1
|
Macke AJ, Divita TE, Pachikov AN, Mahalingam S, Bellamkonda R, Rasineni K, Casey CA, Petrosyan A. Alcohol-induced Golgiphagy is triggered by the downregulation of Golgi GTPase RAB3D. Autophagy 2024; 20:1537-1558. [PMID: 38591519 PMCID: PMC11210917 DOI: 10.1080/15548627.2024.2329476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
The development of alcohol-associated liver disease (ALD) is associated with disorganized Golgi apparatus and accelerated phagophore formation. While Golgi membranes may contribute to phagophores, association between Golgi alterations and macroautophagy/autophagy remains unclear. GOLGA4/p230 (golgin A4), a dimeric Golgi matrix protein, participates in phagophore formation, but the underlying mechanism is elusive. Our prior research identified ethanol (EtOH)-induced Golgi scattering, disrupting intra-Golgi trafficking and depleting RAB3D GTPase from the trans-Golgi. Employing various techniques, we analyzed diverse cellular and animal models representing chronic and chronic/binge alcohol consumption. In trans-Golgi of non-treated hepatocytes, we found a triple complex formed between RAB3D, GOLGA4, and MYH10/NMIIB (myosin, heavy polypeptide 10, non-muscle). However, EtOH-induced RAB3D downregulation led to MYH10 segregation from the Golgi, accompanied by Golgi fragmentation and tethering of the MYH10 isoform, MYH9/NMIIA, to dispersed Golgi membranes. EtOH-activated autophagic flux is evident through increased WIPI2 recruitment to the Golgi, phagophore formation, enhanced LC3B lipidation, and reduced SQSTM1/p62. Although GOLGA4 dimerization and intra-Golgi localization are unaffected, loss of RAB3D leads to an extension of the cytoplasmic N terminal domain of GOLGA4, forming GOLGA4-positive phagophores. Autophagy inhibition by hydroxychloroquine (HCQ) prevents alcohol-mediated Golgi disorganization, restores distribution of ASGR (asialoglycoprotein receptor), and mitigates COL (collagen) deposition and steatosis. In contrast to short-term exposure to HCQ, extended co-treatment with both EtOH and HCQ results in the depletion of LC3B protein via proteasomal degradation. Thus, (a) RAB3D deficiency and GOLGA4 conformational changes are pivotal in MYH9-driven, EtOH-mediated Golgiphagy, and (b) HCQ treatment holds promise as a therapeutic approach for alcohol-induced liver injury.Abbreviation: ACTB: actin, beta; ALD: alcohol-associated liver disease; ASGR: asialoglycoprotein receptor; AV: autophagic vacuoles; EM: electron microscopy; ER: endoplasmic reticulum; EtOH: ethanol; HCQ: hydroxychloroquine; IP: immunoprecipitation; KD: knockdown; KO: knockout; MYH10/NMIIB: myosin, heavy polypeptide 10, non-muscle; MYH9/NMIIA: myosin, heavy polypeptide 9, non-muscle; PLA: proximity ligation assay; ORO: Oil Red O staining; PM: plasma membrane; TGN: trans-Golgi network; SIM: structured illumination super-resolution microscopy.
Collapse
Affiliation(s)
- Amanda J. Macke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Taylor E. Divita
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Artem N. Pachikov
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sundararajan Mahalingam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Ramesh Bellamkonda
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Karuna Rasineni
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Carol A. Casey
- Omaha Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Wijaya CS, Xu S. Reevaluating Golgi fragmentation and its implications in wound repair. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:4. [PMID: 38349608 PMCID: PMC10864233 DOI: 10.1186/s13619-024-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
The Golgi Apparatus (GA) is pivotal in vesicle sorting and protein modifications within cells. Traditionally, the GA has been described as a perinuclear organelle consisting of stacked cisternae forming a ribbon-like structure. Changes in the stacked structure or the canonical perinuclear localization of the GA have been referred to as "GA fragmentation", a term widely employed in the literature to describe changes in GA morphology and distribution. However, the precise meaning and function of GA fragmentation remain intricate. This review aims to demystify this enigmatic phenomenon, dissecting the diverse morphological changes observed and their potential contributions to cellular wound repair and regeneration. Through a comprehensive analysis of current research, we hope to pave the way for future advancements in GA research and their important role in physiological and pathological conditions.
Collapse
Affiliation(s)
- Chandra Sugiarto Wijaya
- Department of Burns and Wound Repair and Center for Stem Cell and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Suhong Xu
- Department of Burns and Wound Repair and Center for Stem Cell and Regenerative Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- International Biomedicine-X Research Center of the Second Affiliated Hospital, Zhejiang University School of Medicine and the Zhejiang University-University of Edinburgh Institute, 718 East Haizhou Rd., Haining, Zhejiang, 314400, China.
| |
Collapse
|
3
|
G. Dornan L, C. Simpson J. Rab6-mediated retrograde trafficking from the Golgi: the trouble with tubules. Small GTPases 2023; 14:26-44. [PMID: 37488775 PMCID: PMC10392741 DOI: 10.1080/21541248.2023.2238330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023] Open
Abstract
Next year marks one-quarter of a century since the discovery of the so-called COPI-independent pathway, which operates between the Golgi apparatus and the endoplasmic reticulum (ER) in eukaryotic cells. Unlike almost all other intracellular trafficking pathways, this pathway is not regulated by the physical accumulation of multisubunit proteinaceous coat molecules, but instead by the small GTPase Rab6. What also sets it apart from other pathways is that the transport carriers themselves often take the form of tubules, rather than conventional vesicles. In this review, we assess the relevant literature that has accumulated to date, in an attempt to provide a concerted description of how this pathway is regulated. We discuss the possible cargo molecules that are carried in this pathway, and the likely mechanism of Rab6 tubule biogenesis, including how the cargo itself may play a critical role. We also provide perspective surrounding the various molecular motors of the kinesin, myosin and dynein families that have been implicated in driving Rab6-coated tubular membranes long distances through the cell prior to delivering their cargo to the ER. Finally, we also raise several important questions that require resolution, if we are to ultimately provide a comprehensive molecular description of how the COPI-independent pathway is controlled.
Collapse
Affiliation(s)
- Lucy G. Dornan
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| | - Jeremy C. Simpson
- Cell Screening Laboratory, UCD School of Biology & Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Boyd A, Montandon M, Wood AJ, Currie PD. FKRP directed fibronectin glycosylation: A novel mechanism giving insights into muscular dystrophies? Bioessays 2022; 44:e2100270. [PMID: 35229908 DOI: 10.1002/bies.202100270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
Abstract
The recently uncovered role of Fukutin-related protein (FKRP) in fibronectin glycosylation has challenged our understanding of the basis of disease pathogenesis in the muscular dystrophies. FKRP is a Golgi-resident glycosyltransferase implicated in a broad spectrum of muscular dystrophy (MD) pathologies that are not fully attributable to the well-described α-Dystroglycan hypoglycosylation. By revealing a new role for FKRP in the glycosylation of fibronectin, a modification critical for the development of the muscle basement membrane (MBM) and its associated muscle linkages, new possibilities for understanding clinical phenotype arise. This modification involves an interaction between FKRP and myosin-10, a protein involved in the Golgi organization and function. These observations suggest a FKRP nexus exists that controls two critical aspects to muscle fibre integrity, both fibre stability at the MBM and its elastic properties. This review explores the new potential disease axis in the context of our current knowledge of muscular dystrophies.
Collapse
Affiliation(s)
- Andrew Boyd
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Margo Montandon
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Alasdair J Wood
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,EMBL Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
5
|
FKRP-dependent glycosylation of fibronectin regulates muscle pathology in muscular dystrophy. Nat Commun 2021; 12:2951. [PMID: 34012031 PMCID: PMC8134429 DOI: 10.1038/s41467-021-23217-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
The muscular dystrophies encompass a broad range of pathologies with varied clinical outcomes. In the case of patients carrying defects in fukutin-related protein (FKRP), these diverse pathologies arise from mutations within the same gene. This is surprising as FKRP is a glycosyltransferase, whose only identified function is to transfer ribitol-5-phosphate to α-dystroglycan (α-DG). Although this modification is critical for extracellular matrix attachment, α-DG's glycosylation status relates poorly to disease severity, suggesting the existence of unidentified FKRP targets. Here we reveal that FKRP directs sialylation of fibronectin, a process essential for collagen recruitment to the muscle basement membrane. Thus, our results reveal that FKRP simultaneously regulates the two major muscle-ECM linkages essential for fibre survival, and establishes a new disease axis for the muscular dystrophies.
Collapse
|
6
|
Pays E. The function of apolipoproteins L (APOLs): relevance for kidney disease, neurotransmission disorders, cancer and viral infection. FEBS J 2021; 288:360-381. [PMID: 32530132 PMCID: PMC7891394 DOI: 10.1111/febs.15444] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022]
Abstract
The discovery that apolipoprotein L1 (APOL1) is the trypanolytic factor of human serum raised interest about the function of APOLs, especially following the unexpected finding that in addition to their protective action against sleeping sickness, APOL1 C-terminal variants also cause kidney disease. Based on the analysis of the structure and trypanolytic activity of APOL1, it was proposed that APOLs could function as ion channels of intracellular membranes and be involved in mechanisms triggering programmed cell death. In this review, the recent finding that APOL1 and APOL3 inversely control the synthesis of phosphatidylinositol-4-phosphate (PI(4)P) by the Golgi PI(4)-kinase IIIB (PI4KB) is commented. APOL3 promotes Ca2+ -dependent activation of PI4KB, but due to their increased interaction with APOL3, APOL1 C-terminal variants can inactivate APOL3, leading to reduction of Golgi PI(4)P synthesis. The impact of APOLs on several pathological processes that depend on Golgi PI(4)P levels is discussed. I propose that through their effect on PI4KB activity, APOLs control not only actomyosin activities related to vesicular trafficking, but also the generation and elongation of autophagosomes induced by inflammation.
Collapse
Affiliation(s)
- Etienne Pays
- Laboratory of Molecular ParasitologyIBMMUniversité Libre de BruxellesGosseliesBelgium
| |
Collapse
|
7
|
Gensbittel V, Kräter M, Harlepp S, Busnelli I, Guck J, Goetz JG. Mechanical Adaptability of Tumor Cells in Metastasis. Dev Cell 2020; 56:164-179. [PMID: 33238151 DOI: 10.1016/j.devcel.2020.10.011] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
The most dangerous aspect of cancer lies in metastatic progression. Tumor cells will successfully form life-threatening metastases when they undergo sequential steps along a journey from the primary tumor to distant organs. From a biomechanics standpoint, growth, invasion, intravasation, circulation, arrest/adhesion, and extravasation of tumor cells demand particular cell-mechanical properties in order to survive and complete the metastatic cascade. With metastatic cells usually being softer than their non-malignant counterparts, high deformability for both the cell and its nucleus is thought to offer a significant advantage for metastatic potential. However, it is still unclear whether there is a finely tuned but fixed mechanical state that accommodates all mechanical features required for survival throughout the cascade or whether tumor cells need to dynamically refine their properties and intracellular components at each new step encountered. Here, we review the various mechanical requirements successful cancer cells might need to fulfill along their journey and speculate on the possibility that they dynamically adapt their properties accordingly. The mechanical signature of a successful cancer cell might actually be its ability to adapt to the successive microenvironmental constraints along the different steps of the journey.
Collapse
Affiliation(s)
- Valentin Gensbittel
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Martin Kräter
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Sébastien Harlepp
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Ignacio Busnelli
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Jochen Guck
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany.
| | - Jacky G Goetz
- INSERM UMR_S1109, Tumor Biomechanics, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.
| |
Collapse
|
8
|
Nolfi D, Capone A, Rosati F, Della Giovampaola C. The alpha-1,2 fucosylated tubule system of DU145 prostate cancer cells is derived from a partially fragmented Golgi complex and its formation is actin-dependent. Exp Cell Res 2020; 396:112324. [PMID: 33065114 DOI: 10.1016/j.yexcr.2020.112324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/10/2020] [Accepted: 10/11/2020] [Indexed: 01/02/2023]
Abstract
In previous work, we showed that highly proliferative cells and cancer cells, but not cells with normal growth rate, have tubules rich in alpha-1,2 fucosylated epitopes that extend radially from the nucleus to the cell periphery and form an unusual uptake system. The importance of alpha-1,2 fucosylation in forming tubules was demonstrated by proving that down-regulating the two corresponding fucosyltransferases (FUT1 and FUT2) causes tubule fragmentation. Here, we present evidence that in the prostate cancer cell line DU145, the tubules arise in actively growing cells from vesicles in the medial and trans elements of a partially fragmented Golgi complex, while in not actively growing cells the tubules become completely independent from the Golgi complex. Formation and elongation of the tubules proved to depend on the actin cytoskeleton, since the alpha-1,2 fucosylated protein(s) segregate with the cytoskeleton proteins, and not in the membrane fraction, as do the Golgi markers and other fucosylated proteins, while depolymerization of the actin filaments causes tubule fragmentation and shifting of the alpha-1,2 fucosylated proteins into the membrane fraction.
Collapse
Affiliation(s)
- Domenico Nolfi
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy.
| | - Antonietta Capone
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy
| | - Floriana Rosati
- Department of Life Sciences, University of Siena, Via Aldo Moro 2, 53100, Siena, Italy; Accademia dei Fisiocritici, Via Mattioli 5, 53100, Siena, Italy
| | | |
Collapse
|
9
|
Abstract
The mammalian Golgi apparatus is a highly dynamic organelle, which is normally localized in the juxtanuclear space and plays an essential role in the regulation of cellular homeostasis. While posttranslational modification of cargo is mediated by the resident enzymes (glycosyltransferases, glycosidases, and kinases), the ribbon structure of Golgi and its cisternal stacking mostly rely on the cooperation of coiled-coil matrix golgins. Among them, giantin, GM130, and GRASPs are unique, because they form a tripartite complex and serve as Golgi docking sites for cargo delivered from the endoplasmic reticulum (ER). Golgi undergoes significant disorganization in many pathologies associated with a block of the ER-to-Golgi or intra-Golgi transport, including cancer, different neurological diseases, alcoholic liver damage, ischemic stress, viral infections, etc. In addition, Golgi fragments during apoptosis and mitosis. Here, we summarize and analyze clinically relevant observations indicating that Golgi fragmentation is associated with the selective loss of Golgi residency for some enzymes and, conversely, with the relocation of some cytoplasmic proteins to the Golgi. The central concept is that ER and Golgi stresses impair giantin docking site but have no impact on the GM130-GRASP65 complex, thus inducing mislocalization of giantin-sensitive enzymes only. This cardinally changes the processing of proteins by eliminating the pathways controlled by the missing enzymes and by activating the processes now driven by the GM130-GRASP65-dependent proteins. This type of Golgi disorganization is different from the one induced by the cytoskeleton alteration, which despite Golgi de-centralization, neither impairs function of golgins nor alters trafficking.
Collapse
Affiliation(s)
- A Petrosyan
- College of Medicine, Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE 68588, USA.,The Fred and Pamela Buffett Cancer Center, Omaha, NE 68106, USA
| |
Collapse
|
10
|
Akintayo A, Liang M, Bartholdy B, Batista F, Aguilan J, Prendergast J, Sabrin A, Sundaram S, Stanley P. The Golgi Glycoprotein MGAT4D is an Intrinsic Protector of Testicular Germ Cells From Mild Heat Stress. Sci Rep 2020; 10:2135. [PMID: 32034218 PMCID: PMC7005853 DOI: 10.1038/s41598-020-58923-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/17/2020] [Indexed: 11/26/2022] Open
Abstract
Male germ cells are sensitive to heat stress and testes must be maintained outside the body for optimal fertility. However, no germ cell intrinsic mechanism that protects from heat has been reported. Here, we identify the germ cell specific Golgi glycoprotein MGAT4D as a protector of male germ cells from heat stress. Mgat4d is highly expressed in spermatocytes and spermatids. Unexpectedly, when the Mgat4d gene was inactivated globally or conditionally in spermatogonia, or mis-expressed in spermatogonia, spermatocytes or spermatids, neither spermatogenesis nor fertility were affected. On the other hand, when males were subjected to mild heat stress of the testis (43 °C for 25 min), germ cells with inactivated Mgat4d were markedly more sensitive to the effects of heat stress, and transgenic mice expressing Mgat4d were partially protected from heat stress. Germ cells lacking Mgat4d generally mounted a similar heat shock response to control germ cells, but could not maintain that response. Several pathways activated by heat stress in wild type were induced to a lesser extent in Mgat4d[-/-] heat-stressed germ cells (NFκB response, TNF and TGFβ signaling, Hif1α and Myc genes). Thus, the Golgi glycoprotein MGAT4D is a novel, intrinsic protector of male germ cells from heat stress.
Collapse
Affiliation(s)
- Ayodele Akintayo
- Dept. Cell Biology, Albert Einstein College Medicine, New York, NY, 10461, USA
| | - Meng Liang
- Dept. Cell Biology, Albert Einstein College Medicine, New York, NY, 10461, USA
- Department of Life Science, Bengbu Medical College, Bengbu, 233030, P. R. China
| | - Boris Bartholdy
- Dept. Cell Biology, Albert Einstein College Medicine, New York, NY, 10461, USA
| | - Frank Batista
- Dept. Cell Biology, Albert Einstein College Medicine, New York, NY, 10461, USA
| | - Jennifer Aguilan
- Laboratory for Macromolecular Analysis and Proteomics Facility, Dept. Pathology, Albert Einstein College Medicine, New York, NY, 10461, USA
| | - Jillian Prendergast
- Dept. Cell Biology, Albert Einstein College Medicine, New York, NY, 10461, USA
- Palleon Pharmaceuticals, 266 2nd Ave, Waltham, MA, 02451, USA
| | - Afsana Sabrin
- Dept. Cell Biology, Albert Einstein College Medicine, New York, NY, 10461, USA
| | - Subha Sundaram
- Dept. Cell Biology, Albert Einstein College Medicine, New York, NY, 10461, USA
| | - Pamela Stanley
- Dept. Cell Biology, Albert Einstein College Medicine, New York, NY, 10461, USA.
| |
Collapse
|
11
|
Frisbie CP, Lushnikov AY, Krasnoslobodtsev AV, Riethoven JJM, Clarke JL, Stepchenkova EI, Petrosyan A. Post-ER Stress Biogenesis of Golgi Is Governed by Giantin. Cells 2019; 8:E1631. [PMID: 31847122 PMCID: PMC6953117 DOI: 10.3390/cells8121631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The Golgi apparatus undergoes disorganization in response to stress, but it is able to restore compact and perinuclear structure under recovery. This self-organization mechanism is significant for cellular homeostasis, but remains mostly elusive, as does the role of giantin, the largest Golgi matrix dimeric protein. METHODS In HeLa and different prostate cancer cells, we used the model of cellular stress induced by Brefeldin A (BFA). The conformational structure of giantin was assessed by proximity ligation assay and atomic force microscopy. The post-BFA distribution of Golgi resident enzymes was examined by 3D SIM high-resolution microscopy. RESULTS We detected that giantin is rather flexible than an extended coiled-coil dimer and BFA-induced Golgi disassembly was associated with giantin monomerization. A fusion of the nascent Golgi membranes after BFA washout is forced by giantin re-dimerization via disulfide bond in its luminal domain and assisted by Rab6a GTPase. GM130-GRASP65-dependent enzymes are able to reach the nascent Golgi membranes, while giantin-sensitive enzymes appeared at the Golgi after its complete recovery via direct interaction of their cytoplasmic tail with N-terminus of giantin. CONCLUSION Post-stress recovery of Golgi is conducted by giantin dimer and Golgi proteins refill membranes according to their docking affiliation rather than their intra-Golgi location.
Collapse
Affiliation(s)
- Cole P. Frisbie
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
| | - Alexander Y. Lushnikov
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
| | - Alexey V. Krasnoslobodtsev
- Nanoimaging Core Facility, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.L.); (A.V.K.)
- Department of Physics, University of Nebraska-Omaha, Omaha, NE 68182-0266, USA
| | - Jean-Jack M. Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588-0665, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
| | - Jennifer L. Clarke
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583-0963, USA
| | - Elena I. Stepchenkova
- Vavilov Institute of General Genetics, Saint-Petersburg Branch, Russian Academy of Sciences, Saint-Petersburg 199034, Russia;
- Department of Genetics, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA;
- The Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln, NE 68588-0304, USA;
- The Fred and Pamela Buffett Cancer Center, Omaha, NE 68198-5870, USA
| |
Collapse
|
12
|
Giantin Is Required for Post-Alcohol Recovery of Golgi in Liver Cells. Biomolecules 2018; 8:biom8040150. [PMID: 30453527 PMCID: PMC6316505 DOI: 10.3390/biom8040150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 12/17/2022] Open
Abstract
In hepatocytes and alcohol-metabolizing cultured cells, Golgi undergoes ethanol (EtOH)-induced disorganization. Perinuclear and organized Golgi is important in liver homeostasis, but how the Golgi remains intact is unknown. Work from our laboratories showed that EtOH-altered cellular function could be reversed after alcohol removal; we wanted to determine whether this recovery would apply to Golgi. We used alcohol-metabolizing HepG2 (VA-13) cells (cultured with or without EtOH for 72 h) and rat hepatocytes (control and EtOH-fed (Lieber–DeCarli diet)). For recovery, EtOH was removed and replenished with control medium (48 h for VA-13 cells) or control diet (10 days for rats). Results: EtOH-induced Golgi disassembly was associated with de-dimerization of the largest Golgi matrix protein giantin, along with impaired transport of selected hepatic proteins. After recovery from EtOH, Golgi regained their compact structure, and alterations in giantin and protein transport were restored. In VA-13 cells, when we knocked down giantin, Rab6a GTPase or non-muscle myosin IIB, minimal changes were observed in control conditions, but post-EtOH recovery was impaired. Conclusions: These data provide a link between Golgi organization and plasma membrane protein expression and identify several proteins whose expression is important to maintain Golgi structure during the recovery phase after EtOH administration.
Collapse
|
13
|
Manca S, Frisbie CP, LaGrange CA, Casey CA, Riethoven JJM, Petrosyan A. The Role of Alcohol-Induced Golgi Fragmentation for Androgen Receptor Signaling in Prostate Cancer. Mol Cancer Res 2018; 17:225-237. [PMID: 30224543 DOI: 10.1158/1541-7786.mcr-18-0577] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/23/2018] [Accepted: 08/22/2018] [Indexed: 01/18/2023]
Abstract
Multiple epidemiologic observations and meta-analysis clearly indicate the link between alcohol abuse and the incidence and progression of prostate cancer; however, the mechanism remains enigmatic. Recently, it was found that ethanol (EtOH) induces disorganization of the Golgi complex caused by impaired function of the largest Golgi matrix protein, giantin (GOLGB1), which, in turn, alters the Golgi docking of resident Golgi proteins. Here, it is determined that in normal prostate cells, histone deacetylase 6 (HDAC6), the known regulator of androgen receptor (AR) signaling, localizes in the cytoplasm and nucleus, while its kinase, glycogen synthase kinase β (GSK3β), primarily resides in the Golgi. Progression of prostate cancer is accompanied by Golgi scattering, translocation of GSK3β from the Golgi to the cytoplasm, and the cytoplasmic shift in HDAC6 localization. Alcohol dehydrogenase-generated metabolites induces Golgi disorganization in androgen-responsive LNCaP and 22Rv1 cells, facilitates tumor growth in a mouse xenograft model and activates anchorage-independent proliferation, migration, and cell adhesion. EtOH-treated cells demonstrate reduced giantin and subsequent cytoplasmic GSK3β; this phenomenon was validated in giantin-depleted cells. Redistribution of GSK3β to the cytoplasm results in phosphorylation of HDAC6 and its retention in the cytoplasm, which, in turn, stimulates deacetylation of HSP90, AR import into the nucleus, and secretion of prostate-specific antigen (PSA). Finally, the relationship between Golgi morphology, HDAC6 cytoplasmic content, and clinicopathologic features was assessed in human prostate cancer patient specimens with and without a history of alcohol dependence. IMPLICATIONS: This study demonstrates the importance of alcohol-induced Golgi fragmentation in the activation of AR-mediated proliferation.
Collapse
Affiliation(s)
- Sonia Manca
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Cole P Frisbie
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Chad A LaGrange
- Division of Urologic Surgery, Department of Surgery, University of Nebraska Medical Center, Omaha, Nebraska
| | - Carol A Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Jean-Jack M Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska.,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska. .,The Nebraska Center for Integrated Biomolecular Communication, Lincoln, Nebraska.,The Fred and Pamela Buffett Cancer Center, Omaha, Nebraska
| |
Collapse
|
14
|
Kubyshkin AV, Fomochkina II, Petrosyan AM. THE IMPACT OF ALCOHOL ON PRO-METASTATIC N-GLYCOSYLATION IN PROSTATE CANCER. KRIMSKII ZHURNAL EKSPERIMENTAL'NOI I KLINICHESKOI MEDITSINY = KRYMS'KYI ZHURNAL EKSPERYMENTAL'NOI TA KLINICHNOI MEDYTSYNY = CRIMEAN JOURNAL OF EXPERIMENTAL AND CLINICAL MEDICINE 2018; 8:11-20. [PMID: 31131224 PMCID: PMC6534161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chronic alcohol abuse and alcoholism are considered risk factors for prostate cancer (PCa) progression, but the mechanism is unknown. Previously, we found that: (1) fragmentation of the Golgi complex correlates with the progression of PCa; (2) ethanol (EtOH) induces Golgi disorganization, which, in turn, alters intra-Golgi localization of some Golgi proteins. Also, progression of the prostate tumor is associated with activation of N-acetylglucosaminyltransferase-V (MGAT5)-mediated N-glycosylation of pro-metastatic proteins, including matriptase and integrins, followed by their enhanced retention at the cell surface. Here, using high-resolution microscopy, we found that alcohol effect on Golgi in low passage androgen-responsive LNCaP cells mimic the fragmented Golgi phenotype of androgen-refractory high passage LNCaP and PC-3 cells. Next, we detected that transition to androgen unresponsiveness is accompanied by downregulation of N-acetylglucosaminyltransferase-III (MGAT3), the enzyme that competes with MGAT5 for anti-metastatic N-glycan branching. Moreover, in low passage LNCaP cells, alcohol-induced Golgi fragmentation induced translocation of MGAT3 from the Golgi to the cytoplasm, while intra-Golgi localization of MGAT5 appeared unaffected. Then, the relationship between Golgi morphology, MGAT3 intracellular position, and clinicopathologic features was assessed in human PCa patient specimens with and without a history of alcohol dependence. We revealed that within the same clinical stage, the level of Golgi disorganization and the cytoplasmic shift of MGAT3 was more prominent in patients consuming alcohol. In vitro studies suggest that EtOH-induced downregulation of MGAT3 correlates with activation of MGAT5-mediated glycosylation and overexpression of both matriptase and integrins. In sum, we provide a novel insight into the alcohol-mediated tumor promotion.
Collapse
Affiliation(s)
- A V Kubyshkin
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, Simferopol, Russia; 295051
| | - I I Fomochkina
- Medical Academy named after S.I. Georgievsky, V.I. Vernadsky Crimean Federal University, Lenin Avenue 5/7, Simferopol, Russia; 295051
| | - A M Petrosyan
- University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, NE, USA; 68198-5870
| |
Collapse
|
15
|
Different Golgi ultrastructure across species and tissues: Implications under functional and pathological conditions, and an attempt at classification. Tissue Cell 2017; 49:186-201. [DOI: 10.1016/j.tice.2016.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023]
|
16
|
Casey CA, Bhat G, Holzapfel MS, Petrosyan A. Study of Ethanol-Induced Golgi Disorganization Reveals the Potential Mechanism of Alcohol-Impaired N-Glycosylation. Alcohol Clin Exp Res 2016; 40:2573-2590. [PMID: 27748959 PMCID: PMC5133184 DOI: 10.1111/acer.13247] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/20/2016] [Indexed: 01/18/2023]
Abstract
BACKGROUND It is known that ethanol (EtOH) and its metabolites have a negative effect on protein glycosylation. The fragmentation of the Golgi apparatus induced by alteration of the structure of largest Golgi matrix protein, giantin, is the major consequence of damaging effects of EtOH-metabolism on the Golgi; however, the link between this and abnormal glycosylation remains unknown. Because previously we have shown that Golgi morphology dictates glycosylation, we examined the effect EtOH administration has on function of Golgi residential enzymes involved in N-glycosylation. METHODS HepG2 cells transfected with mouse ADH1 (VA-13 cells) were treated with 35 mM EtOH for 72 hours. Male Wistar rats were pair-fed Lieber-DeCarli diets for 5 to 8 weeks. Characterization of Golgi-associated mannosyl (α-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase (MGAT1), α-1,2-mannosidase (Man-I), and α-mannosidase II (Man-II) were performed in VA-13 cells and rat hepatocytes followed by three-dimensional structured illumination microscopy (3D SIM). RESULTS First, we detected that EtOH administration results in the loss of sialylated N-glycans on asialoglycoprotein receptor; however, the high-mannose-type N-glycans are increased. Further analysis by 3D SIM revealed that EtOH treatment despite Golgi disorganization does not change cis-Golgi localization for Man-I, but does induce medial-to-cis relocation of MGAT1 and Man-II. Using different approaches, including electron microscopy, we revealed that EtOH treatment results in dysfunction of ADP-ribosylation factor 1 (Arf1) GTPase followed by a deficiency in COPI vesicles at the Golgi. Silencing beta-COP or expression of GDP-bound mutant Arf1(T31N) mimics the EtOH effect on retaining MGAT1 and Man-II at the cis-Golgi, suggesting that (i) EtOH specifically blocks activation of Arf1, and (ii) EtOH alters the proper localization of Golgi enzymes through impairment of COPI. Importantly, the level of MGAT1 was reduced, because likely MGAT1, contrary to Man-I and Man-II, is giantin sensitive. CONCLUSIONS Thus, we provide the mechanism by which EtOH-induced Golgi remodeling may significantly modify formation of N-glycans.
Collapse
Affiliation(s)
- Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Ganapati Bhat
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Melissa S. Holzapfel
- Department of Pathology and Microbiology, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, and the Fred and Pamela Buffett Cancer Center, Omaha, NE, USA
| |
Collapse
|
17
|
Petrosyan A, Casey CA, Cheng PW. The role of Rab6a and phosphorylation of non-muscle myosin IIA tailpiece in alcohol-induced Golgi disorganization. Sci Rep 2016; 6:31962. [PMID: 27535804 PMCID: PMC4989220 DOI: 10.1038/srep31962] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 07/27/2016] [Indexed: 12/12/2022] Open
Abstract
Abnormalities in the Golgi apparatus function are important to the development of alcoholic liver injury. We recently reported that Golgi disorganization in ethanol (EtOH)-treated hepatocytes is caused by impaired dimerization of the largest Golgi matrix protein, giantin. However, little is known about the mechanism which forces fragmentation. Here, in both HepG2 cells overexpressing alcohol dehydrogenase and in rat hepatocytes, we found that EtOH administration reduces the complex between giantin and Rab6a GTPase and results in the S1943 phosphorylation of non-muscle Myosin IIA (NMIIA) heavy chain, thus facilitating NMIIA association with Golgi enzymes, as detected by biochemical approaches and 3D Structured Illumination Microscopy. We revealed that NMIIA-P-S1943 competes with giantin for the Rab6a dimer, which was converted to monomer after Golgi fragmentation. Therefore, Rab6a plays a dual role in the Golgi, serving as master regulator of Golgi organization and disorganization, and that NMIIA and giantin engage in a "tug-of-war". However, the inhibition of F-actin and downregulation of NMIIA or overexpression of NMHC-IIAΔtailpiece, as well the overexpression of dominant negative Rab6a(T27N), preserved a compact Golgi phenotype. Thus, the actomyosin complex forces EtOH-induced Golgi disorganization, and the targeting of NMIIA-P-S1943 may be important for preventing the damaging effects of alcohol metabolism on the cell.
Collapse
Affiliation(s)
- Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, the Fred and Pamela Buffett Cancer Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | - Carol A Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Nebraska Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, the Fred and Pamela Buffett Cancer Center, 985870 Nebraska Medical Center, Omaha, NE 68198-5870, USA.,Nebraska Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| |
Collapse
|
18
|
Petrosyan A, Cheng PW, Clemens DL, Casey CA. Downregulation of the small GTPase SAR1A: a key event underlying alcohol-induced Golgi fragmentation in hepatocytes. Sci Rep 2015; 5:17127. [PMID: 26607390 PMCID: PMC4660820 DOI: 10.1038/srep17127] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/26/2015] [Indexed: 12/14/2022] Open
Abstract
The hepatic asialoglycoprotein receptor (ASGP-R) is posttranslationally modified in the Golgi en route to the plasma membrane, where it mediates clearance of desialylated serum glycoproteins. It is known that content of plasma membrane-associated ASGP-R is decreased after ethanol exposure, although the mechanisms remain elusive. Previously, we found that formation of compact Golgi requires dimerization of the largest Golgi matrix protein giantin. We hypothesize that ethanol-impaired giantin function may be related to altered trafficking of ASGP-R. Here we report that in HepG2 cells expressing alcohol dehydrogenase and hepatocytes of ethanol-fed rats, ethanol metabolism results in Golgi disorganization. This process is initiated by dysfunction of SAR1A GTPase followed by altered COPII vesicle formation and impaired Golgi delivery of the protein disulfide isomerase A3 (PDIA3), an enzyme that catalyzes giantin dimerization. Additionally, we show that SAR1A gene silencing in hepatocytes mimics the effect of ethanol: dedimerization of giantin, arresting PDIA3 in the endoplasmic reticulum (ER) and large-scale alterations in Golgi architecture. Ethanol-induced Golgi fission has no effect on ER-to-Golgi transportation of ASGP-R, however, it results in its deposition in cis-medial-, but not trans-Golgi. Thus, alcohol-induced deficiency in COPII vesicle formation predetermines Golgi fragmentation which, in turn, compromises the Golgi-to-plasma membrane transportation of ASGP-R.
Collapse
Affiliation(s)
- Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, Omaha, NE, USA
| | - Pi-Wan Cheng
- Department of Biochemistry and Molecular Biology, College of Medicine, Omaha, NE, USA
- Nebraska Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Dahn L. Clemens
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| | - Carol A. Casey
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Nebraska Western Iowa Health Care System, VA Service, Department of Research Service, Omaha, NE, USA
| |
Collapse
|
19
|
Abstract
The Golgi apparatus-complex is a highly dynamic organelle which is considered the "heart" of intracellular transportation. Since its discovery by Camillo Golgi in 1873, who described it as the "black reaction," and despite the enormous volume of publications about Golgi, this apparatus remains one of the most enigmatic of the cytoplasmic organelles. A typical mammalian Golgi consists of a parallel series of flattened, disk-shaped cisternae which align into stacks. The tremendous volume of Golgi-related incoming and outgoing traffic is mediated by different motor proteins, including members of the dynein, kinesin, and myosin families. Yet in spite of the strenuous work it performs, Golgi contrives to maintain its monolithic morphology and orchestration of matrix and residential proteins. However, in response to stress, alcohol, and treatment with many pharmacological drugs over time, Golgi undergoes a kind of disorganization which ranges from mild enlargement to critical scattering. While fragmentation of the Golgi was confirmed in cancer by electron microscopy almost fifty years ago, it is only in recent years that we have begun to understand the significance of Golgi fragmentation in the biology of tumors. Below author would like to focus on how Golgi fragmentation opens the doors for cascades of fatal pathways which may facilitate cancer progression and metastasis. Among the issues addressed will be the most important cancer-specific hallmarks of Golgi fragmentation, including aberrant glycosylation, abnormal expression of the Ras GTPases, dysregulation of kinases, and hyperactivity of myosin motor proteins.
Collapse
Affiliation(s)
- Armen Petrosyan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
20
|
Petrosyan A, Ali MF, Cheng PW. Keratin 1 plays a critical role in golgi localization of core 2 N-acetylglucosaminyltransferase M via interaction with its cytoplasmic tail. J Biol Chem 2015; 290:6256-69. [PMID: 25605727 PMCID: PMC4358263 DOI: 10.1074/jbc.m114.618702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/14/2015] [Indexed: 11/06/2022] Open
Abstract
Core 2 N-acetylglucosaminyltransferase 2/M (C2GnT-M) synthesizes all three β6GlcNAc branch structures found in secreted mucins. Loss of C2GnT-M leads to development of colitis and colon cancer. Recently we have shown that C2GnT-M targets the Golgi at the Giantin site and is recycled by binding to non-muscle myosin IIA, a motor protein, via the cytoplasmic tail (CT). But how this enzyme is retained in the Golgi is not known. Proteomics analysis identifies keratin type II cytoskeletal 1 (KRT1) as a protein pulled down with anti-c-Myc antibody or C2GnT-M CT from the lysate of Panc1 cells expressing bC2GnT-M tagged with c-Myc. Yeast two-hybrid analysis shows that the rod domain of KRT1 interacts directly with the WKR(6) motif in the C2GnT-M CT. Knockdown of KRT1 does not affect Golgi morphology but increases the interaction of C2GnT-M with non-muscle myosin IIA and its transportation to the endoplasmic reticulum, ubiquitination, and degradation. During Golgi recovery after brefeldin A treatment, C2GnT-M forms a complex with Giantin before KRT1, demonstrating CT-mediated sequential events of Golgi targeting and retention of C2GnT-M. In HeLa cells transiently expressing C2GnT-M-GFP, knockdown of KRT1 does not affect Golgi morphology but leaves C2GnT-M outside of the Golgi, resulting in the formation of sialyl-T antigen. Interaction of C2GnT-M and KRT1 was also detected in the goblet cells of human colon epithelial tissue and primary culture of colonic epithelial cells. The results indicate that glycosylation and thus the function of glycoconjugates can be regulated by a protein that helps retain a glycosyltransferase in the Golgi.
Collapse
Affiliation(s)
- Armen Petrosyan
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Mohamed F Ali
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and
| | - Pi-Wan Cheng
- From the VA Nebraska-Western Iowa Health Care System, Department of Research Service, Omaha, Nebraska 68105 and Department of Biochemistry and Molecular Biology, College of Medicine and Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198
| |
Collapse
|
21
|
Petrosyan A, Holzapfel MS, Muirhead DE, Cheng PW. Restoration of compact Golgi morphology in advanced prostate cancer enhances susceptibility to galectin-1-induced apoptosis by modifying mucin O-glycan synthesis. Mol Cancer Res 2014; 12:1704-16. [PMID: 25086069 DOI: 10.1158/1541-7786.mcr-14-0291-t] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
UNLABELLED Prostate cancer progression is associated with upregulation of sialyl-T antigen produced by β-galactoside α-2,3-sialyltransferase-1 (ST3Gal1) but not with core 2-associated polylactosamine despite expression of core 2 N-acetylglucosaminyltransferase-L (C2GnT-L/GCNT1). This property allows androgen-refractory prostate cancer cells to evade galectin-1 (LGALS1)-induced apoptosis, but the mechanism is not known. We have recently reported that Golgi targeting of glycosyltransferases is mediated by golgins: giantin (GOLGB1) for C2GnT-M (GCNT3) and GM130 (GOLGA2)-GRASP65 (GORASP1) or GM130-giantin for core 1 synthase. Here, we show that for Golgi targeting, C2GnT-L also uses giantin exclusively whereas ST3Gal1 uses either giantin or GM130-GRASP65. In addition, the compact Golgi morphology is detected in both androgen-sensitive prostate cancer and normal prostate cells, but fragmented Golgi and mislocalization of C2GnT-L are found in androgen-refractory cells as well as primary prostate tumors (Gleason grade 2-4). Furthermore, failure of giantin monomers to be phosphorylated and dimerized prevents Golgi from forming compact morphology and C2GnT-L from targeting the Golgi. On the other hand, ST3Gal1 reaches the Golgi by an alternate site, GM130-GRASP65. Interestingly, inhibition or knockdown of non-muscle myosin IIA (MYH9) motor protein frees up Rab6a GTPase to promote phosphorylation of giantin by polo-like kinase 3 (PLK3), which is followed by dimerization of giantin assisted by protein disulfide isomerase A3 (PDIA3), and restoration of compact Golgi morphology and targeting of C2GnT-L. Finally, the Golgi relocation of C2GnT-L in androgen-refractory cells results in their increased susceptibility to galectin-1-induced apoptosis by replacing sialyl-T antigen with polylactosamine. IMPLICATIONS This study demonstrates the importance of Golgi morphology and regulation of glycosylation and provides insight into how the Golgi influences cancer progression and metastasis.
Collapse
Affiliation(s)
- Armen Petrosyan
- Nebraska Western Iowa Health Care System, Veteran Affairs Research Service, Omaha, Nebraska. Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | - Melissa S Holzapfel
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - David E Muirhead
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska
| | - Pi-Wan Cheng
- Nebraska Western Iowa Health Care System, Veteran Affairs Research Service, Omaha, Nebraska. Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska. Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
22
|
Petrosyan A, Cheng PW. Golgi fragmentation induced by heat shock or inhibition of heat shock proteins is mediated by non-muscle myosin IIA via its interaction with glycosyltransferases. Cell Stress Chaperones 2014; 19:241-54. [PMID: 23990450 PMCID: PMC3933620 DOI: 10.1007/s12192-013-0450-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 01/12/2023] Open
Abstract
The Golgi apparatus is a highly dynamic organelle which frequently undergoes morphological changes in certain normal physiological processes or in response to stress. The mechanisms are largely not known. We have found that heat shock of Panc1 cells expressing core 2 N-acetylglucosaminyltransferase-M (Panc1-C2GnT-M) induces Golgi disorganization by increasing non-muscle myosin IIA (NMIIA)-C2GnT-M complexes and polyubiquitination and proteasomal degradation of C2GnT-M. These effects are prevented by inhibition or knockdown of NMIIA. Also, the speed of Golgi fragmentation induced by heat shock is found to be positively correlated with the levels of C2GnT-M in the Golgi. The results are reproduced in LNCaP cells expressing high levels of two endogenous glycosyltransferases-core 2 N-acetylglucosaminyltransferase-L:1 and β-galactoside:α2-3 sialyltransferase 1. Further, during recovery after heat shock, Golgi reassembly as monitored by a Golgi matrix protein giantin precedes the return of C2GnT-M to the Golgi. The results are consistent with the roles of giantin as a building block of the Golgi architecture and a docking site for transport vesicles carrying glycosyltransferases. In addition, inhibition/depletion of HSP70 or HSP90 in Panc1-C2GnT-M cells also causes an increase of NMIIA-C2GnT-M complexes and NMIIA-mediated Golgi fragmentation but results in accumulation or degradation of C2GnT-M, respectively. These results can be explained by the known functions of these two HSP: participation of HSP90 in protein folding and HSP70 in protein folding and degradation. We conclude that NMIIA is the master regulator of Golgi fragmentation induced by heat shock or inhibition/depletion of HSP70/90.
Collapse
Affiliation(s)
- Armen Petrosyan
- />Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, NE USA
- />Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
| | - Pi-Wan Cheng
- />Department of Research Service, Veterans Administration Nebraska-Western Iowa Health Care System, Omaha, NE USA
- />Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5870 USA
- />Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE USA
| |
Collapse
|