1
|
Huang Y, Zhong W, Varga KE, Benkő Z, Pócsi I, Yang C, Molnár I. Promoting the glycosylation of drug-like natural products in a Saccharomyces cerevisiae chassis by deletion of endogenous glycosidases. BIORESOURCE TECHNOLOGY 2025; 422:132258. [PMID: 39971105 DOI: 10.1016/j.biortech.2025.132258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/16/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
Glycosylation is an effective strategy to improve the absorption, distribution, metabolism, excretion, and toxicity of natural product (NP) pharmacophores. While heterologous production of broad-spectrum fungal glucosyltransferases such as BbGT86 of Beauveria bassiana yields varied phenolic glucoconjugates in S. cerevisiae, endogenous yeast glycosidases diminish the conversion yields and limit the structural diversity of the products. We set out to improve the efficiency and broaden the regiospecificity of the glucosylation of NPs or their unnatural product analogues (uNPs). Using yeast strains deficient in exoglycanases EXG1 or SPR1, we evaluated total biosynthetic and biocatalytic synthetic biology platforms to produce glycoconjugates from polyketides of the benzenediol lactone family, and polyphenols of the phenylpropanoid class. We show that for 13 out of the 18 aglycons tested, exoglycanase deletions improve glucoside yields and/or alter glucoconjugate regioisomer distributions, while macrolactone glycoconjugates with an aryl methylene ketone moiety are impervious to hydrolysis by EXG1. We demonstrate that elimination of EXG1 or biosynthetic methylation of glucosides are efficient alternative strategies to differentially modulate glycoside regioisomer profiles for future pharmaceutical, nutraceutical or crop protection applications.
Collapse
Affiliation(s)
- Yingying Huang
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States; Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Weimao Zhong
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States
| | - Kinga E Varga
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Zsigmond Benkő
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary
| | - Chenglong Yang
- Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China; Key Laboratory of Subtropical Characteristic Fruits, Vegetables and Edible Fungi Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Fuzhou, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - István Molnár
- Southwest Center for Natural Products Research, The University of Arizona, Tucson, AZ, United States; VTT Technical Research Centre of Finland, Espoo, Finland.
| |
Collapse
|
2
|
Watanabe T, Nagai M, Ishibashi Y, Iwasaki M, Mizoguchi M, Nagata M, Imai T, Takato K, Imamura A, Kakuta Y, Teramoto T, Tani M, Matsuda J, Ishida H, Yamasaki S, Okino N, Ito M. Vacuolar sterol β-glucosidase EGCrP2/Sgl1 deficiency in Cryptococcus neoformans: Dysfunctional autophagy and Mincle-dependent immune activation as targets of novel antifungal strategies. PLoS Pathog 2025; 21:e1013089. [PMID: 40273119 PMCID: PMC12061408 DOI: 10.1371/journal.ppat.1013089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Cryptococcus neoformans (Cn) is a fungal pathogen responsible for cryptococcal meningitis, which accounts for 15% of AIDS-related deaths. Recent studies have shown that the absence of sterol β-glucosidase (EGCrP2, also known as Sgl1) in Cn significantly attenuates its virulence in a mouse infection model. However, the mechanisms underlying this virulence attenuation remain unclear. In this study, we observed a significant increase in dead cells after 3 days of culture of SGL1-deficient Cn (sgl1Δ, KO) at 37°C, compared with wild-type (WT) and SGL1-reconstituted Cn (sgl1Δ::SGL1, RE). qPCR analysis of WT, KO, and RE strains indicated that autophagy-related genes (ATGs) were significantly downregulated in KO strain. Atg8-dependent GFP translocation to the vacuole was significantly delayed in KO strain under starvation conditions. This autophagy dysfunction was identified as the primary cause of the increased cell death observed in KO strain under nitrogen starvation conditions at 37°C. EGCrP2/Sgl1 is predominantly localized in the vacuoles of Cn, and its deletion results in the accumulation of not only ergosterol β-glucoside (EG), as previously reported, but also acylated EGs (AEGs). AEGs were much more potent than EG in activating the C-type lectin receptor Mincle in mice, rats, and humans. AEGs were released from KO strain via extracellular vesicles (EVs). Chemically synthesized 18:1-EG and EVs derived from KO strain, but not WT or RE strains, enhanced cytokine production in murine and human dendritic cells. AEG-dependent cytokine production was markedly reduced in dendritic cells from Mincle-deficient mice, and the number of KO strain in lung tissue from Mincle-deficient mice was substantially higher than wild-type mice on day 3 after infection. Intranasal administration of acylated sitosterol β-glucoside increased Mincle expression and cytokine production and reduced the Cn burden in lung tissue of Cn-infected mice. These findings suggest that autophagy dysfunction in KO strain and the host innate immune response via the AEG-dependent Mincle activation are critical in reducing Cn virulence in mice.
Collapse
Affiliation(s)
- Takashi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Masayoshi Nagai
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
- Department of Medical Biochemistry, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Mio Iwasaki
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masaki Mizoguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Masahiro Nagata
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takashi Imai
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Koichi Takato
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
| | - Akihiro Imamura
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Yoshimitsu Kakuta
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takamasa Teramoto
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Motohiro Tani
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
- Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Junko Matsuda
- Department of Pathophysiology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
| | - Hideharu Ishida
- Department of Applied Bioorganic Chemistry, Gifu University, Gifu, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Sho Yamasaki
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Nozomu Okino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Yang Y, Cao Y, Zhu C, Jin Y, Sun H, Wang R, Li M, Zhang Z. Functional activities of three Rehmannia glutinosa enzymes: Elucidation of the Rehmannia glutinosa salidroside biosynthesis pathway in Saccharomyces cerevisiae. Gene 2024; 928:148815. [PMID: 39097208 DOI: 10.1016/j.gene.2024.148815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024]
Abstract
Rehmannia glutinosa produces many phenylethanoid glycoside (PhG) compounds, including salidroside, which not only possesses various biological activities but also is a core precursor of some medicinal PhGs, so it is very important to elucidate the species' salidroside biosynthesis pathway to enhance the production of salidroside and its derivations. Although some plant copper-containing amine oxidases (CuAOs), phenylacetaldehyde reductases (PARs) and UDP-glucose glucosyltransferases (UGTs) are thought to be vital catalytic enzymes involved in the downstream salidroside biosynthesis pathways, to date, none of these proteins or the associated genes in R. glutinosa have been characterized. To verify a postulated R. glutinosa salidroside biosynthetic pathway starting from tyrosine, this study identified and characterized a set of R. glutinosa genes encoding RgCuAO, RgPAR and RgUGT enzymes for salidroside biosynthesis. The functional activities of these proteins were tested in vitro by heterologous expression of these genes in Escherichia coli, confirming these catalytic abilities in these corresponding reaction steps of the biosynthetic pathway. Importantly, four enzyme-encoding genes (including the previously reported RgTyDC2 encoding tyrosine decarboxylase and the RgCuAO1, RgPAR1 and RgUGT2 genes) were cointegrated into Saccharomyces cerevisiae to reconstitute the R. glutinosa salidroside biosynthetic pathway, achieving an engineered strain that produced salidroside and validating these enzymes' catalytic functions. This study elucidates the complete R. glutinosa salidroside biosynthesis pathway from tyrosine metabolism in S. cerevisiae, establishing a basic platform for the efficient production of salidroside and its derivatives.
Collapse
Affiliation(s)
- Yanhui Yang
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China.
| | - Yiming Cao
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Changrui Zhu
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Yan Jin
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Huiwen Sun
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Rong Wang
- School of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou High-technology Zone, Henan Province 450001, China
| | - Mingjie Li
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China
| | - Zhongyi Zhang
- College of Crop Sciences, Fujian Agriculture and Forestry University, Jinshan Road, Cangshan District, Fuzhou 350002, China
| |
Collapse
|
4
|
Li M, Ma M, Wu Z, Liang X, Zheng Q, Li D, An T, Wang G. Advances in the biosynthesis and metabolic engineering of rare ginsenosides. Appl Microbiol Biotechnol 2023; 107:3391-3404. [PMID: 37126085 DOI: 10.1007/s00253-023-12549-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
Rare ginsenosides are the deglycosylated secondary metabolic derivatives of major ginsenosides, and they are more readily absorbed into the bloodstream and function as active substances. The traditional preparation methods hindered the potential application of these effective components. The continuous elucidation of ginsenoside biosynthesis pathways has rendered the production of rare ginsenosides using synthetic biology techniques effective for their large-scale production. Previously, only the progress in the biosynthesis and biotechnological production of major ginsenosides was highlighted. In this review, we summarized the recent advances in the identification of key enzymes involved in the biosynthetic pathways of rare ginsenosides, especially the glycosyltransferases (GTs). Then the construction of microbial chassis for the production of rare ginsenosides, mainly in Saccharomyces cerevisiae, was presented. In the future, discovery of more GTs and improving their catalytic efficiencies are essential for the metabolic engineering of rare ginsenosides. This review will give more clues and be helpful for the characterization of the biosynthesis and metabolic engineering of rare ginsenosides. KEY POINTS: • The key enzymes involved in the biosynthetic pathways of rare ginsenosides are summarized. • The recent progress in metabolic engineering of rare ginsenosides is presented. • The discovery of glycosyltransferases is essential for the microbial production of rare ginsenosides in the future.
Collapse
Affiliation(s)
- Mingkai Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Mengyu Ma
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Zhenke Wu
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Xiqin Liang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Qiusheng Zheng
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China
| | - Defang Li
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Tianyue An
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Guoli Wang
- Featured Laboratory for Biosynthesis and Target Discovery of Active Components of Traditional Chinese Medicine, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, Yantai, 264003, China.
| |
Collapse
|
5
|
Ito M, Ishibashi Y, Watanabe T, Iwaki J, Kurita T, Okino N. Assays and Utilization of Enzymes Involved in Glycolipid Metabolism in Bacteria and Fungi. Methods Mol Biol 2023; 2613:229-256. [PMID: 36587083 DOI: 10.1007/978-1-0716-2910-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Microbial glycosphingolipid (GSL)-degrading enzymes with unique specificity are useful tools for GSL research. On the other hand, some microbial glycolipids, not only GSLs but also steryl glucosides, are closely related to pathogenicity, and, thus, the metabolism of microbial glycolipids is attracting attention as a target for antibiotics. This chapter describes the assays and utilization of microbial enzymes useful for glycolipid research and those involved in pathogenicity or host immune reactions.
Collapse
Affiliation(s)
- Makoto Ito
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| | - Yohei Ishibashi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Takashi Watanabe
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.,Department of Pathophysiology and Metabolism, Kawasaki Medical School, Okayama, Japan
| | - Jun Iwaki
- Tokyo Chemical Industry Co., Ltd., Tokyo, Japan
| | | | - Nozomu Okino
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
6
|
Pereira de Sa N, Del Poeta M. Sterylglucosides in Fungi. J Fungi (Basel) 2022; 8:1130. [PMID: 36354897 PMCID: PMC9698648 DOI: 10.3390/jof8111130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
Sterylglucosides (SGs) are sterol conjugates widely distributed in nature. Although their universal presence in all living organisms suggests the importance of this kind of glycolipids, they are yet poorly understood. The glycosylation of sterols confers a more hydrophilic character, modifying biophysical properties of cell membranes and altering immunogenicity of the cells. In fungi, SGs regulate different cell pathways to help overcome oxygen and pH challenges, as well as help to accomplish cell recycling and other membrane functions. At the same time, the level of these lipids is highly controlled, especially in wild-type fungi. In addition, modulating SGs metabolism is becoming a novel tool for vaccine and antifungal development. In the present review, we bring together multiple observations to emphasize the underestimated importance of SGs for fungal cell functions.
Collapse
Affiliation(s)
- Nivea Pereira de Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA
- Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY 11794, USA
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, NY 11768, USA
| |
Collapse
|
7
|
Ishibashi Y. Functions and applications of glycolipid-hydrolyzing microbial glycosidases. Biosci Biotechnol Biochem 2022; 86:974-984. [PMID: 35675217 DOI: 10.1093/bbb/zbac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/29/2022] [Indexed: 11/13/2022]
Abstract
Glycolipids are important components of cell membranes in several organisms. The major glycolipids in mammals are glycosphingolipids (GSLs), which are composed of ceramides. In mammals, GSLs are degraded stepwise from the non-reducing end of the oligosaccharides via exo-type glycosidases. However, endoglycoceramidase (EGCase), an endo-type glycosidase found in actinomycetes, is a unique enzyme that directly acts on the glycosidic linkage between oligosaccharides and ceramides to generate intact oligosaccharides and ceramides. Three molecular species of EGCase, namely EGCase I, EGCase II, and endogalactosylceramidase, have been identified based on their substrate specificity. EGCrP1 and EGCrP2, which are homologs of EGCase in pathogenic fungi, were identified as the first fungal glucosylceramide- and sterylglucoside-hydrolyzing glycosidases, respectively. These enzymes are promising targets for antifungal drugs against pathogenic fungi. This review describes the functions and properties of these microbial glycolipid-degrading enzymes, the molecular basis of their differential substrate specificity, and their applications.
Collapse
Affiliation(s)
- Yohei Ishibashi
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka, Japan
| |
Collapse
|
8
|
Jiang F, Zhou C, Li Y, Deng H, Gong T, Chen J, Chen T, Yang J, Zhu P. Metabolic engineering of yeasts for green and sustainable production of bioactive ginsenosides F2 and 3β,20S-Di-O-Glc-DM. Acta Pharm Sin B 2022; 12:3167-3176. [PMID: 35865098 PMCID: PMC9293705 DOI: 10.1016/j.apsb.2022.04.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/27/2022] [Accepted: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Both natural ginsenoside F2 and unnatural ginsenoside 3β,20S-Di-O-Glc-DM were reported to exhibit anti-tumor activity. Traditional approaches for producing them rely on direct extraction from Panax ginseng, enzymatic catalysis or chemical synthesis, all of which result in low yield and high cost. Metabolic engineering of microbes has been recognized as a green and sustainable biotechnology to produce natural and unnatural products. Hence we engineered the complete biosynthetic pathways of F2 and 3β,20S-Di-O-Glc-DM in Saccharomyces cerevisiae via the CRISPR/Cas9 system. The titers of F2 and 3β,20S-Di-O-Glc-DM were increased from 1.2 to 21.0 mg/L and from 82.0 to 346.1 mg/L at shake flask level, respectively, by multistep metabolic engineering strategies. Additionally, pharmacological evaluation showed that both F2 and 3β,20S-Di-O-Glc-DM exhibited anti-pancreatic cancer activity and the activity of 3β,20S-Di-O-Glc-DM was even better. Furthermore, the titer of 3β,20S-Di-O-Glc-DM reached 2.6 g/L by fed-batch fermentation in a 3 L bioreactor. To our knowledge, this is the first report on demonstrating the anti-pancreatic cancer activity of F2 and 3β,20S-Di-O-Glc-DM, and achieving their de novo biosynthesis by the engineered yeasts. Our work presents an alternative approach to produce F2 and 3β,20S-Di-O-Glc-DM from renewable biomass, which lays a foundation for drug research and development.
Collapse
|
9
|
Huang Y, Jiang D, Ren G, Yin Y, Sun Y, Liu T, Liu C. De Novo Production of Glycyrrhetic Acid 3-O-mono- β-D-glucuronide in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2021; 9:709120. [PMID: 34888299 PMCID: PMC8650490 DOI: 10.3389/fbioe.2021.709120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/04/2021] [Indexed: 12/21/2022] Open
Abstract
Glycyrrhetic acid 3-O-mono-β-D-glucuronide (GAMG) is a rare compound in licorice and its short supply limits the wide applications in the pharmaceutical, cosmetic, and food industries. In this study, de novo biosynthesis of GAMG was achieved in engineered Saccharomyces cerevisiae strains based on the CRISPR/Cas9 genome editing technology. The introduction of GAMG biosynthetic pathway resulted in the construction of a GAMG-producing yeast strain for the first time. Through optimizing the biosynthetic pathway, improving the folding and catalysis microenvironment for cytochrome P450 enzymes (CYPs), enhancing the supply of UDP-glucuronic acid (UDP-GlcA), preventing product degradation, and optimizing the fermentation conditions, the production of GAMG was increased from 0.02 μg/L to 92.00 μg/L in shake flasks (4,200-fold), and the conversion rate of glycyrrhetic acid (GA) to GAMG was higher than 56%. The engineered yeast strains provide an alternative approach for the production of glycosylated triterpenoids.
Collapse
Affiliation(s)
- Ying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Jiang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Guangxi Ren
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Yin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yifan Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tengfei Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chunsheng Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Structure, metabolism and biological functions of steryl glycosides in mammals. Biochem J 2021; 477:4243-4261. [PMID: 33186452 PMCID: PMC7666875 DOI: 10.1042/bcj20200532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022]
Abstract
Steryl glycosides (SGs) are sterols glycosylated at their 3β-hydroxy group. They are widely distributed in plants, algae, and fungi, but are relatively rare in bacteria and animals. Glycosylation of sterols, resulting in important components of the cell membrane SGs, alters their biophysical properties and confers resistance against stress by freezing or heat shock to cells. Besides, many biological functions in animals have been suggested from the observations of SG administration. Recently, cholesteryl glucosides synthesized via the transglycosidation by glucocerebrosidases (GBAs) were found in the central nervous system of animals. Identification of patients with congenital mutations in GBA genes or availability of respective animal models will enable investigation of the function of such endogenously synthesized cholesteryl glycosides by genetic approaches. In addition, mechanisms of the host immune responses against pathogenic bacterial SGs have partially been resolved. This review is focused on the biological functions of SGs in mammals taking into consideration their therapeutic applications in the future.
Collapse
|
11
|
Davis J, Pares R, Palmgren M, López-Marqués R, Harper J. A potential pathway for flippase-facilitated glucosylceramide catabolism in plants. PLANT SIGNALING & BEHAVIOR 2020; 15:1783486. [PMID: 32857675 PMCID: PMC8550518 DOI: 10.1080/15592324.2020.1783486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Aminophospholipid ATPase (ALA) family of plant lipid flippases is involved in the selective transport of lipids across membrane bilayers. Recently, we demonstrated that double mutants lacking both ALA4 and -5 are severely dwarfed. Dwarfism in ala4/5 mutants was accompanied by cellular elongation defects and various lipidomic perturbations, including a 1.4-fold increase in the accumulation of glucosylceramides (GlcCers) relative to total sphingolipid content. Here, we present a potential model for flippase-facilitated GlcCer catabolism in plants, where a combination of ALA flippases transport GlcCers to cytosolic membrane surfaces where they are degraded by Glucosylceramidases (GCDs). GCDs remove the glucose headgroup from GlcCers to produce a ceramide (Cer) backbone, which can be further degraded to sphingoid bases (Sphs, e.g, phytosphingosine) and fatty acids (FAs). In the absence of GlcCer-transporting flippases, GlcCers are proposed to accumulate on extracytoplasmic (i.e., apoplastic) or lumenal membrane surfaces. As GlcCers are potential precursors for Sph production, impaired GlcCer catabolism might also result in the decreased production of the secondary messenger Sph-1-phosphate (Sph-1-P, e.g., phytosphingosine-1-P), a regulator of cell turgor. Importantly, we postulate that either GlcCer accumulation or reduced Sph-1-P signaling might contribute to the growth reductions observed in ala4/5 mutants. Similar catabolic pathways have been proposed for humans and yeast, suggesting flippase-facilitated GlcCer catabolism is conserved across eukaryotes.
Collapse
Affiliation(s)
- J.A. Davis
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
- CONTACT Davis, J.A. Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV89557, USA
| | - R.B. Pares
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - M. Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - R.L. López-Marqués
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - J.F. Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| |
Collapse
|
12
|
Normile TG, McEvoy K, Del Poeta M. Steryl Glycosides in Fungal Pathogenesis: An Understudied Immunomodulatory Adjuvant. J Fungi (Basel) 2020; 6:E25. [PMID: 32102324 PMCID: PMC7151148 DOI: 10.3390/jof6010025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 12/26/2022] Open
Abstract
Invasive fungal infections pose an increasing threat to human hosts, especially in immunocompromised individuals. In response to the increasing morbidity and mortality of fungal infections, numerous groups have shown great strides in uncovering novel treatment options and potential efficacious vaccine candidates for this increasing threat due to the increase in current antifungal resistance. Steryl glycosides are lipid compounds produced by a wide range of organisms, and are largely understudied in the field of pathogenicity, especially to fungal infections. Published works over the years have shown these compounds positively modulating the host immune response. Recent advances, most notably from our lab, have strongly indicated that steryl glycosides have high efficacy in protecting the host against lethal Cryptococcal infection through acting as an immunoadjuvant. This review will summarize the keystone studies on the role of steryl glycosides in the host immune response, as well as elucidate the remaining unknown characteristics and future perspectives of these compounds for the host-fungal interactions.
Collapse
Affiliation(s)
- Tyler G. Normile
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
| | - Kyle McEvoy
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA; (T.G.N.); (K.M.)
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
- Veterans Administration Medical Center, Northport, New York, NY 11768, USA
| |
Collapse
|
13
|
Caudy AA, Hanchard JA, Hsieh A, Shaan S, Rosebrock AP. Functional genetic discovery of enzymes using full-scan mass spectrometry metabolomics. Biochem Cell Biol 2019; 97:73-84. [DOI: 10.1139/bcb-2018-0058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Our understanding of metabolic networks is incomplete, and new enzymatic activities await discovery in well-studied organisms. Mass spectrometric measurement of cellular metabolites reveals compounds inside cells that are unexplained by current maps of metabolic reactions, and existing computational models are unable to account for all activities observed within cells. Additional large-scale genetic and biochemical approaches are required to elucidate metabolic gene function. We have used full-scan mass spectrometry metabolomics of polar small molecules to examine deletion mutants of candidate enzymes in the model yeast Saccharomyces cerevisiae. We report the identification of 25 genes whose deletion results in focal metabolic changes consistent with loss of enzymatic activity and describe the informatic approaches used to enrich for candidate enzymes from uncharacterized open reading frames. Triumphs and pitfalls of metabolic phenotyping screens are discussed, including estimates of the frequency of uncharacterized eukaryotic genes that affect metabolism and key issues to consider when searching for new enzymatic functions in other organisms.
Collapse
Affiliation(s)
- Amy A. Caudy
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Julia A. Hanchard
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Alan Hsieh
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Saravannan Shaan
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Adam P. Rosebrock
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
- Donnelly Centre for Cellular and Biomolecular Research and Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada
| |
Collapse
|
14
|
Ben Bdira F, Artola M, Overkleeft HS, Ubbink M, Aerts JMFG. Distinguishing the differences in β-glycosylceramidase folds, dynamics, and actions informs therapeutic uses. J Lipid Res 2018; 59:2262-2276. [PMID: 30279220 PMCID: PMC6277158 DOI: 10.1194/jlr.r086629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/04/2018] [Indexed: 12/12/2022] Open
Abstract
Glycosyl hydrolases (GHs) are carbohydrate-active enzymes that hydrolyze a specific β-glycosidic bond in glycoconjugate substrates; β-glucosidases degrade glucosylceramide, a ubiquitous glycosphingolipid. GHs are grouped into structurally similar families that themselves can be grouped into clans. GH1, GH5, and GH30 glycosidases belong to clan A hydrolases with a catalytic (β/α)8 TIM barrel domain, whereas GH116 belongs to clan O with a catalytic (α/α)6 domain. In humans, GH abnormalities underlie metabolic diseases. The lysosomal enzyme glucocerebrosidase (family GH30), deficient in Gaucher disease and implicated in Parkinson disease etiology, and the cytosol-facing membrane-bound glucosylceramidase (family GH116) remove the terminal glucose from the ceramide lipid moiety. Here, we compare enzyme differences in fold, action, dynamics, and catalytic domain stabilization by binding site occupancy. We also explore other glycosidases with reported glycosylceramidase activity, including human cytosolic β-glucosidase, intestinal lactase-phlorizin hydrolase, and lysosomal galactosylceramidase. Last, we describe the successful translation of research to practice: recombinant glycosidases and glucosylceramide metabolism modulators are approved drug products (enzyme replacement therapies). Activity-based probes now facilitate the diagnosis of enzyme deficiency and screening for compounds that interact with the catalytic pocket of glycosidases. Future research may deepen the understanding of the functional variety of these enzymes and their therapeutic potential.
Collapse
Affiliation(s)
- Fredj Ben Bdira
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marta Artola
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Herman S Overkleeft
- Bio-organic Synthesis, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Marcellus Ubbink
- Departments of Macromolecular Biochemistry,Leiden Institute of Chemistry, Leiden, The Netherlands
| | | |
Collapse
|
15
|
Chang W, Li Y, Zheng S, Zhang M, Gao Y, Lou H. Solasodine-3-O-β-d-glucopyranoside is hydrolyzed by a membrane glucosidase into active molecule solasodine against Candida albicans. Food Chem Toxicol 2017; 109:356-362. [PMID: 28919409 DOI: 10.1016/j.fct.2017.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/08/2017] [Accepted: 09/14/2017] [Indexed: 12/18/2022]
Abstract
Antifungal activity of some natural molecules can be abated or blocked by efflux pumps in Candida albicans, which restricts the discovery of potential antifungal agents. Here we found that the steroidal alkaloid solasodine is active against C. albicans efflux pump-deficient strains but inert towards the wild type. However, the glucosylated solasodine-3-O-β-d-glucopyranoside exhibits antifungal activity towards the wild type strain. Further investigation revealed that the entry of solasodine into C. albicans cells is blocked by efflux pumps. Glucosylation provides an alternative access not disturbed by efflux pumps. Once inside cells, the carried glucosylated solasodine is cleaved into the active molecule solasodine by the glucosidase, which is located in cytoplasm membrane and exhibits selective activity against hydrolyzing glucosyl natural products but not against other monosaccharide-substituted products. This glucosidase is not encoded by orf19.4031, considered homologous to steryl-β-glucosidase encoded by the gene EGH1 in Saccharomyces cerevisiae. Our study reveals that glucosylation is an alternative approach for introducing potential antifungal activity into C. albicans cells and overcoming the drug-resistance resulting from hyperactivation of efflux pumps.
Collapse
Affiliation(s)
- Wenqiang Chang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Ying Li
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Sha Zheng
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Ming Zhang
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Yanhui Gao
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, Shandong University, No. 44 West Wenhua Road, Jinan City, Shandong Province, China.
| |
Collapse
|
16
|
Ferrer A, Altabella T, Arró M, Boronat A. Emerging roles for conjugated sterols in plants. Prog Lipid Res 2017; 67:27-37. [DOI: 10.1016/j.plipres.2017.06.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 11/29/2022]
|
17
|
A novel function for glucocerebrosidase as a regulator of sterylglucoside metabolism. Biochim Biophys Acta Gen Subj 2017; 1861:2507-2514. [PMID: 28596107 DOI: 10.1016/j.bbagen.2017.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/30/2017] [Accepted: 06/02/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Sterols are major cell membrane lipids, and in many organisms they are modified with glucose to generate sterylglucosides. Glucosylation dramatically changes the functional properties of sterols. The formation of sterylglucosides from sterols in plants, fungi, and bacteria uses UDP-glucose as a glucose donor. By contrast, sterylglucoside biosynthesis in mammals is catalyzed by the transglucosylation activity of glucocerebrosidases, with glucosylceramide acting as the glucose donor. Recent success in isolation and structural determination of sterylglucosides in the vertebrate central nervous system shows that transglucosylation also occurs in vivo. These analyses also revealed that sterylglucoside aglycons are composed of several cholesterol-related metabolites, including a plant-type sitosteryl. SCOPE OF REVIEW In this review, we discuss the biological functions and metabolism of sterylglucosides. We also summarize new findings from studies on the metabolism of vertebrate sterylglucosides and review the circumstances underlying the recent discovery of sterylglucosides in vertebrate brain. Finally, we discuss the role of sterylglucosides in a variety of neurodegenerative disorders such as Gaucher disease and Parkinson's disease. MAJOR CONCLUSIONS The biological significance of UDP-glucose-independent sterol glucosylation is still unknown, but it is plausible that glucosylation may provide sterols with novel biological functions. Even though sterol glucosylation is a simple reaction, it can dramatically change the physical properties of sterols. GENERAL SIGNIFICANCE Sterylglucosides may play roles in various physiological processes and in the pathogenesis of different diseases. Arriving at a better understanding of them at the organ and cellular level may open up new approaches to developing therapeutics for a variety of diseases. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.
Collapse
|
18
|
Rella A, Farnoud AM, Del Poeta M. Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res 2015; 61:63-72. [PMID: 26703191 DOI: 10.1016/j.plipres.2015.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022]
Abstract
There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies.
Collapse
Affiliation(s)
- Antonella Rella
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|