a large hyperglycosylated protein that acts as a ligand for several galectins through glycan-dependent interactions. Gal-3BP can induce galectin-mediated tumor cell aggregation to increase the survival of cancer cells in the bloodstream during the metastatic process. However, the galectin interacting with Gal-3BP and its binding specificity has not been identified and structurally elucidated, mainly due to the limitation of mass spectrometry in glycan sequencing. To understand the role of Gal-3BP, we here used liquid chromatography-mass spectrometry combined with specific exoglycosidase reactions to determine the sequences of N-glycans on Gal-3BP from MCF-7 and MDA-MB-231 cells, especially the sequences with terminal sialylation and fucosylation, and addition of LacNAc repeat structures. The N-glycans from both strains are complex type with terminal α2,3-sialidic acid and core fucose linkages, with additional α1,2- and α1,3 fucose linkages found in MCF-7 cells. Compared with that from MCF-7, the Gal-3BP from MDA-MB-231 cells had fewer tetra-antennary structures, only α1,6-linked core fucoses, and more LacNAc repeat structures; the MDA-MB-231 cells had no surface galectin-3 but used surface galectin-1 for interaction with Gal-3BP to form large oligomers and cell aggregates. This study elucidates the specificity of Gal-3BP interacting with galectin-1 and the role of Gal-3BP in cancer cell aggregation and metastasis.
Collapse
Affiliation(s)
| | - Hui-Tzu Chang
- §Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan
| | | | | | | | | | | |
Collapse
|
14
|
Nonradioactive glycosyltransferase and sulfotransferase assay to study glycosaminoglycan biosynthesis. Methods Mol Biol 2015; 1229:431-41. [PMID: 25325970 DOI: 10.1007/978-1-4939-1714-3_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides with repeating disaccharide units. GAGs include heparin, heparan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronan. All GAGs, except for hyaluronan, are usually sulfated. GAGs are polymerized by mono- or dual-specific glycosyltransferases and sulfated by various sulfotransferases. To further our understanding of GAG chain length regulation and synthesis of specific sulfation motifs on GAG chains, it is imperative to understand the kinetics of GAG synthetic enzymes. Here, nonradioactive colorimetric enzymatic assays are described for these glycosyltransferases and sulfotransferases. In both cases, the leaving nucleotides or nucleosides are hydrolyzed using specific phosphatases, and the released phosphate is subsequently detected using malachite reagents.
Collapse
|
15
|
Praissman JL, Live DH, Wang S, Ramiah A, Chinoy ZS, Boons GJ, Moremen KW, Wells L. B4GAT1 is the priming enzyme for the LARGE-dependent functional glycosylation of α-dystroglycan. eLife 2014; 3:e03943. [PMID: 25279697 PMCID: PMC4227051 DOI: 10.7554/elife.03943] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/01/2014] [Indexed: 12/16/2022] Open
Abstract
Recent studies demonstrated that mutations in B3GNT1, an enzyme proposed to be involved in poly-N-acetyllactosamine synthesis, were causal for congenital muscular dystrophy with hypoglycosylation of α-dystroglycan (secondary dystroglycanopathies). Since defects in the O-mannosylation protein glycosylation pathway are primarily responsible for dystroglycanopathies and with no established O-mannose initiated structures containing a β3 linked GlcNAc known, we biochemically interrogated this human enzyme. Here we report this enzyme is not a β-1,3-N-acetylglucosaminyltransferase with catalytic activity towards β-galactose but rather a β-1,4-glucuronyltransferase, designated B4GAT1, towards both α- and β-anomers of xylose. The dual-activity LARGE enzyme is capable of extending products of B4GAT1 and we provide experimental evidence that B4GAT1 is the priming enzyme for LARGE. Our results further define the functional O-mannosylated glycan structure and indicate that B4GAT1 is involved in the initiation of the LARGE-dependent repeating disaccharide that is necessary for extracellular matrix protein binding to O-mannosylated α-dystroglycan that is lacking in secondary dystroglycanopathies.
Collapse
Affiliation(s)
- Jeremy L Praissman
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - David H Live
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Shuo Wang
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Zoeisha S Chinoy
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, United States
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, United States
| |
Collapse
|
16
|
Willer T, Inamori KI, Venzke D, Harvey C, Morgensen G, Hara Y, Beltrán Valero de Bernabé D, Yu L, Wright KM, Campbell KP. The glucuronyltransferase B4GAT1 is required for initiation of LARGE-mediated α-dystroglycan functional glycosylation. eLife 2014; 3. [PMID: 25279699 PMCID: PMC4227050 DOI: 10.7554/elife.03941] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022] Open
Abstract
Dystroglycan is a cell membrane receptor that organizes the basement membrane by binding ligands in the extracellular matrix. Proper glycosylation of the α-dystroglycan (α-DG) subunit is essential for these activities, and lack thereof results in neuromuscular disease. Currently, neither the glycan synthesis pathway nor the roles of many known or putative glycosyltransferases that are essential for this process are well understood. Here we show that FKRP, FKTN, TMEM5 and B4GAT1 (formerly known as B3GNT1) localize to the Golgi and contribute to the O-mannosyl post-phosphorylation modification of α-DG. Moreover, we assigned B4GAT1 a function as a xylose β1,4-glucuronyltransferase. Nuclear magnetic resonance studies confirmed that a glucuronic acid β1,4-xylose disaccharide synthesized by B4GAT1 acts as an acceptor primer that can be elongated by LARGE with the ligand-binding heteropolysaccharide. Our findings greatly broaden the understanding of α-DG glycosylation and provide mechanistic insight into why mutations in B4GAT1 disrupt dystroglycan function and cause disease. DOI:http://dx.doi.org/10.7554/eLife.03941.001 Dystroglycan is a protein that is critical for the proper function of many tissues, especially muscles and brain. Dystroglycan helps to connect the structural network inside the cell with the matrix outside of the cell. The extracellular matrix fills the space between the cells to serve as a scaffold and hold cells together within a tissue. It is well established that the interaction of cells with their extracellular environments is important for structuring tissues, as well as for helping cells to specialize and migrate. These interactions also play a role in the progression of cancer. As is the case for many proteins, dystroglycan must be modified with particular sugar molecules in order to work correctly. Enzymes called glycosyltransferases are responsible for sequentially assembling a complex array of sugar molecules on dystroglycan. This modification is essential for making dystroglycan ‘sticky’, so it can bind to the components of the extracellular matrix. If sugar molecules are added incorrectly, dystroglycan loses its ability to bind to these components. This causes congenital muscular dystrophies, a group of diseases that are characterized by a progressive loss of muscle function. Willer et al. use a wide range of experimental techniques to investigate the types of sugar molecules added to dystroglycan, the overall structure of the resulting ‘sticky’ complex and the mechanism whereby it is built. This reveals that a glycosyltransferase known as B3GNT1 is one of the enzymes responsible for adding a sugar molecule to the complex. This enzyme was first described in the literature over a decade ago, and the name B3GNT1 was assigned, according to a code, to reflect the sugar molecule it was thought to transfer to proteins. However, Willer et al. (and independently, Praissman et al.) find that this enzyme actually attaches a different sugar modification to dystroglycan, and so should therefore be called B4GAT1 instead. Willer et al. find that the sugar molecule added by the B4GAT1 enzyme acts as a platform for the assembly of a much larger sugar polymer that cells use to anchor themselves within a tissue. Some viruses–including Lassa virus, which causes severe fever and bleeding–also use the ‘sticky’ sugar modification of dystroglycan to bind to and invade cells, causing disease in humans. Understanding the structure of this complex, and how these sugar modifications are added to dystroglycan, could therefore help to develop treatments for a wide range of diseases like progressive muscle weakening and viral infections. DOI:http://dx.doi.org/10.7554/eLife.03941.002
Collapse
Affiliation(s)
- Tobias Willer
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Kei-Ichiro Inamori
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - David Venzke
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Corinne Harvey
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Greg Morgensen
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Yuji Hara
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| | | | - Liping Yu
- Medical Nuclear Magnetic Resonance Facility, University of Iowa, Carver College of Medicine, Iowa City, United States
| | - Kevin M Wright
- Vollum Institute, Oregon Health and Science University, Portland, United States
| | - Kevin P Campbell
- Department of Molecular Physiology and Biophysics, University of Iowa, Carver College of Medicine, Iowa City, United States
| |
Collapse
|
17
|
Singh D, Fox SM, Tal-Singer R, Bates S, Riley JH, Celli B. Altered gene expression in blood and sputum in COPD frequent exacerbators in the ECLIPSE cohort. PLoS One 2014; 9:e107381. [PMID: 25265030 PMCID: PMC4179270 DOI: 10.1371/journal.pone.0107381] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/14/2014] [Indexed: 11/27/2022] Open
Abstract
Patients with chronic obstructive pulmonary disease (COPD) who are defined as frequent exacerbators suffer with 2 or more exacerbations every year. The molecular mechanisms responsible for this phenotype are poorly understood. We investigated gene expression profile patterns associated with frequent exacerbations in sputum and blood cells in a well-characterised cohort. Samples from subjects from the ECLIPSE COPD cohort were used; sputum and blood samples from 138 subjects were used for microarray gene expression analysis, while blood samples from 438 subjects were used for polymerase chain reaction (PCR) testing. Using microarray, 150 genes were differentially expressed in blood (>±1.5 fold change, p≤0.01) between frequent compared to non-exacerbators. In sputum cells, only 6 genes were differentially expressed. The differentially regulated genes in blood included downregulation of those involved in lymphocyte signalling and upregulation of pro-apoptotic signalling genes. Multivariate analysis of the microarray data followed by confirmatory PCR analysis identified 3 genes that predicted frequent exacerbations; B3GNT, LAF4 and ARHGEF10. The sensitivity and specificity of these 3 genes to predict the frequent exacerbator phenotype was 88% and 33% respectively. There are alterations in systemic immune function associated with frequent exacerbations; down-regulation of lymphocyte function and a shift towards pro-apoptosis mechanisms are apparent in patients with frequent exacerbations.
Collapse
Affiliation(s)
- Dave Singh
- University of Manchester, Medicines Evaluation Unit, Manchester, United Kingdom
- * E-mail:
| | - Steven M. Fox
- GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - Ruth Tal-Singer
- GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Stewart Bates
- GlaxoSmithKline, Medicines Research Centre, Stevenage, United Kingdom
| | - John H. Riley
- GlaxoSmithKline, Stockley Park, Uxbridge, United Kingdom
| | - Bartolome Celli
- Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Shen L, Yu M, Xu X, Gao L, Ni J, Luo Z, Wu S. Knockdown of β3GnT8 reverses 5-fluorouracil resistance in human colorectal cancer cells via inhibition the biosynthesis of polylactosamine-type N-glycans. Int J Oncol 2014; 45:2560-8. [PMID: 25269761 DOI: 10.3892/ijo.2014.2672] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 08/19/2014] [Indexed: 11/05/2022] Open
Abstract
Aberrant glycosylation is known to be associated with cancer chemoresistance. β-1,3-N-acetyl-glucosaminyltransferase (β3GnT)8, which synthesizes polylactosamine on β1-6 branched N-glycans, is dramatically upregulated in colorectal cancer (CRC). 5-Fluorouracil (5-FU) resistance remains a major obstacle to the chemotherapy of CRC. However, little is known with regard to the correlation between 5‑FU resistance and the expression of β3GnT8 in CRC. In this study, a 5-FU‑resistant cell line (SW620/5-FU) was generated, and 50% inhibition concentration (IC50) of 5-FU was determined by MTT assay. Flow cytometry and lectin blot analysis were performed to detect the alteration of polylactosamine structures. Quantitative RT-‑PCR and western blot analysis were used to identify and evaluate candidate genes involved in the synthesis of polylactosamine in SW620/5-FU cells. We found polylactosamine chains were significantly increased in SW620/5-FU cells. Inhibition of the biosynthesis of polylactosamine by 3'-azidothymidine (AZT) was able to reduce 5-FU tolerance. Further studies showed that β3GnT8 expression was also upregulated in 5-FU‑resistant cancer cells, and knockdown of β3GnT8 by RNA interference reversed 5-FU resistance through, at least partly, by suppressing the formation of polylactosamine. In conclusion, the alteration of β3GnT8 in CRC cells correlates with tumor sensitivity to the chemotherapeutic drug and has significant implication for the development of new treatment strategies.
Collapse
Affiliation(s)
- Li Shen
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Meiyun Yu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Xu Xu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Liping Gao
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Jianlong Ni
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Zhiguo Luo
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Shiliang Wu
- Department of Biochemistry and Molecular Biology, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
19
|
Chen CH, Wang SH, Liu CH, Wu YL, Wang WJ, Huang J, Hung JS, Lai IR, Liang JT, Huang MC. β-1,4-Galactosyltransferase III suppresses β1 integrin-mediated invasive phenotypes and negatively correlates with metastasis in colorectal cancer. Carcinogenesis 2014; 35:1258-66. [PMID: 24403309 DOI: 10.1093/carcin/bgu007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Metastasis often occurs in colorectal cancer (CRC) patients and is the main difficulty in cancer treatment. The upregulation of poly-N-acetyllactosamine-related glycosylation is found in CRC patients and is associated with progression and metastasis in cancer. β-1,4-Galactosyltransferase III (B4GALT3) is an enzyme responsible for poly-N-acetyllactosamine synthesis, and therefore, we investigated its expression in CRC patients. We found that B4GALT3 negatively correlated with poorly differentiated histology (P < 0.001), advanced stages (P = 0.0052), regional lymph node metastasis (P = 0.0018) and distant metastasis (P = 0.0463) in CRC patients. B4GALT3 overexpression in CRC cells suppressed cell migration, invasion and adhesion, whereas B4GALT3 knockdown enhanced malignant cell phenotypes. The β1 integrin-blocking antibody reversed the B4GALT3-mediated increase in cell invasion. B4GALT3 expression altered glycosylation on the N-glycan of β1 integrin probably through changes in poly-N-acetyllactosamine expression. Furthermore, more activated β1 integrin along with the activation of its downstream signaling transduction were found in B4GALT3 knockdown cells, whereas overexpression of B4GALT3 suppressed the expression of active β1 integrin and inhibited its downstream signaling. Our results suggest that B4GALT3 is negatively associated with CRC metastasis and suppresses cell invasiveness through inhibiting activation of β1 integrin.
Collapse
Affiliation(s)
- Chia-Hua Chen
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Shui-Hua Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Chiung-Hui Liu
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Yi-Ling Wu
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Wei-Jen Wang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | | | - Ji-Shiang Hung
- Department of Surgery and Department of Medical Research, National Taiwan University Hospital, Taipei 10048, Taiwan and
| | - I-Rue Lai
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan, Department of Surgery and
| | | | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University College of Medicine, Taipei 10051, Taiwan, Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10041, Taiwan
| |
Collapse
|
20
|
Ulvskov P, Paiva DS, Domozych D, Harholt J. Classification, naming and evolutionary history of glycosyltransferases from sequenced green and red algal genomes. PLoS One 2013; 8:e76511. [PMID: 24146880 PMCID: PMC3797821 DOI: 10.1371/journal.pone.0076511] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/28/2013] [Indexed: 02/06/2023] Open
Abstract
The Archaeplastida consists of three lineages, Rhodophyta, Virideplantae and Glaucophyta. The extracellular matrix of most members of the Rhodophyta and Viridiplantae consists of carbohydrate-based or a highly glycosylated protein-based cell wall while the Glaucophyte covering is poorly resolved. In order to elucidate possible evolutionary links between the three advanced lineages in Archaeplastida, a genomic analysis was initiated. Fully sequenced genomes from the Rhodophyta and Virideplantae and the well-defined CAZy database on glycosyltransferases were included in the analysis. The number of glycosyltransferases found in the Rhodophyta and Chlorophyta are generally much lower then in land plants (Embryophyta). Three specific features exhibited by land plants increase the number of glycosyltransferases in their genomes: (1) cell wall biosynthesis, the more complex land plant cell walls require a larger number of glycosyltransferases for biosynthesis, (2) a richer set of protein glycosylation, and (3) glycosylation of secondary metabolites, demonstrated by a large proportion of family GT1 being involved in secondary metabolite biosynthesis. In a comparative analysis of polysaccharide biosynthesis amongst the taxa of this study, clear distinctions or similarities were observed in (1) N-linked protein glycosylation, i.e., Chlorophyta has different mannosylation and glucosylation patterns, (2) GPI anchor biosynthesis, which is apparently missing in the Rhodophyta and truncated in the Chlorophyta, (3) cell wall biosynthesis, where the land plants have unique cell wall related polymers not found in green and red algae, and (4) O-linked glycosylation where comprehensive orthology was observed in glycosylation between the Chlorophyta and land plants but not between the target proteins.
Collapse
Affiliation(s)
- Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Dionisio Soares Paiva
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - David Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York, United States of America
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
21
|
Glycosyltransferase complexes improve glycolipid synthesis. FEBS Lett 2012; 586:2346-50. [PMID: 22687240 DOI: 10.1016/j.febslet.2012.05.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 05/11/2012] [Accepted: 05/21/2012] [Indexed: 11/22/2022]
Abstract
The synthesis of gangliosides GM3 and GD3 is carried out by the successive addition of sialic acid residues on lactosylceramide (LacCer) by the Golgi located sialyltransferases Sial-T1 and Sial-T2, respectively. CHO-K1 cells lack Sial-T2 and only express GM3. Here we show that the activity of Sial-T1 was near 2.5-fold higher in homogenates of CHO-K1 cells transfected to express Sial-T2 (CHO-K1(Sial-T2)) than in untransfected cells. The appearance of Sial-T1 enzyme or gene transcription activators or the stabilization of the Sial-T1 protein were discarded as possible causes of the activation. Sial-T2 lacking the catalytic domain failed to promote Sial-T1 activation. Since Gal-T1, Sial-T1 and Sial-T2 form a multienzyme complex, we propose that transformation of formed GM3 into GD3 and GT3 by Sial-T2 in the complex leaves Sial-T1 unoccupied, enabled for new rounds of LacCer utilization, which results in its apparent activation.
Collapse
|
22
|
Ma YC, Shi C, Zhang YN, Wang LG, Liu H, Jia HT, Zhang YX, Sarkar FH, Wang ZS. The tyrosine kinase c-Src directly mediates growth factor-induced Notch-1 and Furin interaction and Notch-1 activation in pancreatic cancer cells. PLoS One 2012; 7:e33414. [PMID: 22479394 PMCID: PMC3316571 DOI: 10.1371/journal.pone.0033414] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/08/2012] [Indexed: 01/03/2023] Open
Abstract
The proteolytic activity of Furin responsible for processing full length Notch-1 (p300) plays a critical role in Notch signaling. The amplitude and duration of Notch activity can be regulated at various points in the pathway, but there has been no report regarding regulation of the Notch-1-Furin interaction, despite its importance. In the present study, we found that the Notch-1-Furin interaction is regulated by the non-receptor tyrosine kinase, c-Src. c-Src and Notch-1 are physically associated, and this association is responsible for Notch-1 processing and activation. We also found that growth factor TGF-α, an EGFR ligand, and PDGF-BB, a PDGFR ligand, induce the Notch-1-Furin interaction mediated by c-Src. Our results support three new and provocative conclusions: (1) The association between Notch-1 and Furin is a well-regulated process; (2) Extracellular growth factor signals regulate this interaction, which is mediated by c-Src; (3) There is cross-talk between the plasma growth factor receptor-c-Src and Notch pathways. Co-localization of Notch-1 and c-Src was confirmed in xenograft tumor tissues and in the tissues of pancreatic cancer patients. Our findings have implications for the mechanism by which the Notch and growth factor receptor-c-Src signaling pathways regulate carcinogenesis and cancer cell growth.
Collapse
MESH Headings
- Animals
- Becaplermin
- Blotting, Western
- Cell Line, Tumor
- Female
- Furin/genetics
- Furin/metabolism
- HeLa Cells
- Humans
- Intercellular Signaling Peptides and Proteins/pharmacology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Microscopy, Confocal
- Mutation
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Protein Binding/drug effects
- Proto-Oncogene Proteins c-sis/pharmacology
- Pyrimidines/pharmacology
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Transforming Growth Factor alpha/pharmacology
- Transplantation, Heterologous
- Tumor Burden/drug effects
- src-Family Kinases/antagonists & inhibitors
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Yong-Chao Ma
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
| | - Chong Shi
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
| | - Yao-Nan Zhang
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
| | - Lan-Ge Wang
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
| | - Hao Liu
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
| | - Hong-Ti Jia
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
| | - Yu-Xiang Zhang
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
- * E-mail: (YXZ); (ZSW)
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, United States of America
| | - Ze-Sheng Wang
- Department of Biochemistry and Molecular Biology, Cancer Institute, Capital Medical University, Beijing, China
- * E-mail: (YXZ); (ZSW)
| |
Collapse
|
23
|
Affiliation(s)
- Ryan M Schmaltz
- The Department of Chemistry and Skaggs Institute for Chemical Biology, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
24
|
Nacev BA, Grassi P, Dell A, Haslam SM, Liu JO. The antifungal drug itraconazole inhibits vascular endothelial growth factor receptor 2 (VEGFR2) glycosylation, trafficking, and signaling in endothelial cells. J Biol Chem 2011; 286:44045-44056. [PMID: 22025615 DOI: 10.1074/jbc.m111.278754] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Itraconazole is a safe and widely used antifungal drug that was recently found to possess potent antiangiogenic activity. Currently, there are four active clinical trials evaluating itraconazole as a cancer therapeutic. Tumor growth is dependent on angiogenesis, which is driven by the secretion of growth factors from the tumor itself. We report here that itraconazole significantly inhibited the binding of vascular endothelial growth factor (VEGF) to VEGF receptor 2 (VEGFR2) and that both VEGFR2 and an immediate downstream substrate, phospholipase C γ1, failed to become activated after VEGF stimulation. These effects were due to a defect in VEGFR2 trafficking, leading to a decrease in cell surface expression, and were associated with the accumulation of immature N-glycans on VEGFR2. Small molecule inducers of lysosomal cholesterol accumulation and mammalian target of rapamycin (mTOR) inhibition, two previously reported itraconazole activities, failed to recapitulate itraconazole's effects on VEGFR2 glycosylation and signaling. Likewise, glycosylation inhibitors did not alter cholesterol trafficking or inhibit mTOR. Repletion of cellular cholesterol levels, which was known to rescue the effects of itraconazole on mTOR and cholesterol trafficking, was also able to restore VEGFR2 glycosylation and signaling. This suggests that the new effects of itraconazole occur in parallel to those previously reported but are downstream of a common target. We also demonstrated that itraconazole globally reduced poly-N-acetyllactosamine and tetra-antennary complex N-glycans in endothelial cells and induced hypoglycosylation of the epidermal growth factor receptor in a renal cell carcinoma line, suggesting that itraconazole's effects extend beyond VEGFR2.
Collapse
Affiliation(s)
- Benjamin A Nacev
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Paola Grassi
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Stuart M Haslam
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
25
|
Kanda VA, Lewis A, Xu X, Abbott GW. KCNE1 and KCNE2 inhibit forward trafficking of homomeric N-type voltage-gated potassium channels. Biophys J 2011; 101:1354-63. [PMID: 21943416 DOI: 10.1016/j.bpj.2011.08.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 07/25/2011] [Accepted: 08/04/2011] [Indexed: 11/18/2022] Open
Abstract
Potassium currents generated by voltage-gated potassium (Kv) channels comprising α-subunits from the Kv1, 2, and 3 subfamilies facilitate high-frequency firing of mammalian neurons. Within these subfamilies, only three α-subunits (Kv1.4, Kv3.3, and Kv3.4) generate currents that decay rapidly in the open state because an N-terminal ball domain blocks the channel pore after activation-a process termed N-type inactivation. Despite its importance to shaping cellular excitability, little is known of the processes regulating surface expression of N-type α-subunits, versus their slowly inactivating (delayed rectifier) counterparts. Here we found that currents generated by homomeric Kv1.4, Kv3.3, and Kv3.4 channels are all strongly suppressed by the single transmembrane domain ancillary (β) subunits KCNE1 and KCNE2. A combination of electrophysiological, biochemical, and immunofluorescence analyses revealed this suppression is due to KCNE1 and KCNE2 retaining Kv1.4 and Kv3.4 intracellularly, early in the secretory pathway. The retention is specific, requires α-β coassembly, and does not involve the dynamin-dependent endocytosis pathway. However, the small fraction of Kv3.4 that escapes KCNE-dependent retention is regulated by dynamin-dependent endocytosis. The findings illustrate two contrasting mechanisms controlling surface expression of N-type Kv α-subunits and therefore, potentially, cellular excitability and refractory periods.
Collapse
Affiliation(s)
- Vikram A Kanda
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The protein composition of the Golgi is intimately linked to its structure and function. As the Golgi serves as the major protein-sorting hub for the secretory pathway, it faces the unique challenge of maintaining its protein composition in the face of constant influx and efflux of transient cargo proteins. Much of our understanding of how proteins are retained in the Golgi has come from studies on glycosylation enzymes, largely because of the compartment-specific distributions these proteins display. From these and other studies of Golgi membrane proteins, we now understand that a variety of retention mechanisms are employed, the majority of which involve the dynamic process of iterative rounds of retrograde and anterograde transport. Such mechanisms rely on protein conformation and amino acid-based sorting signals as well as on properties of transmembrane domains and their relationship with the unique lipid composition of the Golgi.
Collapse
Affiliation(s)
- David K Banfield
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR of China.
| |
Collapse
|
27
|
Kouno T, Kizuka Y, Nakagawa N, Yoshihara T, Asano M, Oka S. Specific enzyme complex of beta-1,4-galactosyltransferase-II and glucuronyltransferase-P facilitates biosynthesis of N-linked human natural killer-1 (HNK-1) carbohydrate. J Biol Chem 2011; 286:31337-46. [PMID: 21771787 DOI: 10.1074/jbc.m111.233353] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human natural killer-1 (HNK-1) carbohydrate is highly expressed in the nervous system and is involved in synaptic plasticity and dendritic spine maturation. This unique carbohydrate, consisting of a sulfated trisaccharide (HSO(3)-3GlcAβ1-3Galβ1-4GlcNAc-), is biosynthesized by the successive actions of β-1,4-galactosyltransferase (β4GalT), glucuronyltransferase (GlcAT-P and GlcAT-S), and sulfotransferase (HNK-1ST). A previous study showed that mice lacking β4GalT-II, one of seven β4GalTs, exhibited a dramatic loss of HNK-1 expression in the brain, although β4GalT-I-deficient mice did not. Here, we investigated the underlying molecular mechanism of the regulation of HNK-1 expression. First, focusing on a major HNK-1 carrier, neural cell adhesion molecule, we found that reduced expression of an N-linked HNK-1 carbohydrate caused by a deficiency of β4GalT-II is not likely due to a general loss of the β1,4-galactose residue as an acceptor for GlcAT-P. Instead, we demonstrated by co-immunoprecipitation and endoplasmic reticulum-retention analyses using Neuro2a (N2a) cells that β4GalT-II physically and specifically associates with GlcAT-P. In addition, we revealed by pulldown assay that Golgi luminal domains of β4GalT-II and GlcAT-P are sufficient for the complex to form. With an in vitro assay system, we produced the evidence that the kinetic efficiency k(cat)/K(m) of GlcAT-P in the presence of β4GalT-II was increased about 2.5-fold compared with that in the absence of β4GalT-II. Finally, we showed that co-expression of β4GalT-II and GlcAT-P increased HNK-1 expression on various glycoproteins in N2a cells, including neural cell adhesion molecule. These results indicate that the specific enzyme complex of β4GalT-II with GlcAT-P plays an important role in the biosynthesis of HNK-1 carbohydrate.
Collapse
Affiliation(s)
- Tetsuya Kouno
- Department of Biological Chemistry, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Mizutani A, Tsunashima H, Nishijima KI, Sasamoto T, Yamada Y, Kojima Y, Motono M, Kojima J, Inayoshi Y, Miyake K, Park EY, Iijima S. Genetic modification of a chicken expression system for the galactosylation of therapeutic proteins produced in egg white. Transgenic Res 2011; 21:63-75. [DOI: 10.1007/s11248-011-9511-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 03/30/2011] [Indexed: 01/12/2023]
|