1
|
Liu J, Liu X, Fang W. Recent advances in chemoenzymatic synthesis of human ABO blood group antigens. Biotechnol Adv 2025; 82:108599. [PMID: 40360076 DOI: 10.1016/j.biotechadv.2025.108599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/22/2025] [Accepted: 05/10/2025] [Indexed: 05/15/2025]
Abstract
ABO blood group antigens (namely, A, B, and H antigens) are carbohydrate epitopes on cell surface that play important roles in biological processes and blood transfusion. The structure diversity of ABH antigens structures is associated with susceptibility to different pathogen infections. Advanced synthetic methodologies are required for studying and applying ABO blood group antigens. The existing methods include chemical, enzymatic and chemoenzymatic synthesis. As an alternative approach to chemical synthesis, enzymatic synthesis provides a simple pathway to access oligosaccharide antigens under extremely mild reaction conditions, thereby avoiding laborious protecting group manipulation procedures. Enzymatic synthesis of human blood group antigens primarily relies on Leloir glycosyltransferases, alongside several glycosidases and glycoside phosphorylases. This review aims to discuss recent advancements in chemical, enzymatic and chemoenzymatic synthesis of human ABH antigens, with a particular focus on novel developments in enzymatic assembly of naturally occurring ABH antigens.
Collapse
Affiliation(s)
- Jing Liu
- College of Pharmacy, Jining Medical University, Rizhao 276826, China
| | - Xianwei Liu
- National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology Shandong University, Qingdao, Shandong 266237, China
| | - Wenyuan Fang
- College of Pharmacy, Jining Medical University, Rizhao 276826, China.
| |
Collapse
|
2
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Reprint of: Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 51:107820. [PMID: 34462167 DOI: 10.1016/j.biotechadv.2021.107820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 11/27/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
3
|
Mészáros Z, Nekvasilová P, Bojarová P, Křen V, Slámová K. Advanced glycosidases as ingenious biosynthetic instruments. Biotechnol Adv 2021; 49:107733. [PMID: 33781890 DOI: 10.1016/j.biotechadv.2021.107733] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Until recently, glycosidases, naturally hydrolyzing carbohydrate-active enzymes, have found few synthetic applications in industry, being primarily used for cleaving unwanted carbohydrates. With the establishment of glycosynthase and transglycosidase technology by genetic engineering, the view of glycosidases as industrial biotechnology tools has started to change. Their easy production, affordability, robustness, and substrate versatility, added to the possibility of controlling undesired side hydrolysis by enzyme engineering, have made glycosidases competitive synthetic tools. Current promising applications of engineered glycosidases include the production of well-defined chitooligomers, precious galactooligosaccharides or specialty chemicals such as glycosylated flavonoids. Other synthetic pathways leading to human milk oligosaccharides or remodeled antibodies are on the horizon. This work provides an overview of the synthetic achievements to date for glycosidases, emphasizing the latest trends and outlining possible developments in the field.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technická 1903/3, CZ-16628 Praha 6, Czech Republic
| | - Pavlína Nekvasilová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Viničná 5, CZ-12843, Praha 2, Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic
| | - Kristýna Slámová
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
4
|
Tsao KK, Lee AC, Racine KÉ, Keillor JW. Site-Specific Fluorogenic Protein Labelling Agent for Bioconjugation. Biomolecules 2020; 10:E369. [PMID: 32121143 PMCID: PMC7175205 DOI: 10.3390/biom10030369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/29/2023] Open
Abstract
Many clinically relevant therapeutic agents are formed from the conjugation of small molecules to biomolecules through conjugating linkers. In this study, two novel conjugating linkers were prepared, comprising a central coumarin core, functionalized with a dimaleimide moiety at one end and a terminal alkyne at the other. In our first design, we developed a protein labelling method that site-specifically introduces an alkyne functional group to a dicysteine target peptide tag that was genetically fused to a protein of interest. This method allows for the subsequent attachment of azide-functionalized cargo in the facile synthesis of novel protein-cargo conjugates. However, the fluorogenic aspect of the reaction between the linker and the target peptide was less than we desired. To address this shortcoming, a second linker reagent was prepared. This new design also allowed for the site-specific introduction of an alkyne functional group onto the target peptide, but in a highly fluorogenic and rapid manner. The site-specific addition of an alkyne group to a protein of interest was thus monitored in situ by fluorescence increase, prior to the attachment of azide-functionalized cargo. Finally, we also demonstrated that the cargo can also be attached first, in an azide/alkyne cycloaddition reaction, prior to fluorogenic conjugation with the target peptide-fused protein.
Collapse
Affiliation(s)
| | | | | | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (K.K.T.); (A.C.L.); (K.É.R.)
| |
Collapse
|
5
|
Rahfeld P, Withers SG. Toward universal donor blood: Enzymatic conversion of A and B to O type. J Biol Chem 2019; 295:325-334. [PMID: 31792054 DOI: 10.1074/jbc.rev119.008164] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transfusion of blood, or more commonly red blood cells (RBCs), is integral to health care systems worldwide but requires careful matching of blood types to avoid serious adverse consequences. Of the four main blood types, A, B, AB, and O, only O can be given to any patient. This universal donor O-type blood is crucial for emergency situations where time or resources for typing are limited, so it is often in short supply. A and B blood differ from the O type in the presence of an additional sugar antigen (GalNAc and Gal, respectively) on the core H-antigen found on O-type RBCs. Thus, conversion of A, B, and AB RBCs to O-type RBCs should be achievable by removal of that sugar with an appropriate glycosidase. The first demonstration of a B-to-O conversion by Goldstein in 1982 required massive amounts of enzyme but enabled proof-of-principle transfusions without adverse effects in humans. New α-galactosidases and α-N-acetylgalactosaminidases were identified by screening bacterial libraries in 2007, allowing improved conversion of B and the first useful conversions of A-type RBCs, although under constrained conditions. In 2019, screening of a metagenomic library derived from the feces of an AB donor enabled discovery of a significantly more efficient two-enzyme system, involving a GalNAc deacetylase and a galactosaminidase, for A conversion. This promising system works well both in standard conditions and in whole blood. We discuss remaining challenges and opportunities for the use of such enzymes in blood conversion and organ transplantation.
Collapse
Affiliation(s)
- Peter Rahfeld
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Stephen G Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada; Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
6
|
An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat Microbiol 2019; 4:1475-1485. [DOI: 10.1038/s41564-019-0469-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/25/2019] [Indexed: 01/08/2023]
|
7
|
Zhang X, Chen F, Petrella A, Chacón-Huete F, Covone J, Tsai TW, Yu CC, Forgione P, Kwan DH. A High-Throughput Glycosyltransferase Inhibition Assay for Identifying Molecules Targeting Fucosylation in Cancer Cell-Surface Modification. ACS Chem Biol 2019; 14:715-724. [PMID: 30831024 DOI: 10.1021/acschembio.8b01123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In cancers, increased fucosylation (attachment of fucose sugar residues) on cell-surface glycans, resulting from the abnormal upregulation of the expression of specific fucosyltransferase enzymes (FUTs), is one of the most important types of glycan modifications associated with malignancy. Fucosylated glycans on cell surfaces are involved in a multitude of cellular interactions and signal regulation in normal biological processes, as well as in disease. For example, sialyl LewisX is a fucosylated cell-surface glycan that is abnormally abundant in some cancers where it has been implicated in facilitating metastasis, allowing circulating tumor cells to bind to the epithelial tissue within blood vessels and invade into secondary sites by taking advantage of glycan-mediated interactions. To identify inhibitors of FUT enzymes as potential cancer therapeutics, we have developed a novel high-throughput assay that makes use of a fluorogenically labeled oligosaccharide as a probe of fucosylation. This probe, which consists of a 4-methylumbelliferyl glycoside, is recognized and hydrolyzed by specific glycoside hydrolase enzymes to release fluorescent 4-methylumbelliferone, yet when the probe is fucosylated prior to treatment with the glycoside hydrolases, hydrolysis does not occur and no fluorescent signal is produced. We have demonstrated that this assay can be used to measure the inhibition of FUT enzymes by small molecules, because blocking fucosylation will allow glycosidase-catalyzed hydrolysis of the labeled oligosaccharide to produce a fluorescent signal. Employing this assay, we have screened a focused library of small molecules for inhibitors of a human FUT enzyme involved in the synthesis of sialyl LewisX and demonstrated that our approach can be used to identify potent FUT inhibitors from compound libraries in microtiter plate format.
Collapse
Affiliation(s)
| | | | | | | | | | - Teng-Wei Tsai
- Department of Chemistry and Biochemistry, National Chung-Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | - Ching-Ching Yu
- Department of Chemistry and Biochemistry, National Chung-Cheng University, 168 University Road, Min-Hsiung, Chiayi 62102, Taiwan
| | | | | |
Collapse
|
8
|
Lee CM, Kim SY, Song J, Lee YS, Sim JS, Hahn BS. Isolation and characterization of a halotolerant and protease-resistant α-galactosidase from the gut metagenome of Hermetia illucens. J Biotechnol 2018; 279:47-54. [DOI: 10.1016/j.jbiotec.2018.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 04/29/2018] [Accepted: 05/02/2018] [Indexed: 02/04/2023]
|
9
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
10
|
Kwan DH. Structure-Guided Directed Evolution of Glycosidases: A Case Study in Engineering a Blood Group Antigen-Cleaving Enzyme. Methods Enzymol 2018; 597:25-53. [PMID: 28935105 DOI: 10.1016/bs.mie.2017.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Directed evolution is an incredibly powerful strategy for engineering enzyme function. Applying this approach to glycosidases offers enormous potential for the development of highly specialized tools in chemical glycobiology. Performing enzyme directed evolution requires the generation, by random mutagenesis, of mutant libraries from which large numbers of variant enzymes must be screened in high-throughput assays. A structure-guided "semirational" method for library creation allows researchers to target specific amino acid positions for mutagenesis, concentrating mutations where they might be most effective in order to produce mutant libraries of a manageable size, minimizing screening effort while maximizing the chances of finding improved mutants. Well-designed assays, which may use specially prepared substrates, enable efficient screening of these mutant libraries. This chapter will detail general methods in the structure-guided directed evolution of glycosidases, which have previously been employed in engineering a blood group antigen-cleaving enzyme.
Collapse
Affiliation(s)
- David H Kwan
- Centre for Applied Synthetic Biology, Centre for Structural and Functional Genomics, Concordia University, Montréal, Québec, Canada.
| |
Collapse
|
11
|
Abstract
The many advances in glycoscience have more and more brought to light the crucial role of glycosides and glycoconjugates in biological processes. Their major influence on the functionality and stability of peptides, cell recognition, health and immunity and many other processes throughout biology has increased the demand for simple synthetic methods allowing the defined syntheses of target glycosides. Additional interest in glycoside synthesis has arisen with the prospect of producing sustainable materials from these abundant polymers. Enzymatic synthesis has proven itself to be a promising alternative to the laborious chemical synthesis of glycosides by avoiding the necessity of numerous protecting group strategies. Among the biocatalytic strategies, glycosynthases, genetically engineered glycosidases void of hydrolytic activity, have gained much interest in recent years, enabling not only the selective synthesis of small glycosides and glycoconjugates, but also the production of highly functionalized polysaccharides. This review provides a detailed overview over the glycosylation possibilities of the variety of glycosynthases produced until now, focusing on the transfer of the most common glucosyl-, galactosyl-, xylosyl-, mannosyl-, fucosyl-residues and of whole glycan blocks by the different glycosynthase enzyme variants.
Collapse
Affiliation(s)
- Marc R Hayes
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426 Jülich, Germany.
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie, Heinrich-Heine-Universität Düsseldorf im Forschungszentrum Jülich, 52426 Jülich, Germany.
- Forschungszentrum Jülich, IBG-1: Biotechnology, 52426 Jülich, Germany.
| |
Collapse
|
12
|
Slámová K, Bojarová P. Engineered N-acetylhexosamine-active enzymes in glycoscience. Biochim Biophys Acta Gen Subj 2017; 1861:2070-2087. [PMID: 28347843 DOI: 10.1016/j.bbagen.2017.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND In recent years, enzymes modifying N-acetylhexosamine substrates have emerged in numerous theoretical studies as well as practical applications from biology, biomedicine, and biotechnology. Advanced enzyme engineering techniques converted them into potent synthetic instruments affording a variety of valuable glycosides. SCOPE OF REVIEW This review presents the diversity of engineered enzymes active with N-acetylhexosamine carbohydrates: from popular glycoside hydrolases and glycosyltransferases to less known oxidases, epimerases, kinases, sulfotransferases, and acetylases. Though hydrolases in natura, engineered chitinases, β-N-acetylhexosaminidases, and endo-β-N-acetylglucosaminidases were successfully employed in the synthesis of defined natural and derivatized chitooligomers and in the remodeling of N-glycosylation patterns of therapeutic antibodies. The genes of various N-acetylhexosaminyltransferases were cloned into metabolically engineered microorganisms for producing human milk oligosaccharides, Lewis X structures, and human-like glycoproteins. Moreover, mutant N-acetylhexosamine-active glycosyltransferases were applied, e.g., in the construction of glycomimetics and complex glycostructures, industrial production of low-lactose milk, and metabolic labeling of glycans. In the synthesis of biotechnologically important compounds, several innovative glycoengineered systems are presented for an efficient bioproduction of GlcNAc, UDP-GlcNAc, N-acetylneuraminic acid, and of defined glycosaminoglycans. MAJOR CONCLUSIONS The above examples demonstrate that engineering of N-acetylhexosamine-active enzymes was able to solve complex issues such as synthesis of tailored human-like glycoproteins or industrial-scale production of desired oligosaccharides. Due to the specific catalytic mechanism, mutagenesis of these catalysts was often realized through rational solutions. GENERAL SIGNIFICANCE Specific N-acetylhexosamine glycosylation is crucial in biological, biomedical and biotechnological applications and a good understanding of its details opens new possibilities in this fast developing area of glycoscience.
Collapse
Affiliation(s)
- Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic
| | - Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
13
|
Ye J, Liu XW, Peng P, Yi W, Chen X, Wang F, Cao H. Diversity-Oriented Enzymatic Modular Assembly of ABO Histo-blood Group Antigens. ACS Catal 2016. [DOI: 10.1021/acscatal.6b02755] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jinfeng Ye
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China
| | - Xian-wei Liu
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China
| | - Peng Peng
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China
| | - Wen Yi
- Institute
of Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, China
| | - Xi Chen
- Department
of Chemistry, University of California, One Shields Avenue, Davis, California 95616, United States
| | - Fengshan Wang
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China
- Key
Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical
Sciences, Shandong University, Jinan 250012, China
| | - Hongzhi Cao
- National
Glycoengineering Research Center, Shandong Provincial Key Laboratory
of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250100, China
- State Key
Laboratory of Microbiology, Shandong University, Jinan 250100, China
| |
Collapse
|
14
|
Abstract
A robust platform for facile defined glycan synthesis does not exist. Yet the need for such technology has never been greater as researchers seek to understand the full scope of carbohydrate function, stretching beyond the classical roles of structure and energy storage to encompass highly nuanced cell signaling events. To comprehensively explore and exploit the full diversity of carbohydrate functions, we must first be able to synthesize them in a controlled manner. Toward this goal, traditional chemical syntheses are inefficient while nature's own synthetic enzymes, the glycosyl transferases, can be challenging to express and expensive to employ on scale. Glycoside hydrolases represent a pool of glycan processing enzymes that can be either used in a transglycosylation mode or, better, engineered to function as "glycosynthases," mutant enzymes capable of assembling glycosides. Glycosynthases grant access to valuable glycans that act as functional and structural probes or indeed as inhibitors and therapeutics in their own right. The remodelling of glycosylation patterns in therapeutic proteins via glycoside hydrolases and their mutants is an exciting frontier in both basic research and industrial scale processes.
Collapse
Affiliation(s)
- Phillip M. Danby
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephen G. Withers
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Henze M, Schmidtke S, Hoffmann N, Steffens H, Pietruszka J, Elling L. Combination of Glycosyltransferases and a Glycosynthase in Sequential and One-Pot Reactions for the Synthesis of Type 1 and Type 2N-Acetyllactosamine Oligomers. ChemCatChem 2015. [DOI: 10.1002/cctc.201500645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manja Henze
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Simon Schmidtke
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Natalie Hoffmann
- Institut für Bioorganische Chemie; Heinrich-Heine-Universität Düsseldorf; Forschungszentrum Jülich; Stetternicher Forst Gebäude 15.8 52426 Jülich Germany
| | - Hanna Steffens
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie; Heinrich-Heine-Universität Düsseldorf; Forschungszentrum Jülich; Stetternicher Forst Gebäude 15.8 52426 Jülich Germany
- IBG-1: Biotechnology; Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Lothar Elling
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| |
Collapse
|
16
|
Kwan DH, Constantinescu I, Chapanian R, Higgins MA, Kötzler MP, Samain E, Boraston AB, Kizhakkedathu JN, Withers SG. Toward Efficient Enzymes for the Generation of Universal Blood through Structure-Guided Directed Evolution. J Am Chem Soc 2015; 137:5695-705. [PMID: 25870881 DOI: 10.1021/ja5116088] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Blood transfusions are critically important in many medical procedures, but the presence of antigens on red blood cells (RBCs, erythrocytes) means that careful blood-typing must be carried out prior to transfusion to avoid adverse and sometimes fatal reactions following transfusion. Enzymatic removal of the terminal N-acetylgalactosamine or galactose of A- or B-antigens, respectively, yields universal O-type blood, but is inefficient. Starting with the family 98 glycoside hydrolase from Streptococcus pneumoniae SP3-BS71 (Sp3GH98), which cleaves the entire terminal trisaccharide antigenic determinants of both A- and B-antigens from some of the linkages on RBC surface glycans, through several rounds of evolution, we developed variants with vastly improved activity toward some of the linkages that are resistant to cleavage by the wild-type enzyme. The resulting enzyme effects more complete removal of blood group antigens from cell surfaces, demonstrating the potential for engineering enzymes to generate antigen-null blood from donors of various types.
Collapse
Affiliation(s)
| | | | | | - Melanie A Higgins
- ⊥Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | | | - Eric Samain
- #Centre de Recherches sur les Macromolécules Végétales, Centre National de la Recherche Scientifique, Grenoble Cedex 9, France BP 53, 38041
| | - Alisdair B Boraston
- ⊥Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada V8W 3P6
| | | | | |
Collapse
|