1
|
Wang Y, Zhang H, Shi W, Rong Y, Mao W, Wang L, Tang W, Kong Y, Wang S. High soluble expression and characterization of human GalNAc transferase T2 and T11 in Escherichia coli. Protein Expr Purif 2025; 231:106712. [PMID: 40120704 DOI: 10.1016/j.pep.2025.106712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 03/09/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
The efficient expression of soluble glycosyltransferases from mammalian sources in Escherichia coli (E. coli) remains a significant challenge, often resulting in misfolding and the formation of inclusion bodies. In this study, we investigated strategies to enhance the solubility and catalytic activity of human GalNAc-T2 and GalNAc-T11, two O-glycosyltransferases involved in O-glycosylation of glycoproteins. We found that fusion with maltose-binding protein (MBP) and cellulase catalytic domain (Cel-CD), which led to majority of the fusion proteins being soluble, could increase the solubility of the recombinant proteins. Enzyme activity assays revealed that the fusion glycosyltransferase exhibited significantly higher catalytic efficiency than non-fused enzymes. In addition, the influence of GalNAc-T11 lectin domain on substrate specificity was also determined. The presence of lectin domain had no influence on the recognition of specific substrate and the specific activity of GalNAc-T11. This work offers an efficient approach for the large-scale production of human glycosyltransferases with enhanced bioactivity, highlighting its potential for glycosylation engineering of glycoprotein drugs.
Collapse
Affiliation(s)
- Yankang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Hongmei Zhang
- Department of Endocrinology, Zibo Central Hospital, Zibo, 255020, China
| | - Wenjing Shi
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Yongheng Rong
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Weian Mao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Linhan Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266113, China; National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Wenzhu Tang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yun Kong
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Shengjun Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, 266113, China.
| |
Collapse
|
2
|
Mercanoglu B, Waschkowski SA, Neuburg E, Schraps N, Giannou AD, Dreyer B, Harder S, Heine M, Krebs CF, Güngör C, Schlüter H, Melling N, Hackert T, Bockhorn M, Wagener C, Wolters-Eisfeld G. GalNT2-mediated O-glycosylation affects pancreas development and function in mice. Sci Rep 2024; 14:29760. [PMID: 39613794 DOI: 10.1038/s41598-024-80276-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
GALNT2, also known as polypeptide N-acetylgalactosaminyltransferase 2, is an enzyme that catalyzes the initial step of O-linked glycosylation, a crucial posttranslational modification that affects protein folding, stability, and function. Alterations in GALNT2 activity have been implicated in various diseases, such as cancer, metabolic disorders, and cardiovascular diseases, highlighting its importance in maintaining normal physiological functions. To investigate the impact of GalNT2 overexpression in vivo for the first time, we generated a conditional transgenic mouse line in which GalNT2 was expressed specifically in the pancreas. Heterozygous overexpression leads to a loss of acinar mass and pancreatic steatosis, whereas homozygous overexpression causes complete pancreatic loss and results in a lethal phenotype. Using a reporter gene mouse line, we demonstrated that adipocytes originate through transdifferentiation from pancreatic cells. GalNT2 overexpression results in additional O-glycosylation sites, which we analyzed through PNA lectin enrichment and mass spectrometric proteome analysis.
Collapse
Affiliation(s)
- Baris Mercanoglu
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Sissy-Alina Waschkowski
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Elena Neuburg
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Nina Schraps
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Anastasios D Giannou
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Dreyer
- Mass Spectrometric Proteomics - Institute for Clinical Chemistry & Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sönke Harder
- Mass Spectrometric Proteomics - Institute for Clinical Chemistry & Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian F Krebs
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cenap Güngör
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hartmut Schlüter
- Mass Spectrometric Proteomics - Institute for Clinical Chemistry & Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathaniel Melling
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thilo Hackert
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Maximilian Bockhorn
- Department of General and Visceral Surgery, University Medical Center Oldenburg, 26133, Oldenburg, Germany
| | | | - Gerrit Wolters-Eisfeld
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
3
|
Osada N, Mishra SK, Nakano M, Tokoro Y, Nagae M, Doerksen RJ, Kizuka Y. Self-regulation of MGAT4A and MGAT4B activity toward glycoproteins through interaction of lectin domain with their own N-glycans. iScience 2024; 27:111066. [PMID: 39668865 PMCID: PMC11635297 DOI: 10.1016/j.isci.2024.111066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/01/2024] [Accepted: 09/25/2024] [Indexed: 12/14/2024] Open
Abstract
N-Acetylglucosaminyltransferases-IVa (GnT-IVa or MGAT4A) and -IVb (MGAT4B) are glycosyltransferase isozymes synthesizing the β1,4-GlcNAc branch in N-glycans, a glycan structure involved in diabetes. These enzymes uniquely have a non-catalytic lectin domain, which selectively recognizes the GnT-IV product N-glycan branch, but the role of this lectin domain has remained unclear. Here, using UDP-Glo enzyme assays, we discovered that this domain is required for activity toward glycoprotein substrates but not toward free glycans. Furthermore, we found that the lectin domain itself is decorated with an N-glycan, which can serve as a self-ligand and interact with the ligand binding site of the lectin domain in a glycan structure-dependent manner. Enzyme assays using glycan-remodeled GnT-IVa demonstrated that the interaction of the self-ligand with the lectin domain suppresses GnT-IVa activity toward glycoprotein substrates. These findings unveiled a lectin-assisted self-regulatory mechanism of glycosyltransferases, which deepens our understanding of the complex pathway of N-glycan biosynthesis.
Collapse
Affiliation(s)
- Naoko Osada
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Sushil K. Mishra
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima 739-8530, Japan
| | - Yuko Tokoro
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita 565-0871, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Robert J. Doerksen
- Glycoscience Center of Research Excellence, Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - Yasuhiko Kizuka
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
4
|
Dalal K, Yang W, Tian E, Chernish A, McCluggage P, Lara AJ, Ten Hagen KG, Tabak LA. In vivo mapping of the mouse Galnt3-specific O-glycoproteome. J Biol Chem 2024; 300:107628. [PMID: 39098533 PMCID: PMC11402288 DOI: 10.1016/j.jbc.2024.107628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024] Open
Abstract
The UDP-N-acetylgalactosamine polypeptide:N-acetylgalactosaminyltransferase (GalNAc-T) family of enzymes initiates O-linked glycosylation by catalyzing the addition of the first GalNAc sugar to serine or threonine on proteins destined to be membrane-bound or secreted. Defects in individual isoforms of the GalNAc-T family can lead to certain congenital disorders of glycosylation (CDG). The polypeptide N-acetylgalactosaminyltransferase 3 (GALNT)3-CDG, is caused by mutations in GALNT3, resulting in hyperphosphatemic familial tumoral calcinosis due to impaired glycosylation of the phosphate-regulating hormone fibroblast growth factor 23 (FGF23) within osteocytes of the bone. Patients with hyperphosphatemia present altered bone density, abnormal tooth structure, and calcified masses throughout the body. It is therefore important to identify all potential substrates of GalNAc-T3 throughout the body to understand the complex disease phenotypes. Here, we compared the Galnt3-/- mouse model, which partially phenocopies GALNT3-CDG, with WT mice and used a multicomponent approach using chemoenzymatic conditions, a product-dependent method constructed using EThcD triggered scans in a mass spectrometry workflow, quantitative O-glycoproteomics, and global proteomics to identify 663 Galnt3-specific O-glycosites from 269 glycoproteins across multiple tissues. Consistent with the mouse and human phenotypes, functional networks of glycoproteins that contain GalNAc-T3-specific O-glycosites involved in skeletal morphology, mineral level maintenance, and hemostasis were identified. This library of in vivo GalNAc-T3-specific substrate proteins and O-glycosites will serve as a valuable resource to understand the functional implications of O-glycosylation and to unravel the underlying causes of complex human GALNT3-CDG phenotypes.
Collapse
Affiliation(s)
- Kruti Dalal
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Weiming Yang
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - E Tian
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Aliona Chernish
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Peggy McCluggage
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Alexander J Lara
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Lawrence A Tabak
- Biological Chemistry Section and Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA.
| |
Collapse
|
5
|
Xu Z, Zhang H, Tian J, Ku X, Wei R, Hou J, Zhang C, Yang F, Zou X, Li Y, Kaji H, Tao SC, Kuno A, Yan W, Da LT, Zhang Y. O-glycosylation of SARS-CoV-2 spike protein by host O-glycosyltransferase strengthens its trimeric structure. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1118-1129. [PMID: 39066577 PMCID: PMC11399440 DOI: 10.3724/abbs.2024127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Protein O-glycosylation, also known as mucin-type O-glycosylation, is one of the most abundant glycosylation in mammalian cells. It is initially catalyzed by a family of polypeptide GalNAc transferases (ppGalNAc-Ts). The trimeric spike protein (S) of SARS-CoV-2 is highly glycosylated and facilitates the virus's entry into host cells and membrane fusion of the virus. However, the functions and relationship between host ppGalNAc-Ts and O-glycosylation on the S protein remain unclear. Herein, we identify 15 O-glycosites and 10 distinct O-glycan structures on the S protein using an HCD-product-dependent triggered ETD mass spectrometric analysis. We observe that the isoenzyme T6 of ppGalNAc-Ts (ppGalNAc-T6) exhibits high O-glycosylation activity for the S protein, as demonstrated by an on-chip catalytic assay. Overexpression of ppGalNAc-T6 in HEK293 cells significantly enhances the O-glycosylation level of the S protein, not only by adding new O-glycosites but also by increasing O-glycan heterogeneity. Molecular dynamics simulations reveal that O-glycosylation on the protomer-interface regions, modified by ppGalNAc-T6, potentially stabilizes the trimeric S protein structure by establishing hydrogen bonds and non-polar interactions between adjacent protomers. Furthermore, mutation frequency analysis indicates that most O-glycosites of the S protein are conserved during the evolution of SARS-CoV-2 variants. Taken together, our finding demonstrate that host O-glycosyltransferases dynamically regulate the O-glycosylation of the S protein, which may influence the trimeric structural stability of the protein. This work provides structural insights into the functional role of specific host O-glycosyltransferases in regulating the O-glycosylation of viral envelope proteins.
Collapse
Affiliation(s)
- Zhijue Xu
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
- SCSB (China)-AIST (Japan) Joint Medical Glycomics LaboratoryShanghai200240China
| | - Han Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jiaqi Tian
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
- School of Medical Information and EngineeringXuzhou Medical UniversityXuzhou221000China
| | - Xin Ku
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Rumeng Wei
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Jingli Hou
- Intrumental Analysis CenterShanghai Jiao Tong UniversityShanghai200240China
| | - Can Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Fang Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Xia Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Yang Li
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Hiroyuki Kaji
- SCSB (China)-AIST (Japan) Joint Medical Glycomics LaboratoryShanghai200240China
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Atsushi Kuno
- SCSB (China)-AIST (Japan) Joint Medical Glycomics LaboratoryShanghai200240China
- Molecular and Cellular Glycoproteomics Research GroupCellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba305-8577Japan
| | - Wei Yan
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Lin-Tai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
| | - Yan Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education)Shanghai Center for Systems BiomedicineShanghai Jiao Tong UniversityShanghai200240China
- SCSB (China)-AIST (Japan) Joint Medical Glycomics LaboratoryShanghai200240China
| |
Collapse
|
6
|
Tokoro Y, Nagae M, Nakano M, Harduin-Lepers A, Kizuka Y. LacdiNAc synthase B4GALNT3 has a unique PA14 domain and suppresses N-glycan capping. J Biol Chem 2024; 300:107450. [PMID: 38844136 PMCID: PMC11254600 DOI: 10.1016/j.jbc.2024.107450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Structural variation of N-glycans is essential for the regulation of glycoprotein functions. GalNAcβ1-4GlcNAc (LacdiNAc or LDN), a unique subterminal glycan structure synthesized by B4GALNT3 or B4GALNT4, is involved in the clearance of N-glycoproteins from the blood and maintenance of cell stemness. Such regulation of glycoprotein functions by LDN is largely different from that by the dominant subterminal structure, N-acetyllactosamine (Galβ1-4GlcNAc, LacNAc). However, the mechanisms by which B4GALNT activity is regulated and how LDN plays different roles from LacNAc remain unclear. Here, we found that B4GALNT3 and four have unique domain organization containing a noncatalytic PA14 domain, which is a putative glycan-binding module. A mutant lacking this domain dramatically decreases the activity toward various substrates, such as N-glycan, O-GalNAc glycan, and glycoproteins, indicating that this domain is essential for enzyme activity and forms part of the catalytic region. In addition, to clarify the mechanism underlying the functional differences between LDN and LacNAc, we examined the effects of LDN on the maturation of N-glycans, focusing on the related glycosyltransferases upstream and downstream of B4GALNT. We revealed that, unlike LacNAc synthesis, prior formation of bisecting GlcNAc in N-glycan almost completely inhibits LDN synthesis by B4GALNT3. Moreover, the presence of LDN negatively impacted the actions of many glycosyltransferases for terminal modifications, including sialylation, fucosylation, and human natural killer-1 synthesis. These findings demonstrate that LDN has significant impacts on N-glycan maturation in a completely different way from LacNAc, which could contribute to obtaining a comprehensive overview of the system regulating complex N-glycan biosynthesis.
Collapse
Affiliation(s)
- Yuko Tokoro
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Anne Harduin-Lepers
- University of Lille, CNRS, UMR 8576 -UGSF- Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yasuhiko Kizuka
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
7
|
Rodriguez E, Lindijer DV, van Vliet SJ, Garcia Vallejo JJ, van Kooyk Y. The transcriptional landscape of glycosylation-related genes in cancer. iScience 2024; 27:109037. [PMID: 38384845 PMCID: PMC10879703 DOI: 10.1016/j.isci.2024.109037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 09/12/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Changes in glycosylation patterns have been associated with malignant transformation and clinical outcomes in several cancer types, prompting ongoing research into the mechanisms involved and potential clinical applications. In this study, we performed an extensive transcriptomic analysis of glycosylation-related genes and pathways, using publicly available bulk and single cell transcriptomic datasets from tumor samples and cancer cell lines. We identified genes and pathways strongly associated with different tumor types, which may represent novel diagnostic biomarkers. By using single cell RNA-seq data, we characterized the contribution of different cell types to the overall tumor glycosylation. Transcriptomic analysis of cancer cell lines revealed that they present a simplified landscape of genes compared to tissue. Lastly, we describe the association of different genes and pathways with the clinical outcome of patients. These results can serve as a resource for future research aimed to unravel the role of the glyco-code in cancer.
Collapse
Affiliation(s)
- Ernesto Rodriguez
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Dimitri V. Lindijer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Sandra J. van Vliet
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Juan J. Garcia Vallejo
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, the Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Sanji AS, J M, Gurav MJ, Batra SK, Chachadi VB. Cancer snap-shots: Biochemistry and glycopathology of O-glycans: A review. Int J Biol Macromol 2024; 260:129318. [PMID: 38232866 DOI: 10.1016/j.ijbiomac.2024.129318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/19/2024]
Abstract
Cancer pathogenesis is strongly linked to the qualitative and quantitative alteration of the cell surface glycans, that are glycosidically linked to proteins and lipids. Glycans that are covalently linked to the polypeptide backbone of a protein through nitrogen or oxygen, are known as N-glycans or O-glycans, respectively. Although the role of glycans in the expression, physiology, and communication of cells is well documented, the function of these glycans in tumor biology is not fully elucidated. In this context, current review summarizes biosynthesis, modifications and pathological implications of O-glycans The review also highlights illustrative examples of cancer types modulated by aberrant O-glycosylation. Related O-glycans like Thomsen-nouveau (Tn), Thomsen-Friedenreich (TF), Lewisa/x, Lewisb/y, sialyl Lewisa/x and some other O-glycans are discussed in detail. Since, the overexpression of O-glycans are attributed to the aggressiveness and metastatic behavior of cancer cells, the current review attempts to understand the relation between metastasis and O-glycans.
Collapse
Affiliation(s)
- Ashwini S Sanji
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Manasa J
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Maruti J Gurav
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA; Fred and Pamela Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Disease, University of Nebraska Medical Center, Omaha, NE, USA
| | - Vishwanath B Chachadi
- P. G. Department of Studies in Biochemistry, Karnatak University, Dharwad, Karnataka 580 003, India.
| |
Collapse
|
9
|
Collette AM, Hassan SA, Schmidt SI, Lara AJ, Yang W, Samara NL. An unusual dual sugar-binding lectin domain controls the substrate specificity of a mucin-type O-glycosyltransferase. SCIENCE ADVANCES 2024; 10:eadj8829. [PMID: 38416819 PMCID: PMC10901373 DOI: 10.1126/sciadv.adj8829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/23/2024] [Indexed: 03/01/2024]
Abstract
N-acetylgalactosaminyl-transferases (GalNAc-Ts) initiate mucin-type O-glycosylation, an abundant and complex posttranslational modification that regulates host-microbe interactions, tissue development, and metabolism. GalNAc-Ts contain a lectin domain consisting of three homologous repeats (α, β, and γ), where α and β can potentially interact with O-GalNAc on substrates to enhance activity toward a nearby acceptor Thr/Ser. The ubiquitous isoenzyme GalNAc-T1 modulates heart development, immunity, and SARS-CoV-2 infectivity, but its substrates are largely unknown. Here, we show that both α and β in GalNAc-T1 uniquely orchestrate the O-glycosylation of various glycopeptide substrates. The α repeat directs O-glycosylation to acceptor sites carboxyl-terminal to an existing GalNAc, while the β repeat directs O-glycosylation to amino-terminal sites. In addition, GalNAc-T1 incorporates α and β into various substrate binding modes to cooperatively increase the specificity toward an acceptor site located between two existing O-glycans. Our studies highlight a unique mechanism by which dual lectin repeats expand substrate specificity and provide crucial information for identifying the biological substrates of GalNAc-T1.
Collapse
Affiliation(s)
- Abbie M Collette
- Structural Biochemistry Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, OCICB, NIAID, NIH, Bethesda, MD 20892, USA
| | - Susan I Schmidt
- MICaB Program, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Alexander J Lara
- Section on Biological Chemistry, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Weiming Yang
- Section on Biological Chemistry, NIDCR, NIH, Bethesda, MD 20892, USA
| | - Nadine L Samara
- Structural Biochemistry Unit, NIDCR, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Liu Y, Yu Z, Zhu L, Ma S, Luo Y, Liang H, Liu Q, Chen J, Guli S, Chen X. Orchestration of MUC2 - The key regulatory target of gut barrier and homeostasis: A review. Int J Biol Macromol 2023; 236:123862. [PMID: 36870625 DOI: 10.1016/j.ijbiomac.2023.123862] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The gut mucosa of human is covered by mucus, functioning as a crucial defense line for the intestine against external stimuli and pathogens. Mucin2 (MUC2) is a subtype of secretory mucins generated by goblet cells and is the major macromolecular component of mucus. Currently, there is an increasing interest on the investigations of MUC2, noting that its function is far beyond a maintainer of the mucus barrier. Moreover, numerous gut diseases are associated with dysregulated MUC2 production. Appropriate production level of MUC2 and mucus contributes to gut barrier function and homeostasis. The production of MUC2 is regulated by a series of physiological processes, which are orchestrated by various bioactive molecules, signaling pathways and gut microbiota, etc., forming a complex regulatory network. Incorporating the latest findings, this review provided a comprehensive summary of MUC2, including its structure, significance and secretory process. Furthermore, we also summarized the molecular mechanisms of the regulation of MUC2 production aiming to provide developmental directions for future researches on MUC2, which can act as a potential prognostic indicator and targeted therapeutic manipulation for diseases. Collectively, we elucidated the micro-level mechanisms underlying MUC2-related phenotypes, hoping to offer some constructive guidance for intestinal and overall health of mankind.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Shuang Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yang Luo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qinlingfei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Sitan Guli
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
11
|
Scott E, Hodgson K, Calle B, Turner H, Cheung K, Bermudez A, Marques FJG, Pye H, Yo EC, Islam K, Oo HZ, McClurg UL, Wilson L, Thomas H, Frame FM, Orozco-Moreno M, Bastian K, Arredondo HM, Roustan C, Gray MA, Kelly L, Tolson A, Mellor E, Hysenaj G, Goode EA, Garnham R, Duxfield A, Heavey S, Stopka-Farooqui U, Haider A, Freeman A, Singh S, Johnston EW, Punwani S, Knight B, McCullagh P, McGrath J, Crundwell M, Harries L, Bogdan D, Westaby D, Fowler G, Flohr P, Yuan W, Sharp A, de Bono J, Maitland NJ, Wisnovsky S, Bertozzi CR, Heer R, Guerrero RH, Daugaard M, Leivo J, Whitaker H, Pitteri S, Wang N, Elliott DJ, Schumann B, Munkley J. Upregulation of GALNT7 in prostate cancer modifies O-glycosylation and promotes tumour growth. Oncogene 2023; 42:926-937. [PMID: 36725887 PMCID: PMC10020086 DOI: 10.1038/s41388-023-02604-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Prostate cancer is the most common cancer in men and it is estimated that over 350,000 men worldwide die of prostate cancer every year. There remains an unmet clinical need to improve how clinically significant prostate cancer is diagnosed and develop new treatments for advanced disease. Aberrant glycosylation is a hallmark of cancer implicated in tumour growth, metastasis, and immune evasion. One of the key drivers of aberrant glycosylation is the dysregulated expression of glycosylation enzymes within the cancer cell. Here, we demonstrate using multiple independent clinical cohorts that the glycosyltransferase enzyme GALNT7 is upregulated in prostate cancer tissue. We show GALNT7 can identify men with prostate cancer, using urine and blood samples, with improved diagnostic accuracy than serum PSA alone. We also show that GALNT7 levels remain high in progression to castrate-resistant disease, and using in vitro and in vivo models, reveal that GALNT7 promotes prostate tumour growth. Mechanistically, GALNT7 can modify O-glycosylation in prostate cancer cells and correlates with cell cycle and immune signalling pathways. Our study provides a new biomarker to aid the diagnosis of clinically significant disease and cements GALNT7-mediated O-glycosylation as an important driver of prostate cancer progression.
Collapse
Affiliation(s)
- Emma Scott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Kirsty Hodgson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Beatriz Calle
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
- Department of Chemistry, Imperial College London, W12 0BZ, London, UK
| | - Helen Turner
- Cellular Pathology, The Royal Victoria Infirmary, Queen Victoria Road, Newcastle upon Tyne, NE1 4LP, UK
| | - Kathleen Cheung
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Abel Bermudez
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Fernando Jose Garcia Marques
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Hayley Pye
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Edward Christopher Yo
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Khirul Islam
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland
| | - Htoo Zarni Oo
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
| | - Urszula L McClurg
- Institute for Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Laura Wilson
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Huw Thomas
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Fiona M Frame
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Margarita Orozco-Moreno
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Kayla Bastian
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Hector M Arredondo
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - Chloe Roustan
- Structural Biology Science Technology Platform, The Francis Crick Institute, NW1 1AT, London, UK
| | - Melissa Anne Gray
- Sarafan Chem-H and Departemnt of Chemistry, Stanford University, 424 Santa Teresa St, Stanford, CA, 94305, USA
| | - Lois Kelly
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Aaron Tolson
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Ellie Mellor
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Gerald Hysenaj
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Emily Archer Goode
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Rebecca Garnham
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Adam Duxfield
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Susan Heavey
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Urszula Stopka-Farooqui
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Aiman Haider
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Alex Freeman
- Department of Pathology, UCLH NHS Foundation Trust, London, UK
| | - Saurabh Singh
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Edward W Johnston
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Shonit Punwani
- UCL Centre for Medical Imaging, Charles Bell House, University College London, London, UK
| | - Bridget Knight
- NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Paul McCullagh
- Department of Pathology, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - John McGrath
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Malcolm Crundwell
- Exeter Surgical Health Services Research Unit, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Lorna Harries
- Institute of Biomedical and Clinical Sciences, Medical School, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Denisa Bogdan
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Westaby
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London, SM2 5PT, UK
| | - Gemma Fowler
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Penny Flohr
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Wei Yuan
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adam Sharp
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London, SM2 5PT, UK
| | - Johann de Bono
- Division of Clinical Studies, The Institute of Cancer Research, London, SM2 5NG, UK
- Prostate Cancer Targeted Therapy Group, The Royal Marsden Hospital, London, SM2 5PT, UK
| | - Norman J Maitland
- Cancer Research Unit, Department of Biology, University of York, Heslington, North Yorkshire, YO10 5DD, UK
| | - Simon Wisnovsky
- University of British Columbia, Faculty of Pharmaceutical Sciences, Vancouver, BC, V6T 1Z3, Canada
| | - Carolyn R Bertozzi
- Howard Hughes Medical Institute, 424 Santa Teresa St, Stanford, CA, 94305, USA
| | - Rakesh Heer
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Paul O'Gorman Building, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Department of Urology, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
| | - Ramon Hurtado Guerrero
- University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain; Fundación ARAID, 50018, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mads Daugaard
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Vancouver Prostate Centre, Vancouver, BC, V6H 3Z6, Canada
| | - Janne Leivo
- Department of Life Technologies, Division of Biotechnology, University of Turku, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
| | - Hayley Whitaker
- Molecular Diagnostics and Therapeutics Group, Charles Bell House, Division of Surgery and Interventional Science, University College London, London, UK
| | - Sharon Pitteri
- Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford University, Palo Alto, CA, 94304, USA
| | - Ning Wang
- The Mellanby Centre for Musculoskeletal Research, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, UK
| | - David J Elliott
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK
| | - Benjamin Schumann
- The Chemical Glycobiology Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
- Department of Chemistry, Imperial College London, W12 0BZ, London, UK
| | - Jennifer Munkley
- Newcastle University Centre for Cancer, Newcastle University Institute of Biosciences, Newcastle, NE1 3BZ, UK.
| |
Collapse
|
12
|
Barchi JJ, Strain CN. The effect of a methyl group on structure and function: Serine vs. threonine glycosylation and phosphorylation. Front Mol Biosci 2023; 10:1117850. [PMID: 36845552 PMCID: PMC9950641 DOI: 10.3389/fmolb.2023.1117850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
A variety of glycan structures cover the surface of all cells and are involved in myriad biological processes, including but not limited to, cell adhesion and communication, protein quality control, signal transduction and metabolism, while also being intimately involved in innate and adaptive immune functions. Immune surveillance and responses to foreign carbohydrate antigens, such as capsular polysaccharides on bacteria and surface protein glycosylation of viruses, are the basis of microbial clearance, and most antimicrobial vaccines target these structures. In addition, aberrant glycans on tumors called Tumor-Associated Carbohydrate Antigens (TACAs) elicit immune responses to cancer, and TACAs have been used in the design of many antitumor vaccine constructs. A majority of mammalian TACAs are derived from what are referred to as mucin-type O-linked glycans on cell-surface proteins and are linked to the protein backbone through the hydroxyl group of either serine or threonine residues. A small group of structural studies that have compared mono- and oligosaccharides attached to each of these residues have shown that there are distinct differences in conformational preferences assumed by glycans attached to either "unmethylated" serine or ß-methylated threonine. This suggests that the linkage point of antigenic glycans will affect their presentation to the immune system as well as to various carbohydrate binding molecules (e.g., lectins). This short review, followed by our hypothesis, will examine this possibility and extend the concept to the presentation of glycans on surfaces and in assay systems where recognition of glycans by proteins and other binding partners can be defined by different attachment points that allow for a range of conformational presentations.
Collapse
Affiliation(s)
| | - Caitlin N. Strain
- Center for Cancer Research, Chemical Biology Laboratory, National Cancer Institute at Frederick, Frederick, MD, United States
| |
Collapse
|
13
|
"Glyco-sulfo barcodes" regulate chemokine receptor function. Cell Mol Life Sci 2023; 80:55. [PMID: 36729338 PMCID: PMC9894980 DOI: 10.1007/s00018-023-04697-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023]
Abstract
Chemokine ligands and receptors regulate the directional migration of leukocytes. Post-translational modifications of chemokine receptors including O-glycosylation and tyrosine sulfation have been reported to regulate ligand binding and resulting signaling. Through in silico analyses, we determined potential conserved O-glycosylation and sulfation sites on human and murine CC chemokine receptors. Glyco-engineered CHO cell lines were used to measure the impact of O-glycosylation on CC chemokine receptor CCR5, while mutation of tyrosine residues and treatment with sodium chlorate were performed to determine the effect of tyrosine sulfation. Changing the glycosylation or tyrosine sulfation on CCR5 reduced the receptor signaling by the more positively charged CCL5 and CCL8 more profoundly compared to the less charged CCL3. The loss of negatively charged sialic acids resulted only in a minor effect on CCL3-induced signal transduction. The enzymes GalNAc-T1 and GalNAc-T11 were shown to be involved in the process of chemokine receptor O-glycosylation. These results indicate that O-glycosylation and tyrosine sulfation are involved in the fine-tuning and recognition of chemokine interactions with CCR5 and the resulting signaling.
Collapse
|
14
|
Li J, Guo B, Zhang W, Yue S, Huang S, Gao S, Ma J, Cipollo JF, Yang S. Recent advances in demystifying O-glycosylation in health and disease. Proteomics 2022; 22:e2200156. [PMID: 36088641 DOI: 10.1002/pmic.202200156] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/09/2022]
Abstract
O-Glycosylation is one of the most common protein post-translational modifications (PTM) and plays an essential role in the pathophysiology of diseases. However, the complexity of O-glycosylation and the lack of specific enzymes for the processing of O-glycans and their O-glycopeptides make O-glycosylation analysis challenging. Recently, research on O-glycosylation has received attention owing to technological innovation and emerging O-glycoproteases. Several serine/threonine endoproteases have been found to specifically cleave O-glycosylated serine or threonine, allowing for the systematic analysis of O-glycoproteins. In this review, we first assessed the field of protein O-glycosylation over the past decade and used bibliometric analysis to identify keywords and emerging trends. We then summarized recent advances in O-glycosylation, covering several aspects: O-glycan release, site-specific elucidation of intact O-glycopeptides, identification of O-glycosites, characterization of different O-glycoproteases, mass spectrometry (MS) fragmentation methods for site-specific O-glycosylation assignment, and O-glycosylation data analysis. Finally, the role of O-glycosylation in health and disease was discussed.
Collapse
Affiliation(s)
- Jiajia Li
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Bo Guo
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Wenqi Zhang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shuang Yue
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Shan Huang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Song Gao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Key Laboratory of Marine Biological Resources and Environment, Co-Innovation Center of Jiangsu Marine Bio-industry Technology, School of Pharmacy, Jiangsu Ocean University, Lianyungang, China
| | - Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC, USA
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Rong Y, Wang X, Mao W, Yuan F, Chen M, Wang S, Wang PG, Wu Z, He Y, Kong Y. Chemoenzymatic Synthesis of SARS-CoV-2 Homogeneous O-Linked Glycopeptides for Exploring Their Inhibition Functions. ACS Infect Dis 2022; 8:2198-2206. [PMID: 36095241 DOI: 10.1021/acsinfecdis.2c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Harnessing highly conserved peptides derived from the receptor binding domain (RBD) of spike (S) protein to construct peptide-based inhibitors is one of the most effective strategies to fight against the ever-mutating coronavirus SARS-CoV-2. But how the O-glycosylation affects their inhibition abilities has not been intensively explored. Herein, an intrinsic O-glycosylated peptide P320-334 derived from RBD was screened and homogeneous O-linked glycopeptides containing Tn (GalNAcα1-O-Ser/Thr), T (Galβ1-3GalNAcα1-O-Ser/Thr), sialyl-Tn (sTn, Siaα2-6GalNAcα1-O-Ser/Thr), and sialyl-T (sT, Siaα2-3Galβ1-3GalNAcα1-O-Ser/Thr) structures were first synthesized via chemoenzymatic strategies. Compared with the unglycosylated peptide, the binding of sT-P320-334 to hACE2 was enhanced to 133% and the inhibition capacity against RBD-hACE2 binding of sTn- and sT-P320-334 was significantly increased up to 150-410%. Thus, our results suggest the sialic acid residue on the terminal of short O-glycan structures might strengthen the inhibition capacities of these peptide-based inhibitors, which might provide novel optimization directions for the inhibitor design.
Collapse
Affiliation(s)
- Yongheng Rong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xingyun Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weian Mao
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fang Yuan
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Min Chen
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Shengjun Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhigang Wu
- College of Food and Biology, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yunjiao He
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Kong
- National Glycoengineering Research Center, Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
16
|
Wang Q, Wang T, Wu WW, Lin CY, Yang S, Yang G, Jankowska E, Hu Y, Shen RF, Betenbaugh MJ, Cipollo JF. Comprehensive N- and O-Glycoproteomic Analysis of Multiple Chinese Hamster Ovary Host Cell Lines. J Proteome Res 2022; 21:2341-2355. [PMID: 36129246 DOI: 10.1021/acs.jproteome.2c00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glycoproteomic analysis of three Chinese hamster ovary (CHO) suspension host cell lines (CHO-K1, CHO-S, and CHO-Pro5) commonly utilized in biopharmaceutical settings for recombinant protein production is reported. Intracellular and secreted glycoproteins were examined. We utilized an immobilization and chemoenzymatic strategy in our analysis. Glycoproteins or glycopeptides were first immobilized through reductive amination, and the sialyl moieties were amidated for protection. The desired N- or O-glycans and glycopeptides were released from the immobilization resin by enzymatic or chemical digestion. Glycopeptides were studied by Orbitrap Liquid chromatography-mass spectrometry (LC/MS), and the released glycans were analyzed by Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Differences were detected in the relative abundances of N- and O-glycopeptide types, their resident and released glycans, and their glycoprotein complexity. Ontogeny analysis revealed key differences in features, such as general metabolic and biosynthetic pathways, including glycosylation systems, as well as distributions in cellular compartments. Host cell lines and subfraction differences were observed in both N- and O-glycan and glycoprotein pools. Differences were observed in sialyl and fucosyl glycan distributions. Key differences were also observed among glycoproteins that are problematic contaminants in recombinant antibody production. The differences revealed in this study should inform the choice of cell lines best suited for a particular bioproduction application.
Collapse
Affiliation(s)
- Qiong Wang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Tiexin Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Wells W Wu
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Chang-Yi Lin
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Shuang Yang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States.,Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ganglong Yang
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287, United States.,Key Laboratory of Carbohydrate Chemistry and Biotechnology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ewa Jankowska
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yifeng Hu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - Rong-Fong Shen
- Facility for Biotechnology Resources, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21210, United States
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
17
|
Osada N, Nagae M, Nakano M, Hirata T, Kizuka Y. Examination of differential glycoprotein preferences of N-acetylglucosaminyltransferase-IV isozymes a and b. J Biol Chem 2022; 298:102400. [PMID: 35988645 PMCID: PMC9478453 DOI: 10.1016/j.jbc.2022.102400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 01/23/2023] Open
Abstract
The N-glycans attached to proteins contain various N-acetylglucosamine (GlcNAc) branches, the aberrant formation of which correlates with various diseases. N-Acetylglucosaminyltransferase-IVa (GnT-IVa or MGAT4A) and -IVb (GnT-IVb or MGAT4B) are isoenzymes that catalyze the formation of the β1,4-GlcNAc branch in N-glycans. However, the functional differences between these isozymes remain unresolved. Here, using cellular and UDP-Glo enzyme assays, we discovered that GnT-IVa and GnT-IVb have distinct glycoprotein preferences both in cells and in vitro. Notably, we show GnT-IVb acted efficiently on glycoproteins bearing an N-glycan pre-modified by GnT-IV. To further understand the mechanism of this reaction, we focused on the non-catalytic C-terminal lectin domain, which selectively recognizes the product glycans. Replacement of a non-conserved amino acid in the GnT-IVb lectin domain with the corresponding residue in GnT-IVa altered the glycoprotein preference of GnT-IVb to resemble that of GnT-IVa. Our findings demonstrate that the C-terminal lectin domain regulates differential substrate selectivity of GnT-IVa and -IVb, highlighting a new mechanism by which N-glycan branches are formed on glycoproteins.
Collapse
Affiliation(s)
- Naoko Osada
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Suita, Japan; Laboratory of Molecular Immunology, Immunology Frontier Research Center (iFReC), Osaka University, Suita, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashihiroshima, Japan
| | - Tetsuya Hirata
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan
| | - Yasuhiko Kizuka
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
| |
Collapse
|
18
|
Konstantinidi A, Nason R, Čaval T, Sun L, Sørensen DM, Furukawa S, Ye Z, Vincentelli R, Narimatsu Y, Vakhrushev SY, Clausen H. Exploring the glycosylation of mucins by use of O-glycodomain reporters recombinantly expressed in glycoengineered HEK293 cells. J Biol Chem 2022; 298:101784. [PMID: 35247390 PMCID: PMC8980628 DOI: 10.1016/j.jbc.2022.101784] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/18/2022] Open
Abstract
Mucins and glycoproteins with mucin-like regions contain densely O-glycosylated domains often found in tandem repeat (TR) sequences. These O-glycodomains have traditionally been difficult to characterize because of their resistance to proteolytic digestion, and knowledge of the precise positions of O-glycans is particularly limited for these regions. Here, we took advantage of a recently developed glycoengineered cell-based platform for the display and production of mucin TR reporters with custom-designed O-glycosylation to characterize O-glycodomains derived from mucins and mucin-like glycoproteins. We combined intact mass and bottom-up site-specific analysis for mapping O-glycosites in the mucins, MUC2, MUC20, MUC21, protein P-selectin-glycoprotein ligand 1, and proteoglycan syndecan-3. We found that all the potential Ser/Thr positions in these O-glycodomains were O-glycosylated when expressed in human embryonic kidney 293 SimpleCells (Tn-glycoform). Interestingly, we found that all potential Ser/Thr O-glycosites in TRs derived from secreted mucins and most glycosites from transmembrane mucins were almost fully occupied, whereas TRs from a subset of transmembrane mucins were less efficiently processed. We further used the mucin TR reporters to characterize cleavage sites of glycoproteases StcE (secreted protease of C1 esterase inhibitor from EHEC) and BT4244, revealing more restricted substrate specificities than previously reported. Finally, we conducted a bottom-up analysis of isolated ovine submaxillary mucin, which supported our findings that mucin TRs in general are efficiently O-glycosylated at all potential glycosites. This study provides insight into O-glycosylation of mucins and mucin-like domains, and the strategies developed open the field for wider analysis of native mucins.
Collapse
Affiliation(s)
- Andriana Konstantinidi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebecca Nason
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tomislav Čaval
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lingbo Sun
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel M Sørensen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sanae Furukawa
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Renaud Vincentelli
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille Université, Marseille, France
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
19
|
Coelho H, Rivas MDL, Grosso AS, Diniz A, Soares CO, Francisco RA, Dias JS, Compañon I, Sun L, Narimatsu Y, Vakhrushev SY, Clausen H, Cabrita EJ, Jiménez-Barbero J, Corzana F, Hurtado-Guerrero R, Marcelo F. Atomic and Specificity Details of Mucin 1 O-Glycosylation Process by Multiple Polypeptide GalNAc-Transferase Isoforms Unveiled by NMR and Molecular Modeling. JACS AU 2022; 2:631-645. [PMID: 35373202 PMCID: PMC8969996 DOI: 10.1021/jacsau.1c00529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 05/10/2023]
Abstract
The large family of polypeptide GalNAc-transferases (GalNAc-Ts) controls with precision how GalNAc O-glycans are added in the tandem repeat regions of mucins (e.g., MUC1). However, the structural features behind the creation of well-defined and clustered patterns of O-glycans in mucins are poorly understood. In this context, herein, we disclose the full process of MUC1 O-glycosylation by GalNAc-T2/T3/T4 isoforms by NMR spectroscopy assisted by molecular modeling protocols. By using MUC1, with four tandem repeat domains as a substrate, we confirmed the glycosylation preferences of different GalNAc-Ts isoforms and highlighted the importance of the lectin domain in the glycosylation site selection after the addition of the first GalNAc residue. In a glycosylated substrate, with yet multiple acceptor sites, the lectin domain contributes to orientate acceptor sites to the catalytic domain. Our experiments suggest that during this process, neighboring tandem repeats are critical for further glycosylation of acceptor sites by GalNAc-T2/T4 in a lectin-assisted manner. Our studies also show local conformational changes in the peptide backbone during incorporation of GalNAc residues, which might explain GalNAc-T2/T3/T4 fine specificities toward the MUC1 substrate. Interestingly, we postulate that a specific salt-bridge and the inverse γ-turn conformation of the PDTRP sequence in MUC1 are the main structural motifs behind the GalNAc-T4 specificity toward this region. In addition, in-cell analysis shows that the GalNAc-T4 isoform is the only isoform glycosylating the Thr of the immunogenic epitope PDTRP in vivo, which highlights the relevance of GalNAc-T4 in the glycosylation of this epitope. Finally, the NMR methodology established herein can be extended to other glycosyltransferases, such as C1GalT1 and ST6GalNAc-I, to determine the specificity toward complex mucin acceptor substrates.
Collapse
Affiliation(s)
- Helena Coelho
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), Bizkaia
Technology Park, Building 801A, 48170 Derio, Spain
- Department
of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, Leioa 48940, Bizkaia, Spain
| | - Matilde de las Rivas
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Laboratorio
de Microscopias Avanzadas (LMA), University
of Zaragoza, Mariano
Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
| | - Ana S. Grosso
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ana Diniz
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cátia O. Soares
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Rodrigo A. Francisco
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge S. Dias
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Ismael Compañon
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Lingbo Sun
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Yoshiki Narimatsu
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Sergey Y. Vakhrushev
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Henrik Clausen
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Eurico J. Cabrita
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Jesús Jiménez-Barbero
- CIC
bioGUNE, Basque Research and Technology
Alliance (BRTA), Bizkaia
Technology Park, Building 801A, 48170 Derio, Spain
- Department
of Organic Chemistry II, Faculty of Science & Technology, University of the Basque Country, Leioa 48940, Bizkaia, Spain
- Ikerbasque,
Basque Foundation for Science, Maria Diaz de Haro 13, 48009 Bilbao, Spain
- Centro de Investigacion
Biomedica En Red de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Francisco Corzana
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, E-26006 Logroño, Spain
| | - Ramon Hurtado-Guerrero
- Institute
for Biocomputation and Physics of Complex Systems (BIFI), Laboratorio
de Microscopias Avanzadas (LMA), University
of Zaragoza, Mariano
Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
- Copenhagen
Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen DK-2200, Denmark
- Fundación
ARAID, 50018 Zaragoza, Spain
| | - Filipa Marcelo
- Associate
Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School
of Science and Technology, Universidade
NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO,
Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
20
|
Abstract
Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.
Collapse
Affiliation(s)
- Essam
Eldin A. Osman
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Alnawaz Rehemtulla
- Department
of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Nouri Neamati
- Department
of Medicinal Chemistry, College of Pharmacy, Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
21
|
Improving Protein Quantity and Quality—The Next Level of Plant Molecular Farming. Int J Mol Sci 2022; 23:ijms23031326. [PMID: 35163249 PMCID: PMC8836236 DOI: 10.3390/ijms23031326] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 12/15/2022] Open
Abstract
Plants offer several unique advantages in the production of recombinant pharmaceuticals for humans and animals. Although numerous recombinant proteins have been expressed in plants, only a small fraction have been successfully put into use. The hugely distinct expression systems between plant and animal cells frequently cause insufficient yield of the recombinant proteins with poor or undesired activity. To overcome the issues that greatly constrain the development of plant-produced pharmaceuticals, great efforts have been made to improve expression systems and develop alternative strategies to increase both the quantity and quality of the recombinant proteins. Recent technological revolutions, such as targeted genome editing, deconstructed vectors, virus-like particles, and humanized glycosylation, have led to great advances in plant molecular farming to meet the industrial manufacturing and clinical application standards. In this review, we discuss the technological advances made in various plant expression platforms, with special focus on the upstream designs and milestone achievements in improving the yield and glycosylation of the plant-produced pharmaceutical proteins.
Collapse
|
22
|
Huang T, Wu Q, Huang H, Zhang C, Wang L, Wang L, Liu Y, Li W, Zhang J, Liu Y. Expression of GALNT8 and O-glycosylation of BMP receptor 1A suppress breast cancer cell proliferation by upregulating ERα levels. Biochim Biophys Acta Gen Subj 2022; 1866:130046. [PMID: 34743989 DOI: 10.1016/j.bbagen.2021.130046] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Mucin-type O-glycosylation is one of the most abundant types of O-glycosylation and plays important roles in various human carcinomas, including breast cancer. A large family of polypeptide N-acetyl-α-galactosaminyltransferases (GALNTs) initiate and define sites of mucin-type O-glycosylation. However, the specific mechanisms underlying GALNT8 expression and its roles in tumorigenesis remain poorly characterized. METHODS GALNT8 expression was assessed in 140 breast cancer patients. Immunofluorescence, immunoprecipitation, lectin blot and quantitative real-time PCR were used to investigate the expression of GALNT8 and its role in regulating estrogen receptor α (ERα) via bone morphogenetic protein (BMP) signaling. RESULTS The expression of GALNT8 was associated with breast cancer patient survival. GALNT8 downregulation was associated with a reduction in ERα levels, while GALNT8 overexpression elevated the transcription and protein levels of ERα and suppressed colony formation, suggesting an important role of GALNT8 in cancer cell proliferation. Conversely, GALNT8 knockdown led to the inhibition of BMP/SMAD/RUNX2 axis, which decreased ERα transcription. Further analysis suggested that BMP receptor 1A (BMPR1A) was O-GalNAcylated. Sites mutation of BMPR1A indicated that Thr137 and Ser37/Ser39/Ser44/Thr49 of BMPR1A were the main O-glycosylation sites. Although we cannot exclude the indirect effect of GALNT8, our results demonstrated that the expression of GALNT8 and O-glycosylation of BMPR1A play key roles in regulating the activity of BMP/SMAD/RUNX2 signaling and ERα expression. CONCLUSION These findings suggest that GALNT8 expression and abnormal O-GalNAcylation of BMPR1A increase ERα expression and suppress breast cancer cell proliferation by modulating the BMP signaling pathway. GENERAL SIGNIFICANCE Our results identify the involvement of GALNT8 in regulating ERα expression.
Collapse
Affiliation(s)
- Tianmiao Huang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Qiong Wu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Huang Huang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Cheng Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Liping Wang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Lingyan Wang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Yangzhi Liu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Wenli Li
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China
| | - Jianing Zhang
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China..
| | - Yubo Liu
- School of Life Science & Pharmacy, Dalian University of Technology, Panjin 122406, China..
| |
Collapse
|
23
|
Oliveira T, Zhang M, Joo EJ, Abdel-Azim H, Chen CW, Yang L, Chou CH, Qin X, Chen J, Alagesan K, Almeida A, Jacob F, Packer NH, von Itzstein M, Heisterkamp N, Kolarich D. Glycoproteome remodeling in MLL-rearranged B-cell precursor acute lymphoblastic leukemia. Am J Cancer Res 2021; 11:9519-9537. [PMID: 34646384 PMCID: PMC8490503 DOI: 10.7150/thno.65398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/03/2021] [Indexed: 01/13/2023] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) with mixed-lineage leukemia gene rearrangement (MLL-r) is a poor-prognosis subtype for which additional therapeutic targets are urgently needed. Currently no multi-omics data set for primary MLL r patient cells exists that integrates transcriptomics, proteomics and glycomics to gain an inclusive picture of theranostic targets. Methods: We have integrated transcriptomics, proteomics and glycomics to i) obtain the first inclusive picture of primary patient BCP-ALL cells and identify molecular signatures that distinguish leukemic from normal precursor B-cells and ii) better understand the benefits and limitations of the applied technologies to deliver deep molecular sequence data across major cellular biopolymers. Results: MLL-r cells feature an extensive remodeling of their glycocalyx, with increased levels of Core 2-type O-glycans and complex N-glycans as well as significant changes in sialylation and fucosylation. Notably, glycosaminoglycan remodeling from chondroitin sulfate to heparan sulfate was observed. A survival screen, to determine if glycan remodeling enzymes are redundant, identified MGAT1 and NGLY1, essential components of the N-glycosylation/degradation pathway, as highly relevant within this in vitro screening. OGT and OGA, unique enzymes that regulate intracellular O-GlcNAcylation, were also indispensable. Transcriptomics and proteomics further identified Fes and GALNT7-mediated glycosylation as possible therapeutic targets. While there is overall good correlation between transcriptomics and proteomics data, we demonstrate that a systematic combined multi-omics approach delivers important diagnostic information that is missed when applying a single omics technology. Conclusions: Apart from confirming well-known MLL-r BCP-ALL glycoprotein markers, our integrated multi-omics workflow discovered previously unidentified diagnostic/therapeutic protein targets.
Collapse
Affiliation(s)
- Tiago Oliveira
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Mingfeng Zhang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Chih-Hsing Chou
- Division of Hematology/Oncology and Bone Marrow Transplant, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Xi Qin
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Kathirvel Alagesan
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Andreia Almeida
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Francis Jacob
- Glyco-Oncology, Ovarian Cancer Research, Department of Biomedicine, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Nicolle H Packer
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia.,Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA.,✉ Corresponding authors: Equal contributions of Nora Heisterkamp, E-mail: ; and Daniel Kolarich, E-mail:
| | - Daniel Kolarich
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia.,ARC Centre of Excellence for Nanoscale BioPhotonics, Griffith University, QLD and Macquarie University, NSW, Australia.,✉ Corresponding authors: Equal contributions of Nora Heisterkamp, E-mail: ; and Daniel Kolarich, E-mail:
| |
Collapse
|
24
|
Wandall HH, Nielsen MAI, King-Smith S, de Haan N, Bagdonaite I. Global functions of O-glycosylation: promises and challenges in O-glycobiology. FEBS J 2021; 288:7183-7212. [PMID: 34346177 DOI: 10.1111/febs.16148] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Mucin type O-glycosylation is one of the most diverse types of glycosylation, playing essential roles in tissue development and homeostasis. In complex organisms, O-GalNAc glycans comprise a substantial proportion of the glycocalyx, with defined functions in hemostatic, gastrointestinal, and respiratory systems. Furthermore, O-GalNAc glycans are important players in host-microbe interactions, and changes in O-glycan composition are associated with certain diseases and metabolic conditions, which in some instances can be used for diagnosis or therapeutic intervention. Breakthroughs in O-glycobiology have gone hand in hand with the development of new technologies, such as advancements in mass spectrometry, as well as facilitation of genetic engineering in mammalian cell lines. High-throughput O-glycoproteomics have enabled us to draw a comprehensive map of O-glycosylation, and mining this information has supported the definition and confirmation of functions related to site-specific O-glycans. This includes protection from proteolytic cleavage, as well as modulation of binding affinity or receptor function. Yet, there is still much to discover, and among the important next challenges will be to define the context-dependent functions of O-glycans in different stages of cellular differentiation, cellular metabolism, host-microbiome interactions, and in disease. In this review, we present the achievements and the promises in O-GalNAc glycobiology driven by technological advances in analytical methods, genetic engineering, and systems biology.
Collapse
Affiliation(s)
- Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Mathias A I Nielsen
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Sarah King-Smith
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Noortje de Haan
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Ieva Bagdonaite
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
25
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
26
|
Wang Y, Wu Z, Hu W, Hao P, Yang S. Impact of Expressing Cells on Glycosylation and Glycan of the SARS-CoV-2 Spike Glycoprotein. ACS OMEGA 2021; 6:15988-15999. [PMID: 34179644 PMCID: PMC8204757 DOI: 10.1021/acsomega.1c01785] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/02/2021] [Indexed: 05/09/2023]
Abstract
The spike glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the first point of contact for the virus to recognize and bind to host receptors, is the focus of biomedical research seeking to effectively prevent and treat coronavirus disease (COVID-19). The mass production of spike glycoproteins is usually carried out in different cell systems. Studies have been shown that different expression cell systems alter protein glycosylation of hemagglutinin and neuraminidase in the influenza virus. However, it is not clear whether the cellular system affects the spike protein glycosylation. In this work, we investigated the effect of an expression system on the glycosylation of the spike glycoprotein and its receptor-binding domain. We found that there are significant differences in the glycosylation and glycans attached at each glycosite of the spike glycoprotein obtained from different expression cells. Since glycosylation at the binding site and adjacent amino acids affects the interaction between the spike glycoprotein and the host cell receptor, we recognize that caution should be taken when selecting an expression system to develop inhibitors, antibodies, and vaccines.
Collapse
Affiliation(s)
- Yan Wang
- Mass
Spectrometry Facility, National Institute
of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Wu
- State
Key Laboratory of Genetic Engineering, Department of Biochemistry,
School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wenhua Hu
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu 215123, China
| | - Piliang Hao
- School
of Life Science and Technology, ShanghaiTech
University, Shanghai 201210, China
| | - Shuang Yang
- Center
for Clinical Mass Spectrometry, Department of Pharmaceutical Analysis, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
27
|
Chen S, Qin R, Mahal LK. Sweet systems: technologies for glycomic analysis and their integration into systems biology. Crit Rev Biochem Mol Biol 2021; 56:301-320. [PMID: 33820453 DOI: 10.1080/10409238.2021.1908953] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Found in virtually every organism, glycans are essential molecules that play important roles in almost every aspect of biology. The composition of glycome, the repertoire of glycans in an organism or a biological sample, is often found altered in many diseases, including cancer, infectious diseases, metabolic and developmental disorders. Understanding how glycosylation and glycomic changes enriches our knowledge of the mechanisms of disease progression and sheds light on the development of novel therapeutics. However, the inherent diversity of glycan structures imposes challenges on the experimental characterization of glycomes. Advances in high-throughput glycomic technologies enable glycomic analysis in a rapid and comprehensive manner. In this review, we discuss the analytical methods currently used in high-throughput glycomics, including mass spectrometry, liquid chromatography and lectin microarray. Concomitant with the technical advances is the integration of glycomics into systems biology in the recent years. Herein we elaborate on some representative works from this recent trend to underline the important role of glycomics in such integrated approaches to disease.
Collapse
Affiliation(s)
- Shuhui Chen
- Department of Chemistry, New York University, New York City, NY, USA
| | - Rui Qin
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Lara K Mahal
- Department of Chemistry, New York University, New York City, NY, USA.,Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
28
|
Ye Z, Vakhrushev SY. The Role of Data-Independent Acquisition for Glycoproteomics. Mol Cell Proteomics 2021; 20:100042. [PMID: 33372048 PMCID: PMC8724878 DOI: 10.1074/mcp.r120.002204] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/13/2022] Open
Abstract
Data-independent acquisition (DIA) is now an emerging method in bottom–up proteomics and capable of achieving deep proteome coverage and accurate label-free quantification. However, for post-translational modifications, such as glycosylation, DIA methodology is still in the early stage of development. The full characterization of glycoproteins requires site-specific glycan identification as well as subsequent quantification of glycan structures at each site. The tremendous complexity of glycosylation represents a significant analytical challenge in glycoproteomics. This review focuses on the development and perspectives of DIA methodology for N- and O-linked glycoproteomics and posits that DIA-based glycoproteomics could be a method of choice to address some of the challenging aspects of glycoproteomics. First, the current challenges in glycoproteomics and the basic principles of DIA are briefly introduced. DIA-based glycoproteomics is then summarized and described into four aspects based on the actual samples. Finally, we discussed the important challenges and future perspectives in the field. We believe that DIA can significantly facilitate glycoproteomic studies and contribute to the development of future advanced tools and approaches in the field of glycoproteomics. Protein glycosylation and challenges in glycoproteomics. Data-independent acquisition for deglycosylated and intact N-linked glycopeptides. Unbiased screening of oxonium ions from all glycopeptide precursors. Glyco–data-independent acquisition on mucin-type O-glycopeptides.
Collapse
Affiliation(s)
- Zilu Ye
- Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Departments of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
29
|
Narimatsu Y, Büll C, Chen YH, Wandall HH, Yang Z, Clausen H. Genetic glycoengineering in mammalian cells. J Biol Chem 2021; 296:100448. [PMID: 33617880 PMCID: PMC8042171 DOI: 10.1016/j.jbc.2021.100448] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Advances in nuclease-based gene-editing technologies have enabled precise, stable, and systematic genetic engineering of glycosylation capacities in mammalian cells, opening up a plethora of opportunities for studying the glycome and exploiting glycans in biomedicine. Glycoengineering using chemical, enzymatic, and genetic approaches has a long history, and precise gene editing provides a nearly unlimited playground for stable engineering of glycosylation in mammalian cells to explore and dissect the glycome and its many biological functions. Genetic engineering of glycosylation in cells also brings studies of the glycome to the single cell level and opens up wider use and integration of data in traditional omics workflows in cell biology. The last few years have seen new applications of glycoengineering in mammalian cells with perspectives for wider use in basic and applied glycosciences, and these have already led to discoveries of functions of glycans and improved designs of glycoprotein therapeutics. Here, we review the current state of the art of genetic glycoengineering in mammalian cells and highlight emerging opportunities.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark.
| | - Christian Büll
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| | | | - Hans H Wandall
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | - Zhang Yang
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark; GlycoDisplay ApS, Copenhagen, Denmark
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
30
|
Mucin-Type O-GalNAc Glycosylation in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:25-60. [PMID: 34495529 DOI: 10.1007/978-3-030-70115-4_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mucin-type GalNAc O-glycosylation is one of the most abundant and unique post-translational modifications. The combination of proteome-wide mapping of GalNAc O-glycosylation sites and genetic studies with knockout animals and genome-wide analyses in humans have been instrumental in our understanding of GalNAc O-glycosylation. Combined, such studies have revealed well-defined functions of O-glycans at single sites in proteins, including the regulation of pro-protein processing and proteolytic cleavage, as well as modulation of receptor functions and ligand binding. In addition to isolated O-glycans, multiple clustered O-glycans have an important function in mammalian biology by providing structural support and stability of mucins essential for protecting our inner epithelial surfaces, especially in the airways and gastrointestinal tract. Here the many O-glycans also provide binding sites for both endogenous and pathogen-derived carbohydrate-binding proteins regulating critical developmental programs and helping maintain epithelial homeostasis with commensal organisms. Finally, O-glycan changes have been identified in several diseases, most notably in cancer and inflammation, where the disease-specific changes can be used for glycan-targeted therapies. This chapter will review the biosynthesis, the biology, and the translational perspectives of GalNAc O-glycans.
Collapse
|
31
|
Sales MDLM, Kratje R, Oggero M, Ceaglio N. Bifunctional GM-CSF-derived peptides as tools for O-glycoengineering and protein tagging. J Biotechnol 2020; 327:18-27. [PMID: 33387593 DOI: 10.1016/j.jbiotec.2020.12.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 10/22/2022]
Abstract
Rapid development of effective biotherapeutics has been a concern during the last couple decades. In our work we designed two novel peptide tags, GMOP and mGMOP, derived from the N-terminal region of human granulocyte and macrophage colony stimulating factor (hGM-CSF), which contain four and six potential O-glycosylation sites, respectively. These peptide tags were fused to the N-terminus of human interferon-α2b (hIFN-α2b), a therapeutic antiviral and antiproliferative protein rapidly cleared from circulation. Two new molecules were obtained which, consistently with the presence of O-glycans, showed higher molecular masses, more negatively charged isoforms, and higher sialic acid content compared to wild-type IFN. In vitro bioactivity of purified chimeras revealed a similar antiviral specific biological activity (SBA) compared to unmodified IFN. A reduction of antiproliferative SBA was only observed for mGMOP-IFN. Pharmacokinetic studies in rats showed a notable improvement in terminal half-life (t1/2elim) (3.3 and 2.8 times-longer) and a marked reduction of the apparent clearance (CLapp, 3.7 and 4.1-fold lower for GMOP-IFN and mGMOP-IFN in comparison with native IFN, respectively). Furthermore, the in vitro thermal and plasma stability of both proteins was improved. Finally, a monoclonal antibody (mAb) that recognizes an N-terminal GM-CSF epitope was able to bind both chimeras in western blots and ELISAs. This demonstrates the potential of both peptides to behave as bifunctional tags to create novel long-acting biotherapeutics and to facilitate detection and purification.
Collapse
Affiliation(s)
- María de Los Milagros Sales
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Ricardo Kratje
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Marcos Oggero
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina
| | - Natalia Ceaglio
- UNL, CONICET, FBCB (School of Biochemistry and Biological Sciences), CBL (Biotechnological Center of Litoral), Ciudad Universitaria, Ruta Nacional 168, Km 472.4, C.C. 242, S3000ZAA, Santa Fe, Argentina.
| |
Collapse
|
32
|
Daniel EJP, las Rivas M, Lira-Navarrete E, García-García A, Hurtado-Guerrero R, Clausen H, Gerken TA. Ser and Thr acceptor preferences of the GalNAc-Ts vary among isoenzymes to modulate mucin-type O-glycosylation. Glycobiology 2020; 30:910-922. [PMID: 32304323 PMCID: PMC7581654 DOI: 10.1093/glycob/cwaa036] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 12/12/2022] Open
Abstract
A family of polypeptide GalNAc-transferases (GalNAc-Ts) initiates mucin-type O-glycosylation, transferring GalNAc onto hydroxyl groups of Ser and Thr residues of target substrates. The 20 GalNAc-T isoenzymes in humans are classified into nine subfamilies according to sequence similarity. GalNAc-Ts select their sites of glycosylation based on weak and overlapping peptide sequence motifs, as well prior substrate O-GalNAc glycosylation at sites both remote (long-range) and neighboring (short-range) the acceptor. Together, these preferences vary among GalNAc-Ts imparting each isoenzyme with its own unique specificity. Studies on the first identified GalNAc-Ts showed Thr acceptors were preferred over Ser acceptors; however studies comparing Thr vs. Ser glycosylation across the GalNAc-T family are lacking. Using a series of identical random peptide substrates, with single Thr or Ser acceptor sites, we determined the rate differences (Thr/Ser rate ratio) between Thr and Ser substrate glycosylation for 12 isoenzymes (representing 7 GalNAc-T subfamilies). These Thr/Ser rate ratios varied across subfamilies, ranging from ~2 to ~18 (for GalNAc-T4/GalNAc-T12 and GalNAc-T3/GalNAc-T6, respectively), while nearly identical Thr/Ser rate ratios were observed for isoenzymes within subfamilies. Furthermore, the Thr/Ser rate ratios did not appreciably vary over a series of fixed sequence substrates of different relative activities, suggesting the ratio is a constant for each isoenzyme against single acceptor substrates. Finally, based on GalNAc-T structures, the different Thr/Ser rate ratios likely reflect differences in the strengths of the Thr acceptor methyl group binding to the active site pocket. With this work, another activity that further differentiates substrate specificity among the GalNAc-Ts has been identified.
Collapse
Affiliation(s)
| | - Matilde las Rivas
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Erandi Lira-Navarrete
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Ana García-García
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
| | - Ramon Hurtado-Guerrero
- BIFI and Laboratorio de Microscopías Avanzada (LMA), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, 50018, Spain
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Fundación ARAID, Zaragoza, 50018, Spain
| | - Henrik Clausen
- Department of Cellular and Molecular Medicine, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
- Department of Dentistry, Faculty of Health Sciences, Copenhagen Center for Glycomics (CCG), University of Copenhagen, Copenhagen N DK-2200, Denmark
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
33
|
Yang S, Wang Y, Mann M, Wang Q, Tian E, Zhang L, Cipollo JF, Ten Hagen KG, Tabak LA. Improved online LC-MS/MS identification of O-glycosites by EThcD fragmentation, chemoenzymatic reaction, and SPE enrichment. Glycoconj J 2020; 38:145-156. [PMID: 33068214 DOI: 10.1007/s10719-020-09952-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
O-glycosylation is a highly diverse and complex form of protein post-translational modification. Mucin-type O-glycosylation is initiated by the transfer of N-acetyl-galactosamine (GalNAc) to the hydroxyl group of serine, threonine and tyrosine residues through catalysis by a family of glycosyltransferases, the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (E.C. 2.4.1.41) that are conserved across metazoans. In the last decade, structural characterization of glycosylation has substantially advanced due to the development of analytical methods and advances in mass spectrometry. However, O-glycosite mapping remains challenging since mucin-type O-glycans are densely packed, often protecting proteins from cleavage by proteases. Adding to the complexity is the fact that a given glycosite can be modified by different glycans, resulting in an array of glycoforms rising from one glycosite. In this study, we investigated conditions of solid phase extraction (SPE) enrichment, protease digestion, and Electron-transfer/Higher Energy Collision Dissociation (EThcD) fragmentation to optimize identification of O-glycosites in densely glycosylated proteins. Our results revealed that anion-exchange stationary phase is sufficient for glycopeptide enrichment; however, the use of a hydrophobic-containing sorbent was detrimental to the binding of polar-hydrophilic glycopeptides. Different proteases can be employed for enhancing coverage of O-glycosites, while derivatization of negatively charged amino acids or sialic acids would enhance the identification of a short O-glycopeptides. Using a longer than normal electron transfer dissociation (ETD) reaction time, we obtained enhanced coverage of peptide bonds that facilitated the localization of O-glycosites. O-glycosite mapping strategy via proteases, cut-off filtration and solid-phase chemoenzymatic processing. Glycopeptides are enriched by SPE column, followed by release of N-glycans, collection of higher MW O-glycopeptides via MW cut-off filter, O-glycopeptide release via O-protease, and finally detected by LC-MS/MS using EThcD.
Collapse
Affiliation(s)
- Shuang Yang
- Biological Chemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yan Wang
- Mass Spectrometry Facility, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Matthew Mann
- Biological Chemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Qiong Wang
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - E Tian
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Liping Zhang
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John F Cipollo
- Laboratory of Bacterial Polysaccharides, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lawrence A Tabak
- Biological Chemistry Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
34
|
Napoletano C, Steentoff C, Battisti F, Ye Z, Rahimi H, Zizzari IG, Dionisi M, Cerbelli B, Tomao F, French D, d’Amati G, Panici PB, Vakhrushev S, Clausen H, Nuti M, Rughetti A. Investigating Patterns of Immune Interaction in Ovarian Cancer: Probing the O-glycoproteome by the Macrophage Galactose-Like C-type Lectin (MGL). Cancers (Basel) 2020; 12:cancers12102841. [PMID: 33019700 PMCID: PMC7600217 DOI: 10.3390/cancers12102841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/19/2020] [Accepted: 09/29/2020] [Indexed: 12/28/2022] Open
Abstract
Glycosylation, the posttranslational linking of sugar molecules to proteins, is notoriously altered during tumor transformation. More specifically in carcinomas, GalNAc-type O-glycosylation, is characterized by biosynthetically immature truncated glycans present on the cancer cell surface, which profoundly impact anti-tumor immune recognition. The tumor-associated glycan pattern may thus be regarded as a biomarker of immune modulation. In epithelial ovarian cancer (EOC) there is a particular lack of specific biomarkers and molecular targets to aid early diagnosis and develop novel therapeutic interventions. The aim of this study was to investigate the ovarian cancer O-glycoproteome and identify tumor-associated glycoproteins relevant in tumor-dendritic cell (DC) interactions, mediated by macrophage galactose-like C type lectin (MGL), which recognizes the tumor-associated Tn O-glycan. Lectin weak affinity chromatography (LWAC) was employed to probe the O-glycopeptidome by MGL and Vicia villosa agglutinin (VVA) lectin using glycoengineered ovarian cancer cell lines and ovarian cancer tissues as input material. Biochemical and bioinformatics analysis gave information on the glycan arrangement recognized by MGL in tumor cells. The potential MGL binders identified were located, as expected, at the cell membrane, but also within the intracellular compartment and the matrisome, suggesting that MGL in vivo may play a complex role in sensing microenvironmental cues. The tumor glycoproteins binders for MGL may become relevant to characterize the interaction between the immune system and tumor progression and contribute to the design of glycan targeting-based strategies for EOC immunotherapeutic interventions.
Collapse
Affiliation(s)
- Chiara Napoletano
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Catharina Steentoff
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Federico Battisti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Hassan Rahimi
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Ilaria Grazia Zizzari
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Marco Dionisi
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
| | - Bruna Cerbelli
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (B.C.); (G.d.)
| | - Federica Tomao
- Department of Gynecology-Obstetrics and Urology, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; (F.T.); (P.B.P.)
| | - Deborah French
- Department of Clinical and Molecular Medicine, “Sapienza” University of Rome, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Giulia d’Amati
- Department of Radiology, Oncology and Pathology, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (B.C.); (G.d.)
| | - Pierluigi Benedetti Panici
- Department of Gynecology-Obstetrics and Urology, “Sapienza” University of Rome, Viale Regina Elena, 324, 00161 Rome, Italy; (F.T.); (P.B.P.)
| | - Sergey Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine and School of Dentistry, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark; (C.S.); (Z.Y.); (S.V.); (H.C.)
| | - Marianna Nuti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
- Correspondence: (M.N.); (A.R.); Tel.: +39-06-4997-3029 (M.N.); +39-06-4997-3025 (A.R.)
| | - Aurelia Rughetti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324, 00161 Rome, Italy; (C.N.); (F.B.); (H.R.); (I.G.Z.); (M.D.)
- Correspondence: (M.N.); (A.R.); Tel.: +39-06-4997-3029 (M.N.); +39-06-4997-3025 (A.R.)
| |
Collapse
|
35
|
Madsen TD, Hansen LH, Hintze J, Ye Z, Jebari S, Andersen DB, Joshi HJ, Ju T, Goetze JP, Martin C, Rosenkilde MM, Holst JJ, Kuhre RE, Goth CK, Vakhrushev SY, Schjoldager KT. An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles. Nat Commun 2020; 11:4033. [PMID: 32820167 PMCID: PMC7441158 DOI: 10.1038/s41467-020-17473-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Peptide hormones and neuropeptides encompass a large class of bioactive peptides that regulate physiological processes like anxiety, blood glucose, appetite, inflammation and blood pressure. Here, we execute a focused discovery strategy to provide an extensive map of O-glycans on peptide hormones. We find that almost one third of the 279 classified peptide hormones carry O-glycans. Many of the identified O-glycosites are conserved and are predicted to serve roles in proprotein processing, receptor interaction, biodistribution and biostability. We demonstrate that O-glycans positioned within the receptor binding motifs of members of the neuropeptide Y and glucagon families modulate receptor activation properties and substantially extend peptide half-lives. Our study highlights the importance of O-glycosylation in the biology of peptide hormones, and our map of O-glycosites in this large class of biomolecules serves as a discovery platform for an important class of molecules with potential opportunities for drug designs.
Collapse
Affiliation(s)
- Thomas D Madsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Lasse H Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen O, Denmark
| | - John Hintze
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Shifa Jebari
- Biofisika Institute (UPV/EHU, CSIC), Departamento de Bioquímica, Universidad del País Vasco, Bilbao, 48080, Spain
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen O, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Cesar Martin
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
36
|
Prabha A, Balaji PV. Characterization of left-handed beta helix-domains, and identification and functional annotation of proteins containing such domains. Proteins 2020; 89:6-20. [PMID: 32748987 DOI: 10.1002/prot.25990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 05/12/2020] [Accepted: 07/26/2020] [Indexed: 11/12/2022]
Abstract
Only about 0.3% of the entries in UniProt database have manually curated annotation. Annotation at the molecular level often relies on low-throughput one-protein-at-a-time approach. Computational methods bridge this gap by assigning function based on sequence and/or fold similarity. Left-handed beta helix (LbH) consists of three repeating six-stranded beta-strands forming an 18-mer turn of the helix. Analysis of LbH-domains showed that variations are found in the number of residues in a beta-strand (5-7, 6 being the most common), number of turns (4-10) of the helix, insertions of one or more loops of variable length (0-36 residues), and the location of loop insertion. An 18-mer HMM profile was created which identifies LbH-domain containing proteins using sequence as the only input; the number of false positives is zero when proteins tested were those with known 3D structures. 136 474 entries of TrEMBL database were found to contain LbH-domain. Rules developed by analyzing LbH-domain containing acyltransferases, gamma-class carbonic anhydrases, and nucleotidyltransferases have led to the annotation of 17 389 TrEMBL entries which currently have no functional tag.
Collapse
Affiliation(s)
- Anu Prabha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Petety V Balaji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
37
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
MOHL JONATHONE, GERKEN THOMAS, LEUNG MINGYING. Predicting mucin-type O-Glycosylation using enhancement value products from derived protein features. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020; 19:2040003. [PMID: 33208985 PMCID: PMC7671581 DOI: 10.1142/s0219633620400039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mucin-type O-glycosylation is one of the most common post-translational modifications of proteins. This glycosylation is initiated in the Golgi by the addition of the sugar N-acetylgalactosamine (GalNAc) onto protein Ser and Thr residues by a family of polypeptide GalNAc transferases. In humans there are 20 isoforms that are differentially expressed across tissues that serve multiple important biological roles. Using random peptide substrates, isoform specific amino acid preferences have been obtained in the form of enhancement values (EV). These EVs alone have previously been used to predict O-glycosylation sites via the web based ISOGlyP (Isoform Specific O-Glycosylation Prediction) tool. Here we explore additional protein features to determine whether these can complement the random peptide derived enhancement values and increase the predictive power of ISOGlyP. The inclusion of additional protein substrate features (such as secondary structure and surface accessibility) was found to increase sensitivity with minimal loss of specificity, when tested with three different published in vivo O-glycoproteomics data sets, thus increasing the overall accuracy of the ISOGlyP predictions.
Collapse
Affiliation(s)
- JONATHON E. MOHL
- Department of Mathematical Sciences and Border Biomedical Research
Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - THOMAS GERKEN
- Departments of Biochemistry and Chemistry, Case Western Reserve
University, Cleveland, OH, 44106, USA
| | - MING-YING LEUNG
- Department of Mathematical Sciences and Border Biomedical Research
Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
39
|
Bagdonaite I, Pallesen EM, Ye Z, Vakhrushev SY, Marinova IN, Nielsen MI, Kramer SH, Pedersen SF, Joshi HJ, Bennett EP, Dabelsteen S, Wandall HH. O-glycan initiation directs distinct biological pathways and controls epithelial differentiation. EMBO Rep 2020; 21:e48885. [PMID: 32329196 PMCID: PMC7271655 DOI: 10.15252/embr.201948885] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
Post-translational modifications (PTMs) greatly expand the function and potential for regulation of protein activity, and O-glycosylation is among the most abundant and diverse PTMs. Initiation of O-GalNAc glycosylation is regulated by 20 distinct GalNAc-transferases (GalNAc-Ts), and deficiencies in individual GalNAc-Ts are associated with human disease, causing subtle but distinct phenotypes in model organisms. Here, we generate a set of isogenic keratinocyte cell lines lacking either of the three dominant and differentially expressed GalNAc-Ts. Through the ability of keratinocytes to form epithelia, we investigate the phenotypic consequences of the loss of individual GalNAc-Ts. Moreover, we probe the cellular responses through global transcriptomic, differential glycoproteomic, and differential phosphoproteomic analyses. We demonstrate that loss of individual GalNAc-T isoforms causes distinct epithelial phenotypes through their effect on specific biological pathways; GalNAc-T1 targets are associated with components of the endomembrane system, GalNAc-T2 targets with cell-ECM adhesion, and GalNAc-T3 targets with epithelial differentiation. Thus, GalNAc-T isoforms serve specific roles during human epithelial tissue formation.
Collapse
Affiliation(s)
- Ieva Bagdonaite
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Emil Mh Pallesen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Irina N Marinova
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Mathias I Nielsen
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Signe H Kramer
- Cell Biology and Physiology, Department of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Cell Biology and Physiology, Department of Science, University of Copenhagen, Copenhagen, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Eric P Bennett
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Sally Dabelsteen
- School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
40
|
de Las Rivas M, Paul Daniel EJ, Narimatsu Y, Compañón I, Kato K, Hermosilla P, Thureau A, Ceballos-Laita L, Coelho H, Bernadó P, Marcelo F, Hansen L, Maeda R, Lostao A, Corzana F, Clausen H, Gerken TA, Hurtado-Guerrero R. Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3. Nat Chem Biol 2020; 16:351-360. [PMID: 31932717 PMCID: PMC7923394 DOI: 10.1038/s41589-019-0444-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 11/09/2022]
Abstract
Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHT178R↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3 or FGF23 results in hyperphosphatemia and familial tumoral calcinosis. We explored the molecular mechanism for GalNAc-T3 glycosylation of FGF23 using engineered cell models and biophysical studies including kinetics, molecular dynamics and X-ray crystallography of GalNAc-T3 complexed to glycopeptide substrates. GalNAc-T3 uses a lectin domain mediated mechanism to glycosylate Thr178 requiring previous glycosylation at Thr171. Notably, Thr178 is a poor substrate site with limiting glycosylation due to substrate clashes leading to destabilization of the catalytic domain flexible loop. We suggest GalNAc-T3 specificity for FGF23 and its ability to control circulating levels of intact FGF23 is achieved by FGF23 being a poor substrate. GalNAc-T3's structure further reveals the molecular bases for reported disease-causing mutations. Our findings provide an insight into how GalNAc-T isoenzymes achieve isoenzyme-specific nonredundant functions.
Collapse
Affiliation(s)
- Matilde de Las Rivas
- BIFI, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | | | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Ismael Compañón
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, Logroño, Spain
| | - Kentaro Kato
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
- Department of Eco-epidemiology, Institute of Tropical Medicine Nagasaki University, Nagasaki, Japan
| | - Pablo Hermosilla
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, Spain
| | | | - Laura Ceballos-Laita
- BIFI, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Helena Coelho
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, Caparica, Portugal
- CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
| | - Pau Bernadó
- Centre de Biochimie Structurale. INSERM, CNRS, Université de Montpellier, Montpellier, France
| | - Filipa Marcelo
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Nova de Lisboa, Caparica, Portugal
| | - Lars Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Ryota Maeda
- Department of Hematology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Anabel Lostao
- Laboratorio de Microscopías Avanzadas, Instituto de Nanociencia de Aragón, Universidad de Zaragoza, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
- Instituto de Ciencia de Materiales de Aragón, Universidad de Zaragoza-CSIC, Zaragoza, Spain
| | - Francisco Corzana
- Departamento de Química, Universidad de La Rioja, Centro de Investigación en Síntesis Química, Logroño, Spain
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Gerken
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Ramon Hurtado-Guerrero
- BIFI, University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain.
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark.
- Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
41
|
Flowers SA, Grant OC, Woods RJ, Rebeck GW. O-glycosylation on cerebrospinal fluid and plasma apolipoprotein E differs in the lipid-binding domain. Glycobiology 2020; 30:74-85. [PMID: 31616924 PMCID: PMC7335482 DOI: 10.1093/glycob/cwz084] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 10/01/2019] [Accepted: 10/02/2019] [Indexed: 01/25/2023] Open
Abstract
The O-glycoprotein apolipoprotein E (APOE), the strongest genetic risk factor for Alzheimer's disease, associates with lipoproteins. Cerebrospinal fluid (CSF) APOE binds only high-density lipoproteins (HDLs), while plasma APOE attaches to lipoproteins of diverse sizes with binding fine-tuned by the C-terminal loop. To better understand the O-glycosylation on this critical molecule and differences across tissues, we analyzed the O-glycosylation on APOE isolated from the plasma and CSF of aged individuals. Detailed LC-MS/MS analyses allowed the identification of the glycosite and the attached glycan and site occupancy for all detectable glycosites on APOE and further three-dimensional modeling of physiological glycoforms of APOE. APOE is O-glycosylated at several sites: Thr8, Thr18, Thr194, Ser197, Thr289, Ser290 and Ser296. Plasma APOE held more abundant (20.5%) N-terminal (Thr8) sialylated core 1 (Neu5Acα2-3Galβ1-3GalNAcα1-) glycosylation compared to CSF APOE (0.1%). APOE was hinge domain glycosylated (Thr194 and Ser197) in both CSF (27.3%) and plasma (10.3%). CSF APOE held almost 10-fold more abundant C-terminal (Thr289, Ser290 and Ser296) glycosylation (36.8% of CSF peptide283-299 was glycosylated, 3.8% of plasma peptide283-299), with sialylated and disialylated (Neu5Acα2-3Galβ1-3(Neu5Acα2-6) GalNAcα1-) core 1 structures. Modeling suggested that C-terminal glycosylation, particularly the branched disialylated structure, could interact across domains including the receptor-binding domain. These data, although limited by sample size, suggest that there are tissue-specific APOE glycoforms. Sialylated glycans, previously shown to improve HDL binding, are more abundant on the lipid-binding domain of CSF APOE and reduced in plasma APOE. This indicates that APOE glycosylation may be implicated in lipoprotein-binding flexibility.
Collapse
Affiliation(s)
- Sarah A Flowers
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington DC 20007, USA
| | - Oliver C Grant
- Biochemistry and Molecular Chemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - Robert J Woods
- Biochemistry and Molecular Chemistry, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Rd, Athens, GA 30602, USA
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, 3970 Reservoir Rd NW, Washington DC 20007, USA
| |
Collapse
|
42
|
Low Molecular Seleno-Aminopolysaccharides Protect the Intestinal Mucosal Barrier of Rats under Weaning Stress. Int J Mol Sci 2019; 20:ijms20225727. [PMID: 31731602 PMCID: PMC6888692 DOI: 10.3390/ijms20225727] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Low molecular seleno-aminopolysaccharide (LSA) was synthesized with sodium selenite and low molecular aminopolysaccharide (LA), which is an organic selenium compound. This study is aimed to investigate the protective effect of LSA on the intestinal mucosal barrier in weaning stress rats by detecting the intestinal tissue morphology and function, mucosal thickness and permeability, the structure of MUC2, antioxidant index, the expression level of intracellular transcription factor NF-E2-related factor 2 (Nrf2), and its related factors. The results showed that LSA significantly increased the height of intestinal villi (p < 0.05) and increased the thickness of intestinal mucosa and the number of goblet cells, which indicated that LSA has a protective effect on the intestinal mucosal barrier that is damaged by weaning. Moreover, LSA significantly reduced the level of DAO, D-LA, and LPS compared with the weaning group (p < 0.05), which indicated that LSA reduced the intestinal damage and permeability of weaning rats. In addition, LSA could increase the number and length of glycans chains and the abundance of acid glycans structures in the MUC2 structure, which indicated that LSA alleviated the changes of intestinal mucus protein structure. LSA significantly increased the levels of GSH-Px, SOD, LDH, and CAT, while it decreased the level of MDA in serum and intestinal tissue, which suggested that LSA significantly enhanced the antioxidant capacity and reduced oxidative stress of weaning rats. RT-PCR results showed that LSA significantly increased the expression level of antioxidant genes (GSH-Px, SOD, Nrf2, HO-1), glycosyltransferase genes (GalNT1, GalNT3, GalNT7) and mucin gene (MUC2) in intestinal mucosa (p < 0.05). The results of western blot showed that the LSA activated the Nrf2 signaling pathway by down-regulating the expression of Keap1and up-regulating the expression of Nrf2, and protected the intestinal mucosa from oxidative stress. Overall, LSA could play a protective role in intestinal mucosal barrier of weaning rats by activating the Nrf2 pathway and alleviating the alnormal change of mucin MUC2.
Collapse
|
43
|
Amann T, Schmieder V, Faustrup Kildegaard H, Borth N, Andersen MR. Genetic engineering approaches to improve posttranslational modification of biopharmaceuticals in different production platforms. Biotechnol Bioeng 2019; 116:2778-2796. [PMID: 31237682 DOI: 10.1002/bit.27101] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/27/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
The number of approved biopharmaceuticals, where product quality attributes remain of major importance, is increasing steadily. Within the available variety of expression hosts, the production of biopharmaceuticals faces diverse limitations with respect to posttranslational modifications (PTM), while different biopharmaceuticals demand different forms and specifications of PTMs for proper functionality. With the growing toolbox of genetic engineering technologies, it is now possible to address general as well as host- or biopharmaceutical-specific product quality obstacles. In this review, we present diverse expression systems derived from mammalians, bacteria, yeast, plants, and insects as well as available genetic engineering tools. We focus on genes for knockout/knockdown and overexpression for meaningful approaches to improve biopharmaceutical PTMs and discuss their applicability as well as future trends in the field.
Collapse
Affiliation(s)
- Thomas Amann
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Valerie Schmieder
- acib GmbH-Austrian Centre of Industrial Biotechnology, Graz, Austria.,Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicole Borth
- Department of Biotechnology, BOKU University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
44
|
Stewart TJ, Takahashi K, Whitaker RH, Raska M, Placzek WJ, Novak J, Renfrow MB. IgA1 hinge-region clustered glycan fidelity is established early during semi-ordered glycosylation by GalNAc-T2. Glycobiology 2019; 29:543-556. [PMID: 30759204 PMCID: PMC6583770 DOI: 10.1093/glycob/cwz007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 01/13/2019] [Accepted: 02/04/2019] [Indexed: 01/03/2023] Open
Abstract
GalNAc-type O-glycans are often added to proteins post-translationally in a clustered manner in repeat regions of proteins, such as mucins and IgA1. Observed IgA1 glycosylation patterns show that glycans occur at similar sites with similar structures. It is not clear how the sites and number of glycans added to IgA1, or other proteins, can follow a conservative process. GalNAc-transferases initiate GalNAc-type glycosylation. In IgA nephropathy, an autoimmune disease, the sites and O-glycan structures of IgA1 hinge-region are altered, giving rise to a glycan autoantigen. To better understand how GalNAc-transferases determine sites and densities of clustered O-glycans, we used IgA1 hinge-region (HR) segment as a probe. Using LC-MS, we demonstrated a semi-ordered process of glycosylation by GalNAc-T2 towards the IgA1 HR. The catalytic domain was responsible for selection of four initial sites based on amino-acid sequence recognition. Both catalytic and lectin domains were involved in multiple second site-selections, each dependent on initial site-selection. Our data demonstrated that multiple start-sites and follow-up pathways were key to increasing the number of glycans added. The lectin domain predominately enhanced IgA1 HR glycan density by increasing synthesis pathway exploration by GalNAc-T2. Our data indicated a link between site-specific glycan addition and clustered glycan density that defines a mechanism of how conserved clustered O-glycosylation patterns and glycoform populations of IgA1 can be controlled by GalNAc-T2. Together, these findings characterized a correlation between glycosylation pathway diversity and glycosylation density, revealing mechanisms by which a single GalNAc-T isozyme can limit and define glycan heterogeneity in a disease-relevant context.
Collapse
Affiliation(s)
- Tyler J Stewart
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Nephrology, Fujita Health University, Toyoake, Japan
| | - Robert H Whitaker
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Milan Raska
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Immunology, Palacky University and University Hospital, Olomouc, Czech Republic
| | - William J Placzek
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jan Novak
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Matthew B Renfrow
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
45
|
Narimatsu Y, Joshi HJ, Schjoldager KT, Hintze J, Halim A, Steentoft C, Nason R, Mandel U, Bennett EP, Clausen H, Vakhrushev SY. Exploring Regulation of Protein O-Glycosylation in Isogenic Human HEK293 Cells by Differential O-Glycoproteomics. Mol Cell Proteomics 2019; 18:1396-1409. [PMID: 31040225 PMCID: PMC6601209 DOI: 10.1074/mcp.ra118.001121] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/26/2019] [Indexed: 02/04/2023] Open
Abstract
Most proteins trafficking the secretory pathway of metazoan cells will acquire GalNAc-type O-glycosylation. GalNAc-type O-glycosylation is differentially regulated in cells by the expression of a repertoire of up to twenty genes encoding polypeptide GalNAc-transferase isoforms (GalNAc-Ts) that initiate O-glycosylation. These GalNAc-Ts orchestrate the positions and patterns of O-glycans on proteins in coordinated, but poorly understood ways - guided partly by the kinetic properties and substrate specificities of their catalytic domains, as well as by modulatory effects of their unique GalNAc-binding lectin domains. Here, we provide the hereto most comprehensive characterization of nonredundant contributions of individual GalNAc-T isoforms to the O-glycoproteome of the human HEK293 cell using quantitative differential O-glycoproteomics on a panel of isogenic HEK293 cells with knockout of GalNAc-T genes (GALNT1, T2, T3, T7, T10, or T11). We confirm that a major part of the O-glycoproteome is covered by redundancy, whereas distinct O-glycosite subsets are covered by nonredundant GalNAc-T isoform-specific functions. We demonstrate that the GalNAc-T7 and T10 isoforms function in follow-up of high-density O-glycosylated regions, and that GalNAc-T11 has highly restricted functions and essentially only serves the low-density lipoprotein-related receptors in linker regions (C6XXXTC1) between the ligand-binding repeats.
Collapse
Affiliation(s)
- Yoshiki Narimatsu
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | - Hiren J Joshi
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Katrine T Schjoldager
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - John Hintze
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Adnan Halim
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Catharina Steentoft
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Rebecca Nason
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Ulla Mandel
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Eric P Bennett
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Henrik Clausen
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- From the ‡Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| |
Collapse
|
46
|
Hansen LH, Madsen TD, Goth CK, Clausen H, Chen Y, Dzhoyashvili N, Iyer SR, Sangaralingham SJ, Burnett JC, Rehfeld JF, Vakhrushev SY, Schjoldager KT, Goetze JP. Discovery of O-glycans on atrial natriuretic peptide (ANP) that affect both its proteolytic degradation and potency at its cognate receptor. J Biol Chem 2019; 294:12567-12578. [PMID: 31186350 DOI: 10.1074/jbc.ra119.008102] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a peptide hormone that in response to atrial stretch is secreted from atrial myocytes into the circulation, where it stimulates vasodilatation and natriuresis. ANP is an important biomarker of heart failure where low plasma concentrations exclude cardiac dysfunction. ANP is a member of the natriuretic peptide (NP) family, which also includes the B-type natriuretic peptide (BNP) and the C-type natriuretic peptide. The proforms of these hormones undergo processing to mature peptides, and for proBNP, this process has previously been demonstrated to be regulated by O-glycosylation. It has been suggested that proANP also may undergo post-translational modifications. Here, we conducted a targeted O-glycoproteomics approach to characterize O-glycans on NPs and demonstrate that all NP members can carry O-glycans. We identified four O-glycosites in proANP in the porcine heart, and surprisingly, two of these were located on the mature bioactive ANP itself. We found that one of these glycans is located within a conserved sequence motif of the receptor-binding region, suggesting that O-glycans may serve a function beyond intracellular processing and maturation. We also identified an O-glycoform of proANP naturally occurring in human circulation. We demonstrated that site-specific O-glycosylation shields bioactive ANP from proteolytic degradation and modifies potency at its cognate receptor in vitro Furthermore, we showed that ANP O-glycosylation attenuates acute renal and cardiovascular ANP actions in vivo The discovery of novel glycosylated ANP proteoforms reported here significantly improves our understanding of cardiac endocrinology and provides important insight into the etiology of heart failure.
Collapse
Affiliation(s)
- Lasse H Hansen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark,Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thomas Daugbjerg Madsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Henrik Clausen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Yang Chen
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Nina Dzhoyashvili
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Seethalakshmi R Iyer
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - John C Burnett
- Cardiorenal Research Laboratory, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota 55905
| | - Jens F Rehfeld
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, 9 Blegdamsvej, 2100 Copenhagen, Denmark .,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 3 Blegdamsvej, 2200 Copenhagen, Denmark
| |
Collapse
|
47
|
de Las Rivas M, Lira-Navarrete E, Gerken TA, Hurtado-Guerrero R. Polypeptide GalNAc-Ts: from redundancy to specificity. Curr Opin Struct Biol 2019; 56:87-96. [PMID: 30703750 PMCID: PMC6656595 DOI: 10.1016/j.sbi.2018.12.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/12/2018] [Accepted: 12/19/2018] [Indexed: 12/11/2022]
Abstract
Mucin-type O-glycosylation is a post-translational modification (PTM) that is predicted to occur in more than the 80% of the proteins that pass through the Golgi apparatus. This PTM is initiated by a family of polypeptide GalNAc-transferases (GalNAc-Ts) that modify Ser and Thr residues of proteins through the addition of a GalNAc moiety. These enzymes are type II membrane proteins that consist of a Golgi luminal catalytic domain connected by a flexible linker to a ricin type lectin domain. Together, both domains account for the different glycosylation preferences observed among isoenzymes. Although it is well accepted that most of the family members share some degree of redundancy toward their protein and glycoprotein substrates, it has been recently found that several GalNAc-Ts also possess activity toward specific targets. Despite the high similarity between isoenzymes, structural differences have recently been reported that are key to understanding the molecular basis of both their redundancy and specificity. The present review focuses on the molecular aspects of the protein substrate recognition and the different glycosylation preferences of these enzymes, which in turn will serve as a roadmap to the rational design of specific modulators of mucin-type O-glycosylation.
Collapse
Affiliation(s)
- Matilde de Las Rivas
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
| | - Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, Copenhagen, Denmark
| | - Thomas A Gerken
- Departments of Biochemistry, Chemistry and Pediatrics Case Western Reserve University, Cleveland, OH, USA.
| | - Ramon Hurtado-Guerrero
- BIFI, University of Zaragoza, BIFI-IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain; Fundación ARAID, 50018, Zaragoza, Spain.
| |
Collapse
|
48
|
Salom D, Jin H, Gerken TA, Yu C, Huang L, Palczewski K. Human red and green cone opsins are O-glycosylated at an N-terminal Ser/Thr-rich domain conserved in vertebrates. J Biol Chem 2019; 294:8123-8133. [PMID: 30948514 DOI: 10.1074/jbc.ra118.006835] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/15/2019] [Indexed: 12/28/2022] Open
Abstract
There are fundamental differences in the structures of outer segments between rod and cone photoreceptor cells in the vertebrate retina. Visual pigments are the only essential membrane proteins that differ between rod and cone outer segments, making it likely that they contribute to these structural differences. Human rhodopsin is N-glycosylated on Asn2 and Asn15, whereas human (h) red and green cone opsins (hOPSR and hOPSG, respectively) are N-glycosylated at Asn34 Here, utilizing a monoclonal antibody (7G8 mAB), we demonstrate that hOPSR and hOPSG from human retina also are O-glycosylated with full occupancy. We determined that 7G8 mAB recognizes the N-terminal sequence 21DSTQSSIF28 of hOPSR and hOPSG from extracts of human retina, but only after their O-glycans have been removed with O-glycosidase treatment, thus revealing this post-translational modification of red and green cone opsins. In addition, we show that hOPSR and hOPSG from human retina are recognized by jacalin, a lectin that binds to O-glycans, preferentially to Gal-GalNAc. Next, we confirmed the presence of O-glycans on OPSR and OPSG from several vertebrate species, including mammals, birds, and amphibians. Finally, the analysis of bovine OPSR by MS identified an O-glycan on Ser22, a residue that is semi-conserved (Ser or Thr) among vertebrate OPSR and OPSG. These results suggest that O-glycosylation is a fundamental feature of red and green cone opsins, which may be relevant to their function or to cone cell development, and that differences in this post-translational modification also could contribute to the different morphologies of rod and cone photoreceptors.
Collapse
Affiliation(s)
- David Salom
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, Irvine, California 92697; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106.
| | - Hui Jin
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106
| | - Thomas A Gerken
- Department of Biochemistry and Chemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, California 92697
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, University of California, Irvine, Irvine, California 92697; Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106.
| |
Collapse
|
49
|
Steentoft C, Fuhrmann M, Battisti F, Van Coillie J, Madsen TD, Campos D, Halim A, Vakhrushev SY, Joshi HJ, Schreiber H, Mandel U, Narimatsu Y. A strategy for generating cancer-specific monoclonal antibodies to aberrant O-glycoproteins: identification of a novel dysadherin-Tn antibody. Glycobiology 2019; 29:307-319. [PMID: 30726901 PMCID: PMC6430981 DOI: 10.1093/glycob/cwz004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 12/25/2022] Open
Abstract
Successful application of potent antibody-based T-cell engaging immunotherapeutic strategies is currently limited mainly to hematological cancers. One major reason is the lack of well-characterized antigens on solid tumors with sufficient cancer specific expression. Aberrantly O-glycosylated proteins contain promising cancer-specific O-glycopeptide epitopes suitable for immunotherapeutic applications, but currently only few examples of such antibody epitopes have been identified. We previously showed that chimeric antigen receptor T-cells directed towards aberrantly O-glycosylated MUC1 can control malignant growth in a mouse model. Here, we present a discovery platform for the generation of cancer-specific monoclonal antibodies targeting aberrant O-glycoproteins. The strategy is based on cancer cell lines engineered to homogeneously express the truncated Tn O-glycoform, the so-called SimpleCells. We used SimpleCells of different cancer origin to elicit monoclonal antibodies with selectivity for aberrant O-glycoproteins. For validation we selected and characterized one monoclonal antibody (6C5) directed to a Tn-glycopeptide in dysadherin (FXYD5), known to be upregulated in cancer and promote metastasis. While dysadherin is widely expressed also in normal cells, we demonstrated that the 6C5 epitope is specifically expressed in cancer.
Collapse
Affiliation(s)
- Catharina Steentoft
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Max Fuhrmann
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Federico Battisti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena 324 Rome, Italy
| | - Julie Van Coillie
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Thomas D Madsen
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Diana Campos
- Instituto de Investigação e Inovação e Saúde, Universidade do Porto, Rua Júlio Amaral de Carvalho 45, Porto, Portugal
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Rua Júlio Amaral de Carvalho 45, Porto, Portugal
| | - Adnan Halim
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Hans Schreiber
- Department of Pathology, Committee on Immunology, Committee on Cancer Biology, The University of Chicago, 5841 S. Maryland Avenue, Chicago, IL, USA
| | - Ulla Mandel
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| | - Yoshiki Narimatsu
- Copenhagen Center for Glycomics, Departments of Cellular and Molecular Medicine and Odontology, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen N, Denmark
| |
Collapse
|
50
|
Hu Y, Feng J, Wu F. The Multiplicity of Polypeptide GalNAc-Transferase: Assays, Inhibitors, and Structures. Chembiochem 2018; 19:2503-2521. [PMID: 30152088 DOI: 10.1002/cbic.201800303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Indexed: 12/18/2022]
Abstract
Mucin-type O-glycosylation is the dominant form of glycosylation in eukaryotes and plays an important role in various physiological processes. The polypeptide GalNAc-transferase (GalNAc-T) catalyzes the first step in the attachment of mucin-type O-glycosylation. GalNAc-T was recently uncovered to be linked with cancer, atherogenic dyslipidemia, and X-linked hypophosphatemic rickets. Therefore, it has attracted increasing interest as a new target for exploring the underlying mechanism and developing new treatments for related diseases. Decades of studies on GalNAc-T have laid a stable foundation for understanding the catalytic mechanism, determining atom-resolution three-dimensional structures, and developing various types of biochemical assays as well as small-molecule inhibitor leads. Here, we systematically summarize this invaluable knowledge on GalNAc-T and cultivate new perspectives to foster breakthrough points for mucin-type O-glycosylation.
Collapse
Affiliation(s)
- Youtian Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Feng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|