1
|
Rupreo V, Bhattacharyya J. Probing the Molecular Interactions of Piperidine Alkaloid Lobeline with Ovalbumin: Anti-Aggregation and Anti-Glycation Potential. J Phys Chem B 2025; 129:4692-4704. [PMID: 40322787 DOI: 10.1021/acs.jpcb.5c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Lobeline (LOB) is a bioactive alkaloid known for its neuroprotective and cognitive-enhancing properties, particularly in mitigating oxidative stress and inflammation associated with neurodegenerative diseases. While LOB has been studied for its pharmacological roles in CNS disorders, substance abuse treatment, and smoking cessation, its molecular interactions with proteins and potential antiamyloid, antiglycation, and antioxidant properties remain largely unexplored. This study addresses this gap by analyzing LOB interactions with ovalbumin (OVA) through advanced biophysical and computational techniques to elucidate its therapeutic potential and inform drug development. Fluorescence spectroscopy confirmed a static quenching mechanism and binding constant (Kb) of 105 M-1 with a monopreferential binding site in OVA by LOB. Isothermal titration calorimetry (ITC) indicated an exothermic, entropy-driven interaction, while differential scanning calorimetry (DSC) demonstrated LOB-induced stabilization of OVA. Synchronous fluorescence and red edge excitation shift highlighted LOB's effect on Trp and Tyr residues, while circular dichroism (CD) spectroscopy indicated LOB-induced conformational changes in OVA. Molecular modeling (docking and dynamic simulation) corroborated the experimental findings. Turbidity, thioflavin T (ThT), nile red (NR), 8-anilinonaphthalene-1-sulfonic acid (ANS), CD, and morphological studies confirmed OVA fibril formation, and the aggregation was shown to be inhibited by ligand LOB in vitro. Additionally, d-fructose was used to glycate the OVA protein, creating a model to examine the antiglycation and antioxidant effects of LOB. These aspects are essential for advancing targeted drug design and delivery systems, as they provide vital insights into modern biophysical and biochemical research.
Collapse
Affiliation(s)
- Vibeizonuo Rupreo
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland 797103, India
| | - Jhimli Bhattacharyya
- Department of Chemistry, National Institute of Technology Nagaland, Chumukedima, Dimapur, Nagaland 797103, India
| |
Collapse
|
2
|
Ebrahimi R, Mohammadpour A, Medoro A, Davinelli S, Saso L, Miroliaei M. Exploring the links between polyphenols, Nrf2, and diabetes: A review. Biomed Pharmacother 2025; 186:118020. [PMID: 40168723 DOI: 10.1016/j.biopha.2025.118020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
Diabetes mellitus, a complex metabolic disorder, is marked by chronic hyperglycemia that drives oxidative stress and inflammation, leading to complications such as neuropathy, retinopathy, and cardiovascular disease. The Nrf2 pathway, a key regulator of cellular antioxidant defenses, plays a vital role in mitigating oxidative damage and maintaining glucose homeostasis. Dysfunction of Nrf2 has been implicated in the progression of diabetes and its related complications. Polyphenols, a class of plant-derived bioactive compounds, have shown potential in modulating the Nrf2 pathway. Numerous compounds have been found to activate Nrf2 through mechanisms including Keap1 interaction, transcriptional regulation, and epigenetic modification. Preclinical studies indicate their ability to reduce reactive oxygen species (ROS), improve insulin sensitivity, and attenuate inflammation in diabetic models. Clinical trials with certain polyphenols, such as resveratrol, have demonstrated improvements in glycemic parameters, though results remain inconsistent. While polyphenols show promise as a component of non-pharmacological approaches to diabetes management, challenges such as bioavailability, individual variability in response, and limited clinical evidence highlight the need for further investigation. Continued research could enhance understanding of their mechanisms and improve their practical application in mitigating diabetes-related complications.
Collapse
Affiliation(s)
- Reza Ebrahimi
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Alireza Mohammadpour
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Alessandro Medoro
- Department of Medicine and Health Sciences "V.Tiberio", University of Molise, Campobasso 86110, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V.Tiberio", University of Molise, Campobasso 86110, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome 00161, Italy.
| | - Mehran Miroliaei
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
3
|
Paramanya A, Abiodun AO, Ola MS, Ali A. Antiglycating Effects of Spirulina platensis Aqueous Extract on Glucose-Induced Glycation of Bovine Serum Albumin. Chem Biodivers 2024; 21:e202400281. [PMID: 38687533 DOI: 10.1002/cbdv.202400281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Glucose, the predominant carbohydrate in the human body, initiates nonenzymatic reactions in hyperglycemia, potentially leading to adverse biochemical interactions. This study investigates the interaction between glucose and Bovine Serum Albumin (BSA), along with the protective effects of Spirulina platensis PCC 7345 aqueous extract. Phycobiliproteins (phycocyanin, phycoerythrin, and allophycocyanin) in the extract were quantified using spectrophotometry. The extract's anti-glycation potential was assessed by analyzing its effects on albumin glycation, fluorescent advanced glycation end products (AGEs), thiol group oxidation, and β-amyloid structure generation. Additionally, its antidiabetic potential was evaluated by measuring α-amylase and α-glucosidase enzyme inhibition. Results indicate that the Spirulina extract significantly mitigated ketoamine levels, fluorescence, and protein-carbonyl production induced by glucose, demonstrating a 67.81 % suppression of AGE formation after 28 days. Moreover, it effectively inhibited amyloid formation in BSA cross-linkages. These findings suggest the potential of S. platensis as an anti-glycation and antidiabetic agent, supporting its consideration for dietary inclusion to manage diabetes and associated complications.
Collapse
Affiliation(s)
- Additiya Paramanya
- Department of Life Sciences, University of Mumbai, Mumbai, 400098, India
| | - Abeeb Oyesiji Abiodun
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70802, USA
| | - Mohammad Shamsul Ola
- Department of Biochemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Mumbai, 400098, India
| |
Collapse
|
4
|
Luciani L, Pedrelli M, Parini P. Modification of lipoprotein metabolism and function driving atherogenesis in diabetes. Atherosclerosis 2024; 394:117545. [PMID: 38688749 DOI: 10.1016/j.atherosclerosis.2024.117545] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/18/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease, characterized by raised blood glucose levels and impaired lipid metabolism resulting from insulin resistance and relative insulin deficiency. In diabetes, the peculiar plasma lipoprotein phenotype, consisting in higher levels of apolipoprotein B-containing lipoproteins, hypertriglyceridemia, low levels of HDL cholesterol, elevated number of small, dense LDL, and increased non-HDL cholesterol, results from an increased synthesis and impaired clearance of triglyceride rich lipoproteins. This condition accelerates the development of the atherosclerotic cardiovascular disease (ASCVD), the most common cause of death in T2DM patients. Here, we review the alteration of structure, functions, and distribution of circulating lipoproteins and the pathophysiological mechanisms that induce these modifications in T2DM. The review analyzes the influence of diabetes-associated metabolic imbalances throughout the entire process of the atherosclerotic plaque formation, from lipoprotein synthesis to potential plaque destabilization. Addressing the different pathophysiological mechanisms, we suggest improved approaches for assessing the risk of adverse cardiovascular events and clinical strategies to reduce cardiovascular risk in T2DM and cardiometabolic diseases.
Collapse
Affiliation(s)
- Lorenzo Luciani
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Interdisciplinary Center for Health Sciences, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Matteo Pedrelli
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden
| | - Paolo Parini
- Cardio Metabolic Unit, Department of Laboratory Medicine, and Department of Medicine at Huddinge, Karolinska Institutet, Stockholm, Sweden; Medicine Unit of Endocrinology, Theme Inflammation and Ageing, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
5
|
Akhter A, Alouffi S, Shahab U, Akasha R, Fazal-Ur-Rehman M, Ghoniem ME, Ahmad N, Kaur K, Pandey RP, Alshammari A, Akhter F, Ahmad S. Vitamin D supplementation modulates glycated hemoglobin (HBA1c) in diabetes mellitus. Arch Biochem Biophys 2024; 753:109911. [PMID: 38280562 DOI: 10.1016/j.abb.2024.109911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Diabetes is a metabolic illness that increases protein glycosylation in hyperglycemic conditions, which can have an impact on almost every organ system in the body. The role of vitamin D in the etiology of diabetes under RAGE (receptor for advanced glycation end products) stress has recently received some attention on a global scale. Vitamin D's other skeletal benefits have generated a great deal of research. Vitamin D's function in the development of type 1 and type 2 diabetes is supported by the discovery of 1,25 (OH)2D3 and 1-Alpha-Hydroylase expression in immune cells, pancreatic beta cells, and several other organs besides the bone system. A lower HBA1c level, metabolic syndrome, and diabetes mellitus all seems to be associated with vitamin D insufficiency. Most of the cross-sectional and prospective observational studies that were used to gather human evidence revealed an inverse relationship between vitamin D level and the prevalence or incidence of elevated HBA1c in type 2 diabetes. Several trials have reported on the impact of vitamin D supplementation for glycemia or incidence of type 2 diabetes, with varying degrees of success. The current paper examines the available data for a relationship between vitamin D supplementation and HBA1c level in diabetes and discusses the biological plausibility of such a relationship.
Collapse
Affiliation(s)
- Asma Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11790, United States.
| | - Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| | - Uzma Shahab
- Department of Biochemistry, King George Medical University, Lucknow, U.P., India.
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| | | | - Mohamed E Ghoniem
- Department of Internal Medicine, College of Medicine, University of Hail, 2440, Saudi Arabia; Department of Internal Medicine, Faculty of Medicine, Zagazig University, Zagazig, 44519, Egypt.
| | - Naved Ahmad
- Department of Computer Science and Information System, College of Applied Sciences, AlMaarefa University, P.O.Box 71666, Riyadh, 13713, Saudi Arabia.
| | - Kirtanjot Kaur
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India.
| | - Ramendra Pati Pandey
- School of Health Sciences and Technology (SOHST), UPES, Dehradun, 248007, Uttarakhand, India.
| | - Ahmed Alshammari
- Department of Internal Medicine, College of Medicine, University of Hail, Saudi Arabia.
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11790, United States.
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia.
| |
Collapse
|
6
|
Shahu R, Kumar D, Ali A, Tungare K, Al-Anazi KM, Farah MA, Jobby R, Jha P. Unlocking the Therapeutic Potential of Stevia rebaudiana Bertoni: A Natural Antiglycating Agent and Non-Toxic Support for HDF Cell Health. Molecules 2023; 28:6797. [PMID: 37836640 PMCID: PMC10574660 DOI: 10.3390/molecules28196797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Sugar carbonyl groups interact with protein amino groups, forming toxic components referred to as advanced glycation end products (AGEs). The glycation system (BSA, a model protein, and fructose) was incubated for five weeks at 37 °C in the presence and absence of Stevia leaf extract. The results indicated that the leaf extract (0.5 mg/mL) decreased the incidence of browning (70.84 ± 0.08%), fructosamine (67.27 ± 0.08%), and carbonyl content (64.04 ± 0.09%). Moreover, we observed an 81 ± 8.49% reduction in total AGEs. The inhibition of individual AGE (argpyrimidine, vesper lysine, and pentosidine) was ~80%. The decrease in the protein aggregation was observed with Congo red (46.88 ± 0.078%) and the Thioflavin T (31.25 ± 1.18%) methods in the presence of Stevia leaf extract. The repercussion of Stevia leaf extract on DNA glycation was examined using agarose gel electrophoresis, wherein the DNA damage was reversed in the presence of 1 mg/mL of leaf extract. When the HDF cell line was treated with 0.5 mg/mL of extract, the viability of cells decreased by only ~20% along with the same cytokine IL-10 production, and glucose uptake decreased by 28 ± 1.90% compared to the control. In conclusion, Stevia extract emerges as a promising natural agent for mitigating glycation-associated challenges, holding potential for novel therapeutic interventions and enhanced management of its related conditions.
Collapse
Affiliation(s)
- Rinkey Shahu
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai–Pune Expressway, Bhatan, Panvel, Mumbai 410206, Maharashtra, India (R.J.)
- Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai–Pune Expressway, Bhatan, Panvel, Mumbai 410206, Maharashtra, India
| | - Dinesh Kumar
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, Maharashtra, India; (D.K.); (A.A.)
| | - Ahmad Ali
- Department of Life Sciences, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai 400098, Maharashtra, India; (D.K.); (A.A.)
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to Be University, Plot No. 50, Sector 15, CBD Belapur, Navi Mumbai 400614, Maharashtra, India
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (K.M.A.-A.); (M.A.F.)
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (K.M.A.-A.); (M.A.F.)
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University Maharashtra, Mumbai–Pune Expressway, Bhatan, Panvel, Mumbai 410206, Maharashtra, India (R.J.)
- Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai–Pune Expressway, Bhatan, Panvel, Mumbai 410206, Maharashtra, India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to Be University, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
7
|
Weston WC, Hales KH, Hales DB. Flaxseed Reduces Cancer Risk by Altering Bioenergetic Pathways in Liver: Connecting SAM Biosynthesis to Cellular Energy. Metabolites 2023; 13:945. [PMID: 37623888 PMCID: PMC10456508 DOI: 10.3390/metabo13080945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
This article illustrates how dietary flaxseed can be used to reduce cancer risk, specifically by attenuating obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD). We utilize a targeted metabolomics dataset in combination with a reanalysis of past work to investigate the "metabo-bioenergetic" adaptations that occur in White Leghorn laying hens while consuming dietary flaxseed. Recently, we revealed how the anti-vitamin B6 effects of flaxseed augment one-carbon metabolism in a manner that accelerates S-adenosylmethionine (SAM) biosynthesis. Researchers recently showed that accelerated SAM biosynthesis activates the cell's master energy sensor, AMP-activated protein kinase (AMPK). Our paper provides evidence that flaxseed upregulates mitochondrial fatty acid oxidation and glycolysis in liver, concomitant with the attenuation of lipogenesis and polyamine biosynthesis. Defatted flaxseed likely functions as a metformin homologue by upregulating hepatic glucose uptake and pyruvate flux through the pyruvate dehydrogenase complex (PDC) in laying hens. In contrast, whole flaxseed appears to attenuate liver steatosis and body mass by modifying mitochondrial fatty acid oxidation and lipogenesis. Several acylcarnitine moieties indicate Randle cycle adaptations that protect mitochondria from metabolic overload when hens consume flaxseed. We also discuss a paradoxical finding whereby flaxseed induces the highest glycated hemoglobin percentage (HbA1c%) ever recorded in birds, and we suspect that hyperglycemia is not the cause. In conclusion, flaxseed modifies bioenergetic pathways to attenuate the risk of obesity, type 2 diabetes, and NAFLD, possibly downstream of SAM biosynthesis. These findings, if reproducible in humans, can be used to lower cancer risk within the general population.
Collapse
Affiliation(s)
- William C. Weston
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Karen H. Hales
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| | - Dale B. Hales
- Department of Molecular, Cellular & Systemic Physiology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
- Department of Obstetrics & Gynecology, School of Medicine, Southern Illinois University, Carbondale, IL 62901, USA;
| |
Collapse
|
8
|
Putra IMWA, Fakhrudin N, Nurrochmad A, Wahyuono S. A Review of Medicinal Plants with Renoprotective Activity in Diabetic Nephropathy Animal Models. Life (Basel) 2023; 13:560. [PMID: 36836916 PMCID: PMC9963806 DOI: 10.3390/life13020560] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Diabetic nephropathy (DN), also recognized as diabetic kidney disease, is a kidney malfunction caused by diabetes mellitus. A possible contributing factor to the onset of DN is hyperglycemia. Poorly regulated hyperglycemia can damage blood vessel clusters in the kidneys, leading to kidney damage. Its treatment is difficult and expensive because its causes are extremely complex and poorly understood. Extracts from medicinal plants can be an alternative treatment for DN. The bioactive content in medicinal plants inhibits the progression of DN. This work explores the renoprotective activity and possible mechanisms of various medicinal plant extracts administered to diabetic animal models. Research articles published from 2011 to 2022 were gathered from several databases including PubMed, Scopus, ProQuest, and ScienceDirect to ensure up-to-date findings. Results showed that medicinal plant extracts ameliorated the progression of DN via the reduction in oxidative stress and suppression of inflammation, advanced glycation end-product formation, cell apoptosis, and tissue injury-related protein expression.
Collapse
Affiliation(s)
- I Made Wisnu Adhi Putra
- Department of Biology, University of Dhyana Pura, Badung 80351, Indonesia
- Doctorate Program of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Nanang Fakhrudin
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Arief Nurrochmad
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Subagus Wahyuono
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
- Medicinal Plants and Natural Products Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| |
Collapse
|
9
|
Chaiwangyen W, Chumphukam O, Kangwan N, Pintha K, Suttajit M. Anti-aging effect of polyphenols: possibilities and challenges. PLANT BIOACTIVES AS NATURAL PANACEA AGAINST AGE-INDUCED DISEASES 2023:147-179. [DOI: 10.1016/b978-0-323-90581-7.00022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Comparative profiling of polyphenols and antioxidants and analysis of antiglycation activities in rapeseed (Brassica napus L.) under different moisture regimes. Food Chem 2023; 399:133946. [DOI: 10.1016/j.foodchem.2022.133946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/22/2022] [Accepted: 08/11/2022] [Indexed: 11/20/2022]
|
11
|
Bangar NS, Gvalani A, Ahmad S, Khan MS, Tupe RS. Understanding the role of glycation in the pathology of various non-communicable diseases along with novel therapeutic strategies. Glycobiology 2022; 32:1068-1088. [PMID: 36074518 DOI: 10.1093/glycob/cwac060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 01/07/2023] Open
Abstract
Glycation refers to carbonyl group condensation of the reducing sugar with the free amino group of protein, which forms Amadori products and advanced glycation end products (AGEs). These AGEs alter protein structure and function by configuring a negative charge on the positively charged arginine and lysine residues. Glycation plays a vital role in the pathogenesis of metabolic diseases, brain disorders, aging, and gut microbiome dysregulation with the aid of 3 mechanisms: (i) formation of highly reactive metabolic pathway-derived intermediates, which directly affect protein function in cells, (ii) the interaction of AGEs with its associated receptors to create oxidative stress causing the activation of transcription factor NF-κB, and (iii) production of extracellular AGEs hinders interactions between cellular and matrix molecules affecting vascular and neural genesis. Therapeutic strategies are thus required to inhibit glycation at different steps, such as blocking amino and carbonyl groups, Amadori products, AGEs-RAGE interactions, chelating transition metals, scavenging free radicals, and breaking crosslinks formed by AGEs. The present review focused on explicitly elaborating the impact of glycation-influenced molecular mechanisms in developing and treating noncommunicable diseases.
Collapse
Affiliation(s)
- Nilima S Bangar
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Armaan Gvalani
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, University of Hail, Hail City 2440, Saudi Arabia
| | - Mohd S Khan
- Department of Biochemistry, Protein Research Chair, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rashmi S Tupe
- Symbiosis School of Biological Sciences (SSBS), Symbiosis International (Deemed University) (SIU), Lavale, Pune 412115, Maharashtra, India
| |
Collapse
|
12
|
Structural Characteristics and Emulsifying Properties of Soy Protein Isolate Glycated with Galacto-Oligosaccharides under High-Pressure Homogenization. Foods 2022; 11:foods11213505. [PMID: 36360117 PMCID: PMC9656766 DOI: 10.3390/foods11213505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
This study explored the Maillard reaction process during the glycation of soy protein isolate (SPI) with galacto-oligosaccharides (GOSs) under high-pressure homogenization (HPH) and its effects on the emulsifying properties of SPI. SPI-GOS glycation under moderate pressure (80 MPa) significantly inhibited the occurrence and extent of the Maillard reaction (p < 0.05), but homogenization pressures in the range of 80−140 MPa gradually promoted this reaction. HPH caused a decrease in the surface hydrophobicity of the glycated protein, an increase in the abundance of free sulfhydryl groups, unfolding of the protein molecular structure, and the formation of new covalent bonds (C=O, C=N). Additionally, the particle size of emulsions created with SPI-GOS conjugates was reduced under HPH, thus improving the emulsifying properties of SPI. A reduction in particle size (117 nm), enhanced zeta potential (−23 mV), and uniform droplet size were observed for the emulsion created with the SPI-GOS conjugate prepared at 120 MPa. The conformational changes in the glycated protein supported the improved emulsification function. All results were significantly different (p < 0.05). The study findings indicate that HPH provides a potential method for controlling glycation and improving the emulsifying properties of SPI.
Collapse
|
13
|
Gostomska-Pampuch K, Wiśniewski JR, Sowiński K, Gruszecki WI, Gamian A, Staniszewska M. Analysis of the Site-Specific Myoglobin Modifications in the Melibiose-Derived Novel Advanced Glycation End-Product. Int J Mol Sci 2022; 23:13036. [PMID: 36361822 PMCID: PMC9655033 DOI: 10.3390/ijms232113036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 02/06/2024] Open
Abstract
MAGE (melibiose-derived advanced glycation end-product) is the glycation product generated in the reaction of a model protein with melibiose. The in vivo analog accumulates in several tissues; however, its origin still needs explanation. In vitro MAGE is efficiently generated under dry conditions in contrast to the reaction carried in an aqueous solvent. Using liquid chromatography coupled with mass spectrometry, we analyzed the physicochemical properties and structures of myoglobin glycated with melibiose under different conditions. The targeted peptide analysis identified structurally different AGEs, including crosslinking and non-crosslinking modifications associated with lysine, arginine, and histidine residues. Glycation in a dry state was more efficient in the formation of structures containing an intact melibiose moiety (21.9%) compared to glycation under aqueous conditions (15.6%). The difference was reflected in characteristic fluorescence that results from protein structural changes and impact on a heme group of the model myoglobin protein. Finally, our results suggest that the formation of in vitro MAGE adduct is initiated by coupling melibiose to a model myoglobin protein. It is confirmed by the identification of intact melibiose moieties. The intermediate glycation product can further rearrange towards more advanced structures, including cross-links. This process can contribute to a pool of AGEs accumulating locally in vivo and affecting tissue biology.
Collapse
Affiliation(s)
- Kinga Gostomska-Pampuch
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland
| | - Jacek R. Wiśniewski
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Karol Sowiński
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Wieslaw I. Gruszecki
- Department of Biophysics, Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Andrzej Gamian
- Laboratory of Medical Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Magdalena Staniszewska
- Faculty of Medicine, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland
| |
Collapse
|
14
|
He L, Liu Y, Xu J, Li J, Cheng G, Cai J, Dang J, Yu M, Wang W, Duan W, Liu K. Inhibitory Effects of Myriocin on Non-Enzymatic Glycation of Bovine Serum Albumin. Molecules 2022; 27:molecules27206995. [PMID: 36296589 PMCID: PMC9607541 DOI: 10.3390/molecules27206995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
Advanced glycation end products (AGEs) are the compounds produced by non-enzymatic glycation of proteins, which are involved in diabetic-related complications. To investigate the potential anti-glycation activity of Myriocin (Myr), a fungal metabolite of Cordyceps, the effect of Myr on the formation of AGEs resulted from the glycation of bovine serum albumin (BSA) and the interaction between Myr and BSA were studied by multiple spectroscopic techniques and computational simulations. We found that Myr inhibited the formation of AGEs at the end stage of glycation reaction and exhibited strong anti-fibrillation activity. Spectroscopic analysis revealed that Myr quenched the fluorescence of BSA in a static process, with the possible formation of a complex (approximate molar ratio of 1:1). The binding between BSA and Myr mainly depended on van der Waals interaction, hydrophobic interactions and hydrogen bond. The synchronous fluorescence and UV-visible (UV-vis) spectra results indicated that the conformation of BSA altered in the presence of Myr. The fluorescent probe displacement experiments and molecular docking suggested that Myr primarily bound to binding site 1 (subdomain IIA) of BSA. These findings demonstrate that Myr is a potential anti-glycation agent and provide a theoretical basis for the further functional research of Myr in the prevention and treatment of AGEs-related diseases.
Collapse
Affiliation(s)
- Libo He
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- Department of Central Laboratory, The First People’s Hospital of Huzhou, First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Junling Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jingjing Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Guohua Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jiaxiu Cai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinye Dang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Meng Yu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Weiyan Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wei Duan
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Ke Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Correspondence:
| |
Collapse
|
15
|
Mengstie MA, Chekol Abebe E, Behaile Teklemariam A, Tilahun Mulu A, Agidew MM, Teshome Azezew M, Zewde EA, Agegnehu Teshome A. Endogenous advanced glycation end products in the pathogenesis of chronic diabetic complications. Front Mol Biosci 2022; 9:1002710. [PMID: 36188225 PMCID: PMC9521189 DOI: 10.3389/fmolb.2022.1002710] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/01/2022] [Indexed: 12/22/2022] Open
Abstract
Diabetes is a common metabolic illness characterized by hyperglycemia and is linked to long-term vascular problems that can impair the kidney, eyes, nerves, and blood vessels. By increasing protein glycation and gradually accumulating advanced glycation end products in the tissues, hyperglycemia plays a significant role in the pathogenesis of diabetic complications. Advanced glycation end products are heterogeneous molecules generated from non-enzymatic interactions of sugars with proteins, lipids, or nucleic acids via the glycation process. Protein glycation and the buildup of advanced glycation end products are important in the etiology of diabetes sequelae such as retinopathy, nephropathy, neuropathy, and atherosclerosis. Their contribution to diabetes complications occurs via a receptor-mediated signaling cascade or direct extracellular matrix destruction. According to recent research, the interaction of advanced glycation end products with their transmembrane receptor results in intracellular signaling, gene expression, the release of pro-inflammatory molecules, and the production of free radicals, all of which contribute to the pathology of diabetes complications. The primary aim of this paper was to discuss the chemical reactions and formation of advanced glycation end products, the interaction of advanced glycation end products with their receptor and downstream signaling cascade, and molecular mechanisms triggered by advanced glycation end products in the pathogenesis of both micro and macrovascular complications of diabetes mellitus.
Collapse
Affiliation(s)
- Misganaw Asmamaw Mengstie
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
- *Correspondence: Misganaw Asmamaw Mengstie,
| | - Endeshaw Chekol Abebe
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Awgichew Behaile Teklemariam
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Anemut Tilahun Mulu
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Melaku Mekonnen Agidew
- Department of Biochemistry, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Muluken Teshome Azezew
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Edgeit Abebe Zewde
- Department of Physiology, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Assefa Agegnehu Teshome
- Department of Anatomy, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
16
|
Alouffi S, Khanam A, Husain A, Akasha R, Rabbani G, Ahmad S. d-ribose-mediated glycation of fibrinogen: Role in the induction of adaptive immune response. Chem Biol Interact 2022; 367:110147. [PMID: 36108717 DOI: 10.1016/j.cbi.2022.110147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
A nonenzymatic reaction between reducing sugars and amino groups of proteins results in the formation of advanced glycation end products, which are linked to a number of chronic progressive diseases with macro- and microvascular complications. In this research, we sought to ascertain the immunological response to d-ibose-glycated fibrinogen. New Zealand White female rabbits were immunized with native and d-ribose-glycated (Rb-gly-Fb) fibrinogen and used for studying the immunological response. Serum from these rabbits analyzed using direct binding and competitive inhibition ELISA was found to contain a high titer of antibodies against Rb-gly-Fb; Rb-gly-Fb was much more immunogenic than its native form. The IgG against Rb-gly-Fb (Rb-gly-Fb-IgG) was highly specific against the immunogenic protein. Moreover, histopathology and immunofluorescence studies revealed the deposition of the Rb-gly-Fb-IgG immune complex in the glomerular basement membrane of the kidneys of immunized rabbits. Furthermore, immunization with Rb-gly-Fb increased the expression of genes encoding proinflammatory cytokines, tumour necrosis factor α, interleukin-6, interleukin-1β, and interferon-gamma, which is indicative of increased inflammation and the antigenic role of Rb-gly-Fb in provoking an immune response.
Collapse
Affiliation(s)
- Sultan Alouffi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia; Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Saudi Arabia
| | - Afreen Khanam
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Department of Biosciences, Integral University, Lucknow, India.
| | - Arbab Husain
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Department of Biosciences, Integral University, Lucknow, India
| | - Rihab Akasha
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia
| | - Gulam Rabbani
- Nano Diagnostics & Devices (NDD), IT Medical Fusion Center, 350-27 Gumidae-ro, Gumi-si, Gyeongbuk, 39253, Republic of Korea
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail- 2440, Saudi Arabia; Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Saudi Arabia.
| |
Collapse
|
17
|
Kostov K, Blazhev A. Elevated IgG and IgM Autoantibodies to Advanced Glycation End Products of Vascular Elastin in Hypertensive Patients with Type 2 Diabetes: Relevance to Disease Initiation and Progression. PATHOPHYSIOLOGY 2022; 29:426-434. [PMID: 35997390 PMCID: PMC9396981 DOI: 10.3390/pathophysiology29030034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
The increased glycation of elastin is an important factor in vascular changes in diabetes. Using the ELISA method, we determined serum levels of IgM and IgG autoantibodies to advanced glycation end products of vascular elastin (anti-AGE EL IgM and anti-AGE EL IgG) in 59 hypertensive patients with type 2 diabetes (T2D) and 20 healthy controls. Serum levels of matrix metalloproteinases-2 and -9 (MMP-2 and MMP-9) and the C-reactive protein (CRP) were also determined. The levels of anti-AGE EL IgM antibodies in the T2D group were similar to those in the control group, while those of anti-AGE EL IgG antibodies were significantly higher (p = 0.017). Significant positive correlations were found between the levels of anti-AGE EL IgM antibodies and MMP-2 (r = 0.322; p = 0.013) and between the levels of anti-AGE EL IgG antibodies and CRP (r = 0.265; p = 0.042). Our study showed that elevated anti-AGE EL IgG antibody levels may be an indicator of the enhanced AGE-modification and inflammatory-mediated destruction of vascular elastin in hypertensive patients with T2D. Anti-AGE EL IgM antibodies may reflect changes in vascular MMP-2 activity, and their elevated levels may be a sign of early vascular damage.
Collapse
Affiliation(s)
- Krasimir Kostov
- Department of Pathophysiology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria
- Correspondence: ; Tel.: +359-889-257-459
| | - Alexander Blazhev
- Department of Biology, Medical University-Pleven, 1 Kliment Ohridski Str., 5800 Pleven, Bulgaria;
| |
Collapse
|
18
|
Wu Q, Liang Y, Kong Y, Zhang F, Feng Y, Ouyang Y, Wang C, Guo Z, Xiao J, Feng N. Role of glycated proteins in vivo: Enzymatic glycated proteins and non-enzymatic glycated proteins. Food Res Int 2022; 155:111099. [DOI: 10.1016/j.foodres.2022.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
19
|
Biophysical changes in methylglyoxal modified fibrinogen and its role in the immunopathology of type 2 diabetes mellitus. Int J Biol Macromol 2022; 202:199-214. [PMID: 34999047 DOI: 10.1016/j.ijbiomac.2021.12.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/10/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
Methylglyoxal (MG), a highly reactive dicarbonyl metabolite gets generated during glucose oxidation and lipid peroxidation, which contributes to glycation. In type 2 diabetes mellitus (T2DM), non-enzymatic glycosylation of proteins mediated by hyperglycemia results in the pathogenesis of diabetes-associated secondary complications via the generation of AGEs. Under in vitro conditions, MG altered the tertiary structure of fibrinogen. High-performance liquid chromatography (HPLC) and liquid chromatography mass spectroscopy (LCMS) studies confirmed the generation of N-(carboxymethyl) lysine, N-(carboxyethyl) lysine, hydroimidazolone, pentosidine and argpyrimidine in the modified protein. The altered fibrinogen structure upon glycation was further confirmed by confocal microscopy and nuclear magnetic resonance spectra (NMR). MG-Fib was found to be more immunogenic, as compared to its native analogue, in the immunological studies conducted on experimental rabbits. Our results reflect the presence of neo-antigenic determinants on modified fibrinogen. Competitive inhibition enzyme-linked immunosorbent assay suggested the presence of neo-epitopes with marked immunogenicity eliciting specific immune response. Binding studies on purified immunoglobulin G (IgG) confirmed the enhanced and specific immunogenicity of MG-Fib. Studies on interaction of MG-Fib with the circulating auto-antibodies from T2DM patients showed high affinity of serum antibodies toward MG-Fib. This study suggests a potent role of glycoxidatively modified fibrinogen in the generation of auto-immune response in T2DM patients.
Collapse
|
20
|
Maciejczyk M, Nesterowicz M, Szulimowska J, Zalewska A. Oxidation, Glycation, and Carbamylation of Salivary Biomolecules in Healthy Children, Adults, and the Elderly: Can Saliva Be Used in the Assessment of Aging? J Inflamm Res 2022; 15:2051-2073. [PMID: 35378954 PMCID: PMC8976116 DOI: 10.2147/jir.s356029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/11/2022] [Indexed: 12/12/2022] Open
Abstract
Background Aging is inextricably linked to oxidative stress, inflammation, and posttranslational protein modifications. However, no studies evaluate oxidation, glycation, and carbamylation of salivary biomolecules as biomarkers of aging. Saliva collection is non-invasive, painless, and inexpensive, which are advantages over other biofluids. Methods The study enrolled 180 healthy subjects divided into six groups according to age: 6–13, 14–19, 20–39, 40–59, 60–79, and 80–100 years. The number of individuals was determined a priori based on our previous experiment (power of the test = 0.8; α = 0.05). Non-stimulated saliva and plasma were collected from participants, in which biomarkers of aging were determined by colorimetric, fluorometric, and ELISA methods. Results The study have demonstrated that modifications of salivary proteins increase with age, as manifested by decreased total thiol levels and increased carbonyl groups, glycation (Nε-(carboxymethyl) lysine, advanced glycation end products (AGE)) and carbamylation (carbamyl-lysine) protein products in the saliva of old individuals. Oxidative modifications of lipids (4-hydroxynonenal) and nucleic acids (8-hydroxy-2’-deoxyguanosine (8-OHdG)) also increase with age. Salivary redox biomarkers correlate poorly with their plasma levels; however, salivary AGE and 8-OHdG generally reflect their blood concentrations. In the multivariate regression model, they are a predictor of aging and, in the receiver operating characteristic (ROC) analysis, significantly differentiate children and adolescents (under 15 years old) from the working-age population (15–64 years) and the older people (65 years and older). Conclusion Salivary AGE and 8-OHdG have the most excellent diagnostic utility in assessing the aging process. Saliva can be used to evaluate the aging of the body.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
- Correspondence: Mateusz Maciejczyk, Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 2c Mickiewicza Street, Bialystok, 15-233, Poland, Email
| | - Miłosz Nesterowicz
- Students Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Julita Szulimowska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zalewska
- Department of Conservative Dentistry, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
21
|
Glyoxal induced glycative insult suffered by immunoglobulin G and fibrinogen proteins: A comparative physicochemical characterization to reveal structural perturbations. Int J Biol Macromol 2022; 205:283-296. [PMID: 35192903 DOI: 10.1016/j.ijbiomac.2022.02.093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
Abstract
Glycation of proteins results in structural alteration, functional deprivation, and generation of advanced glycation end products (AGEs). Reactive oxygen species (ROS) that are generated during in vivo autoxidation of glucose induces glycoxidation of intermediate glycation-adducts, which in turn give rise to aldehyde and/or ketone groups containing dicarbonyls or reactive carbonyl species (RCS). RCS further reacts non-enzymatically and starts the glycation-oxidation vicious cycle, thus exacerbating oxidative, carbonyl, and glycative stress in the physiological system. Glyoxal (GO), a reactive dicarbonyl that generates during glycoxidation and lipid peroxidation, contributes to glycation. This in vitro physicochemical characterization study focuses on GO-induced glycoxidative damage suffered by immunoglobulin G (IgG) and fibrinogen proteins. The structural alterations were analyzed by UV-vis, fluorescence, circular dichroism, and Fourier transform infrared (FT-IR) spectroscopy. Ketoamines, protein carbonyls, hydroxymethylfurfural (HMF), free lysine, free arginine, carboxymethyllysine (CML), and protein aggregation were also quantified. Structural perturbations, increased concentration of ketoamines, protein carbonyls, HMF, and malondialdehyde (MDA) were reported in glycated proteins. The experiment results also validate increased oxidative stress and AGEs formation i.e. IgG-AGEs and Fib-AGEs. Thus, we can conclude that AGEs formation during GO-mediated glycation of IgG and fibrinogen could hamper normal physiology and might play a significant role in the pathogenesis of diabetes-associated secondary complications.
Collapse
|
22
|
Prevention of Protein Glycation by Nanoparticles: Potential Applications in T2DM and Associated Neurodegenerative Diseases. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00954-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
23
|
Sruthi CR, Raghu KG. Methylglyoxal induces ambience for cancer promotion in HepG2 cells via Warburg effect and promotes glycation. J Cell Biochem 2022; 123:1532-1543. [PMID: 35043457 DOI: 10.1002/jcb.30215] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/11/2021] [Accepted: 01/03/2022] [Indexed: 12/19/2022]
Abstract
Methylglyoxal (MGO) is a toxic, highly reactive metabolite derived mainly from glucose and amino acids degradation. MGO is also one of the prime precursors for advanced glycation end products formation. The present research was performed to check whether MGO has any role in the promotion of cancer in HepG2 cells. For this, cells were incubated with MGO (50 µM) for 24 h and subjected to various analyses. Aminoguanidine (200 µM) was positive control. The various biochemical and protein expression studies, relevant to the MGO detoxification system, oxidative stress, and glycolysis were performed. MGO caused the reduction of expression of GLO 1 (27%) and GLO 2 (11%) causing weakening of the innate detoxification system. This is followed by an increase of RAGE (95%), AGEs or methylglyoxal adducts. We also observed hypoxia via estimation of oxygen consumption rate and surplus reactive oxygen species (ROS) (24%). To investigate the off-target effect of MGO we checked its effect on glucose transport, and its associated proteins. Glucose uptake was found to increase (15%) significantly with overexpression of GLUT 1 (35%). We also found a significant increase of glycolytic enzymes such as hexokinase II, phosphofructokinase 1, and lactate dehydrogenase along with lactate production. Observation of surplus ROS and enhanced glycolysis led us to check the expression of HIF 1α which is their downstream signaling pathway. Interestingly HIF 1α was found to increase significantly (35%). It is known that enhanced glycolysis and oxidative stress are catalysts for the overexpression of HIF 1α which in turn creates an ambience for the promotion of cancer. Aminoguanidine was able to prevent the adverse effect of MGO partially. This is the first study to show the potential of MGO for the promotion of cancer in the non-tumorigenic HepG2 cells via the Warburg effect and glycation.
Collapse
Affiliation(s)
- C R Sruthi
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - K G Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram, Kerala, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
24
|
Rehman S, Song J, Faisal M, Alatar AA, Akhter F, Ahmad S, Hu B. The Neoepitopes on Methylglyoxal- (MG-) Glycated Fibrinogen Generate Autoimmune Response: Its Role in Diabetes, Atherosclerosis, and Diabetic Atherosclerosis Subjects. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6621568. [PMID: 34970417 PMCID: PMC8714332 DOI: 10.1155/2021/6621568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVES In diabetes mellitus, hyperglycemia-mediated nonenzymatic glycosylation of fibrinogen protein plays a crucial role in the pathogenesis of micro- and macrovascular complications especially atherosclerosis via the generation of advanced glycation end products (AGEs). Methylglyoxal (MG) induces glycation of fibrinogen, resulting in structural alterations that lead to autoimmune response via the generation of neoepitopes on protein molecules. The present study was designed to probe the prevalence of autoantibodies against MG-glycated fibrinogen (MG-Fib) in type 2 diabetes mellitus (T2DM), atherosclerosis (ATH), and diabetic atherosclerosis (T2DM-ATH) patients. Design and Methods. The binding affinity of autoantibodies in patients' sera (T2DM, n = 100; ATH, n = 100; and T2DM-ATH, n = 100) and isolated immunoglobulin G (IgG) against native fibrinogen (N-Fib) and MG-Fib to healthy subjects (HS, n = 50) was accessed by direct binding ELISA. The results of direct binding were further validated by competitive/inhibition ELISA. Moreover, AGE detection, ketoamines, protein carbonyls, hydroxymethylfurfural (HMF), thiobarbituric acid reactive substances (TBARS), and carboxymethyllysine (CML) concentrations in patients' sera were also determined. Furthermore, free lysine and free arginine residues were also estimated. RESULTS The high binding affinity was observed in 54% of T2DM, 33% of ATH, and 65% of T2DM-ATH patients' samples with respect to healthy subjects against MG-Fib antigen in comparison to N-Fib (p < 0.05 to p < 0.0001). HS sera showed nonsignificant binding (p > 0.05) with N-Fib and MG-Fib. Other biochemical parameters were also found to be significant (p < 0.05) in the patient groups with respect to the HS group. CONCLUSIONS These findings in the future might pave a way to authenticate fibrinogen as a biomarker for the early detection of diabetes-associated micro- and macrovascular complications.
Collapse
Affiliation(s)
- Shahnawaz Rehman
- Department of Biochemistry, Sir Syed Faculty of Science, Mohammad Ali Jauhar University, Rampur, U.P., India
| | - Jiantao Song
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A. Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Firoz Akhter
- Department of Biomedical Engineering, Stony Brook University, New York, USA
| | - Saheem Ahmad
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, 2440, Saudi Arabia
| | - Bo Hu
- Department of Emergency, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
25
|
Mir AR, Habib S, Uddin M. Recent advances in histone glycation: emerging role in diabetes and cancer. Glycobiology 2021; 31:1072-1079. [PMID: 33554241 DOI: 10.1093/glycob/cwab011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Ever increasing information on genome and proteome has offered fascinating details and new opportunities to understand the molecular biology. It is now known that histone proteins surrounding the DNA play a crucial role in the chromatin structure and function. Histones undergo a plethora of posttranslational enzymatic modifications that influence nucleosome dynamics and affect DNA activity. Earlier research offered insights into the enzymatic modifications of histones; however, attention has been diverted to histone modifications induced by by-products of metabolism without enzymatic engagement in the last decade. Nonenzymatic modifications of histones are believed to be crucial for epigenetic landscape, cellular fate and for role in human diseases. Glycation of histone proteins constitutes the major nonenzymatic modifications of nuclear proteins that have implications in diabetes and cancer. It has emerged that glycation damages nuclear proteins, modifies amino acids of histones at crucial locations, generates adducts affecting histone chromatin interaction, develops neo-epitopes inducing specific immune response and impacts cell function. Presence of circulating antibodies against glycated histone proteins in diabetes and cancer has shown immunological implications with diagnostic relevance. These crucial details make histone glycation an attractive focus for investigators. This review article, therefore, makes an attempt to exclusively summarize the recent research in histone glycation, its impact on structural integrity of chromatin and elaborates on its role in diabetes and cancer. The work offers insights for future scientists who investigate the link between metabolism, biomolecular structures, glycobiology, histone-DNA interactions in relation to diseases in humans.
Collapse
Affiliation(s)
- Abdul Rouf Mir
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002 India
| | - Safia Habib
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002 India
| | - Moin Uddin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002 India
| |
Collapse
|
26
|
Akagawa M. Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches. Free Radic Res 2021; 55:307-320. [DOI: 10.1080/10715762.2020.1851027] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Mitsugu Akagawa
- Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai, Japan
| |
Collapse
|
27
|
Ahmad S, Rehman S. Impact of Reactive Dicarbonyls on Biological Macromolecules- Role in Metabolic Disorders. Curr Protein Pept Sci 2021; 21:844-845. [PMID: 33323095 DOI: 10.2174/138920372109201105114029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saheem Ahmad
- IIRC-1. Laboratory of Glycation Biology and Metabolic Disorders Department of Biosciences Integral University Lucknow, India
| | - Shahnawaz Rehman
- IIRC-1. Laboratory of Glycation Biology and Metabolic Disorders Department of Biosciences Integral University Lucknow, India
| |
Collapse
|
28
|
Saeed M, Kausar MA, Singh R, Siddiqui AJ, Akhter A. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders. Curr Protein Pept Sci 2021; 21:846-859. [PMID: 32368974 DOI: 10.2174/1389203721666200505101734] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/09/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Glycation refers to the covalent binding of sugar molecules to macromolecules, such as DNA, proteins, and lipids in a non-enzymatic reaction, resulting in the formation of irreversibly bound products known as advanced glycation end products (AGEs). AGEs are synthesized in high amounts both in pathological conditions, such as diabetes and under physiological conditions resulting in aging. The body's anti-glycation defense mechanisms play a critical role in removing glycated products. However, if this defense system fails, AGEs start accumulating, which results in pathological conditions. Studies have been shown that increased accumulation of AGEs acts as key mediators in multiple diseases, such as diabetes, obesity, arthritis, cancer, atherosclerosis, decreased skin elasticity, male erectile dysfunction, pulmonary fibrosis, aging, and Alzheimer's disease. Furthermore, glycation of nucleotides, proteins, and phospholipids by α-oxoaldehyde metabolites, such as glyoxal (GO) and methylglyoxal (MGO), causes potential damage to the genome, proteome, and lipidome. Glyoxalase-1 (GLO-1) acts as a part of the anti-glycation defense system by carrying out detoxification of GO and MGO. It has been demonstrated that GLO-1 protects dicarbonyl modifications of the proteome and lipidome, thereby impeding the cell signaling and affecting age-related diseases. Its relationship with detoxification and anti-glycation defense is well established. Glycation of proteins by MGO and GO results in protein misfolding, thereby affecting their structure and function. These findings provide evidence for the rationale that the functional modulation of the GLO pathway could be used as a potential therapeutic target. In the present review, we summarized the newly emerged literature on the GLO pathway, including enzymes regulating the process. In addition, we described small bioactive molecules with the potential to modulate the GLO pathway, thereby providing a basis for the development of new treatment strategies against age-related complications.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Sataywati College, Delhi University, Delhi, India
| | - Arif J Siddiqui
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Asma Akhter
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| |
Collapse
|
29
|
Ahmad S, Khan MS, Alouffi S, Khan S, Khan M, Akashah R, Faisal M, Shahab U. Gold Nanoparticle-Bioconjugated Aminoguanidine Inhibits Glycation Reaction: An In Vivo Study in a Diabetic Animal Model. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5591851. [PMID: 34055984 PMCID: PMC8137289 DOI: 10.1155/2021/5591851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 11/17/2022]
Abstract
Proteins undergo glycation resulting in the generation of advanced glycation end products (AGEs) that play a central role in the onset and advancement of diabetes-associated secondary complications. Aminoguanidine (AG) acts as an antiglycating agent by inhibiting AGE generation by blocking reactive carbonyl species (RCS) like, methylglyoxal (MGO). Previous studies on antiglycating behavior of AG gave promising results in the treatment of diabetes-associated microvascular complications, but it was discontinued as it was found to be toxic at high concentrations (>10 mmol/L). The current article aims at glycation inhibition by conjugating gold nanoparticles (Gnp) with less concentration of AG (0.5-1.0 mmol/L). The HPLC results showed that AG-Gnp fairly hampers the formation of glycation adducts. Moreover, the in vivo studies revealed AG-Gnp mediated inhibition in the production of total-AGEs and -N ε -(carboxymethyl)lysine (CML) in the diabetic rat model. This inhibition was found to be directly correlated with the antioxidant parameters, blood glucose, insulin, and glycosylated hemoglobin levels. Furthermore, the histopathology of AG-Gnp-treated rats showed good recovery in the damaged pancreatic tissue as compared to diabetic rats. We propose that this approach might increase the efficacy of AG at relatively low concentrations to avoid toxicity and might facilitate to overcome the hazardous actions of antiglycating drugs.
Collapse
Affiliation(s)
- Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Mohd. Sajid Khan
- Department of Biosciences, Integral University, Lucknow, India
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Sultan Alouffi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia
- Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Saudi Arabia
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Hail, Ha'il 2440, Saudi Arabia
| | - Mahvish Khan
- Department of Biology, College of Science, University of Hail, Ha'il 2440, Saudi Arabia
| | - Rihab Akashah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Science, King Saud University, Saudi Arabia
| | - Uzma Shahab
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Sitapur-Hardoi Bypass Road, Lucknow 226013, India
| |
Collapse
|
30
|
Deo P, Dhillon VS, Lim WM, Jaunay EL, Donnellan L, Peake B, McCullough C, Fenech M. Advanced glycation end-products accelerate telomere attrition and increase pro-inflammatory mediators in human WIL2-NS cells. Mutagenesis 2021; 35:291-297. [PMID: 32319517 DOI: 10.1093/mutage/geaa012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of dietary sugars and advanced glycation end-products (AGE) on telomere dynamics in WIL2-NS cells. Dietary sugars [glucose (Glu) and fructose (Fru); 0.1 M each] were incubated with bovine serum albumin (BSA) (10 mg/ml) at 60 ± 1°C for 6 weeks to generate AGE-BSA. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis showed total AGE levels as 87.74 ± 4.46 nmol/mg and 84.94 ± 4.28 nmol/mg respectively in Glu-BSA and Fru-BSA model. Cell treatment studies using WIL2-NS cells were based on either glucose, fructose (each 2.5-40 mM) or AGE-BSA (200-600 µg/ml) in a dose-dependent manner for 9 days. Telomere length (TL) was measured using qPCR. Nitric oxide (NO) production and tumour necrosis factor-α (TNF-α) levels were measured in WIL2-NS culture medium. An increasing trend for TNF-α and NO production was observed with higher concentration of glucose (R2 = 0.358; P = 0.019; R2 = 0.307; P = 0.027) and fructose (R2 = 0.669; P = 0.001; R2 = 0.339; P = 0.006). A decreasing trend for TL (R2 = 0.828; P = 0.000), and an increasing trend for NO production (R2 = 0.352; P = 0.031) were observed with increasing Glu-BSA concentrations. Fru-BSA treatment did not show significant trend on TL (R2 = 0.135; P = 0.352) with increasing concentration, however, a significant reduction was observed at 600 µg/ml (P < 0.01) when compared to BSA treatment. No trends for TNF-α levels and a decreasing trend on NO production (R2 = 0.5201; P = 0.019) was observed with increasing Fru-BSA treatment. In conclusion, this study demonstrates a potential relationship between dietary sugars, AGEs and telomere attrition. AGEs may also exert telomere shortening through the production of pro-inflammatory metabolites, which ultimately increase the risk of diabetes complications and age-related disease throughout lifespan.
Collapse
Affiliation(s)
- Permal Deo
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Varinderpal S Dhillon
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Wai Mun Lim
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Emma L Jaunay
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Leigh Donnellan
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Brock Peake
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Caitlin McCullough
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Health and Biomedical Innovation, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia.,Genome Health Foundation, North Brighton, Australia
| |
Collapse
|
31
|
Rehman S, Alouffi S, Faisal M, Qahtan AA, Alatar AA, Ahmad S. Methylglyoxal mediated glycation leads to neo-epitopes generation in fibrinogen: Role in the induction of adaptive immune response. Int J Biol Macromol 2021; 175:535-543. [PMID: 33529635 DOI: 10.1016/j.ijbiomac.2021.01.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/12/2023]
Abstract
In diabetes mellitus, hyperglycemia mediated non-enzymatic glycosylation of proteins results in the pathogenesis of diabetes-associated secondary complications via the generation of advanced glycation end products (AGEs). The focus of this study is to reveal the immunological aspects of methylglyoxal (MG) mediated glycation of fibrinogen protein. The induced immunogenicity of modified fibrinogen is analyzed by direct binding and inhibition ELISA. Direct binding ELISA confirmed that MG glycated fibrinogen (MG-Fib) is highly immunogenic and induces a high titer of antibodies in comparison to its native analog. Cross-reactivity and antigen-binding specificity of induced antibodies were confirmed by inhibition ELISA. The enhanced affinity of immunoglobulin G (IgG) from immunized rabbits' sera and MG glycated fibrinogen is probably the aftermath of neo-epitopes generation in the native structure of protein upon modification. Thus, we deduce that under the glycative stress, MG-mediated structural alterations in fibrinogen could induce the generation of antibodies which might serve as a potential biomarker in diabetes mellitus and its associated secondary disorders.
Collapse
Affiliation(s)
- Shahnawaz Rehman
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorder, Integral University, Lucknow, Uttar Prade sh-226026, India
| | - Sultan Alouffi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia; Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Qahtan
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
32
|
Deo P, Fenech M, Dhillon VS. Association between glycation biomarkers, hyperglycemia, and micronucleus frequency: A meta -analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2021; 787:108369. [PMID: 34083054 DOI: 10.1016/j.mrrev.2021.108369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Micronucleus assay has been used as a biomarker of DNA damage, chromosomal instability, cancer risk and accelerated aging. In this review, a meta-analysis was performed to assess the association between micronuclei (MNi) and diseases with increased advanced glycation end products (AGEs) and HbA1c. The review identified eight studies with 632 subjects with disease and 547 controls. The Mean Ratio (MRi) for AGE levels (MRi = 2.92, 95 %CI: 2.06-4.13, P < 0.00001) and HbA1c levels (MRi = 1.32, 95 %CI: 1.12-1.56, P = 0.001) were significantly higher in the disease group compared to healthy controls. The meta-analysis indicated that the overall estimates of MRi for MNi was 1.83 (95 %CI: 1.38-2.42, p < 0.0001) in subjects with disease compared to controls. Significant increases in MRi for MNi were also observed in the following sub-groups: subjects with disease for elevated AGEs (MRi = 1.62, 95 %CI: 1.12-2.35, P = 0.01), elevated HbA1c (MRi = 2.13, 95 %CI: 1.33-3.39, P = 0.002), lymphocytes MNi (MRi = 1.74, 95 %CI: 1.29-2.33, P = 0.0003), exfoliated buccal cells MNi (MRi = 2.86, 95 %CI: 1.19-6.87, P = 0.02), type 2 diabetes mellitus (T2DM) (MRi = 1.99, 95 %CI: 1.17-3.39, P = 0.01), chronic renal disease (MRi = 1.68, 95 %CI: 1.18-2.38, P = 0.004) and other disease groups (MRi = 2.52, 95 %CI: 1.28-4.96, P = 0.008). The results of this review suggest that MNi could be used as a biomarker of DNA damage and chromosomal instability in degenerative disease where increased AGEs and HbA1c are implicated. The lack of heterogeneity for MN frequency when considered either for all studies or subgroup strengthened the MRi of the meta-analysis. However, the lack of significant association between MRi for MNi and MRi for AGEs or HbA1c indicates that the case-control studies investigated may be confounded by other variables. Thus, larger studies with long term AGE exposure is warranted to further understand the role of MN formation in the initiation and progression of diseases caused by excessive glycation.
Collapse
Affiliation(s)
- Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia.
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia; Genome Health Foundation, North Brighton, 5048, Australia; Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Malaysia
| | - Varinderpal S Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| |
Collapse
|
33
|
Ali A, Rubab U, Kumar D, Farah M, Al-Anazi K, Ali MA. Inhibitory Roles of Nigella sativa seed extracts on in vitro glycation and aggregation. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_604_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
34
|
Paterni S, Okoye C, Calabrese AM, Niccolai F, Polini A, Caraccio N, Calsolaro V, Monzani F. Prognostic Value of Glycated Hemoglobin in Frail Older Diabetic Patients With Hip Fracture. Front Endocrinol (Lausanne) 2021; 12:770400. [PMID: 34867813 PMCID: PMC8637116 DOI: 10.3389/fendo.2021.770400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/22/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Previous studies have shown increased risk of fracture in older patients with poor or strict glycemic control (glycated hemoglobin, HbA1c, ≥ 8% or < 6-7% respectively); however, these reports did not investigate the oldest-old population. Comprehensive geriatric assessment (CGA) and a patient-centered approach have been proven to improve the quality of care in the management of Type 2 Diabetes Mellitus (T2DM) in the older patients, but data regarding T2DM in patients with fragility fractures are still lacking. AIM To investigate the prognostic role of HbA1c and frailty level in older diabetic patients admitted for hip fracture. METHODS Prospective observational cohort study conducted on diabetic geriatric patients consecutively hospitalized for hip fracture in the orthogeriatric unit of a tertiary care hospital. Preoperative comprehensive geriatric assessment (CGA) was performed. Using the Clinical Frailty Scale (CFS), diabetic patients were categorized in robust (CFS < 5) and frail (CFS ≥ 5), and further stratified according to HbA1c values [Tertile 1 (T1) HbA1c < 48 mmol/mol, Tertile 2 (T2) 48-58 mmol/mol and Tertile 3 (T3) > 58 mmol/mol). Comparisons between continuous variables were performed with analysis of non-parametric test for independent samples, while relationships between categorical variables were assessed by chi-square test. Using logistic multivariate regression, we evaluated the determinants of 1-year all-cause mortality in diabetic older patients with hip fracture. RESULTS Among the 1319 older patients (mean age 82.8 ± 7.5 years, 75.9% females) hospitalized for hip fracture, 204 (15.5%) had a previous diagnosis of T2DM. T2DM patients showed an increased proportion of multiple concurrent fractures occurred during the accidental fall or syncope (12.7% vs 11.2%, p=0.02). One-year mortality after hip fracture surgery was significantly higher in T2DM as compared to not diabetic patients (21.2% vs 12.5%, p<0.001). No significant difference in mortality was found across HbA1c tertiles; however, frail diabetic patients in the second and third HbA1c tertiles showed higher mortality risk compared to the robust counterparts (26.9% vs 5%, p=0.001 for T2 and 43.5% vs 13.3%, p=<0.05 for T3), while no difference was observed among those in T1. CONCLUSIONS Frail patients with HbA1c ≥ 48 mmol/L showed an increased mortality risk as compared to robust counterparts. CFS represents an important tool to select diabetic subjects with higher likelihood of adverse outcome.
Collapse
|
35
|
Eva TA, Barua N, Chowdhury MM, Yeasmin S, Rakib A, Islam MR, Emran TB, Simal-Gandara J. Perspectives on signaling for biological- and processed food-related advanced glycation end-products and its role in cancer progression. Crit Rev Food Sci Nutr 2020; 62:2655-2672. [PMID: 33307763 DOI: 10.1080/10408398.2020.1856771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Receptor for advanced glycation end-products (RAGE) is a multifunctional receptor binds a broad spectrum of ligands and mediates responses to cell damage and stress conditions. It also activates programs leading to acute and chronic inflammation and implicated in several pathological diseases, including cancer. In this review, we presented the non-enzymatic reaction of reducing sugar with the amino groups of proteins, lipids, and nucleic acids. This reaction initiates a complex series of rearrangements and dehydrations, and then produces a class of irreversibly cross-linked heterogeneous fluorescent moieties, termed advanced glycation end products (AGEs). There is a growing body of evidence that interaction of processes food-related AGEs with a cell surface receptor RAGE brings out the generation of oxidative stress and subsequently evokes proliferative, angiogenic and inflammatory reactions, thereby being involved in the development and progression of various types of cancers. This review is an insightful assessment of molecular mechanisms through which RAGE signaling contributes to the enhancement and survival of the tumorigenic cell. Here we summarize the procurement of individual ligands of RAGE like amphoterin, calcium-binding proteins, and resultant mediation of RAGE signaling pathway, which partially can elucidate the elevated risk of several cancers. Besides, we summarize many factors or conditions including APE1 (apurinic/apyrimidinic endonuclease 1), retinol mutations, retinoblastoma (Rb), proteinase 3 (PR3) hypoxia and so on through which RAGE signaling presents an establishment of cancerous environment. Additionally, we also reviewed some recent findings that give shreds of evidence for presenting the role of RAGE and its ligands in the advanced stage of cancers.
Collapse
Affiliation(s)
- Taslima Akter Eva
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Nizum Barua
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Md Mustafiz Chowdhury
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Sharfin Yeasmin
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Mohammad Rashedul Islam
- Department of Pharmacy, Faculty of Biological Science, University of Chittagong, Chittagong, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, Ourense, Spain
| |
Collapse
|
36
|
Rafi Z, Alouffi S, Khan MS, Ahmad S. 2’-Deoxyribose Mediated Glycation Leads to Alterations in BSA Structure Via Generation of Carbonyl Species. Curr Protein Pept Sci 2020; 21:924-935. [DOI: 10.2174/1389203721666200213104446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/01/2019] [Accepted: 01/11/2020] [Indexed: 12/11/2022]
Abstract
The non-enzymatic glycosylation is a very common phenomenon in the physiological
conditions which is mediated by distinct chemical entities containing reactive carbonyl species (RCS)
and participates in the modification of various macromolecules particularly proteins. To date, various
carbonyl species, i.e., glucose, fructose, D-ribose and methylglyoxal have been used frequently to
assess the in-vitro non-enzymatic glycosylation. Similarly, 2'-Deoxyribose is one of the most abundant
reducing sugar of the living organisms which forms the part of deoxyribonucleic acid and may react
with proteins leading to the production of glycation intermediates, advanced glycation end products
(AGEs) and highly reactive RCS. Thymidine phosphorylase derived degradation of thymidine
contributes to the formation of 2'-Deoxyribose, therefore, acting as a major source of cellular 2'-
Deoxyribose. Since albumin is a major serum protein which plays various roles including binding and
transporting endogenous and exogenous ligands, it is more prone to be modified through different
physiological modifiers; therefore, it may serve as a model protein for in-vitro experiments to study the
effect of 2’Deoxyribose mediated modific#039;-Deoxyribose followed by examining secondary and
tertiary structural modifications in BSA as compared to its native (unmodified) form by using various
physicochemical techniques. We evident a significant modification in 2'-Deoxyribose-glycated BSA
which was confirmed through increased hyperchromicity, keto amine moieties, carbonyl and
hydroxymethylfurfural content, fluorescent AGEs, altered secondary structure conformers (α helix and
β sheets), band shift in the amide-I region and diminished free lysine and free arginine content. These
modifications were reported to be higher in 100 mM 2'-Deoxyribose-glycated BSA than 50 mM 2'-
Deoxyribose-glycated BSA. Our findings also demonstrated that the rate of glycation is positively
affected by the increased concentration of 2'-Deoxyribose. The results of the performed study can be
implied to uncover the phenomenon of serum protein damage caused by 2'-Deoxyribose leading
towards diabetic complications and the number of AGE-related diseases.
Collapse
Affiliation(s)
- Zeeshan Rafi
- Department of Bioengineering, Integral University, Lucknow, 226026, UP, India
| | - Sultan Alouffi
- College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| | - Mohd Sajid Khan
- Department of Bioscience, Integral University, Lucknow, 226026, UP, India
| | - Saheem Ahmad
- College of Applied Medical Sciences, University of Ha’il, Ha’il, Saudi Arabia
| |
Collapse
|
37
|
Modification of proteins by reactive lipid oxidation products and biochemical effects of lipoxidation. Essays Biochem 2020; 64:19-31. [PMID: 31867621 DOI: 10.1042/ebc20190058] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023]
Abstract
Lipid oxidation results in the formation of many reactive products, such as small aldehydes, substituted alkenals, and cyclopentenone prostaglandins, which are all able to form covalent adducts with nucleophilic residues of proteins. This process is called lipoxidation, and the resulting adducts are called advanced lipoxidation end products (ALEs), by analogy with the formation of advanced glycoxidation end products from oxidized sugars. Modification of proteins by reactive oxidized lipids leads to structural changes such as increased β-sheet conformation, which tends to result in amyloid-like structures and oligomerization, or unfolding and aggregation. Reaction with catalytic cysteines is often responsible for the loss of enzymatic activity in lipoxidized proteins, although inhibition may also occur through conformational changes at more distant sites affecting substrate binding or regulation. On the other hand, a few proteins are activated by lipoxidation-induced oligomerization or interactions, leading to increased downstream signalling. At the cellular level, it is clear that some proteins are much more susceptible to lipoxidation than others. ALEs affect cell metabolism, protein-protein interactions, protein turnover via the proteasome, and cell viability. Evidence is building that they play roles in both physiological and pathological situations, and inhibiting ALE formation can have beneficial effects.
Collapse
|
38
|
Khanam A, Alouffi S, Rehman S, Ansari IA, Shahab U, Ahmad S. An in vitro approach to unveil the structural alterations in d-ribose induced glycated fibrinogen. J Biomol Struct Dyn 2020; 39:5209-5223. [PMID: 32772827 DOI: 10.1080/07391102.2020.1802339] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Plasma proteins persistently bear non-enzymatic post-translational modifications (NEPTM) that proceeds with nucleophilic addition between free amino groups of proteins, and carbonyl group of reducing sugars. Glycation, a prevalent NEPTM rush by the high availability of reducing sugars results in the generation of advanced glycation end products (AGEs). Plasma proteins are more vulnerable to glycation because of the presence of multiple glycation sites and are widely studied. However, fibrinogen glycation is less studied. Therefore, it was designed as an in vitro study to elucidate d-ribose mediated glycative damage suffered by fibrinogen protein at secondary and tertiary structure level. The glycation induced structural alterations were analyzed by UV-vis, fluorescence, circular dichroism, scanning electron microcopy and Fourier transform infrared spectroscopy. Glycation induced protein aggregation and fibrils formation was confirmed by thioflavin T and congo red assay. Moreover, molecular docking study was performed to further validate physicochemical characterization. Structural alterations, increased ketoamines, protein carbonyls and HMF contents were reported in d-ribose glycated fibrinogen against their native analogues. The results validate structural perturbations, increased glycoxidative stress and AGEs formation, which might influence normal function of fibrinogen especially blood coagulation cascade. Thus, we can conclude that under diabetes induced hyperglycemic state in physiological systems, d-ribose induced fibrinogen glycation might play a crucial role in the onset of micro- and macro-vascular complications, thereby worsen the diabetes associated secondary disorders. Moreover, this in vitro study might pave a path to choose fibrinogen as a future biomarker for the early detection of diabetes mediated vascular complications.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afreen Khanam
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorder, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Sultan Alouffi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia.,Molecular Diagnostic and Personalized Therapeutic Unit, University of Hail, Hail, Saudi Arabia
| | - Shahnawaz Rehman
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorder, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Irfan Ahmad Ansari
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorder, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, Uttar Pradesh, India
| | - Uzma Shahab
- Department of Biotechnology, Khwaja Moinuddin Chishti Language University, Lucknow, Uttar Pradesh, India
| | - Saheem Ahmad
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorder, Department of Biosciences, Faculty of Sciences, Integral University, Lucknow, Uttar Pradesh, India.,Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Saudi Arabia
| |
Collapse
|
39
|
Wang Y, Wang H, Khan MS, Husain FM, Ahmad S, Bian L. Bioconjugation of gold nanoparticles with aminoguanidine as a potential inhibitor of non-enzymatic glycation reaction. J Biomol Struct Dyn 2020; 39:2014-2020. [PMID: 32228291 DOI: 10.1080/07391102.2020.1749131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unavoidable glycation reaction is the major cause of diabetes and metabolic disorders. The glycation reaction is enhanced in case when the glycating agent is reactive carbonyl species (RCS) like, methylglyoxal (MG). The impact of RCS may result into the diabetes mellitus and its secondary complications along-with its role in cancers too. This reaction can be discontinued by using natural product inhibitors or by chemically synthesized drugs, like aminoguanidine (AG). However, AG is reported to be nephrotoxic (toxic to kidneys) at a concentration of 10 mM or more and has therefore serious health concerns. In the present study, bioconjugation of AG was done with the gold nanoparticles (Gnps) to mitigate its toxic effect and upsurge the efficacy of AG on RCS induced glycation. The AG-Gnps formed waas characterized by UV-Vis. spectroscopy and it reveals a peak at 529 nm corresponding to AG-gold nanoparticles. The particle size of the AG-Gnp was found to be 12 nm in TEM while in DLS it was found to be 54.07 nm. The fluorescence studies in combination with GK-peptide and δ-Glu assay support the inhibition of AGEs by AG-Gnps. Based on the idea of gold nano-particle synthesis, it is anticipated, the toxicity of numerous drugs used at high doses can be diminished with additional efficiency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyong Wang
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| | - Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail City, Saudi Arabia.,IIRC-1, Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| | - Li Bian
- Department of Radiotherapy, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
40
|
Adav SS, Sze SK. Hypoxia-Induced Degenerative Protein Modifications Associated with Aging and Age-Associated Disorders. Aging Dis 2020; 11:341-364. [PMID: 32257546 PMCID: PMC7069466 DOI: 10.14336/ad.2019.0604] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 12/18/2022] Open
Abstract
Aging is an inevitable time-dependent decline of various physiological functions that finally leads to death. Progressive protein damage and aggregation have been proposed as the root cause of imbalance in regulatory processes and risk factors for aging and neurodegenerative diseases. Oxygen is a modulator of aging. The oxygen-deprived conditions (hypoxia) leads to oxidative stress, cellular damage and protein modifications. Despite unambiguous evidence of the critical role of spontaneous non-enzymatic Degenerative Protein Modifications (DPMs) such as oxidation, glycation, carbonylation, carbamylation, and deamidation, that impart deleterious structural and functional protein alterations during aging and age-associated disorders, the mechanism that mediates these modifications is poorly understood. This review summarizes up-to-date information and recent developments that correlate DPMs, aging, hypoxia, and age-associated neurodegenerative diseases. Despite numerous advances in the study of the molecular hallmark of aging, hypoxia, and degenerative protein modifications during aging and age-associated pathologies, a major challenge remains there to dissect the relative contribution of different DPMs in aging (either natural or hypoxia-induced) and age-associated neurodegeneration.
Collapse
Affiliation(s)
- Sunil S Adav
- School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
41
|
Hamdan A, Kasabri V, Al‐Hiari Y, Arabiyat S, AlAlawi S, Bustanji Y. Dual anti‐inflammatory and antiglycation propensities of a potentially novel class of functionalized fluoroquinolones. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Alaa Hamdan
- School of PharmacyThe University of Jordan Queen Rania Street Amman 11942 Jordan
| | - Violet Kasabri
- School of PharmacyThe University of Jordan Queen Rania Street Amman 11942 Jordan
| | - Yusuf Al‐Hiari
- School of PharmacyThe University of Jordan Queen Rania Street Amman 11942 Jordan
| | | | - Sundus AlAlawi
- School of PharmacyThe University of Jordan Queen Rania Street Amman 11942 Jordan
| | - Yasser Bustanji
- School of PharmacyThe University of Jordan Queen Rania Street Amman 11942 Jordan
- Hamdi Mango Center for Scientific ResearchUniversity of Jordan Amman Jordan
| |
Collapse
|
42
|
Hu X, Dong D, Xia M, Yang Y, Wang J, Su J, Sun L, Yu H. Oxidative stress and antioxidant capacity: development and prospects. NEW J CHEM 2020. [DOI: 10.1039/d0nj02041a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling pathways regulating redox reactions are activated to balance the redox status and maintain the normal function of cells.
Collapse
Affiliation(s)
- Xiaoqing Hu
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Delu Dong
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Meihui Xia
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Yimeng Yang
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Jiabin Wang
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Jing Su
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Liankun Sun
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Huimei Yu
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| |
Collapse
|
43
|
Siddiqui Z, Faisal M, Alatar AR, Ahmad S. Prevalence of auto-antibodies against D-ribose-glycated-hemoglobin in diabetes mellitus. Glycobiology 2019; 29:409-418. [PMID: 30834437 DOI: 10.1093/glycob/cwz012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 02/25/2019] [Accepted: 02/28/2019] [Indexed: 01/01/2023] Open
Abstract
Glycation of biological macromolecules, due to hyperglycemia, promotes the formation of advanced glycation end products (AGEs). It is accelerated in diabetic patients and is responsible for the pathophysiology and progression of diabetes. Previous reports have shown that amount of AGEs formation and glycation-induced structural damage is higher in hemoglobin (Hb) than other proteins present in blood. In our previous study, we have shown structural changes in Hb by D-ribose which may result into the generation of immunogenic neo-epitopes. Thus, we hypothesized that D-ribose induced structural perturbations in Hb, could result in the formation of neo-epitopes which may provoke an auto-immune response and may also be involved in the immuno-pathogenesis of diabetes type-2 associated complications. Therefore, in the current study, we analyzed the prevalence of autoantibodies in diabetic patient's sera against D-ribose glycated-Hb by direct binding and competitive ELISA. Direct binding ELISA confirmed that autoantibodies in diabetic patients exhibit significantly high binding with D-ribose glycated-Hb as compared to its native form. The antigen binding specificity of these antibodies was also screened by competitive inhibition ELISA. We also used D-glucose glycated-Hb as a positive control to detect the presence of auto-antibodies by direct binding and inhibiton ELISA. We found that D-glucose glycated-Hb binds with T2DM samples but the affinity to binding is lower than D-ribose glycated-Hb. The overall findings of this study suggest the prevalence of circulating autoantibodies against D-ribose glycated-Hb in diabetic patients and thus, the level of these autoantibodies may be used as biomarker for progression of diabetes.
Collapse
Affiliation(s)
- Zeba Siddiqui
- Department of Biosciences, Integral University, Lucknow, India.,IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| | - Mohammad Faisal
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Rahman Alatar
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Biosciences, Integral University, Lucknow, India.,IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders, Integral University, Lucknow, India
| |
Collapse
|
44
|
McLean MR, Lu LL, Kent SJ, Chung AW. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front Immunol 2019; 10:2846. [PMID: 31921122 PMCID: PMC6913197 DOI: 10.3389/fimmu.2019.02846] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) resides in a quarter of the world's population and is the causative agent for tuberculosis (TB), the most common infectious reason of death in humans today. Although cellular immunity has been firmly established in the control of Mtb, there is growing evidence that antibodies may also modulate the infection. More specifically, certain antibody features are associated with inflammation and are divergent in different states of human infection and disease. Importantly, TB impacts not just the healthy but also those with chronic conditions. While HIV represents the quintessential comorbid condition for TB, recent epidemiological evidence shows that additional chronic conditions such as diabetes and kidney disease are rising. In fact, the prevalence of diabetes as a comorbid TB condition is now higher than that of HIV. These chronic diseases are themselves independently associated with pro-inflammatory immune states that encompass antibody profiles. This review discusses isotypes, subclasses, post-translational modifications and Fc-mediated functions of antibodies in TB infection and in the comorbid chronic conditions of HIV, diabetes, and kidney diseases. We propose that inflammatory antibody profiles, which are a marker of active TB, may be an important biomarker for detection of TB disease progression within comorbid individuals. We highlight the need for future studies to determine which inflammatory antibody profiles are the consequences of comorbidities and which may potentially contribute to TB reactivation.
Collapse
Affiliation(s)
- Milla R McLean
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Lenette L Lu
- Division of Infectious Disease and Geographic Medicine, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,Infectious Diseases Department, Melbourne Sexual Health Centre, Alfred Health, Central Clinical School, Monash University, Brisbane, VIC, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, SA, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Yamagishi SI, Sotokawauchi A, Matsui T. Pathological Role of Advanced Glycation End Products (AGEs) and their Receptor Axis in Atrial Fibrillation. Mini Rev Med Chem 2019; 19:1040-1048. [PMID: 30854960 DOI: 10.2174/1389557519666190311140737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/12/2022]
Abstract
Accumulating evidence has shown that the incidence of atrial fibrillation (AF) is higher in patients with diabetes, especially those with poor glycemic control or long disease duration. Nonenzymatic glycation of amino acids of proteins, lipids, and nucleic acids has progressed under normal aging process and/or diabetic condition, which could lead to the formation and accumulation of advanced glycation end products (AGEs). AGEs not only alter the tertiary structure and physiological function of macromolecules, but also evoke inflammatory and fibrotic reactions through the interaction of cell surface receptor for AGEs (RAGE), thereby being involved in aging-related disorders. In this paper, we briefly review the association of chronic hyperglycemia and type 1 diabetes with the risk of AF and then discuss the pathological role of AGE-RAGE axis in AF and its thromboembolic complications.
Collapse
Affiliation(s)
- Sho-Ichi Yamagishi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Ami Sotokawauchi
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| | - Takanori Matsui
- Department of Pathophysiology and Therapeutics of Diabetic Vascular Complications, Kurume University School of Medicine, Kurume 830-0011, Japan
| |
Collapse
|
46
|
Teran R, Guevara R, Mora J, Dobronski L, Barreiro-Costa O, Beske T, Pérez-Barrera J, Araya-Maturana R, Rojas-Silva P, Poveda A, Heredia-Moya J. Characterization of Antimicrobial, Antioxidant, and Leishmanicidal Activities of Schiff Base Derivatives of 4-Aminoantipyrine. Molecules 2019; 24:E2696. [PMID: 31344947 PMCID: PMC6696115 DOI: 10.3390/molecules24152696] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/08/2019] [Accepted: 04/08/2019] [Indexed: 01/26/2023] Open
Abstract
Our main interest is the characterization of compounds to support the development of alternatives to currently marketed drugs that are losing effectiveness due to the development of resistance. Schiff bases are promising biologically interesting compounds having a wide range of pharmaceutical properties, including anti-inflammatory, antipyretic, and antimicrobial activities, among others. In this work, we have synthesized 12 Schiff base derivatives of 4-aminoantipyrine. In vitro antimicrobial, antioxidant, and cytotoxicity properties are analyzed, as well as in silico predictive adsorption, distribution, metabolism, and excretion (ADME) and bioactivity scores. Results identify two potential Schiff bases: one effective against E. faecalis and the other with antioxidant activity. Both have reasonable ADME scores and provides a scaffold for developing more effective compounds in the future. Initial studies are usually limited to laboratory in vitro approaches, and following these initial studies, much research is needed before a drug can reach the clinic. Nevertheless, these laboratory approaches are mandatory and constitute a first filter to discriminate among potential drug candidates and chemical compounds that should be discarded.
Collapse
Affiliation(s)
- Rommy Teran
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Rommel Guevara
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Jessica Mora
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Lizeth Dobronski
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
| | - Olalla Barreiro-Costa
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Timo Beske
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
- Facultad de Medicina Veterinaria, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Jorge Pérez-Barrera
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Ramiro Araya-Maturana
- Instituto de Química de Recursos Naturales, Programa de Investigación Asociativa en Cáncer Gástrico (PIA-CG), Universidad de Talca, Talca 3460000, Chile
| | - Patricio Rojas-Silva
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Ana Poveda
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador.
- Instituto de Investigación en Salud Pública y Zoonosis-CIZ, Universidad Central del Ecuador, Quito 170521, Ecuador.
| | - Jorge Heredia-Moya
- Centro de Investigación Traslacional, Universidad De Las Américas, Quito 170503, Ecuador.
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador.
| |
Collapse
|
47
|
Piwowar A, Rorbach-Dolata A, Fecka I. The Antiglycoxidative Ability of Selected Phenolic Compounds-An In Vitro Study. Molecules 2019; 24:molecules24152689. [PMID: 31344905 PMCID: PMC6696369 DOI: 10.3390/molecules24152689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 01/09/2023] Open
Abstract
Hyperglycemia and oxidative stress may be observed in different diseases as important factors connected with their development. They often occur simultaneously and are considered together as one process: Glycoxidation. This can influence the function or structure of many macromolecules, for example albumin, by changing their physiological properties. This disturbs the homeostasis of the organism, so the search for natural compounds able to inhibit the glycoxidation process is a current and important issue. The aim of this study was the examination of the antiglycoxidative capacity of 16 selected phenolic compounds, belonging to three phenolic groups, as potential therapeutic agents. Their antiglycoxidative ability, in two concentrations (2 and 20 µM), were examined by in vitro study. The inhibition of the formation of both glycoxidative products (advanced glycation end products (AGEs) and advanced oxidation protein products (AOPPs)) were assayed. Stronger antiglycoxidative action toward the formation of both AOPPs and AGEs was observed for homoprotocatechuic and ferulic acids in lower concentrations, as well as catechin, quercetin, and 8-O-methylurolithin A in higher concentrations. Homoprotocatechuic acid demonstrated the highest antiglycoxidative capacity in both examined concentrations and amongst all of them. A strong, significant correlation between the percentage of AOPPs and AGEs inhibition by compounds from all phenolic groups, in both examined concentrations, was observed. The obtained results give an insight into the antiglycoxidative potential of phenolic compounds and indicate homoprotocatechuic acid to be the most promising antiglycoxidative agent, but further biological and pharmacological studies are needed.
Collapse
Affiliation(s)
- Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Str. 211, 50-556 Wrocław, Poland.
| | - Anna Rorbach-Dolata
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska Str. 211, 50-556 Wrocław, Poland
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Faculty of Pharmacy, Wroclaw Medical University, Borowska Str. 211A, 50-556 Wrocław, Poland
| |
Collapse
|
48
|
Scheckhuber CQ. Studying the mechanisms and targets of glycation and advanced glycation end-products in simple eukaryotic model systems. Int J Biol Macromol 2019; 127:85-94. [DOI: 10.1016/j.ijbiomac.2019.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
|
49
|
Allegra A, Musolino C, Pace E, Innao V, Di Salvo E, Ferraro M, Casciaro M, Spatari G, Tartarisco G, Allegra AG, Gangemi S. Evaluation of the AGE/sRAGE Axis in Patients with Multiple Myeloma. Antioxidants (Basel) 2019; 8:antiox8030055. [PMID: 30836666 PMCID: PMC6466542 DOI: 10.3390/antiox8030055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/26/2019] [Accepted: 03/03/2019] [Indexed: 02/06/2023] Open
Abstract
Glycative stress influences tumor progression. The aim of the present study was to evaluate the advanced glycation end products/soluble receptor of advanced glycation end products (AGE/sRAGE) axis in patients with multiple myeloma (MM). Blood samples were taken from 19 patients affected by MM and from 16 sex-matched and age-matched healthy subjects. AGE and sRAGE axis were dosed in patients with MM and matched with controls. AGEs were measured by spectrofluorimetric methods. Blood samples for the determination of sRAGE were analyzed by ELISA. AGE levels were significantly reduced in patients with respect to controls. Instead, sRAGE was significantly elevated in patients affected by MM compared to healthy subjects. Moreover, we showed that there was a statistically significant difference in sRAGE according to the heavy and light chain. IgA lambda had significantly higher sRAGE values than IgA kappa, IgG kappa, and IgG Lambda MM patients. From our data emerges the role of the sRAGE/AGE axis in MM. Since AGE is a positive regulator of the activity of RAGE, circulating sRAGE concentrations may reflect RAGE expression and may be raised in parallel with serum AGE concentrations as a counter-system against AGE-caused tissue damage. Serum concentrations of AGE and sRAGE could therefore become potential therapeutic targets.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Elisabetta Pace
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council (CNR), 90146 Palermo, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Eleonora Di Salvo
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Maria Ferraro
- Institute of Biomedicine and Molecular Immunology "A. Monroy" (IBIM), National Research Council (CNR), 90146 Palermo, Italy.
| | - Marco Casciaro
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| | - Giovanna Spatari
- Department of Biomedical Sciences, Dental, Morphological and Functional Investigations, University of Messina, 98125 Messina, Italy.
| | - Gennaro Tartarisco
- National Research Council of Italy (CNR)-Institute of Applied Science and Intelligent System (ISASI), 98164 Messina, Italy.
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi", University of Messina, 98125 Messina, Italy.
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy.
| |
Collapse
|
50
|
The non-enzymatic glycation of LDL proteins results in biochemical alterations - A correlation study of Apo B100-AGE with obesity and rheumatoid arthritis. Int J Biol Macromol 2019; 122:195-200. [DOI: 10.1016/j.ijbiomac.2018.09.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/17/2022]
|