1
|
Leroy J, Lecointe K, Coulon P, Sendid B, Robert R, Poulain D. Antibodies as Models and Tools to Decipher Candida albicans Pathogenic Development: Review about a Unique Monoclonal Antibody Reacting with Immunomodulatory Adhesins. J Fungi (Basel) 2023; 9:636. [PMID: 37367572 DOI: 10.3390/jof9060636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/28/2023] Open
Abstract
Candidiasis, caused mainly by Candida albicans, a natural commensal of the human digestive tract and vagina, is the most common opportunistic fungal infection at the mucosal and systemic levels. Its high morbi-mortality rates have led to considerable research to identify the molecular mechanisms associated with the switch to pathogenic development and to diagnose this process as accurately as possible. Since the 1980s, the advent of monoclonal antibody (mAb) technology has led to significant progress in both interrelated fields. This linear review, intended to be didactic, was prompted by considering how, over several decades, a single mAb designated 5B2 contributed to the elucidation of the molecular mechanisms of pathogenesis based on β-1,2-linked oligomannoside expression in Candida species. These contributions starting from the structural identification of the minimal epitope as a di-mannoside from the β-1,2 series consisted then in the demonstration that it was shared by a large number of cell wall proteins differently anchored in the cell wall and the discovery of a cell wall glycoplipid shed by the yeast in contact of host cells, the phospholipomannan. Cytological analysis revealed an overall highly complex epitope expression at the cell surface concerning all growth phases and a patchy distribution resulting from the merging of cytoplasmic vesicles to plasmalema and further secretion through cell wall channels. On the host side, the mAb 5B2 led to identification of Galectin-3 as the human receptor dedicated to β-mannosides and signal transduction pathways leading to cytokine secretion directing host immune responses. Clinical applications concerned in vivo imaging of Candida infectious foci, direct examination of clinical samples and detection of circulating serum antigens that complement the Platelia Ag test for an increased sensitivity of diagnosis. Finally, the most interesting character of mAb 5B2 is probably its ability to reveal C. albicans pathogenic behaviour in reacting specifically with vaginal secretions from women infected versus colonized by this species as well as to display higher reactivity with strains isolated in pathogenic circumstances or even linked to an unfavourable prognosis for systemic candidiasis. Together with a detailed referenced description of these studies, the review provides a complementary reading frame by listing the wide range of technologies involving mAb 5B2 over time, evidencing a practical robustness and versatility unique so far in the Candida field. Finally, the basic and clinical perspectives opened up by these studies are briefly discussed with regard to prospects for future applications of mAb 5B2 in current research challenges.
Collapse
Affiliation(s)
- Jordan Leroy
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Karine Lecointe
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
| | - Pauline Coulon
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Boualem Sendid
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
- CHU Lille, Laboratoire de Parasitologie-Mycologie, F-59000 Lille, France
| | - Raymond Robert
- Kalidiv ZA, La Garde Bâtiment 1 B, Allée du 9 Novembre 1989, F-49240 Avrillé, France
| | - Daniel Poulain
- CNRS, UMR 8576, UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, University of Lille, F-59000 Lille, France
- INSERM U1285, University of Lille, F-59000 Lille, France
| |
Collapse
|
2
|
β-Nitrostyrene derivatives as broad range potential antifungal agents targeting fungal cell wall. Eur J Med Chem 2022; 240:114609. [DOI: 10.1016/j.ejmech.2022.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/26/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022]
|
3
|
Dissection of the anti-Candida albicans mannan immune response using synthetic oligomannosides reveals unique properties of β-1,2 mannotriose protective epitopes. Sci Rep 2021; 11:10825. [PMID: 34031516 PMCID: PMC8144402 DOI: 10.1038/s41598-021-90402-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/10/2021] [Indexed: 12/21/2022] Open
Abstract
Candida albicans mannan consists of a large repertoire of oligomannosides with different types of mannose linkages and chain lengths, which act as individual epitopes with more or less overlapping antibody specificities. Although anti-C. albicans mannan antibody levels are monitored for diagnostic purposes nothing is known about the qualitative distribution of these antibodies in terms of epitope specificity. We addressed this question using a bank of previously synthesized biotin sulfone tagged oligomannosides (BSTOs) of α and β anomery complemented with a synthetic β-mannotriose described as a protective epitope. The reactivity of these BSTOs was analyzed with IgM isotype monoclonal antibodies (MAbs) of known specificity, polyclonal sera from patients colonized or infected with C. albicans, and mannose binding lectin (MBL). Surface plasmon resonance (SPR) and multiple analyte profiling (MAP) were used. Both methods confirmed the usual reactivity of MAbs against either α or β linkages, excepted for MAb B6.1 (protective epitope) reacting with β-Man whereas the corresponding BSTO reacted with anti-α-Man. These results were confirmed in western blots with native C. albicans antigens. Using patients' sera in MAP, a significant correlation was observed between the detection of anti-mannan antibodies recognizing β- and α-Man epitopes and detection of antibodies against β-linked mannotriose suggesting that this epitope also reacts with human polyclonal antibodies of both specificities. By contrast, the reactivity of human sera with other α- and β-linked BSTOs clearly differed according to their colonized or infected status. In these cases, the establishment of an α/β ratio was extremely discriminant. Finally SPR with MBL, an important lectin of innate immunity to C. albicans, classically known to interact with α-mannose, also interacted in an unexpected way with the protective epitope. These cumulative data suggest that structure/activity investigations of the finely tuned C. albicans anti-mannose immune response are worthwhile to increase our basic knowledge and for translation in medicine.
Collapse
|
4
|
Tanaka H, Yanai C, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by Cell Wall Mannoprotein Fractions of Clinically Isolated Candida Species. Med Mycol J 2020; 61:33-48. [PMID: 32863327 DOI: 10.3314/mmj.20-00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances (CADS) such as the hot water extract of C. albicans and Candida water-soluble fractions (CAWS) induce coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the mannoprotein fractions (MN fractions) of clinically isolated Candida species induce vasculitis in mice. We prepared MN fractions from 26 strains of Candida species by conventional hot water extraction and compared vasculitis in DBA/2 mice. The results obtained revealed that the induction of vasculitis and resulting heart failure were significantly dependent on the species; namely, death rates on day 200 were as follows: Candida krusei (100%), Candida albicans (84%), Candida dubliniensis (47%), Candida parapsilosis (44%), Candida glabrata (32%), Candida guilliermondii (20%), and Candida tropicalis (20%). Even for C. albicans, some strains did not induce vasculitis. The present results suggest that MN-induced vasculitis is strongly dependent on the species and strains of Candida, and also that the MN fractions of some non-albicans Candida induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
5
|
Gannedi V, Ali A, Singh PP, Vishwakarma RA. Total Synthesis of Phospholipomannan of Candida albicans. J Org Chem 2020; 85:7757-7771. [PMID: 32425042 DOI: 10.1021/acs.joc.0c00402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
First, total synthesis of the cell surface phospholipomannan anchor [β-Manp-(1 → 2)-β-Manp]n-(1 → 2)-β-Manp-(1 → 2)-α-Manp-1 → P-(O → 6)-α-Manp-(1 → 2)-Inositol-1-P-(O → 1)-phytoceramide of Candida albicans is reported. The target phospholipomannan (PLM) anchor poses synthetic challenges such as the unusual kinetically controlled (1 → 2)-β-oligomannan domain, anomeric phosphodiester, and unique phytoceramide lipid tail linked to the glycan through a phosphate group. The synthesis of PLM anchor was accomplished using a convergent block synthetic approach using three main appropriately protected building blocks: (1 → 2)-β-tetramannan repeats, pseudodisaccharide, and phytoceramide-1-H-phosphonate. The most challenging (1 → 2)-β-tetramannan domain was synthesized in one pot using the preactivation method. The phytoceramide-1-H-phosphonate was synthesized through an enantioselective A3 three-component coupling reaction. Finally, the phytoceramide-1-H-phosphonate moiety was coupled with pseudodisaccharide followed by deacetylation to produce the acceptor, which on subsequent coupling with tetramannosyl-H-phosphonate provided the fully protected PLM anchor. Final deprotection was successfully achieved by Pearlman's hydrogenation.
Collapse
Affiliation(s)
- Veeranjaneyulu Gannedi
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| | - Asif Ali
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| | - Parvinder Pal Singh
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific and Innovative Research, Canal Road, Jammu 180001, India
| |
Collapse
|
6
|
Yanai C, Tanaka H, Miura NN, Ishibashi KI, Yamanaka D, Ohnishi H, Ohno N, Adachi Y. Coronary Vasculitis Induced in Mice by the Cell Wall Mannoprotein of Candida krusei. Biol Pharm Bull 2020; 43:848-858. [PMID: 32161223 DOI: 10.1248/bpb.b19-01060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Kawasaki disease (KD) is an inflammatory disease that was identified by Professor Tomisaku Kawasaki in 1961. Candida albicans-derived substances, such as the hot water extract of C. albicans (CADS) and Candida water-soluble fraction (CAWS), induced coronary vasculitis similar to KD in mice. An increasing proportion of deep-seated candidiasis cases are caused by non-albicans Candida and are often resistant to antifungal drugs. We herein investigated whether the hot water extract of C. krusei, inherently resistant to fluconazole, induces vasculitis in mice. Three strains of C. krusei, NBRC1395, NBRC1162, and NBRC10737, were cultured in natural (Y) and chemically defined (C) media and cell wall mannoprotein (MN) fractions were prepared by autoclaving cells (CKY1395MN, CKC1395MN, CKY1162MN, CKC1162MN, CKY10737MN, and CKC10737MN). All MN fractions reacted strongly with Concanavalin A (Con A) and dectin-2 and induced anaphylactoid shock in ICR mice. MNs induced severe coronary vasculitis in DBA/2 mice, resulting in cardiac hypertrophy. MNs also induced coronary vasculitis in C57Bl/6 mice. These results suggest that the MNs of non-albicans Candida, such as C. krusei, induce similar toxicity to those of C. albicans.
Collapse
Affiliation(s)
- Chiho Yanai
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Tanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences.,Department of Pharmacy, Kyorin University Hospital
| | - Noriko N Miura
- Center for Pharmaceutical Education, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Ken-Ichi Ishibashi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Daisuke Yamanaka
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Hiroaki Ohnishi
- Department of Laboratory Medicine, Kyorin University School of Medicine
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
7
|
Morad HOJ, Wild AM, Wiehr S, Davies G, Maurer A, Pichler BJ, Thornton CR. Pre-clinical Imaging of Invasive Candidiasis Using ImmunoPET/MR. Front Microbiol 2018; 9:1996. [PMID: 30190717 PMCID: PMC6115526 DOI: 10.3389/fmicb.2018.01996] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 08/08/2018] [Indexed: 12/17/2022] Open
Abstract
The human commensal yeast Candida is the fourth most common cause of hospital-acquired bloodstream infections, with Candida albicans accounting for the majority of the >400,000 life-threatening infections annually. Diagnosis of invasive candidiasis (IC), a disease encompassing candidemia (blood-borne yeast infection) and deep-seated organ infections, is a major challenge since clinical manifestations of the disease are indistinguishable from viral, bacterial and other fungal diseases, and diagnostic tests for biomarkers in the bloodstream such as PCR, ELISA, and pan-fungal β-D-glucan lack either standardization, sensitivity, or specificity. Blood culture remains the gold standard for diagnosis, but test sensitivity is poor and turn-around time slow. Furthermore, cultures can only be obtained when the yeast resides in the bloodstream, with samples recovered from hematogenous infections often yielding negative results. Consequently, there is a pressing need for a diagnostic test that allows the identification of metastatic foci in deep-seated Candida infections, without the need for invasive biopsy. Here, we report the development of a highly specific mouse IgG3 monoclonal antibody (MC3) that binds to a putative β-1,2-mannan epitope present in high molecular weight mannoproteins and phospholipomannans on the surface of yeast and hyphal morphotypes of C. albicans, and its use as a [64Cu]NODAGA-labeled tracer for whole-body pre-clinical imaging of deep-seated C. albicans infections using antibody-guided positron emission tomography and magnetic resonance imaging (immunoPET/MRI). When used in a mouse intravenous (i.v.) challenge model that faithfully mimics disseminated C. albicans infections in humans, the [64Cu]NODAGA-MC3 tracer accurately detects infections of the kidney, the principal site of blood-borne candidiasis in this model. Using a strain of the emerging human pathogen Candida auris that reacts with MC3 in vitro, but which is non-infective in i.v. challenged mice, we demonstrate the accuracy of the tracer in diagnosing invasive infections in vivo. This pre-clinical study demonstrates the principle of using antibody-guided molecular imaging for detection of deep organ infections in IC, without the need for invasive tissue biopsy.
Collapse
Affiliation(s)
- Hassan O J Morad
- Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Anna-Maria Wild
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.,Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Stefan Wiehr
- Department of Physical Intelligence, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.,Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Genna Davies
- ISCA Diagnostics Ltd. and Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Andreas Maurer
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Bernd J Pichler
- Department of Preclinical Imaging and Radiopharmacy, Werner Siemens Imaging Center, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Christopher R Thornton
- ISCA Diagnostics Ltd. and Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
8
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
9
|
Moyes DL, Wilson D, Richardson JP, Mogavero S, Tang SX, Wernecke J, Höfs S, Gratacap RL, Robbins J, Runglall M, Murciano C, Blagojevic M, Thavaraj S, Förster TM, Hebecker B, Kasper L, Vizcay G, Iancu SI, Kichik N, Häder A, Kurzai O, Luo T, Krüger T, Kniemeyer O, Cota E, Bader O, Wheeler RT, Gutsmann T, Hube B, Naglik JR. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016; 532:64-8. [PMID: 27027296 PMCID: PMC4851236 DOI: 10.1038/nature17625] [Citation(s) in RCA: 637] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/26/2016] [Indexed: 01/23/2023]
Abstract
Cytolytic proteins and peptide toxins are classical virulence factors of several bacterial pathogens which disrupt epithelial barrier function, damage cells and activate or modulate host immune responses. Such toxins have not been identified previously in human pathogenic fungi. Here we identify the first, to our knowledge, fungal cytolytic peptide toxin in the opportunistic pathogen Candida albicans. This secreted toxin directly damages epithelial membranes, triggers a danger response signalling pathway and activates epithelial immunity. Membrane permeabilization is enhanced by a positive charge at the carboxy terminus of the peptide, which triggers an inward current concomitant with calcium influx. C. albicans strains lacking this toxin do not activate or damage epithelial cells and are avirulent in animal models of mucosal infection. We propose the name 'Candidalysin' for this cytolytic peptide toxin; a newly identified, critical molecular determinant of epithelial damage and host recognition of the clinically important fungus, C. albicans.
Collapse
Affiliation(s)
- David L Moyes
- Mucosal &Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| | - Duncan Wilson
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, D-07745 Jena, Germany
| | - Jonathan P Richardson
- Mucosal &Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, D-07745 Jena, Germany
| | - Shirley X Tang
- Mucosal &Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| | - Julia Wernecke
- Research Center Borstel, Division of Biophysics, D-23845 Borstel, Germany
- Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany
| | - Sarah Höfs
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, D-07745 Jena, Germany
| | - Remi L Gratacap
- Department of Molecular &Biomedical Sciences, University of Maine, Orono, Maine 04469, USA
| | - Jon Robbins
- Wolfson CARD, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Manohursingh Runglall
- Mucosal &Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| | - Celia Murciano
- Mucosal &Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| | - Mariana Blagojevic
- Mucosal &Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| | - Selvam Thavaraj
- Mucosal &Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| | - Toni M Förster
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, D-07745 Jena, Germany
| | - Betty Hebecker
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, D-07745 Jena, Germany
- Research Group Microbial Immunology, Hans Knöll Institute, D-07745 Jena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, D-07745 Jena, Germany
| | - Gema Vizcay
- Centre for Ultrastructural Imaging, King's College London, London SE1 1UL, UK
| | - Simona I Iancu
- Mucosal &Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| | - Nessim Kichik
- Mucosal &Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Antje Häder
- Septomics Research Center, Hans-Knöll Institute and Friedrich Schiller University, D-07745 Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Hans-Knöll Institute and Friedrich Schiller University, D-07745 Jena, Germany
| | - Ting Luo
- Department of Molecular and Applied Microbiology, Hans Knöll Institute, D-07745 Jena, Germany
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Hans Knöll Institute, D-07745 Jena, Germany
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Hans Knöll Institute, D-07745 Jena, Germany
| | - Ernesto Cota
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Robert T Wheeler
- Department of Molecular &Biomedical Sciences, University of Maine, Orono, Maine 04469, USA
| | - Thomas Gutsmann
- Research Center Borstel, Division of Biophysics, D-23845 Borstel, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knöll Institute, D-07745 Jena, Germany
- Friedrich Schiller University, D-07737 Jena, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care, D-07747 Jena, Germany
| | - Julian R Naglik
- Mucosal &Salivary Biology Division, Dental Institute, King's College London SE1 1UL, UK
| |
Collapse
|
10
|
Cattiaux L, Mée A, Pourcelot M, Sfihi-Loualia G, Hurtaux T, Maes E, Fradin C, Sendid B, Poulain D, Fabre E, Delplace F, Guérardel Y, Mallet JM. Candida albicans β-1,2 mannosyl transferase Bmt3: Preparation and evaluation of a β (1,2), α (1,2)-tetramannosyl fluorescent substrate. Bioorg Med Chem 2016; 24:1362-8. [PMID: 26895658 DOI: 10.1016/j.bmc.2016.02.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 11/18/2022]
Abstract
We describe for the first time the chemical synthesis of a tetramannoside, containing both α (1→2) and β (1→2) linkages. Dodecylthio (lauryl) glycosides were prepared from odorless dodecyl thiol and used as donors for the glycosylation steps. This tetramannoside, was coupled to a mantyl group, and revealed to be a perfect substrate of β-mannosyltransferase Bmt3, confirming the proposed specificity and allowing the preparation of a pentamannoside sequence (β Man (1,2) β Man (1,2) α Man (1,2) α Man (1,2) α Man) usable as a novel substrate for further elongation studies.
Collapse
Affiliation(s)
- Laurent Cattiaux
- École Normale Supérieure-PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France; CNRS, UMR 7203 LBM, F-75005 Paris, France
| | - Anaïs Mée
- École Normale Supérieure-PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France; CNRS, UMR 7203 LBM, F-75005 Paris, France
| | - Marilyne Pourcelot
- École Normale Supérieure-PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France; CNRS, UMR 7203 LBM, F-75005 Paris, France
| | - Ghenima Sfihi-Loualia
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Thomas Hurtaux
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France; Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Emmanuel Maes
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Chantal Fradin
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Boualem Sendid
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Daniel Poulain
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Emeline Fabre
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Florence Delplace
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576, UGSF, Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Jean-Maurice Mallet
- École Normale Supérieure-PSL Research University, Département de Chimie, 24, rue Lhomond, 75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005 Paris, France; CNRS, UMR 7203 LBM, F-75005 Paris, France.
| |
Collapse
|
11
|
Ifrim DC, Quintin J, Courjol F, Verschueren I, van Krieken JH, Koentgen F, Fradin C, Gow NAR, Joosten LAB, van der Meer JWM, van de Veerdonk F, Netea MG. The Role of Dectin-2 for Host Defense Against Disseminated Candidiasis. J Interferon Cytokine Res 2016; 36:267-76. [PMID: 27046240 PMCID: PMC4827303 DOI: 10.1089/jir.2015.0040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Despite the fact that Candida albicans is an important human fungal pathogen and Dectin-2 is a major pattern recognition receptor for fungi, our knowledge regarding the role of Dectin-2 for the host defense against disseminated candidiasis is limited. Dectin-2 deficient (Dectin-2−/−) mice were more susceptible to systemic candidiasis, and the susceptibility was mirrored by an elevated fungal load in the kidneys that correlated with the presence of large inflammatory foci. Phagocytosis of Candida by the macrophages lacking the Dectin-2 receptor was moderately decreased, while production of most of the macrophage-derived cytokines from Dectin-2−/− mice with systemic candidiasis was decreased. No striking differences among several Candida mutants defective in mannans could be detected between naïve wild-type and Dectin-2−/− mice, apart from the β-mannan-deficient bmt1Δ/bmt2Δ/bmt5Δ triple mutant, suggesting that β-mannan may partially mask α-mannan detection, which is the major fungal structure recognized by Dectin-2. Deciphering the mechanisms responsible for host defense against the majority of C. albicans strains represents an important step in understanding the pathophysiology of systemic candidiasis, which might lead to the development of novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Daniela C Ifrim
- 1 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | - Jessica Quintin
- 1 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | - Flavie Courjol
- 2 Inserm U995 , Lille, France .,3 Université de Lille , Faculté de Médecine, Lille, France
| | - Ineke Verschueren
- 1 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | - J Han van Krieken
- 4 Department of Pathology, Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | | | - Chantal Fradin
- 2 Inserm U995 , Lille, France .,3 Université de Lille , Faculté de Médecine, Lille, France
| | - Neil A R Gow
- 6 Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen , Aberdeen, United Kingdom
| | - Leo A B Joosten
- 1 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | - Jos W M van der Meer
- 1 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | - Frank van de Veerdonk
- 1 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| | - Mihai G Netea
- 1 Department of Internal Medicine, Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre , Nijmegen, The Netherlands
| |
Collapse
|
12
|
Hurtaux T, Sfihi-Loualia G, Brissonnet Y, Bouckaert J, Mallet JM, Sendid B, Delplace F, Fabre E, Gouin SG, Guérardel Y. Evaluation of monovalent and multivalent iminosugars to modulate Candida albicans β-1,2-mannosyltransferase activities. Carbohydr Res 2016; 429:123-7. [PMID: 26852253 DOI: 10.1016/j.carres.2016.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/15/2016] [Accepted: 01/16/2016] [Indexed: 11/30/2022]
Abstract
β-1,2-Linked oligomannosides substitute the cell wall of numerous yeast species. Several of those including Candida albicans may cause severe infections associated with high rates of morbidity and mortality, especially in immunocompromised patients. β-1,2-Mannosides are known to be involved in the pathogenic process and to elicit an immune response from the host. In C. albicans, the synthesis of β-mannosides is under the control of a family of nine genes coding for putative β-mannosyltransferases. Two of them, CaBmt1 and CaBmt3, have been shown to initiate and prime the elongation of the β-mannosides on the cell-wall mannan core. In the present study, we have assessed the modulating activities of monovalent and multivalent iminosugar analogs on these enzymes in order to control the enzymatic bio-synthesis of β-mannosides. We have identified a monovalent deoxynojirimycin (DNJ) derivative that inhibits the CaBmt1-catalyzed initiating activity, and mono-, tetra- and polyvalent deoxymannojirimycin (DMJ) that modulate the CaBmt1 activity toward the formation of a single major product. Analysis of the aggregating properties of the multivalent iminosugars showed their ability to elicit clusterization of both CaBmt1 and CaBmt3, without affecting their activity. These results suggest promising roles for multivalent iminosugars as controlling agents for the biosynthesis of β-1,2 mannosides and for monovalent DNJ derivative as a first target for the design of future β-mannosyltransferase inhibitors.
Collapse
Affiliation(s)
- Thomas Hurtaux
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France; CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Inserm, F-59000 Lille, France
| | - Ghenima Sfihi-Loualia
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Yoan Brissonnet
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, LUNAM Université, UMR CNRS 6230, UFR des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Julie Bouckaert
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Jean-Maurice Mallet
- Département de Chimie, Sorbonne Universités-UPMC Univ Paris 06, École Normale Supérieure-PSL Research University, CNRS UMR 7203 LBM, 24, rue Lhomond, 75005 Paris, France
| | - Boualem Sendid
- CHU Lille, U995-LIRIC-Lille Inflammation Research International Center, Inserm, F-59000 Lille, France
| | - Florence Delplace
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Emeline Fabre
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France
| | - Sébastien G Gouin
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, LUNAM Université, UMR CNRS 6230, UFR des Sciences et des Techniques, 2 rue de la Houssinière, BP 92208, 44322 Nantes Cedex 3, France
| | - Yann Guérardel
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Univ. Lille, CNRS, F 59000 Lille, France.
| |
Collapse
|
13
|
Initiation of phospholipomannan β-1,2 mannosylation involves Bmts with redundant activity, influences its cell wall location and regulates β-glucans homeostasis but is dispensable for Candida albicans systemic infection. Biochimie 2016; 120:96-104. [PMID: 26427558 PMCID: PMC7614791 DOI: 10.1016/j.biochi.2015.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 09/25/2015] [Indexed: 11/20/2022]
Abstract
Pathogenic and non-pathogenic fungi synthesize glycosphingolipids, which have a crucial role in growth and viability. Glycosphingolipids also contribute to fungal-associated pathogenesis. The opportunistic yeast pathogen Candida albicans synthesizes phospholipomannan (PLM), which is a glycosphingolipid of the mannosylinositol phosphorylceramide family. Through its lipid and glycan moieties, PLM contributes to the initial recognition of the yeast, causing immune system disorder and persistent fungal disease through activation of host signaling pathways. The lipid moiety of PLM activates the deregulation signaling pathway involved in yeast phagocytosis whereas its glycan moiety, composed of β-1,2 mannosides (β-Mans), participates to inflammatory processes through a mechanism involving Galectin-3. Biosynthesis of PLM β-Mans involves two β-1,2 mannosyltransferases (Bmts) that initiate (Bmt5) and elongate (Bmt6) the glycan chains. After generation of double bmtsΔ mutants, we show that Bmt5 has redundant activity with Bmt2, which can replace Bmt5 in bmt5Δ mutant. We also report that PLM is located in the inner layer of the yeast cell wall. PLM seems to be not essential for systemic infection of the yeast. However, defect of PLM β-mannosylation increases resistance of C. albicans to inhibitors of β-glucans and chitin synthesis, highlighting a role of PLM in cell wall homeostasis.
Collapse
|
14
|
Sfihi-Loualia G, Hurtaux T, Fabre E, Fradin C, Mée A, Pourcelot M, Maes E, Bouckaert J, Mallet JM, Poulain D, Delplace F, Guérardel Y. Candida albicans β-1,2-mannosyltransferase Bmt3 prompts the elongation of the cell-wall phosphopeptidomannan. Glycobiology 2015; 26:203-14. [PMID: 26525402 DOI: 10.1093/glycob/cwv094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 10/26/2015] [Indexed: 01/06/2023] Open
Abstract
β-1,2-Linked mannosides are expressed on numerous cell-wall glycoconjugates of the opportunistic pathogen yeast Candida albicans. Several studies evidenced their implication in the host-pathogen interaction and virulence mechanisms. In the present study, we characterized the in vitro activity of CaBmt3, a β-1,2-mannosyltransferase involved in the elongation of β-1,2-oligomannosides oligomers onto the cell-wall polymannosylated N-glycans. A recombinant soluble enzyme Bmt3p was produced in Pichia pastoris and its enzyme activity was investigated using natural and synthetic oligomannosides as potential acceptor substrates. Bmt3p was shown to exhibit an exquisite enzymatic specificity by adding a single terminal β-mannosyl residue to α-1,2-linked oligomannosides capped by a Manβ1-2Man motif. Furthermore, we demonstrated that the previously identified CaBmt1 and CaBmt3 efficiently act together to generate Manβ1-2Manβ1-2[Manα1-2]n sequence from α-1,2-linked oligomannosides onto exogenous and endogenous substrates.
Collapse
Affiliation(s)
- Ghenima Sfihi-Loualia
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Thomas Hurtaux
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Emeline Fabre
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Chantal Fradin
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Anaïs Mée
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7203 LBM, 24, rue Lhomond, 75005 Paris, France
| | - Marilyne Pourcelot
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7203 LBM, 24, rue Lhomond, 75005 Paris, France
| | - Emmanuel Maes
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Julie Bouckaert
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Jean-Maurice Mallet
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 7203 LBM, 24, rue Lhomond, 75005 Paris, France
| | - Daniel Poulain
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Florence Delplace
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| | - Yann Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F 59000 Lille, France
| |
Collapse
|
15
|
Courjol F, Jouault T, Mille C, Hall R, Maes E, Sendid B, Mallet JM, Guerardel Y, Gow NAR, Poulain D, Fradin C. β-1,2-Mannosyltransferases 1 and 3 Participate in Yeast and Hyphae O- and N-Linked Mannosylation and Alter Candida albicans Fitness During Infection. Open Forum Infect Dis 2015; 2:ofv116. [PMID: 26389126 PMCID: PMC4564806 DOI: 10.1093/ofid/ofv116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
β-1,2-mannosylation of Candida albicans glycoconjugates has been investigated through the identification of enzymes involved in the addition of β-1,2-oligomannosides (β-Mans) to phosphopeptidomannan and phospholipomannan. β-1,2-oligomannosides are supposed to have virulence properties that they confer to these glycoconjugates. In a previous study, we showed that cell wall mannoproteins (CWMPs) harbor β-Mans in their O-mannosides; therefore, we analyzed their biosynthesis and impact on virulence. In this study, we demonstrate that O-mannans are heterogeneous and that α-mannosylated O-mannosides, which are biosynthesized by Mnt1 and Mnt2 α-1,2-mannosyltransferases, can be modified with β-Mans but only at the nonreducing end of α-1,2-mannotriose. β-1,2-mannosylation of this O-mannotriose depends on growth conditions, and it involves 2 β-1,2-mannosyltransferases, Bmt1 and Bmt3. These Bmts are essential for β-1,2-mannosylation of CWMPs and expression of β-Mans on germ tubes. A bmt1Δ mutant and a mutant expressing no β-Mans unexpectedly disseminated more in BALB/c mice, whereas they had neither attenuated nor enhanced virulence in C57BL/6 mice. In galectin (Gal)3 knockout mice, the reference strain was more virulent than in C57BL/6 mice, suggesting that the β-Mans innate receptor Gal3 is involved in C. albicans fitness during infection.
Collapse
Affiliation(s)
- Flavie Courjol
- Université de Lille ; Institut National de la Santé et de la Recherche Médicale, Lille Inflammation Research International Center-Unité Mixte de Recherche 995 , France
| | - Thierry Jouault
- Université de Lille ; Institut National de la Santé et de la Recherche Médicale, Lille Inflammation Research International Center-Unité Mixte de Recherche 995 , France
| | - Céline Mille
- Université de Lille ; Institut National de la Santé et de la Recherche Médicale, Lille Inflammation Research International Center-Unité Mixte de Recherche 995 , France
| | - Rebecca Hall
- Aberdeen Fungal Group, School of Medical Sciences , Institute of Medical Sciences , University of Aberdeen , Foresterhill , United Kingdom
| | - Emmanuel Maes
- Université de Lille , Unité de Glycobiologie Structurale et Fonctionnelle ; Centre National de la Recherche Scientifique , Unité Mixte de Recherche 8576 , Villeneuve d'Ascq
| | - Boualem Sendid
- Université de Lille ; Institut National de la Santé et de la Recherche Médicale, Lille Inflammation Research International Center-Unité Mixte de Recherche 995 , France ; Centre Hospitalier Régional Universitaire de Lille, Centre Biologie et Pathologie
| | - Jean Maurice Mallet
- Laboratoire des Biomolécules Unité Mixte de Recherche 7203 , Université Pierre et Marie Curie, Ecole Normale Supérieure , Paris , France
| | - Yann Guerardel
- Université de Lille , Unité de Glycobiologie Structurale et Fonctionnelle ; Centre National de la Recherche Scientifique , Unité Mixte de Recherche 8576 , Villeneuve d'Ascq
| | - Neil A R Gow
- Aberdeen Fungal Group, School of Medical Sciences , Institute of Medical Sciences , University of Aberdeen , Foresterhill , United Kingdom
| | - Daniel Poulain
- Université de Lille ; Institut National de la Santé et de la Recherche Médicale, Lille Inflammation Research International Center-Unité Mixte de Recherche 995 , France ; Centre Hospitalier Régional Universitaire de Lille, Centre Biologie et Pathologie
| | - Chantal Fradin
- Université de Lille ; Institut National de la Santé et de la Recherche Médicale, Lille Inflammation Research International Center-Unité Mixte de Recherche 995 , France
| |
Collapse
|
16
|
Calderone R, Li D, Traven A. System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Res 2015; 15:fov027. [PMID: 26002841 PMCID: PMC4542695 DOI: 10.1093/femsyr/fov027] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/26/2015] [Accepted: 05/14/2015] [Indexed: 12/23/2022] Open
Abstract
The mitochondrion plays wide-ranging roles in eukaryotic cell physiology. In pathogenic fungi, this central metabolic organelle mediates a range of functions related to disease, from fitness of the pathogen to developmental and morphogenetic transitions to antifungal drug susceptibility. In this review, we present the latest findings in this area. We focus on likely mechanisms of mitochondrial impact on fungal virulence pathways through metabolism and stress responses, but also potentially via control over signaling pathways. We highlight fungal mitochondrial proteins that lack human homologs, and which could be inhibited as a novel approach to antifungal drug strategy.
Collapse
Affiliation(s)
- Richard Calderone
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Dongmei Li
- Department of Microbiology and Immunology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University Clayton, 3800 VIC, Australia
| |
Collapse
|
17
|
Fradin C, Bernardes ES, Jouault T. Candida albicans phospholipomannan: a sweet spot for controlling host response/inflammation. Semin Immunopathol 2014; 37:123-30. [DOI: 10.1007/s00281-014-0461-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 11/04/2014] [Indexed: 12/16/2022]
|
18
|
Fabre E, Hurtaux T, Fradin C. Mannosylation of fungal glycoconjugates in the Golgi apparatus. Curr Opin Microbiol 2014; 20:103-10. [DOI: 10.1016/j.mib.2014.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/29/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
19
|
Characterization of the recombinant Candida albicans β-1,2-mannosyltransferase that initiates the β-mannosylation of cell wall phosphopeptidomannan. Biochem J 2014; 457:347-60. [PMID: 24138199 DOI: 10.1042/bj20131012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The presence of β-mannosides in their cell walls confers specific features on the pathogenic yeasts Candida albicans and Candida glabrata compared with non-pathogenic yeasts. In the present study, we investigated the enzymatic properties of Bmt1 (β-mannosyltransferase 1), a member of the recently identified β-mannosyltransferase family, from C. albicans. A recombinant soluble enzyme lacking the N-terminal region was expressed as a secreted protein from the methylotrophic yeast Pichia pastoris. In parallel, functionalized natural oligosaccharides isolated from Saccharomyces cerevisiae and a C. albicans mutant strain, as well as synthetic α-oligomannosides, were prepared and used as potential acceptor substrates. Bmt1p preferentially utilizes substrates containing linear chains of α-1,2-linked mannotriose or mannotetraose. The recombinant enzyme consecuti-vely transfers two mannosyl units on to these acceptors, leading to the production of α-mannosidase-resistant oligomannosides. NMR experiments further confirmed the presence of a terminal βMan (β-1,2-linked mannose) unit in the first enzyme product. In the future, a better understanding of specific β-1,2-mannosyltransferase molecular requirements will help the design of new potential antifungal drugs.
Collapse
|
20
|
Deficient beta-mannosylation of Candida albicans phospholipomannan affects the proinflammatory response in macrophages. PLoS One 2013; 8:e84771. [PMID: 24367694 PMCID: PMC3868656 DOI: 10.1371/journal.pone.0084771] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/19/2013] [Indexed: 01/28/2023] Open
Abstract
Candida albicans produces a complex glycosphingolipid called phospholipomannan (PLM), which is present on the cell-wall surface of yeast and shed upon contact with host cells. The glycan moiety of PLM is composed of β-mannosides with degrees of polymerization up to 19 in C. albicans serotype A. PLM from serotype B strains displays a twofold decrease in the length of the glycan chains. In this study we compared the proinflammatory activities of PLMs purified from C. albicans serotype A and serotype B strains and from a bmt6Δ mutant of C. albicans, whose PLM is composed of short truncated oligomannosidic chain. We found that PLMs activate caspase-1 in murine macrophage cell line J774 independent of the glycan chain length although IL-1β secretion is more intense with long glycan chain. None of the tested PLMs stimulate ROS production, indicating that caspase-1 activation may occur through a ROS-independent pathway. On the other hand, only long-chain oligomannosides present on PLM from serotype A strain (PLM-A) are able to induce TNF-α production in macrophages, a property that is not affect by blocking endocytosis through latrunculin A treatment. Finally, we demonstrate that soluble and not cell surface-bound galectin-3, is able to potentiate PLM-A-induced TNF-α production in macrophages. PLMs from C. albicans serotype B and from bmt6∆ mutant are not able to induce TNF-α production and galectin-3 pretreatment does not interfere with this result. In conclusion, we show here that PLMs are able to evoke a proinflammatory state in macrophage, which is in part dependent on their glycosylation status. Long-glycan chains favor interaction with soluble galectin-3 and help amplify inflammatory response.
Collapse
|
21
|
Hall RA, Gow NAR. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol Microbiol 2013; 90:1147-61. [PMID: 24125554 PMCID: PMC4112839 DOI: 10.1111/mmi.12426] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2013] [Indexed: 11/29/2022]
Abstract
The fungal cell wall is a dynamic organelle required for cell shape, protection against the environment and, in pathogenic species, recognition by the innate immune system. The outer layer of the cell wall is comprised of glycosylated mannoproteins with the majority of these post‐translational modifications being the addition of O‐ and N‐linked mannosides. These polysaccharides are exposed on the outer surface of the fungal cell wall and are, therefore, the first point of contact between the fungus and the host immune system. This review focuses on O‐ and N‐linked mannan biosynthesis in the fungal pathogen Candida albicans and highlights new insights gained from the characterization of mannosylation mutants into the role of these cell wall components in host–fungus interactions. In addition, we discuss the use of fungal mannan as a diagnostic marker of fungal disease.
Collapse
Affiliation(s)
- Rebecca A Hall
- Aberdeen Fungal Group, School of Medical Sciences, University of Aberdeen, Aberdeen, AB252ZD, UK
| | | |
Collapse
|
22
|
Pourcelot M, Cattiaux L, Sfihi-Loualia G, Fabre E, Krzewinski F, Fradin C, Poulain D, Delplace F, Guérardel Y, Mallet JM. Mantyl tagged oligo α (1 → 2) mannosides as Candida albicans β-mannosyl transferases substrates: a comparison between synthetic strategies. RSC Adv 2013. [DOI: 10.1039/c3ra43340d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
23
|
|