1
|
Hao H, Eberand BM, Larance M, Haltiwanger RS. Protein O-Fucosyltransferases: Biological Functions and Molecular Mechanisms in Mammals. Molecules 2025; 30:1470. [PMID: 40286076 PMCID: PMC11990869 DOI: 10.3390/molecules30071470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Domain-specific O-fucosylation is an unusual type of glycosylation, where the fucose is directly attached to the serine or threonine residues in specific protein domains via an O-linkage. O-fucosylated proteins play critical roles in a wide variety of biological events and hold important therapeutic values, with the most studied being the Notch receptors and ADAMTS proteins. O-fucose glycans modulate the function of the proteins they modify and are closely associated with various diseases including cancer. In mammals, alongside the well-documented protein O-fucosyltransferase (POFUT) 1-mediated O-fucosylation of epidermal growth factor-like (EGF) repeats and POFUT2-mediated O-fucosylation of thrombospondin type 1 repeats (TSRs), a new type of O-fucosylation was recently identified on elastin microfibril interface (EMI) domains, mediated by POFUT3 and POFUT4 (formerly FUT10 and FUT11). In this review, we present an overview of our current knowledge of O-fucosylation, integrating the latest findings and with a particular focus on its biological functions and molecular mechanisms.
Collapse
Affiliation(s)
- Huilin Hao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30605, USA;
| | - Benjamin M. Eberand
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | - Mark Larance
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia; (B.M.E.); (M.L.)
| | | |
Collapse
|
2
|
Haymour L, Pennarubia F, Le Faou CC, Pinault E, Germot A, Maftah A, Legardinier S. POFUT1-mediated O-fucosylation of glycoproteins expressed in the baculovirus Sf9 insect cell expression system. J Biotechnol 2024; 379:53-64. [PMID: 38070779 DOI: 10.1016/j.jbiotec.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/20/2023] [Accepted: 12/03/2023] [Indexed: 01/02/2024]
Abstract
The baculovirus-insect cell expression system allows addition of O-fucose to EGF-like domains of glycoproteins, following the action of the protein O-fucosyltransferase 1 named POFUT1. In this study, recombinant Spodoptera frugiperda POFUT1 from baculovirus-infected Sf9 cells was compared to recombinant Mus musculus POFUT1 produced by CHO cells. Contrary to recombinant murine POFUT1 carrying two hybrid and/or complex type N-glycans, Spodoptera frugiperda POFUT1 exhibited paucimannose N-glycans, at least on its highly evolutionary conserved across Metazoa NRT site. The abilities of both recombinant enzymes to add in vitro O -fucose to EGF-like domains of three different recombinant mammalian glycoproteins were then explored. In vitro POFUT1-mediated O-fucosylation experiments, followed by click chemistry and blot analyses, showed that Spodoptera frugiperda POFUT1 was able to add O-fucose to mouse NOTCH1 EGF-like 26 and WIF1 EGF-like 3 domains, similarly to the murine counterpart. As proved by mass spectrometry, full-length human WNT Inhibitor Factor 1 expressed by Sf9 cells was also modified with O-fucose. However, Spodoptera frugiperda POFUT1 was unable to modify the single EGF-like domain of mouse PAMR1 with O-fucose, contrary to murine POFUT1. Absence of orthologous proteins such as PAMR1 in insects may explain the enzyme's difficulty in adding O-fucose to a domain that it never encounters naturally.
Collapse
Affiliation(s)
- Layla Haymour
- Univ. Limoges, LABCiS, UR 22722, Limoges 22722, France
| | | | | | - Emilie Pinault
- Univ. Limoges, CNRS, Inserm, CHU Limoges, BISCEm, UAR 2015, US 42, Limoges F-87000, France
| | - Agnès Germot
- Univ. Limoges, LABCiS, UR 22722, Limoges 22722, France
| | | | | |
Collapse
|
3
|
Barlak N, Kusdemir G, Gumus R, Gundogdu B, Sahin MH, Tatar A, Ittmann M, Karatas OF. Overexpression of POFUT1 promotes malignant phenotype and mediates perineural invasion in head and neck squamous cell carcinoma. Cell Biol Int 2023; 47:1950-1963. [PMID: 37641160 DOI: 10.1002/cbin.12085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 06/09/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive neoplasms, which requires more effective prevention and treatment modalities. Previous studies found that protein O-fucosyltransferase 1 (POFUT1) upregulation promotes carcinogenesis, although the potential roles, underlying molecular mechanisms, and biological implications of POFUT1 in HNSCC were not investigated. In this study, in silico analyses referred POFUT1 as a potential oncogene in HNSCC. Further analysis of tumor and normal tissue samples as well as HNSCC cells with quantitative real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry showed significant overexpression of POFUT1 in HNSCC clinical tumor tissue specimens and cell lines compared to corresponding controls. In vitro investigations revealed that overexpression of POFUT1 promoted phenotypes associated with cancer aggressiveness and its knockdown in HNSCC cells suppressed those phenotypes. Further xenograft experiments demonstrated that POFUT1 is an oncogene in vivo for HNSCC. Immunohistochemical analysis with human clinical samples and cancer cell-dorsal root ganglion ex-vivo coculture model showed that deregulation of POFUT1 is involved in the perineural invasion of HNSCC cells. These results suggest POFUT1 expression as a potential prognostic marker for patients with head and neck cancer and highlight its potential as a target for HNSCC therapy, although more molecular clues are needed to better define the functions of POFUT1 related to HNSCC carcinogenesis.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Gulnur Kusdemir
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Rasim Gumus
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| | - Betul Gundogdu
- Department of Medical Pathology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Mehmet Hakan Sahin
- Department of Brain and Nerve Surgery, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Arzu Tatar
- Department of Otorhinolaryngology Diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Michael E. DeBakey, VAMC, Houston, Texas, USA
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, Turkey
- Molecular Cancer Biology Laboratory, High Technology Application and Research Center, Erzurum Technical University, Erzurum, Turkey
| |
Collapse
|
4
|
Dong S, Wang Z, Xiong W. POFUT1 promotes gastric cancer progression through Notch/Wnt dual signaling pathways dependent on the parafibromin-NICD1-β-catenin complex. J Chin Med Assoc 2023; 86:806-817. [PMID: 37501238 DOI: 10.1097/jcma.0000000000000957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND Aberrant glycosylation performed by glycosyltransferases is a leading cause of gastric cancer (GC). Protein O-fucosyltransferase 1 (POFUT1) expression is increased in GC specimens and cells. In this study, the biological effects and mechanisms of POFUT1 underlying the development of GC were investigated. METHODS POFUT1 downregulated and upregulated GC cells were established. The effects of POFUT1 on cell proliferation, metastasis and apoptosis were examined using cell counting kit-8 (CCK8) assay, transwell assay, and flow cytometry. Subcutaneous xenograft tumor models were established followed by immunohistochemistry staining of resected tumors. Facilitating modulators and transcription factors were detected by western blot, immunofluorescence, luciferase reporter assay, and co-immunoprecipitation. RESULTS POFUT1 played a pro-oncogenic role both in vivo and in vitro, which promoted proliferation and metastasis, as well as inhibited apoptosis in GC cells. POFUT1 promoted Cyclin D3 expression and inhibited the expression of apoptotic proteins, such as Bcl-2-associated X protein (Bax) and cleaved caspase 3, facilitating tumor growth. Moreover, POFUT1 accelerated matrix metalloproteases expression and attenuated E-cadherin expression, contributing to GC metastasis. In addition, POFUT1 expression promoted the expression and nuclear translocation of Notch1 intracellular domain (NICD1) and β-catenin and inhibited β-catenin phosphorylation degradation, accompanied by the activation of recombination signal binding protein-Jκ (RBP-J) and T-cell factor (TCF) transcription factors, respectively. It is notable that parafibromin integrated NICD1 and β-catenin, enabling the concerted activation of Wnt and Notch signaling targeted proteins. CONCLUSION These observations indicated that POFUT1 promoted GC development through activation of Notch and Wnt signaling pathways, which depended on the parafibromin-NICD1-β-catenin complex. This work provides new evidence for the further diagnosis and treatment of GC.
Collapse
Affiliation(s)
- Shuang Dong
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Wang
- Department of Gastroenterology, Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Wujun Xiong
- Department of Gastroenterology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| |
Collapse
|
5
|
In silico modelling of the function of disease-related CAZymes. Essays Biochem 2023; 67:355-372. [PMID: 36912236 PMCID: PMC10154626 DOI: 10.1042/ebc20220218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/14/2023]
Abstract
In silico modelling of proteins comprises a diversity of computational tools aimed to obtain structural, electronic, and/or dynamic information about these biomolecules, capturing mechanistic details that are challenging to experimental approaches, such as elusive enzyme-substrate complexes, short-lived intermediates, and reaction transition states (TS). The present article gives the reader insight on the use of in silico modelling techniques to understand complex catalytic reaction mechanisms of carbohydrate-active enzymes (CAZymes), along with the underlying theory and concepts that are important in this field. We start by introducing the significance of carbohydrates in nature and the enzymes that process them, CAZymes, highlighting the conformational flexibility of their carbohydrate substrates. Three commonly used in silico methods (classical molecular dynamics (MD), hybrid quantum mechanics/molecular mechanics (QM/MM), and enhanced sampling techniques) are described for nonexpert readers. Finally, we provide three examples of the application of these methods to unravel the catalytic mechanisms of three disease-related CAZymes: β-galactocerebrosidase (GALC), responsible for Krabbe disease; α-mannoside β-1,6-N-acetylglucosaminyltransferase V (MGAT5), involved in cancer; and O-fucosyltransferase 1 (POFUT1), involved in several human diseases such as leukemia and the Dowling-Degos disease.
Collapse
|
6
|
Lv Y, Zhang Z, Tian S, Wang W, Li H. Therapeutic potential of fucosyltransferases in cancer and recent development of targeted inhibitors. Drug Discov Today 2023; 28:103394. [PMID: 36223858 DOI: 10.1016/j.drudis.2022.103394] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
Fucosyltransferases (FUTs) have significant roles in various pathophysiological events. Their high expression is a signature of malignant cell transformation, contributing to many abnormal events during cancer development, such as uncontrolled cell proliferation, tumor cell invasion, angiogenesis, metastasis, immune evasion, and therapy resistance. Therefore, FUTs have evolved as an attractive therapeutic target for treating solid cancers, and many substrate analogs have been discovered with potential as FUT inhibitors for cancer therapy. Meanwhile, the development of FUT protein structures represents a significant advance in the design of FUT inhibitors with nonsubstrate structures. In this review, we summarize the role of FUTs in cancers, the resolved protein crystal structures and progress in the development of FUT inhibitors as cancer therapeutics.
Collapse
Affiliation(s)
- Yixin Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Zhoudong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China
| | - Weipeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China.
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
7
|
Pennarubia F, Ito A, Takeuchi M, Haltiwanger RS. Cancer-associated Notch receptor variants lead to O-fucosylation defects that deregulate Notch signaling. J Biol Chem 2022; 298:102616. [PMID: 36265581 PMCID: PMC9672452 DOI: 10.1016/j.jbc.2022.102616] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/15/2022] Open
Abstract
NOTCH1 is a transmembrane receptor that initiates a signaling pathway involved in embryonic development of adult tissue homeostasis. The extracellular domain of NOTCH1 is composed largely of epidermal growth factor-like repeats (EGFs), many of which can be O-fucosylated at a specific consensus sequence by protein O-fucosyltransferase 1 (POFUT1). O-fucosylation of NOTCH1 is necessary for its function. The Notch pathway is deregulated in many cancers, and alteration of POFUT1 has been reported in several cancers, but further investigation is needed to assess whether there is deregulation of the Notch pathway associated with mutations that affect O-fucosylation in cancers. Using Biomuta and COSMIC databases, we selected nine NOTCH1 variants that could cause a change in O-fucosylation of key EGFs. Mass spectral glycoproteomic site mapping was used to identify alterations in O-fucosylation of EGFs containing the mutations. Cell-based NOTCH-1 signaling assays, ligand-binding assays, and cellsurface analysis were used to determine the effect of each mutation on Notch activation. Two variants led to a gain of function (GOF), six to a loss of function (LOF), and one had minimal effects. Most GOF and LOF were associated with a change in O-fucosylation. Finally, by comparing our results with known NOTCH1 alterations in cancers from which our mutations originated, we were able to establish a correlation between our results and the known GOF or LOF of NOTCH1 in these cancers. This study shows that point mutations in N1 can lead to alterations in O-fucosylation that deregulate the Notch pathway and be associated with cancer processes.
Collapse
|
8
|
Wang W, Okajima T, Takeuchi H. Significant Roles of Notch O-Glycosylation in Cancer. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061783. [PMID: 35335147 PMCID: PMC8950332 DOI: 10.3390/molecules27061783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/27/2022]
Abstract
Notch signaling, which was initially identified in Drosophila wing morphogenesis, plays pivotal roles in cell development and differentiation. Optimal Notch pathway activity is essential for normal development and dysregulation of Notch signaling leads to various human diseases, including many types of cancers. In hematopoietic cancers, such as T-cell acute lymphoblastic leukemia, Notch plays an oncogenic role, while in acute myeloid leukemia, it has a tumor-suppressive role. In solid tumors, such as hepatocellular carcinoma and medulloblastoma, Notch may have either an oncogenic or tumor-suppressive role, depending on the context. Aberrant expression of Notch receptors or ligands can alter the ligand-dependent Notch signaling and changes in trafficking can lead to ligand-independent signaling. Defects in any of the two signaling pathways can lead to tumorigenesis and tumor progression. Strikingly, O-glycosylation is one such process that modulates ligand–receptor binding and trafficking. Three types of O-linked modifications on the extracellular epidermal growth factor-like (EGF) repeats of Notch receptors are observed, namely O-glucosylation, O-fucosylation, and O-N-acetylglucosamine (GlcNAc) modifications. In addition, O-GalNAc mucin-type O-glycosylation outside the EGF repeats also appears to occur in Notch receptors. In this review, we first briefly summarize the basics of Notch signaling, describe the latest information on O-glycosylation of Notch receptors classified on a structural basis, and finally describe the regulation of Notch signaling by O-glycosylation in cancer.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Integrated Glyco-Biomedical Research Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan; (W.W.); (T.O.)
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Correspondence:
| |
Collapse
|
9
|
Adhikari E, Liu Q, Burton C, Mockabee-Macias A, Lester DK, Lau E. l-fucose, a sugary regulator of antitumor immunity and immunotherapies. Mol Carcinog 2022; 61:439-453. [PMID: 35107186 DOI: 10.1002/mc.23394] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/20/2022]
Abstract
l-fucose is a dietary sugar that is used by cells in a process called fucosylation to posttranslationally modify and regulate protein behavior and function. As fucosylation plays essential cellular functions in normal organ and immune developmental and homeostasis, it is perhaps not surprising that it has been found to be perturbed in a number of pathophysiological contexts, including cancer. Increasing studies over the years have highlighted key roles that altered fucosylation can play in cancer cell-intrinsic as well as paracrine signaling and interactions. In particular, studies have demonstrated that fucosylation impact tumor:immunological interactions and significantly enhance or attenuate antitumor immunity. Importantly, fucosylation appears to be a posttranslational modification that can be therapeutically targeted, as manipulating the molecular underpinnings of fucosylation has been shown to be sufficient to impair or block tumor progression and to modulate antitumor immunity. Moreover, the fucosylation of anticancer agents, such as therapeutic antibodies, has been shown to critically impact their efficacy. In this review, we summarize the underappreciated roles that fucosylation plays in cancer and immune cells, as well as the fucosylation of therapeutic antibodies or the manipulation of fucosylation and their implications as new therapeutic modalities for cancer.
Collapse
Affiliation(s)
- Emma Adhikari
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Qian Liu
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Chase Burton
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Andrea Mockabee-Macias
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Daniel K Lester
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA.,Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA.,Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, USA
| |
Collapse
|
10
|
Chang CH, Wu RW, Weng HY, Huang WP, Lin YF, Liu YM, Tsai SF. Protein O-fucosyltransferase-1 mutation in familial Dowling-Degos Disease concomitant with atopic dermatitis. DERMATOL SIN 2022. [DOI: 10.4103/1027-8117.359341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
11
|
Pennarubia F, Nairn AV, Takeuchi M, Moremen KW, Haltiwanger RS. Modulation of the NOTCH1 Pathway by LUNATIC FRINGE Is Dominant over That of MANIC or RADICAL FRINGE. Molecules 2021; 26:molecules26195942. [PMID: 34641486 PMCID: PMC8512825 DOI: 10.3390/molecules26195942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 11/16/2022] Open
Abstract
Fringes are glycosyltransferases that transfer a GlcNAc to O-fucose residues on Epidermal Growth Factor-like (EGF) repeats. Three Fringes exist in mammals: LUNATIC FRINGE (LFNG), MANIC FRINGE (MFNG), and RADICAL FRINGE (RFNG). Fringe modification of O-fucose on EGF repeats in the NOTCH1 (N1) extracellular domain modulates the activation of N1 signaling. Not all O-fucose residues of N1 are modified by all Fringes; some are modified by one or two Fringes and others not modified at all. The distinct effects on N1 activity depend on which Fringe is expressed in a cell. However, little data is available on the effect that more than one Fringe has on the modification of O-fucose residues and the resulting downstream consequence on Notch activation. Using mass spectral glycoproteomic site mapping and cell-based N1 signaling assays, we compared the effect of co-expression of N1 with one or more Fringes on modification of O-fucose and activation of N1 in three cell lines. Individual expression of each Fringe with N1 in the three cell lines revealed differences in modulation of the Notch pathway dependent on the presence of endogenous Fringes. Despite these cell-based differences, co-expression of several Fringes with N1 demonstrated a dominant effect of LFNG over MFNG or RFNG. MFNG and RFNG appeared to be co-dominant but strongly dependent on the ligands used to activate N1 and on the endogenous expression of Fringes. These results show a hierarchy of Fringe activity and indicate that the effect of MFNG and/or RFNG could be small in the presence of LFNG.
Collapse
|
12
|
Hounjet J, Vooijs M. The Role of Intracellular Trafficking of Notch Receptors in Ligand-Independent Notch Activation. Biomolecules 2021; 11:biom11091369. [PMID: 34572582 PMCID: PMC8466058 DOI: 10.3390/biom11091369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/09/2021] [Accepted: 09/10/2021] [Indexed: 12/11/2022] Open
Abstract
Aberrant Notch signaling has been found in a broad range of human malignancies. Consequently, small molecule inhibitors and antibodies targeting Notch signaling in human cancers have been developed and tested; however, these have failed due to limited anti-tumor efficacy because of dose-limiting toxicities in normal tissues. Therefore, there is an unmet need to discover novel regulators of malignant Notch signaling, which do not affect Notch signaling in healthy tissues. This review provides a comprehensive overview of the current knowledge on the role of intracellular trafficking in ligand-independent Notch receptor activation, the possible mechanisms involved, and possible therapeutic opportunities for inhibitors of intracellular trafficking in Notch targeting.
Collapse
|
13
|
Structural Insights in Mammalian Sialyltransferases and Fucosyltransferases: We Have Come a Long Way, but It Is Still a Long Way Down. Molecules 2021; 26:molecules26175203. [PMID: 34500643 PMCID: PMC8433944 DOI: 10.3390/molecules26175203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022] Open
Abstract
Mammalian cell surfaces are modified with complex arrays of glycans that play major roles in health and disease. Abnormal glycosylation is a hallmark of cancer; terminal sialic acid and fucose in particular have high levels in tumor cells, with positive implications for malignancy. Increased sialylation and fucosylation are due to the upregulation of a set of sialyltransferases (STs) and fucosyltransferases (FUTs), which are potential drug targets in cancer. In the past, several advances in glycostructural biology have been made with the determination of crystal structures of several important STs and FUTs in mammals. Additionally, how the independent evolution of STs and FUTs occurred with a limited set of global folds and the diverse modular ability of catalytic domains toward substrates has been elucidated. This review highlights advances in the understanding of the structural architecture, substrate binding interactions, and catalysis of STs and FUTs in mammals. While this general understanding is emerging, use of this information to design inhibitors of STs and FUTs will be helpful in providing further insights into their role in the manifestation of cancer and developing targeted therapeutics in cancer.
Collapse
|
14
|
Piniello B, Lira-Navarrete E, Takeuchi H, Takeuchi M, Haltiwanger RS, Hurtado-Guerrero R, Rovira C. Asparagine Tautomerization in Glycosyltransferase Catalysis. The Molecular Mechanism of Protein O-Fucosyltransferase 1. ACS Catal 2021; 11:9926-9932. [PMID: 34868727 PMCID: PMC8631701 DOI: 10.1021/acscatal.1c01785] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/19/2021] [Indexed: 12/12/2022]
Abstract
![]()
O-glycosylation is a post-translational protein
modification essential to life. One of the enzymes involved in this
process is protein O-fucosyltransferase 1 (POFUT1),
which fucosylates threonine or serine residues within a specific sequence
context of epidermal growth factor-like domains (EGF-LD). Unlike most
inverting glycosyltransferases, POFUT1 lacks a basic residue in the
active site that could act as a catalytic base to deprotonate the
Thr/Ser residue of the EGF-LD acceptor during the chemical reaction.
Using quantum mechanics/molecular mechanics (QM/MM) methods on recent
crystal structures, as well as mutagenesis experiments, we uncover
the enzyme catalytic mechanism, revealing that it involves proton
shuttling through an active site asparagine, conserved among species,
which undergoes tautomerization. This mechanism is consistent with
experimental kinetic analysis of Caenorhabditis elegans POFUT1 Asn43 mutants, which ablate enzyme activity even if mutated
to Asp, the canonical catalytic base in inverting glycosyltransferases.
These results will aid inhibitor development for Notch-associated O-glycosylation disorders.
Collapse
Affiliation(s)
- Beatriz Piniello
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Erandi Lira-Navarrete
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
| | - Hideyuki Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Megumi Takeuchi
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Robert S. Haltiwanger
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia 30602, United States
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, 1017 Copenhagen, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica (Secció de Química Orgànica) and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
15
|
Lira-Navarrete E, Pallarés MC, Castello F, Ruedas-Rama MJ, Orte A, Lostao A, Hurtado-Guerrero R. Protein O-Fucosyltransferase 1 Undergoes Interdomain Flexibility in Solution. Molecules 2021; 26:2105. [PMID: 33916911 PMCID: PMC8067585 DOI: 10.3390/molecules26082105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/22/2021] [Accepted: 04/02/2021] [Indexed: 11/25/2022] Open
Abstract
Protein O-fucosyltransferase 1 (PoFUT1) is a GT-B fold enzyme that fucosylates proteins containing EGF-like repeats. GT-B glycosyltransferases have shown a remarkable grade of plasticity adopting closed and open conformations as a way of tuning their catalytic cycle, a feature that has not been observed for PoFUT1. Here, we analyzed Caenorhabditis elegans PoFUT1 (CePoFUT1) conformational behavior in solution by atomic force microscopy (AFM) and single-molecule fluorescence resonance energy transfer (SMF-FRET). Our results show that this enzyme is very flexible and adopts mainly compact conformations and to a lesser extend a highly dynamic population that oscillates between compact and highly extended conformations. Overall, our experiments illustrate the inherent complexity of CePoFUT1 dynamics, which might play a role during its catalytic cycle.
Collapse
Affiliation(s)
- Erandi Lira-Navarrete
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain;
| | - María Carmen Pallarés
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Fabio Castello
- Departamento de Fisicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; (F.C.); (M.J.R.-R.)
| | - Maria J. Ruedas-Rama
- Departamento de Fisicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; (F.C.); (M.J.R.-R.)
| | - Angel Orte
- Departamento de Fisicoquímica, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain; (F.C.); (M.J.R.-R.)
| | - Anabel Lostao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
| | - Ramón Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, 50018 Zaragoza, Spain;
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Fundación ARAID, 50018 Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, School of Dentistry, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
16
|
Tsukamoto Y, Takeuchi H. Other Types of Glycosylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1325:117-135. [PMID: 34495532 DOI: 10.1007/978-3-030-70115-4_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
O-Linked glycosylation such as O-fucose, O-glucose, and O-N-acetylglucosamine are considered to be unusual. As suggested by the high levels of evolutional conservation, these O-glycans are fundamentally important for life. In the last two decades, our understanding of the importance of these glycans has greatly advanced. In particular, identification of the glycosyltransferases responsible for the biosynthesis of these glycans has accelerated basic research on the functional significance and molecular mechanisms by which these O-glycans regulate protein functions as well as clinical research on human diseases due to changes in these types of O-glycosylation. Notably, Notch receptor signaling is modified with and regulated by these types of O-glycans. Here, we summarize the current view of the structures and the significance of these O-glycans mainly in the context of Notch signaling regulation and human diseases.
Collapse
Affiliation(s)
- Yohei Tsukamoto
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Biochemistry, University of Shizuoka School of Pharmaceutical Sciences, Shizuoka, Japan.
| |
Collapse
|
17
|
Matsumoto K, Luther KB, Haltiwanger RS. Diseases related to Notch glycosylation. Mol Aspects Med 2020; 79:100938. [PMID: 33341260 DOI: 10.1016/j.mam.2020.100938] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022]
Abstract
The Notch receptors are a family of transmembrane proteins that mediate direct cell-cell interactions and control numerous cell-fate specifications in humans. The extracellular domains of mammalian Notch proteins contain 29-36 tandem epidermal growth factor-like (EGF) repeats, most of which have O-linked glycan modifications: O-glucose added by POGLUT1, O-fucose added by POFUT1 and elongated by Fringe enzymes, and O-GlcNAc added by EOGT. The extracellular domain is also N-glycosylated. Mutations in the glycosyltransferases modifying Notch have been identified in several diseases, including Dowling-Degos Disease (haploinsufficiency of POFUT1 or POGLUT1), a form of limb-girdle muscular dystrophy (autosomal recessive mutations in POGLUT1), Spondylocostal Dysostosis 3 (autosomal recessive mutations in LFNG), Adams-Oliver syndrome (autosomal recessive mutations in EOGT), and some cancers (amplification, gain or loss-of-function of POFUT1, Fringe enzymes, POGLUT1, MGAT3). Here we review the characteristics of these diseases and potential molecular mechanisms.
Collapse
Affiliation(s)
- Kenjiroo Matsumoto
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Kelvin B Luther
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA
| | - Robert S Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, 315 Riverbend Road, Athens, GA, 30602, USA.
| |
Collapse
|
18
|
Boruah BM, Kadirvelraj R, Liu L, Ramiah A, Li C, Zong G, Bosman GP, Yang JY, Wang LX, Boons GJ, Wood ZA, Moremen KW. Characterizing human α-1,6-fucosyltransferase (FUT8) substrate specificity and structural similarities with related fucosyltransferases. J Biol Chem 2020; 295:17027-17045. [PMID: 33004438 PMCID: PMC7863877 DOI: 10.1074/jbc.ra120.014625] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/28/2020] [Indexed: 12/18/2022] Open
Abstract
Mammalian Asn-linked glycans are extensively processed as they transit the secretory pathway to generate diverse glycans on cell surface and secreted glycoproteins. Additional modification of the glycan core by α-1,6-fucose addition to the innermost GlcNAc residue (core fucosylation) is catalyzed by an α-1,6-fucosyltransferase (FUT8). The importance of core fucosylation can be seen in the complex pathological phenotypes of FUT8 null mice, which display defects in cellular signaling, development, and subsequent neonatal lethality. Elevated core fucosylation has also been identified in several human cancers. However, the structural basis for FUT8 substrate specificity remains unknown.Here, using various crystal structures of FUT8 in complex with a donor substrate analog, and with four distinct glycan acceptors, we identify the molecular basis for FUT8 specificity and activity. The ordering of three active site loops corresponds to an increased occupancy for bound GDP, suggesting an induced-fit folding of the donor-binding subsite. Structures of the various acceptor complexes were compared with kinetic data on FUT8 active site mutants and with specificity data from a library of glycan acceptors to reveal how binding site complementarity and steric hindrance can tune substrate affinity. The FUT8 structure was also compared with other known fucosyltransferases to identify conserved and divergent structural features for donor and acceptor recognition and catalysis. These data provide insights into the evolution of modular templates for donor and acceptor recognition among GT-B fold glycosyltransferases in the synthesis of diverse glycan structures in biological systems.
Collapse
Affiliation(s)
- Bhargavi M Boruah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Renuka Kadirvelraj
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Lin Liu
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Annapoorani Ramiah
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Chao Li
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Guanghui Zong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Gerlof P Bosman
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Utrecht Institute for Pharmaceutical Sciences, Utrecht, The Netherlands
| | - Zachary A Wood
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
19
|
Gharaibeh L, Elmadany N, Alwosaibai K, Alshaer W. Notch1 in Cancer Therapy: Possible Clinical Implications and Challenges. Mol Pharmacol 2020; 98:559-576. [PMID: 32913140 DOI: 10.1124/molpharm.120.000006] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
The Notch family consists of four highly conserved transmembrane receptors. The release of the active intracellular domain requires the enzymatic activity of γ-secretase. Notch is involved in embryonic development and in many physiologic processes of normal cells, in which it regulates growth, apoptosis, and differentiation. Notch1, a member of the Notch family, is implicated in many types of cancer, including breast cancer (especially triple-negative breast cancer), leukemias, brain tumors, and many others. Notch1 is tightly connected to many signaling pathways that are therapeutically involved in tumorigenesis. Together, they impact apoptosis, proliferation, chemosensitivity, immune response, and the population of cancer stem cells. Notch1 inhibition can be achieved through various and diverse methods, the most common of which are the γ-secretase inhibitors, which produce a pan-Notch inhibition, or the use of Notch1 short interference RNA or Notch1 monoclonal antibodies, which produce a more specific blockade. Downregulation of Notch1 can be used alone or in combination with chemotherapy, which can achieve a synergistic effect and a decrease in chemoresistance. Targeting Notch1 in cancers that harbor high expression levels of Notch1 offers an addition to therapeutic strategies recruited for managing cancer. Considering available evidence, Notch1 offers a legitimate target that might be incorporated in future strategies for combating cancer. In this review, the possible clinical applications of Notch1 inhibition and the obstacles that hinder its clinical application are discussed. SIGNIFICANCE STATEMENT: Notch1 plays an important role in different types of cancer. Numerous approaches of Notch1 inhibition possess potential benefits in the management of various clinical aspects of cancer. The application of different Notch1 inhibition modalities faces many challenges.
Collapse
Affiliation(s)
- L Gharaibeh
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - N Elmadany
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - K Alwosaibai
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| | - W Alshaer
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan (L.G); Cellular Neurosciences, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany (N.E.); Research Center, King Fahad Specialist Hospital, Dammam, Saudi Arabia (K.A.); and Cell Therapy Center, The University of Jordan, Amman, Jordan (W.A.)
| |
Collapse
|
20
|
Notch Pathway: A Journey from Notching Phenotypes to Cancer Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1287:201-222. [PMID: 33034034 DOI: 10.1007/978-3-030-55031-8_13] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Notch is a key evolutionary conserved pathway, which has fascinated and engaged the work of investigators in an uncountable number of biological fields, from development of metazoans to immunotherapy for cancer. The study of Notch has greatly contributed to the understanding of cancer biology and a substantial effort has been spent in designing Notch-targeting therapies. Due to its broad involvement in cancer, targeting Notch would allow to virtually modulate any aspect of the disease. However, this means that Notch-based therapies must be highly specific to avoid off-target effects. This review will present the newest mechanistic and therapeutic advances in the Notch field and discuss the promises and challenges of this constantly evolving field.
Collapse
|
21
|
Ma C, Takeuchi H, Hao H, Yonekawa C, Nakajima K, Nagae M, Okajima T, Haltiwanger RS, Kizuka Y. Differential Labeling of Glycoproteins with Alkynyl Fucose Analogs. Int J Mol Sci 2020; 21:ijms21176007. [PMID: 32825463 PMCID: PMC7503990 DOI: 10.3390/ijms21176007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/12/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022] Open
Abstract
Fucosylated glycans critically regulate the physiological functions of proteins and cells. Alterations in levels of fucosylated glycans are associated with various diseases. For detection and functional modulation of fucosylated glycans, chemical biology approaches using fucose (Fuc) analogs are useful. However, little is known about how efficiently each unnatural Fuc analog is utilized by enzymes in the biosynthetic pathway of fucosylated glycans. We show here that three clickable Fuc analogs with similar but distinct structures labeled cellular glycans with different efficiency and protein specificity. For instance, 6-alkynyl (Alk)-Fuc modified O-Fuc glycans much more efficiently than 7-Alk-Fuc. The level of GDP-6-Alk-Fuc produced in cells was also higher than that of GDP-7-Alk-Fuc. Comprehensive in vitro fucosyltransferase assays revealed that 7-Alk-Fuc is commonly tolerated by most fucosyltransferases. Surprisingly, both protein O-fucosyltransferases (POFUTs) could transfer all Fuc analogs in vitro, likely because POFUT structures have a larger space around their Fuc binding sites. These findings demonstrate that labeling and detection of fucosylated glycans with Fuc analogs depend on multiple cellular steps, including conversion to GDP form, transport into the ER or Golgi, and utilization by each fucosyltransferase, providing insights into design of novel sugar analogs for specific detection of target glycans or inhibition of their functions.
Collapse
Affiliation(s)
- Chenyu Ma
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
| | - Hideyuki Takeuchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Huilin Hao
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (H.H.); (R.S.H.)
| | - Chizuko Yonekawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan;
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University, Toyoake 470-1192, Japan;
| | - Masamichi Nagae
- Department of Molecular Immunology, Research Institute for Microbial Disease, Osaka University, Suita 565-0871, Japan;
- Laboratory of Molecular Immunology, Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan; (C.M.); (H.T.); (T.O.)
- Institute for Glyco-Core Research (iGCORE), Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Robert S. Haltiwanger
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (H.H.); (R.S.H.)
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu 501-1193, Japan;
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
- Correspondence: ; Tel.: +81-58-293-3356
| |
Collapse
|
22
|
Kumar R, Verma H, Singhvi N, Sood U, Gupta V, Singh M, Kumari R, Hira P, Nagar S, Talwar C, Nayyar N, Anand S, Rawat CD, Verma M, Negi RK, Singh Y, Lal R. Comparative Genomic Analysis of Rapidly Evolving SARS-CoV-2 Reveals Mosaic Pattern of Phylogeographical Distribution. mSystems 2020; 5:e00505-20. [PMID: 32723797 PMCID: PMC7394360 DOI: 10.1128/msystems.00505-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) that started in Wuhan, China, in December 2019 has spread worldwide, emerging as a global pandemic. The severe respiratory pneumonia caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has so far claimed more than 0.38 million lives and has impacted human lives worldwide. However, as the novel SARS-CoV-2 virus displays high transmission rates, the underlying genomic severity is required to be fully understood. We studied the complete genomes of 95 SARS-CoV-2 strains from different geographical regions worldwide to uncover the pattern of the spread of the virus. We show that there is no direct transmission pattern of the virus among neighboring countries, suggesting that its spread is a result of travel of infected humans to different countries. We revealed unique single nucleotide polymorphisms (SNPs) in nonstructural protein 13 (nsp13), nsp14, nsp15, and nsp16 (ORF1b polyproteins) and in the S-protein within 10 viral isolates from the United States. These viral proteins are involved in RNA replication and binding with the human receptors, indicating that the viral variants that are circulating in the population of the United States are different from those circulating in the populations of other countries. In addition, we found an amino acid addition in nsp16 (mRNA cap-1 methyltransferase) of a U.S. isolate (GenBank accession no. MT188341.1) leading to a shift in the amino acid frame from position 2540 onward. Through comparative structural analysis of the wild-type and mutant proteins, we showed that this addition of a phenylalanine residue renders the protein in the mutant less stable, which might affect mRNA cap-1 methyltransferase function. We further analyzed the SARS-CoV-2-human interactome, which revealed that the interferon signaling pathway is targeted by orf1ab during infection and that it also interacts with NF-κB-repressing factor (NKRF), which is a potential regulator of interleukin-8 (IL-8). We propose that targeting this interaction may subsequently improve the health condition of COVID-19 patients. Our analysis also emphasized that SARS-CoV-2 manipulates spliceosome machinery during infection; hence, targeting splicing might affect viral replication. In conclusion, the replicative machinery of SARS-CoV-2 is targeting interferon and the notch signaling pathway along with spliceosome machinery to evade host challenges.IMPORTANCE The COVID-19 pandemic continues to storm the world, with over 6.5 million cases worldwide. The severity of the disease varies with the territories and is mainly influenced by population density and age factor. In this study, we analyzed the transmission pattern of 95 SARS-CoV-2 genomes isolated from 11 different countries. Our study also revealed several nonsynonymous mutations in ORF1b and S-proteins and the impact on their structural stability. Our analysis showed the manipulation of host system by viral proteins through SARS-CoV-2-human protein interactome, which can be useful to understand the impact of virus on human health.
Collapse
Affiliation(s)
- Roshan Kumar
- P.G. Department of Zoology, Magadh University, Bodh Gaya, Bihar, India
| | - Helianthous Verma
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | | | - Utkarsh Sood
- The Energy and Resources Institute, New Delhi, India
| | - Vipin Gupta
- PhiXGen Private Limited, Gurugram, Haryana, India
| | - Mona Singh
- PhiXGen Private Limited, Gurugram, Haryana, India
| | - Rashmi Kumari
- Department of Zoology, College of Commerce, Arts & Science, Patliputra University, Patna, Bihar, India
| | - Princy Hira
- Department of Zoology, Maitreyi College, University of Delhi, New Delhi, India
| | - Shekhar Nagar
- Department of Zoology, University of Delhi, Delhi, India
| | - Chandni Talwar
- Department of Zoology, University of Delhi, Delhi, India
| | - Namita Nayyar
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, India
| | - Shailly Anand
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, New Delhi, India
| | - Charu Dogra Rawat
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Mansi Verma
- Department of Zoology, Sri Venkateswara College, University of Delhi, New Delhi, India
| | | | - Yogendra Singh
- Department of Zoology, University of Delhi, Delhi, India
| | - Rup Lal
- The Energy and Resources Institute, New Delhi, India
| |
Collapse
|
23
|
Deschuyter M, Pennarubia F, Pinault E, Legardinier S, Maftah A. Functional Characterization of POFUT1 Variants Associated with Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12061430. [PMID: 32486426 PMCID: PMC7352195 DOI: 10.3390/cancers12061430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Protein O-fucosyltransferase 1 (POFUT1) overexpression, which is observed in many cancers such as colorectal cancer (CRC), leads to a NOTCH signaling dysregulation associated with the tumoral process. In rare CRC cases, with no POFUT1 overexpression, seven missense mutations were found in human POFUT1. METHODS Recombinant secreted forms of human WT POFUT1 and its seven mutated counterparts were produced and purified. Their O-fucosyltransferase activities were assayed in vitro using a chemo-enzymatic approach with azido-labeled GDP-fucose as a donor substrate and NOTCH1 EGF-LD26, produced in E. coli periplasm, as a relevant acceptor substrate. Targeted mass spectrometry (MS) was carried out to quantify the O-fucosyltransferase ability of all POFUT1 proteins. FINDINGS MS analyses showed a significantly higher O-fucosyltransferase activity of six POFUT1 variants (R43H, Y73C, T115A, I343V, D348N, and R364W) compared to WT POFUT1. INTERPRETATION This study provides insights on the possible involvement of these seven missense mutations in colorectal tumors. The hyperactive forms could lead to an increased O-fucosylation of POFUT1 protein targets such as NOTCH receptors in CRC patients, thereby leading to a NOTCH signaling dysregulation. It is the first demonstration of gain-of-function mutations for this crucial glycosyltransferase, modulating NOTCH activity, as well as that of other potential glycoproteins.
Collapse
Affiliation(s)
- Marlène Deschuyter
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of Limoges, F-87060 Limoges, France; (M.D.); (F.P.); (E.P.); (S.L.)
| | - Florian Pennarubia
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of Limoges, F-87060 Limoges, France; (M.D.); (F.P.); (E.P.); (S.L.)
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Emilie Pinault
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of Limoges, F-87060 Limoges, France; (M.D.); (F.P.); (E.P.); (S.L.)
- BISCEm US042 INSERM—UMS 2015 CNRS, Mass Spectrometry Platform, Faculty of Medicine and Pharmacy, University of Limoges, F-87025 Limoges, France
| | - Sébastien Legardinier
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of Limoges, F-87060 Limoges, France; (M.D.); (F.P.); (E.P.); (S.L.)
| | - Abderrahman Maftah
- PEIRENE, EA 7500, Glycosylation and Cell Differentiation, Faculty of Sciences and Technology, University of Limoges, F-87060 Limoges, France; (M.D.); (F.P.); (E.P.); (S.L.)
- Correspondence: ; Tel.: +33-5554-57684; Fax: +33-5554-57653
| |
Collapse
|
24
|
Nagae M, Yamaguchi Y, Taniguchi N, Kizuka Y. 3D Structure and Function of Glycosyltransferases Involved in N-glycan Maturation. Int J Mol Sci 2020; 21:E437. [PMID: 31936666 PMCID: PMC7014118 DOI: 10.3390/ijms21020437] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
Glycosylation is the most ubiquitous post-translational modification in eukaryotes. N-glycan is attached to nascent glycoproteins and is processed and matured by various glycosidases and glycosyltransferases during protein transport. Genetic and biochemical studies have demonstrated that alternations of the N-glycan structure play crucial roles in various physiological and pathological events including progression of cancer, diabetes, and Alzheimer's disease. In particular, the formation of N-glycan branches regulates the functions of target glycoprotein, which are catalyzed by specific N-acetylglucosaminyltransferases (GnTs) such as GnT-III, GnT-IVs, GnT-V, and GnT-IX, and a fucosyltransferase, FUT8s. Although the 3D structures of all enzymes have not been solved to date, recent progress in structural analysis of these glycosyltransferases has provided insights into substrate recognition and catalytic reaction mechanisms. In this review, we discuss the biological significance and structure-function relationships of these enzymes.
Collapse
Affiliation(s)
- Masamichi Nagae
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoshiki Yamaguchi
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Miyagi 981-8558, Japan;
| | - Naoyuki Taniguchi
- Department of Glyco-Oncology and Medical Biochemistry, Osaka International Cancer Institute, 3-1-69 Otemae, Chuo-ku, Osaka 541-8567, Japan;
| | - Yasuhiko Kizuka
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
25
|
Keeley TS, Yang S, Lau E. The Diverse Contributions of Fucose Linkages in Cancer. Cancers (Basel) 2019; 11:E1241. [PMID: 31450600 PMCID: PMC6769556 DOI: 10.3390/cancers11091241] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/12/2019] [Accepted: 08/20/2019] [Indexed: 12/17/2022] Open
Abstract
Fucosylation is a post-translational modification of glycans, proteins, and lipids that is responsible for many biological processes. Fucose conjugation via α(1,2), α(1,3), α(1,4), α(1,6), and O'- linkages to glycans, and variations in fucosylation linkages, has important implications for cancer biology. This review focuses on the roles that fucosylation plays in cancer, specifically through modulation of cell surface proteins and signaling pathways. How L-fucose and serum fucosylation patterns might be used for future clinical diagnostic, prognostic, and therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- Tyler S Keeley
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
- University of South Florida Cancer Biology Graduate Program, Tampa, FL 33602, USA
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA
| | - Shengyu Yang
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Eric Lau
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL 33602, USA.
| |
Collapse
|
26
|
Therapeutic Targeting of Notch Signaling Pathway in Hematological Malignancies. Mediterr J Hematol Infect Dis 2019; 11:e2019037. [PMID: 31308913 PMCID: PMC6613627 DOI: 10.4084/mjhid.2019.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 05/18/2019] [Indexed: 12/16/2022] Open
Abstract
The Notch pathway plays a key role in several processes, including stem-cell self-renewal, proliferation, and cell differentiation. Several studies identified recurrent mutations in hematological malignancies making Notch one of the most desirable targets in leukemia and lymphoma. The Notch signaling mediates resistance to therapy and controls cancer stem cells supporting the development of on-target therapeutic strategies to improve patients’ outcome. In this brief review, we outline the therapeutic potential of targeting Notch pathway in T-cell acute jlymphoblastic leukemia, chronic lymphocytic leukemia, and mantle cell lymphoma.
Collapse
|
27
|
Holdener BC, Haltiwanger RS. Protein O-fucosylation: structure and function. Curr Opin Struct Biol 2019; 56:78-86. [PMID: 30690220 DOI: 10.1016/j.sbi.2018.12.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022]
Abstract
Fucose is a common terminal modification on protein and lipid glycans. Fucose can also be directly linked to protein via an O-linkage to Serine or Threonine residues located within consensus sequences contained in Epidermal Growth Factor-like (EGF) repeats and Thrombospondin Type 1 Repeats (TSRs). In this context, fucose is added exclusively to properly folded EGF repeats and TSRs by Protein O-fucosyltransferases 1 and 2, respectively. In both cases, the O-linked fucose can also be elongated with other sugars. Here, we describe the biological importance of these O-fucose glycans and molecular mechanisms by which they affect the function of the proteins they modify. O-Fucosylation of EGF repeats modulates the Notch signaling pathway, while O-fucosylation of TSRs is predicted to influence secretion of targets including several extracellular proteases. Recent data show O-fucose glycans mediate their effects by participating in both intermolecular and intramolecular interactions.
Collapse
Affiliation(s)
- Bernadette C Holdener
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | | |
Collapse
|
28
|
Voiniciuc C, Dama M, Gawenda N, Stritt F, Pauly M. Mechanistic insights from plant heteromannan synthesis in yeast. Proc Natl Acad Sci U S A 2019; 116:522-527. [PMID: 30584101 PMCID: PMC6329948 DOI: 10.1073/pnas.1814003116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Heteromannan (HM) is one of the most ancient cell wall polymers in the plant kingdom, consisting of β-(1-4)-linked backbones of glucose (Glc) and mannose (Man) units. Despite the widespread distribution of HM polysaccharides, their biosynthesis remains mechanistically unclear. HM is elongated by glycosyltransferases (GTs) from the cellulose synthase-like A (CSLA) family. MANNAN-SYNTHESIS RELATED (MSR) putative GTs have also been implicated in (gluco)mannan synthesis, but their roles have been difficult to decipher in planta and in vitro. To further characterize the products of the HM synthases and accessory proteins, we chose a synthetic biology approach to synthesize plant HM in yeast. The expression of a CSLA protein in Pichia pastoris led to the abundant production of plant HM: up to 30% of glycans in the yeast cell wall. Based on sequential chemical and enzymatic extractions, followed by detailed structural analyses, the newly produced HM polymers were unbranched and could be larger than 270 kDa. Using CSLAs from different species, we programmed yeast cells to produce an HM backbone composed exclusively of Man or also incorporating Glc. We demonstrate that specific MSR cofactors were indispensable for mannan synthase activity of a coffee CSLA or modulated a functional CSLA enzyme to produce glucomannan instead of mannan. Therefore, this powerful platform yields functional insight into the molecular machinery required for HM biosynthesis in plants.
Collapse
Affiliation(s)
- Cătălin Voiniciuc
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Murali Dama
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Niklas Gawenda
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Fabian Stritt
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Pennarubia F, Pinault E, Maftah A, Legardinier S. In vitro acellular method to reveal O-fucosylation on EGF-like domains. Glycobiology 2018; 29:5214357. [PMID: 30496416 DOI: 10.1093/glycob/cwy106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 11/28/2018] [Indexed: 02/28/2024] Open
Abstract
A hundred of human proteins have one or more EGF-like domains (EGF-LD) bearing the O-fucosylation consensus motif C2X4(S/T)C3 but to date, only a few of them have been shown to be O-fucosylated. The protein O-fucosyltransferase (POFUT1) specifically recognizes correctly folded EGF-LD of the human EGF (hEGF) type and transfers fucose on serine or threonine residue within the O-fucosylation motif. Here, we propose a strategy for a rapid screening for ability of any EGF-LD to be O-fucosylated, using copper-catalyzed azide-alkyne cycloaddition (CuAAC). By an oligonucleotide hybridization approach, double-stranded fragments encoding any EGF-LD can be first rapidly cloned into the prokaryotic vector pET-25b to promote its targeting to periplasm and formation of the three conserved disulfide bonds. After protein production and purification, an in vitro POFUT1-mediated O-fucosylation can be performed with azido GDP-fucose. Successful transfer of O-fucose is finally revealed by blotting technique after CuAAC. In this study, we specially focused on mouse NOTCH1 EGF12 and EGF26, which are both known to be O-fucosylated although having different binding affinities towards POFUT1. Indeed, we clearly showed here that addition of O-fucose by POFUT1 was much more efficient for EGF26 than for EGF12. This experimental approach is rapid and sufficiently sensitive to reveal propensity of any EGF-LD to be O-fucosylated; it is thus useful prior to perform structure-function studies on target proteins containing one or several EGF-LD.
Collapse
Affiliation(s)
- Florian Pennarubia
- Univ. Limoges, PEIRENE, EA 7500, Glycosylation and cell differentiation, F-87000 Limoges, France
| | - Emilie Pinault
- Univ. Limoges, PEIRENE, EA 7500, Glycosylation and cell differentiation, F-87000 Limoges, France
- Univ. Limoges, BISCEm Mass Spectrometry Platform, F-87025 Limoges, France
| | - Abderrahman Maftah
- Univ. Limoges, PEIRENE, EA 7500, Glycosylation and cell differentiation, F-87000 Limoges, France
| | - Sébastien Legardinier
- Univ. Limoges, PEIRENE, EA 7500, Glycosylation and cell differentiation, F-87000 Limoges, France
| |
Collapse
|
30
|
Varshney S, Stanley P. Multiple roles for O-glycans in Notch signalling. FEBS Lett 2018; 592:3819-3834. [PMID: 30207383 DOI: 10.1002/1873-3468.13251] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/12/2022]
Abstract
Notch signalling regulates a plethora of developmental processes and is also essential for the maintenance of tissue homeostasis in adults. Therefore, fine-tuning of Notch signalling strength needs to be tightly regulated. Of key importance for the regulation of Notch signalling are O-fucose, O-GlcNAc and O-glucose glycans attached to the extracellular domain of Notch receptors. The EGF repeats of the Notch receptor extracellular domain harbour consensus sites for addition of the different types of O-glycan to Ser or Thr, which takes place in the endoplasmic reticulum. Studies from Drosophila to mammals have demonstrated the multifaceted roles of O-glycosylation in regulating Notch signalling. O-glycosylation modulates different aspects of Notch signalling including recognition by Notch ligands, the strength of ligand binding, Notch receptor trafficking, stability and activation at the cell surface. Defects in O-glycosylation of Notch receptors give rise to pathologies in humans. This Review summarizes the nature of the O-glycans on Notch receptors and their differential effects on Notch signalling.
Collapse
Affiliation(s)
- Shweta Varshney
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
31
|
Takeuchi H, Wong D, Schneider M, Freeze HH, Takeuchi M, Berardinelli SJ, Ito A, Lee H, Nelson SF, Haltiwanger RS. Variant in human POFUT1 reduces enzymatic activity and likely causes a recessive microcephaly, global developmental delay with cardiac and vascular features. Glycobiology 2018; 28:276-283. [PMID: 29452367 DOI: 10.1093/glycob/cwy014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 02/14/2018] [Indexed: 12/12/2022] Open
Abstract
Protein O-fucosyltransferase-1 (POFUT1) adds O-fucose monosaccharides to epidermal growth factor-like (EGF) repeats found on approximately 100 mammalian proteins, including Notch receptors. Haploinsufficiency of POFUT1 has been linked to adult-onset Dowling Degos Disease (DDD) with hyperpigmentation defects. Homozygous deletion of mouse Pofut1 results in embryonic lethality with severe Notch-like phenotypes including defects in somitogenesis, cardiogenesis, vasculogenesis and neurogenesis, but the extent to which POFUT1 is required for normal human development is not yet understood. Here we report a patient with a congenital syndrome consisting of severe global developmental delay, microcephaly, heart defects, failure to thrive and liver disease with a previously unreported homozygous NM_015352.1: c.485C>T variant (p.Ser162Leu) in POFUT1 detected by exome sequencing. Both parents are heterozygotes and neither manifests any signs of DDD. No other detected variant explained the phenotype. This variant eliminated a conserved N-glycosylation sequon at Asn160 in POFUT1 and profoundly decreased POFUT1 activity in patient fibroblasts compared to control fibroblasts. Purified p.Ser162Leu mutant protein also showed much lower POFUT1 activity with a lower affinity for EGF acceptor substrate than wild type POFUT1. Eliminating the N-glycan sequon by replacing Asn160 with Gln had little effect on POFUT1 activity, suggesting that loss of the glycan is not responsible for the defect. Furthermore, the p.Ser162Leu mutant showed weaker ability to rescue Notch activity in cell-based assays. These results suggest that this N-glycan of POFUT1 is not required for its proper enzymatic function, and that the p.Ser162Leu mutation of POFUT1 likely causes global developmental delay, microcephaly with vascular and cardiac defects.
Collapse
Affiliation(s)
- Hideyuki Takeuchi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.,Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602-4712, USA
| | - Derek Wong
- Department of Pediatrics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Schneider
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Hudson H Freeze
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Megumi Takeuchi
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.,Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602-4712, USA
| | - Steven J Berardinelli
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602-4712, USA
| | - Atsuko Ito
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.,Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602-4712, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Stanley F Nelson
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.,Department of Human Genetics, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794-5215, USA.,Complex Carbohydrate Research Center, The University of Georgia, Athens, GA 30602-4712, USA
| |
Collapse
|
32
|
Du Y, Li D, Li N, Su C, Yang C, Lin C, Chen M, Wu R, Li X, Hu G. POFUT1 promotes colorectal cancer development through the activation of Notch1 signaling. Cell Death Dis 2018; 9:995. [PMID: 30250219 PMCID: PMC6155199 DOI: 10.1038/s41419-018-1055-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
Copy number variations (CNVs) are key drivers of colorectal cancer (CRC). Our previous studies revealed that protein O-fucosyltransferase 1 (POFUT1) overexpression is driven by CNVs during CRC development. The potential role and underlying mechanisms of POFUT1 in CRC were not investigated. In this study, we analyzed the expression of POFUT1 in CRC from cosmic and TCGA databases and confirmed that POFUT1 is highly expressed in CRC. We used well characterized CRC cell lines, including SW620 and HCT116 to establish a model POFUT1 knockdown cell line. Using these cells, we investigated the role of POFUT1 in CRC. Our data revealed that silencing POFUT1 in CRC cells inhibits cell proliferation, decreases cell invasion and migration, arrests cell cycle progression, and stimulates CRC cell apoptosis in vitro. We further demonstrate that POFUT1 silencing dramatically suppresses CRC tumor growth and transplantation in vivo. We additionally reveal new mechanistic insights into the role of POFUT1 during CRC, through demonstrating that POFUT1 silencing inhibits Notch1 signaling. Taken together, our findings demonstrate that POFUT1 is a tumor activating gene during CRC development, which positively regulates CRC tumor progression through activating Notch1.
Collapse
Affiliation(s)
- Yuheng Du
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Daojiang Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Nanpeng Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chen Su
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Chunxing Yang
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Changwei Lin
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Miao Chen
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Runliu Wu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Xiaorong Li
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Gui Hu
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China.
| |
Collapse
|
33
|
Lira-Navarrete E, Hurtado-Guerrero R. A perspective on structural and mechanistic aspects of protein O-fucosylation. Acta Crystallogr F Struct Biol Commun 2018; 74:443-450. [PMID: 30084393 PMCID: PMC6096484 DOI: 10.1107/s2053230x18004788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/23/2018] [Indexed: 11/18/2022] Open
Abstract
Protein O-fucosylation is an important post-translational modification (PTM) found in cysteine-rich repeats in proteins. Protein O-fucosyltransferases 1 and 2 (PoFUT1 and PoFUT2) are the enzymes responsible for this PTM and selectively glycosylate specific residues in epidermal growth factor-like (EGF) repeats and thrombospondin type I repeats (TSRs), respectively. Within the past six years, crystal structures of both enzymes have been reported, revealing important information on how they recognize protein substrates and achieve catalysis. Here, the structural information available today is summarized and how PoFUT1 and PoFUT2 employ different catalytic mechanisms is discussed.
Collapse
Affiliation(s)
- Erandi Lira-Navarrete
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ramon Hurtado-Guerrero
- BIFI, University of Zaragoza, BIFI–IQFR (CSIC) Joint Unit, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, Zaragoza, Spain
- Fundación ARAID, Avenida de Ranillas, 50018 Zaragoza, Spain
| |
Collapse
|
34
|
González‐Villanueva I, Gutiérrez M, Hispán P, Betlloch I, Pascual J. Novel
POFUT
1
mutation associated with hidradenitis suppurativa–Dowling–Degos disease firm up a role for Notch signalling in the pathogenesis of this disorder. Br J Dermatol 2018; 178:984-986. [DOI: 10.1111/bjd.16264] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- I. González‐Villanueva
- Department of Dermatology Alicante University General Hospital Alicante Institute for Health and Biomedical Research (ISABIAL‐FISABIO Foundation) Alicante Spain
| | - M. Gutiérrez
- Department of Genetics Alicante University General Hospital Alicante Institute for Health and Biomedical Research (ISABIAL‐FISABIO Foundation) Alicante Spain
| | - P. Hispán
- Department of Dermatology Alicante University General Hospital Alicante Institute for Health and Biomedical Research (ISABIAL‐FISABIO Foundation) Alicante Spain
| | - I. Betlloch
- Department of Dermatology Alicante University General Hospital Alicante Institute for Health and Biomedical Research (ISABIAL‐FISABIO Foundation) Alicante Spain
| | - J.C. Pascual
- Department of Dermatology Alicante University General Hospital Alicante Institute for Health and Biomedical Research (ISABIAL‐FISABIO Foundation) Alicante Spain
| |
Collapse
|
35
|
Salazar JL, Yamamoto S. Integration of Drosophila and Human Genetics to Understand Notch Signaling Related Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:141-185. [PMID: 30030826 PMCID: PMC6233323 DOI: 10.1007/978-3-319-89512-3_8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling research dates back to more than one hundred years, beginning with the identification of the Notch mutant in the fruit fly Drosophila melanogaster. Since then, research on Notch and related genes in flies has laid the foundation of what we now know as the Notch signaling pathway. In the 1990s, basic biological and biochemical studies of Notch signaling components in mammalian systems, as well as identification of rare mutations in Notch signaling pathway genes in human patients with rare Mendelian diseases or cancer, increased the significance of this pathway in human biology and medicine. In the 21st century, Drosophila and other genetic model organisms continue to play a leading role in understanding basic Notch biology. Furthermore, these model organisms can be used in a translational manner to study underlying mechanisms of Notch-related human diseases and to investigate the function of novel disease associated genes and variants. In this chapter, we first briefly review the major contributions of Drosophila to Notch signaling research, discussing the similarities and differences between the fly and human pathways. Next, we introduce several biological contexts in Drosophila in which Notch signaling has been extensively characterized. Finally, we discuss a number of genetic diseases caused by mutations in genes in the Notch signaling pathway in humans and we expand on how Drosophila can be used to study rare genetic variants associated with these and novel disorders. By combining modern genomics and state-of-the art technologies, Drosophila research is continuing to reveal exciting biology that sheds light onto mechanisms of disease.
Collapse
Affiliation(s)
- Jose L Salazar
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine (BCM), Houston, TX, USA.
- Program in Developmental Biology, BCM, Houston, TX, USA.
- Department of Neuroscience, BCM, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
36
|
Abstract
Notch is commonly activated in lymphoid malignancies through ligand-independent and ligand-dependent mechanisms. In T-cell acute lymphoblastic leukemia/lymphoma (T-ALL), ligand-independent activation predominates. Negative Regulatory Region (NRR) mutations trigger supraphysiological Notch1 activation by exposing the S2 site to proteolytic cleavage in the absence of ligand. Subsequently, cleavage at the S3 site generates the activated form of Notch, intracellular Notch (ICN). In contrast to T-ALL, in mature lymphoid neoplasms such as chronic lymphocytic leukemia (CLL), the S2 cleavage site is exposed through ligand-receptor interactions. Thus, agents that disrupt ligand-receptor interactions might be useful for treating these malignancies. Notch activation can be enhanced by mutations that delete the C-terminal proline (P), glutamic acid (E), serine (S), and threonine (T) (PEST) domain. These mutations do not activate the Notch pathway per se, but rather impair degradation of ICN. In this chapter, we review the mechanisms of Notch activation and the importance of Notch for the genesis and maintenance of lymphoid malignancies. Unfortunately, targeting the Notch pathway with pan-Notch inhibitors in clinical trials has proven challenging. These clinical trials have encountered dose-limiting on-target toxicities and primary resistance. Strategies to overcome these challenges have emerged from the identification and improved understanding of direct oncogenic Notch target genes. Other strategies have arisen from new insights into the "nuclear context" that selectively directs Notch functions in lymphoid cancers. This nuclear context is created by factors that co-bind ICN at cell-type specific transcriptional regulatory elements. Disrupting the functions of these proteins or inhibiting downstream oncogenic pathways might combat cancer without the intolerable side effects of pan-Notch inhibition.
Collapse
|
37
|
Harvey BM, Haltiwanger RS. Regulation of Notch Function by O-Glycosylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1066:59-78. [PMID: 30030822 DOI: 10.1007/978-3-319-89512-3_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Notch receptor initiates a unique intercellular signaling pathway that is evolutionarily conserved across all metazoans and contributes to the development and maintenance of numerous tissues. Consequently, many diseases result from aberrant Notch signaling. Emerging roles for Notch in disease are being uncovered as studies reveal new information regarding various components of this signaling pathway. Notch activity is regulated at several levels, but O-linked glycosylation of Epidermal Growth Factor (EGF) repeats in the Notch extracellular domain has emerged as a major regulator that, depending on context, can increase or decrease Notch activity. Three types of O-linked glycosylation occur at consensus sequences found within the EGF repeats of Notch: O-fucosylation, O-glucosylation, and O-GlcNAcylation. Recent studies have investigated the site occupancy of these types of glycosylation and also defined specific roles for these glycans on Notch structure and function. Nevertheless, there are many functional aspects to each type of O-glycosylation that remain unclear. Here, we will discuss molecular mechanisms of how O-glycosylation regulates Notch signaling and describe disorders associated with defects in Notch O-glycosylation.
Collapse
Affiliation(s)
- Beth M Harvey
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA.,Present Address: Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert S Haltiwanger
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA. .,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
| |
Collapse
|