1
|
Greenberg D, Rosenblum ND, Tonelli M. The multifaceted links between hearing loss and chronic kidney disease. Nat Rev Nephrol 2024; 20:295-312. [PMID: 38287134 DOI: 10.1038/s41581-024-00808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/31/2024]
Abstract
Hearing loss affects nearly 1.6 billion people and is the third-leading cause of disability worldwide. Chronic kidney disease (CKD) is also a common condition that is associated with adverse clinical outcomes and high health-care costs. From a developmental perspective, the structures responsible for hearing have a common morphogenetic origin with the kidney, and genetic abnormalities that cause familial forms of hearing loss can also lead to kidney disease. On a cellular level, normal kidney and cochlea function both depend on cilial activities at the apical surface, and kidney tubular cells and sensory epithelial cells of the inner ear use similar transport mechanisms to modify luminal fluid. The two organs also share the same collagen IV basement membrane network. Thus, strong developmental and physiological links exist between hearing and kidney function. These theoretical considerations are supported by epidemiological data demonstrating that CKD is associated with a graded and independent excess risk of sensorineural hearing loss. In addition to developmental and physiological links between kidney and cochlear function, hearing loss in patients with CKD may be driven by specific medications or treatments, including haemodialysis. The associations between these two common conditions are not commonly appreciated, yet have important implications for research and clinical practice.
Collapse
Affiliation(s)
- Dina Greenberg
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Norman D Rosenblum
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, Toronto, Ontario, Canada
- Department of Paediatrics, Temerty Faculty of Medicine, Toronto, Ontario, Canada
| | - Marcello Tonelli
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
2
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
3
|
Jourdeuil K, Neilson KM, Cousin H, Tavares ALP, Majumdar HD, Alfandari D, Moody SA. Zmym4 is required for early cranial gene expression and craniofacial cartilage formation. Front Cell Dev Biol 2023; 11:1274788. [PMID: 37854072 PMCID: PMC10579616 DOI: 10.3389/fcell.2023.1274788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction: The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1's transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described. Methods: We used co-immunoprecipitation and luciferase-reporter assays in cultured cells to test interactions between Zmym4 and Six1. We used knock-down and overexpression of Zmym4 in embryos to test for its effects on early ectodermal gene expression, neural crest migration and craniofacial cartilage formation. Results: We found no evidence that Zmym4 physically or transcriptionally interacts with Six1 in cultured cells. Nonetheless, knockdown of endogenous Zmym4 in embryos resulted in altered early cranial gene expression, including those expressed in the neural border, neural plate, neural crest and preplacodal ectoderm. Experimentally increasing Zmym4 levels had minor effects on neural border or neural plate genes, but altered the expression of neural crest and preplacodal genes. At larval stages, genes expressed in the otic vesicle and branchial arches showed reduced expression in Zmym4 morphants. Although we did not detect defects in neural crest migration into the branchial arches, loss of Zmym4 resulted in aberrant morphology of several craniofacial cartilages. Discussion: Although Zmym4 does not appear to function as a Six1 transcriptional cofactor, it plays an important role in regulating the expression of embryonic cranial genes in tissues critical for normal craniofacial development.
Collapse
Affiliation(s)
- Karyn Jourdeuil
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Karen M. Neilson
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Helene Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Andre L. P. Tavares
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Himani D. Majumdar
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, United States
| | - Sally A. Moody
- Department of Anatomy and Cell Biology, George Washington University, School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
4
|
Jones S, Matos B, Dennison S, Fardilha M, Howl J. Stem Cell Bioengineering with Bioportides: Inhibition of Planarian Head Regeneration with Peptide Mimetics of Eyes Absent Proteins. Pharmaceutics 2023; 15:2018. [PMID: 37631231 PMCID: PMC10458859 DOI: 10.3390/pharmaceutics15082018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Djeya1 (RKLAFRYRRIKELYNSYR) is a very effective cell penetrating peptide (CPP) that mimics the α5 helix of the highly conserved Eya domain (ED) of eyes absent (Eya) proteins. The objective of this study was to bioengineer analogues of Djeya1 that, following effective translocation into planarian tissues, would reduce the ability of neoblasts (totipotent stem cells) and their progeny to regenerate the anterior pole in decapitated S. mediterranea. As a strategy to increase the propensity for helix formation, molecular bioengineering of Djeya1 was achieved by the mono-substitution of the helicogenic aminoisobutyric acid (Aib) at three species-variable sites: 10, 13, and 16. CD analyses indicated that Djeya1 is highly helical, and that Aib-substitution had subtle influences upon the secondary structures of bioengineered analogues. Aib-substituted Djeya1 analogues are highly efficient CPPs, devoid of influence upon cell viability or proliferation. All three peptides increase the migration of PC-3 cells, a prostate cancer line that expresses high concentrations of Eya. Two peptides, [Aib13]Djeya1 and [Aib16]Djeya1, are bioportides which delay planarian head regeneration. As neoblasts are the only cell population capable of division in planaria, these data indicate that bioportide technologies could be utilised to directly manipulate other stem cells in situ, thus negating any requirement for genetic manipulation.
Collapse
Affiliation(s)
- Sarah Jones
- Research Institute in Healthcare Science, Faculty of Science & Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| | - Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (B.M.); (M.F.)
| | - Sarah Dennison
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine—iBiMED, University of Aveiro, 3810-193 Aveiro, Portugal; (B.M.); (M.F.)
| | - John Howl
- Research Institute in Healthcare Science, Faculty of Science & Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| |
Collapse
|
5
|
Zhang T, Xu PX. The role of Eya1 and Eya2 in the taste system of mice from embryonic stage to adulthood. Front Cell Dev Biol 2023; 11:1126968. [PMID: 37181748 PMCID: PMC10167055 DOI: 10.3389/fcell.2023.1126968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Members of the Eya family, which are a class of transcription factors with phosphatase activity, are widely expressed in cranial sensory organs during development. However, it is unclear whether these genes are expressed in the taste system during development and whether they play any role in specifying taste cell fate. In this study, we report that Eya1 is not expressed during embryonic tongue development but that Eya1-expressing progenitors in somites or pharyngeal endoderm give rise to tongue musculature or taste organs, respectively. In the Eya1-deficient tongues, these progenitors do not proliferate properly, resulting in a smaller tongue at birth, impaired growth of taste papillae, and disrupted expression of Six1 in the papillary epithelium. On the other hand, Eya2 is specifically expressed in endoderm-derived circumvallate and foliate papillae located on the posterior tongue during development. In adult tongues, Eya1 is predominantly expressed in IP3R3-positive taste cells in the taste buds of the circumvallate and foliate papillae, while Eya2 is persistently expressed in these papillae at higher levels in some epithelial progenitors and at lower levels in some taste cells. We found that conditional knockout of Eya1 in the third week or Eya2 knockout reduced Pou2f3+, Six1+ and IP3R3+ taste cells. Our data define for the first time the expression patterns of Eya1 and Eya2 during the development and maintenance of the mouse taste system and suggest that Eya1 and Eya2 may act together to promote lineage commitment of taste cell subtypes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
6
|
Li J, Cheng C, Xu J, Zhang T, Tokat B, Dolios G, Ramakrishnan A, Shen L, Wang R, Xu PX. The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity. Nucleic Acids Res 2022; 50:10343-10359. [PMID: 36130284 PMCID: PMC9561260 DOI: 10.1093/nar/gkac760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/15/2022] Open
Abstract
Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Chunming Cheng
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Bengu Tokat
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Georgia Dolios
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | | | - Li Shen
- Department of Neurosciences, New York, NY 10029, USA
| | - Rong Wang
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
7
|
Xu J, Li J, Ramakrishnan A, Yan H, Shen L, Xu PX. Six1 and Six2 of the Sine Oculis Homeobox Subfamily are Not Functionally Interchangeable in Mouse Nephron Formation. Front Cell Dev Biol 2022; 10:815249. [PMID: 35178390 PMCID: PMC8844495 DOI: 10.3389/fcell.2022.815249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022] Open
Abstract
The vertebrate Six1 and Six2 arose by gene duplication from the Drosophila sine oculis and have since diverged in their developmental expression patterns. Both genes are expressed in nephron progenitors of human fetal kidneys, and mutations in SIX1 or SIX2 cause branchio-oto-renal syndrome or renal hypodysplasia respectively. Since ∼80% of SIX1 target sites are shared by SIX2, it is speculated that SIX1 and SIX2 may be functionally interchangeable by targeting common downstream genes. In contrast, in mouse kidneys, Six1 expression in the metanephric mesenchyme lineage overlaps with Six2 only transiently, while Six2 expression is maintained in the nephron progenitors throughout development. This non-overlapping expression between Six1 and Six2 in mouse nephron progenitors promoted us to examine if Six1 can replace Six2. Surprisingly, forced expression of Six1 failed to rescue Six2-deficient kidney phenotype. We found that Six1 mediated Eya1 nuclear translocation and inhibited premature epithelialization of the progenitors but failed to rescue the proliferation defects and cell death caused by Six2-knockout. Genome-wide binding analyses showed that Six1 selectively occupied a small subset of Six2 target sites, but many Six2-bound loci crucial to the renewal and differentiation of nephron progenitors lacked Six1 occupancy. Altogether, these data indicate that Six1 cannot substitute Six2 to drive nephrogenesis in mouse kidneys, thus demonstrating that the difference in physiological roles of Six1 and Six2 in kidney development stems from both transcriptional regulations of the genes and divergent biochemical properties of the proteins.
Collapse
Affiliation(s)
- Jinshu Xu
- Department of Genetics and Genomic Sciences, New York, NY, United States
| | - Jun Li
- Department of Genetics and Genomic Sciences, New York, NY, United States
| | | | - Hanen Yan
- Department of Genetics and Genomic Sciences, New York, NY, United States
| | - Li Shen
- Department of Neurosciences, New York, NY, United States
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, New York, NY, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
8
|
Tavares ALP, Jourdeuil K, Neilson KM, Majumdar HD, Moody SA. Sobp modulates the transcriptional activation of Six1 target genes and is required during craniofacial development. Development 2021; 148:272053. [PMID: 34414417 DOI: 10.1242/dev.199684] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/10/2021] [Indexed: 12/26/2022]
Abstract
Branchio-oto-renal syndrome (BOR) is a disorder characterized by hearing loss, and craniofacial and/or renal defects. Variants in the transcription factor Six1 and its co-factor Eya1, both of which are required for otic development, are linked to BOR. We previously identified Sobp as a potential Six1 co-factor, and SOBP variants in mouse and humans cause otic phenotypes; therefore, we asked whether Sobp interacts with Six1 and thereby may contribute to BOR. Co-immunoprecipitation and immunofluorescence experiments demonstrate that Sobp binds to and colocalizes with Six1 in the cell nucleus. Luciferase assays show that Sobp interferes with the transcriptional activation of Six1+Eya1 target genes. Experiments in Xenopus embryos that either knock down or increase expression of Sobp show that it is required for formation of ectodermal domains at neural plate stages. In addition, altering Sobp levels disrupts otic vesicle development and causes craniofacial cartilage defects. Expression of Xenopus Sobp containing the human variant disrupts the pre-placodal ectoderm similar to full-length Sobp, but other changes are distinct. These results indicate that Sobp modifies Six1 function and is required for vertebrate craniofacial development, and identify Sobp as a potential candidate gene for BOR.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Karyn Jourdeuil
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington DC, DC 20037, USA
| |
Collapse
|
9
|
The Eyes Absent proteins in development and in developmental disorders. Biochem Soc Trans 2021; 49:1397-1408. [PMID: 34196366 PMCID: PMC8286820 DOI: 10.1042/bst20201302] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/23/2022]
Abstract
The Eyes Absent (EYA) transactivator-phosphatase proteins are important contributors to cell-fate determination processes and to the development of multiple organs. The transcriptional regulatory activity as well as the protein tyrosine phosphatase activities of the EYA proteins can independently contribute to proliferation, differentiation, morphogenesis and tissue homeostasis in different contexts. Aberrant EYA levels or activity are associated with numerous syndromic and non-syndromic developmental disorders, as well as cancers. Commensurate with the multiplicity of biochemical activities carried out by the EYA proteins, they impact upon a range of cellular signaling pathways. Here, we provide a broad overview of the roles played by EYA proteins in development, and highlight the molecular signaling pathways known to be linked with EYA-associated organ development and developmental disorders.
Collapse
|
10
|
Han R, Xia Y, Liu Z, Wu S, Ye E, Duan L, Ding J, La X. A mutation of EYA1 gene in a Chinese Han family with Branchio-Oto syndrome. Medicine (Baltimore) 2021; 100:e24691. [PMID: 34160378 PMCID: PMC8238333 DOI: 10.1097/md.0000000000024691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 01/21/2021] [Indexed: 01/04/2023] Open
Abstract
Branchio-Oto (BO) syndrome is one of the common syndromic forms of hearing loss. In this study, we aimed to characterize the clinical and genetic features of BO syndrome in a Chinese deaf family.The proposita in this study was a 29-years-old Chinese female with hearing loss, microtia, anterior concave auricle, and right branchial fistula. The family members agreed to undergo clinical examination. We collected blood samples from 7 family members, including 4 affected by the syndrome. Genomic DNA was extracted and subjected to Sanger sequencing. In addition, bioinformatics software SWISS MODEL was used to predict the protein encoded by EYA transcriptional coactivator and phosphatase 1 (EYA1) gene.Intra-familial consistency can be observed in the clinical phenotypes of BO syndrome in this family. EYA1 c.1627C>T (p.Gln543Ter) mutation was identified as the pathogenic cause in this family.This study reports a mutation associated with BO syndrome in a Chinese Han family. We highlight the utility of genetic testing in the diagnosis of BO syndrome. Thus, we believe that this report would provide a basis for the diagnosis of similar diseases in the future.
Collapse
Affiliation(s)
- Rui Han
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University
- Department of Immunology, College of Basic Medicine
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yan Xia
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University
| | - Zhijuan Liu
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University
| | - Shuang Wu
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University
| | - Erdengqieqieke Ye
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University
| | - Ling Duan
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University
| | - Jianbing Ding
- Department of Immunology, College of Basic Medicine
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High incidence Diseases, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaolin La
- Department of Prenatal Diagnosis, Reproductive Medicine Center, The First Affiliated Hospital of Xinjiang Medical University
| |
Collapse
|
11
|
Merk DJ, Zhou P, Cohen SM, Pazyra-Murphy MF, Hwang GH, Rehm KJ, Alfaro J, Reid CM, Zhao X, Park E, Xu PX, Chan JA, Eck MJ, Nazemi KJ, Harwell CC, Segal RA. The Eya1 Phosphatase Mediates Shh-Driven Symmetric Cell Division of Cerebellar Granule Cell Precursors. Dev Neurosci 2021; 42:170-186. [PMID: 33472197 DOI: 10.1159/000512976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
During neural development, stem and precursor cells can divide either symmetrically or asymmetrically. The transition between symmetric and asymmetric cell divisions is a major determinant of precursor cell expansion and neural differentiation, but the underlying mechanisms that regulate this transition are not well understood. Here, we identify the Sonic hedgehog (Shh) pathway as a critical determinant regulating the mode of division of cerebellar granule cell precursors (GCPs). Using partial gain and loss of function mutations within the Shh pathway, we show that pathway activation determines spindle orientation of GCPs, and that mitotic spindle orientation correlates with the mode of division. Mechanistically, we show that the phosphatase Eya1 is essential for implementing Shh-dependent GCP spindle orientation. We identify atypical protein kinase C (aPKC) as a direct target of Eya1 activity and show that Eya1 dephosphorylates a critical threonine (T410) in the activation loop. Thus, Eya1 inactivates aPKC, resulting in reduced phosphorylation of Numb and other components that regulate the mode of division. This Eya1-dependent cascade is critical in linking spindle orientation, cell cycle exit and terminal differentiation. Together these findings demonstrate that a Shh-Eya1 regulatory axis selectively promotes symmetric cell divisions during cerebellar development by coordinating spindle orientation and cell fate determinants.
Collapse
Affiliation(s)
- Daniel J Merk
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neurology & Interdisciplinary Neuro-Oncology, University Hospital Tübingen, Hertie Institute for Clinical Brain Research, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Pengcheng Zhou
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel M Cohen
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria F Pazyra-Murphy
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Grace H Hwang
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kristina J Rehm
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jose Alfaro
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Christopher M Reid
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xuesong Zhao
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Eunyoung Park
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | - Jennifer A Chan
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Michael J Eck
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kellie J Nazemi
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, USA
| | - Corey C Harwell
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA,
| | - Rosalind A Segal
- Department of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Gao J, Kang XY, Sun S, Li L, Gao DS. MES23.5 DA Immortalized Neuroblastoma Cells Self-protect Against Early Injury by Overexpressing Glial Cell–derived Neurotrophic Factor via Akt1/Eya1/Six2 Signaling. J Mol Neurosci 2019; 70:328-339. [DOI: 10.1007/s12031-019-01416-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 10/10/2019] [Indexed: 01/26/2023]
|
13
|
Chen P, Liu H, Lin Y, Xu J, Zhu W, Wu H, Yang T. EYA1 mutations leads to Branchio-Oto syndrome in two Chinese Han deaf families. Int J Pediatr Otorhinolaryngol 2019; 123:141-145. [PMID: 31102969 DOI: 10.1016/j.ijporl.2019.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Branchio-Oto (BO) syndrome is one of the common syndromic forms of hearing loss. In this study, we aimed to characterize the clinical and genetic features of BO syndrome in two Chinese Han deaf families. METHODS The auditory and other BO-related clinical features of Family 1809 and Family 1974 were summarized. Targeted next-generation sequencing in 144 known deafness genes was performed in the probands. Co-segregation of the pathogenic mutations and the phenotype was confirmed by Sanger sequencing in the family members. RESULTS Interfamilial and intrafamilial variations can be observed in the clinical phenotypes of BO syndrome in Family 1809 and 1974. A novel c.1493_1494insAT (p.Ile498PhefsTer*3) mutation and a previous reported c.967-2A>G mutation in EYA1 were identified as the pathogenic cause in Family 1974 and 1809, respectively. CONCLUSION Our results supported the heterogeneity of the genetic and phenotypic spectrum of BO syndrome. The recurrent c.967-2A>G in different ethnical groups suggested that it is a hot-spot mutation.
Collapse
Affiliation(s)
- Penghui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Haijin Liu
- Department of Pediatric Surgery, The 1st Affiliated Hospital of Gannan Medical University, Jiangxi Province, China
| | - Yun Lin
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jun Xu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Weidong Zhu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Hao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| | - Tao Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
14
|
Clerc DG. Extending the drug discovery pipeline to simultaneously-applied chemical agents, and extending the study of evolution to simultaneous mutations, through an ab initio model that relates changes in phenotype to changes in molecular binding interactions. INFORMATICS IN MEDICINE UNLOCKED 2019. [DOI: 10.1016/j.imu.2019.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
15
|
Wang YG, Sun SP, Qiu YL, Xing QH, Lu W. A novel mutation in EYA1 in a Chinese family with Branchio-oto-renal syndrome. BMC MEDICAL GENETICS 2018; 19:139. [PMID: 30086703 PMCID: PMC6081847 DOI: 10.1186/s12881-018-0653-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 07/24/2018] [Indexed: 01/07/2023]
Abstract
Background Branchio-oto-renal (BOR) syndrome is a dominant autosomal disorder characterized by phenotypes such as hearing loss, branchial fistulae, preauricular pits, and renal abnormalities. EYA1, the human homolog of the Drosophila “eye absent” gene on chromosome 8q13.3, is recognized as one of the most important genes associated with BOR syndrome. Methods The proposita in this study was a 5-year-old Chinese girl with hearing loss, bilateral otitis media with effusion, microtia, facial hypoplasia, palatoschisis, and bilateral branchial cleft fistulae. The girl’s family members, except two who were deceased, agreed to undergo clinical examination. We collected blood samples from 10 family members, including six who were affected by the syndrome. Genomic DNA was extracted and subjected to Sanger sequencing. A minigene assay was performed to confirm whether splicing signals were altered. In addition, we performed western blotting to determine alterations in protein levels of the wild-type and mutant gene. Results Clinical tests showed that some of the family members met the criteria for BOR syndrome. The affected members harbored a novel heterozygous nonsense variation in exon 11 of EYA1, whereas no unaffected member carried the mutation at this position. Functional experiments did not detect abnormal splicing at the RNA level; however, western blotting showed that the mutated protein was truncated. Conclusions This study reports a novel mutation associated with BOR syndrome in a Chinese family. We highlight the usefulness of genetic testing in the diagnosis of BOR syndrome. Thus, we believe that this report would benefit clinicians in this field. Electronic supplementary material The online version of this article (10.1186/s12881-018-0653-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan-Gong Wang
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Mingdao Building, Dong-an Road 131, Shanghai, 200032, China
| | - Shu-Ping Sun
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian-she Road, Zhengzhou, 450052, China
| | - Yi-Ling Qiu
- The Center for Pediatric Liver Diseases, Children's Hospital of Fudan University, Wan-yuan Road 399, Shanghai, 201102, China
| | - Qing-He Xing
- Institutes of Biomedical Sciences and Children's Hospital, Fudan University, Mingdao Building, Dong-an Road 131, Shanghai, 200032, China.
| | - Wei Lu
- Department of Otorhinolaryngology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jian-she Road, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
O’Brien LL, Guo Q, Bahrami-Samani E, Park JS, Hasso SM, Lee YJ, Fang A, Kim AD, Guo J, Hong TM, Peterson KA, Lozanoff S, Raviram R, Ren B, Fogelgren B, Smith AD, Valouev A, McMahon AP. Transcriptional regulatory control of mammalian nephron progenitors revealed by multi-factor cistromic analysis and genetic studies. PLoS Genet 2018; 14:e1007181. [PMID: 29377931 PMCID: PMC5805373 DOI: 10.1371/journal.pgen.1007181] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/08/2018] [Accepted: 01/01/2018] [Indexed: 12/12/2022] Open
Abstract
Nephron progenitor number determines nephron endowment; a reduced nephron count is linked to the onset of kidney disease. Several transcriptional regulators including Six2, Wt1, Osr1, Sall1, Eya1, Pax2, and Hox11 paralogues are required for specification and/or maintenance of nephron progenitors. However, little is known about the regulatory intersection of these players. Here, we have mapped nephron progenitor-specific transcriptional networks of Six2, Hoxd11, Osr1, and Wt1. We identified 373 multi-factor associated 'regulatory hotspots' around genes closely associated with progenitor programs. To examine their functional significance, we deleted 'hotspot' enhancer elements for Six2 and Wnt4. Removal of the distal enhancer for Six2 leads to a ~40% reduction in Six2 expression. When combined with a Six2 null allele, progeny display a premature depletion of nephron progenitors. Loss of the Wnt4 enhancer led to a significant reduction of Wnt4 expression in renal vesicles and a mildly hypoplastic kidney, a phenotype also enhanced in combination with a Wnt4 null mutation. To explore the regulatory landscape that supports proper target gene expression, we performed CTCF ChIP-seq to identify insulator-boundary regions. One such putative boundary lies between the Six2 and Six3 loci. Evidence for the functional significance of this boundary was obtained by deep sequencing of the radiation-induced Brachyrrhine (Br) mutant allele. We identified an inversion of the Six2/Six3 locus around the CTCF-bound boundary, removing Six2 from its distal enhancer regulation, but placed next to Six3 enhancer elements which support ectopic Six2 expression in the lens where Six3 is normally expressed. Six3 is now predicted to fall under control of the Six2 distal enhancer. Consistent with this view, we observed ectopic Six3 in nephron progenitors. 4C-seq supports the model for Six2 distal enhancer interactions in wild-type and Br/+ mouse kidneys. Together, these data expand our view of the regulatory genome and regulatory landscape underpinning mammalian nephrogenesis.
Collapse
Affiliation(s)
- Lori L. O’Brien
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Preventative Medicine, Division of Bioinformatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Emad Bahrami-Samani
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Joo-Seop Park
- Division of Pediatric Urology and Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Sean M. Hasso
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Young-Jin Lee
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Alan Fang
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Albert D. Kim
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Trudy M. Hong
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | | | - Scott Lozanoff
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Ramya Raviram
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, University of California San Diego La Jolla, California, United States of America
| | - Bing Ren
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, Moores Cancer Center, University of California San Diego La Jolla, California, United States of America
| | - Ben Fogelgren
- Department of Anatomy, Biochemistry, and Physiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Andrew D. Smith
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Anton Valouev
- Department of Preventative Medicine, Division of Bioinformatics, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Andrew P. McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
17
|
Batlle C, de Groot NS, Iglesias V, Navarro S, Ventura S. Characterization of Soft Amyloid Cores in Human Prion-Like Proteins. Sci Rep 2017; 7:12134. [PMID: 28935930 PMCID: PMC5608858 DOI: 10.1038/s41598-017-09714-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022] Open
Abstract
Prion-like behaviour is attracting much attention due to the growing evidences that amyloid-like self-assembly may reach beyond neurodegeneration and be a conserved functional mechanism. The best characterized functional prions correspond to a subset of yeast proteins involved in translation or transcription. Their conformational promiscuity is encoded in Prion Forming Domains (PFDs), usually long and intrinsically disordered protein segments of low complexity. The compositional bias of these regions seems to be important for the transition between soluble and amyloid-like states. We have proposed that the presence of cryptic soft amyloid cores embedded in yeast PFDs can also be important for their assembly and demonstrated their existence and self-propagating abilities. Here, we used an orthogonal approach in the search of human domains that share yeast PFDs compositional bias and exhibit a predicted nucleating core, identifying 535 prion-like candidates. We selected seven proteins involved in transcriptional or translational regulation and associated to disease to characterize the properties of their amyloid cores. All of them self-assemble spontaneously into amyloid-like structures able to propagate their polymeric state. This provides support for the presence of short sequences able to trigger conformational conversion in prion-like human proteins, potentially regulating their functionality.
Collapse
Affiliation(s)
- Cristina Batlle
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Natalia Sanchez de Groot
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Valentin Iglesias
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autónoma de Barcelona, Bellaterra, 08193, Spain.
| |
Collapse
|
18
|
Li X, Eberhardt A, Hansen JN, Bohmann D, Li H, Schor NF. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies. FASEB J 2017; 31:2327-2339. [PMID: 28213359 DOI: 10.1096/fj.201601050rr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/30/2017] [Indexed: 11/11/2022]
Abstract
The eyes absent (EYA) family proteins are conserved transcriptional coactivators with intrinsic protein phosphatase activity. They play an essential role in the development of various organs in metazoans. These functions are associated with a unique combination of phosphatase and transactivation activities. However, it remains poorly understood how these activities and the consequent biologic functions of EYA are regulated. Here, we demonstrate that 2 conserved arginine residues, R304 and R306, of EYA1 are essential for its in vitro phosphatase activity and in vivo function during Drosophila eye development. EYA1 physically interacts with protein arginine methyltransferase 1, which methylates EYA1 at these residues both in vitro and in cultured mammalian and insect cells. Moreover, we show that wild-type, but not methylation-defective, EYA1 associates with γ-H2A.X in response to ionizing radiation. Taken together, our results identify the conserved arginine residues of EYA1 that play an important role for its activity, thus implicating arginine methylation as a novel regulatory mechanism of EYA function.-Li, X., Eberhardt, A., Hansen, J. N., Bohmann, D., Li, H., Schor, N. F. Methylation of the phosphatase-transcription activator EYA1 by protein arginine methyltransferase 1: mechanistic, functional, and structural studies.
Collapse
Affiliation(s)
- Xingguo Li
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA;
| | - Allison Eberhardt
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Jeanne N Hansen
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA
| | - Dirk Bohmann
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, New York, USA
| | - Haitao Li
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, Center for Structural Biology, School of Life Sciences, and.,School of Medicine, Tsinghua University, Beijing, China
| | - Nina F Schor
- Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA;
| |
Collapse
|
19
|
Blanco-Sánchez B, Clément A, Phillips JB, Westerfield M. Zebrafish models of human eye and inner ear diseases. Methods Cell Biol 2016; 138:415-467. [PMID: 28129854 DOI: 10.1016/bs.mcb.2016.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Eye and inner ear diseases are the most common sensory impairments that greatly impact quality of life. Zebrafish have been intensively employed to understand the fundamental mechanisms underlying eye and inner ear development. The zebrafish visual and vestibulo-acoustic systems are very similar to these in humans, and although not yet mature, they are functional by 5days post-fertilization (dpf). In this chapter, we show how the zebrafish has significantly contributed to the field of biomedical research and how researchers, by establishing disease models and meticulously characterizing their phenotypes, have taken the first steps toward therapies. We review here models for (1) eye diseases, (2) ear diseases, and (3) syndromes affecting eye and/or ear. The use of new genome editing technologies and high-throughput screening systems should increase considerably the speed at which knowledge from zebrafish disease models is acquired, opening avenues for better diagnostics, treatments, and therapies.
Collapse
Affiliation(s)
| | - A Clément
- University of Oregon, Eugene, OR, United States
| | | | | |
Collapse
|
20
|
Clerc DG. Nonlinear effects in evolution - an ab initio study: A model in which the classical theory of evolution occurs as a special case. J Theor Biol 2016; 401:94-108. [PMID: 27029513 DOI: 10.1016/j.jtbi.2016.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 02/27/2016] [Accepted: 03/17/2016] [Indexed: 11/30/2022]
Abstract
An ab initio approach was used to study the molecular-level interactions that connect gene-mutation to changes in an organism׳s phenotype. The study provides new insights into the evolutionary process and presents a simplification whereby changes in phenotypic properties may be studied in terms of the binding affinities of the chemical interactions affected by mutation, rather than by correlation to the genes. The study also reports the role that nonlinear effects play in the progression of organs, and how those effects relate to the classical theory of evolution. Results indicate that the classical theory of evolution occurs as a special case within the ab initio model - a case having two attributes. The first attribute: proteins and promoter regions are not shared among organs. The second attribute: continuous limiting behavior exists in the physical properties of organs as well as in the binding affinity of the associated chemical interactions, with respect to displacements in the chemical properties of proteins and promoter regions induced by mutation. Outside of the special case, second-order coupling contributions are significant and nonlinear effects play an important role, a result corroborated by analyses of published activity levels in binding and transactivation assays. Further, gradations in the state of perfection of an organ may be small or large depending on the type of mutation, and not necessarily closely-separated as maintained by the classical theory. Results also indicate that organs progress with varying degrees of interdependence, the likelihood of successful mutation decreases with increasing complexity of the affected chemical system, and differences between the ab initio model and the classical theory increase with increasing complexity of the organism.
Collapse
Affiliation(s)
- Daryl G Clerc
- ArTek Product Development, Inc., P.O. Box 212, Red Bud, IL 62278, USA.
| |
Collapse
|
21
|
O'Brien LL, Guo Q, Lee Y, Tran T, Benazet JD, Whitney PH, Valouev A, McMahon AP. Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators. Development 2016; 143:595-608. [PMID: 26884396 DOI: 10.1242/dev.127175] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nephron endowment is determined by the self-renewal and induction of a nephron progenitor pool established at the onset of kidney development. In the mouse, the related transcriptional regulators Six1 and Six2 play non-overlapping roles in nephron progenitors. Transient Six1 activity prefigures, and is essential for, active nephrogenesis. By contrast, Six2 maintains later progenitor self-renewal from the onset of nephrogenesis. We compared the regulatory actions of Six2 in mouse and human nephron progenitors by chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq). Surprisingly, SIX1 was identified as a SIX2 target unique to the human nephron progenitors. Furthermore, RNA-seq and immunostaining revealed overlapping SIX1 and SIX2 activity in 16 week human fetal nephron progenitors. Comparative bioinformatic analysis of human SIX1 and SIX2 ChIP-seq showed each factor targeted a similar set of cis-regulatory modules binding an identical target recognition motif. In contrast to the mouse where Six2 binds its own enhancers but does not interact with DNA around Six1, both human SIX1 and SIX2 bind homologous SIX2 enhancers and putative enhancers positioned around SIX1. Transgenic analysis of a putative human SIX1 enhancer in the mouse revealed a transient, mouse-like, pre-nephrogenic, Six1 regulatory pattern. Together, these data demonstrate a divergence in SIX-factor regulation between mouse and human nephron progenitors. In the human, an auto/cross-regulatory loop drives continued SIX1 and SIX2 expression during active nephrogenesis. By contrast, the mouse establishes only an auto-regulatory Six2 loop. These data suggest differential SIX-factor regulation might have contributed to species differences in nephron progenitor programs such as the duration of nephrogenesis and the final nephron count.
Collapse
Affiliation(s)
- Lori L O'Brien
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA Division of Bioinformatics, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - YoungJin Lee
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jean-Denis Benazet
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter H Whitney
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Anton Valouev
- Division of Bioinformatics, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
22
|
Abstract
Eyes absent (Eya), a protein conserved from plants to humans and best characterized as a transcriptional coactivator, is also the prototype for a novel class of eukaryotic aspartyl protein tyrosine phosphatases. This minireview discusses recent breakthroughs in elucidating the substrates and cellular events regulated by Eya's tyrosine phosphatase function and highlights some of the complexities, new questions, and surprises that have emerged from efforts to understand how Eya's unusual multifunctionality influences developmental regulation and signaling.
Collapse
|
23
|
Emadi-Baygi M, Nikpour P, Emadi-Andani E. SIX1 overexpression in diffuse-type and grade III gastric tumors: Features that are associated with poor prognosis. Adv Biomed Res 2015; 4:139. [PMID: 26322287 PMCID: PMC4544127 DOI: 10.4103/2277-9175.161540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 06/30/2014] [Indexed: 12/13/2022] Open
Abstract
Background: Gastric cancer is the second most common cancer worldwide. In Iran, the incidence of gastric cancer is well above the world average, and is the first common cancer in Iranian men and the third one in women. Located at chromosome 14q23, SIX1 is a homolog of the Drosophila ‘sine oculis’ (so) gene and is highly conserved in numerous species. In addition to the role of SIX1 in the development, its expression is frequently dysregulated in multiple cancers. This study aimed to evaluate the clinicopathological features of the expression of SIX1 gene in gastric adenocarcinoma. Materials and Methods: Thirty pairs of gastric tissue samples from patients with gastric adenocarcinoma were evaluated for SIX1 gene expression using quantitative real-time polymerase chain reaction. A paired t-test or one-way ANOVA with post hoc multiple comparisons were used to analyze the differences between groups. Statistical significance was defined as P ≤ 0.05. Results: SIX1 expression was decreased in tumoral samples. However, its expression increased significantly in diffuse-type gastric cancer. Furthermore, there was a trend toward statistical significance in increasing SIX1 gene expression with higher grades. Of note, the difference was significant between grades I and III. Conclusions: The results suggest that SIX1 gene expression might be used in the future as a potential biomarker to predict the outcome of the disease as diffuse-type and grade III of gastric tumors are associated with poor prognosis.
Collapse
Affiliation(s)
- Modjtaba Emadi-Baygi
- Department of Genetics, Research Institute of Biotechnology, Shahrekord University, Shahrekord, Iran
| | - Parvaneh Nikpour
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran ; Pediatric Inherited Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran ; Child Growth and Development Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elaheh Emadi-Andani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
24
|
Xu J, Xu PX. Eya-six are necessary for survival of nephrogenic cord progenitors and inducing nephric duct development before ureteric bud formation. Dev Dyn 2015; 244:866-73. [PMID: 25903664 DOI: 10.1002/dvdy.24282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/09/2015] [Accepted: 04/10/2015] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Specification of the metanephric mesenchyme is a central step of kidney development as this mesenchyme promotes nephric duct induction to form a ureteric bud near its caudal end. Before ureteric bud formation, the caudal nephric duct swells to form a pseudostratified epithelial domain that later emerges as the tip of the bud. However, the signals that promote the formation of the transient epithelial domain remain unclear. Here, we investigated the early roles of the mesenchymal factor Six family and its cofactor Eya on the initial induction of nephric duct development. RESULTS The nephrogenic progenitor population is initially present but significantly reduced in mice lacking both Six1 and Six4 and undertakes an abnormal cell death pathway to be completely eliminated by ∼E10.5-E11.0, similar to that observed in Eya1(-/-) embryos. Consequently, the nephric duct fails to be induced to undergo normal proliferation to pseudostratify and form the ureteric bud in Six1(-/-) ;Six4(-/-) or Eya1(-/-) embryos. CONCLUSIONS Our data support a model where Eya-Six may form a complex to regulate nephron progenitor cell development before metanephric specification and are critical mesenchymal factors for inducing nephric duct development.
Collapse
Affiliation(s)
- Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
25
|
Dantas VG, Freitas EL, Della-Rosa VA, Lezirovitz K, de Moraes AMS, Ramos SB, Oiticica J, Alves LU, Pearson PL, Rosenberg C, Mingroni-Netto RC. Novel partial duplication ofEYA1causes branchiootic syndrome in a large Brazilian family. Int J Audiol 2015; 54:593-8. [DOI: 10.3109/14992027.2015.1030511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Signaling during Kidney Development. Cells 2015; 4:112-32. [PMID: 25867084 PMCID: PMC4493451 DOI: 10.3390/cells4020112] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/24/2015] [Accepted: 03/30/2015] [Indexed: 12/17/2022] Open
Abstract
The kidney plays an essential role during excretion of metabolic waste products, maintenance of key homeostasis components such as ion concentrations and hormone levels. It influences the blood pressure, composition and volume. The kidney tubule system is composed of two distinct cell populations: the nephrons forming the filtering units and the collecting duct system derived from the ureteric bud. Nephrons are composed of glomeruli that filter the blood to the Bowman’s capsule and tubular structures that reabsorb and concentrate primary urine. The collecting duct is a Wolffian duct-derived epithelial tube that concentrates and collects urine and transfers it via the renal pelvis into the bladder. The mammalian kidney function depends on the coordinated development of specific cell types within a precise architectural framework. Due to the availability of modern analysis techniques, the kidney has become a model organ defining the paradigm to study organogenesis. As kidney diseases are a problem worldwide, the understanding of mammalian kidney cells is of crucial importance to develop diagnostic tools and novel therapies. This review focuses on how the pattern of renal development is generated, how the inductive signals are regulated and what are their effects on proliferation, differentiation and morphogenesis.
Collapse
|
27
|
Wilson MD. Molecular dysregulation of renal development: Congenital anomalies of the kidney and urinary tract. ASIAN PACIFIC JOURNAL OF REPRODUCTION 2015. [DOI: 10.1016/s2305-0500(14)60064-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
28
|
Blevins MA, Towers CG, Patrick AN, Zhao R, Ford HL. The SIX1-EYA transcriptional complex as a therapeutic target in cancer. Expert Opin Ther Targets 2015; 19:213-25. [PMID: 25555392 PMCID: PMC4336540 DOI: 10.1517/14728222.2014.978860] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The SIX homeodomain proteins and the eyes absent (EYA) family of co-activators form a bipartite transcription factor complex that promotes the proliferation and survival of progenitor cells during organogenesis and is down-regulated in most adult tissues. Abnormal over-expression of SIX1 and EYA in adult tissue is associated with the initiation and progression of diverse tumor types. Importantly, SIX1 and EYA are often co-overexpressed in tumors, and the SIX1-EYA2 interaction has been shown to be critical for metastasis in a breast cancer model. The EYA proteins also contain protein tyrosine phosphatase activity, which plays an important role in breast cancer growth and metastasis as well as directing cells to the repair pathway upon DNA damage. AREAS COVERED This review provides a summary of the SIX1/EYA complex as it relates to development and disease and the current efforts to therapeutically target this complex. EXPERT OPINION Recently, there have been an increasing number of studies suggesting that targeting the SIX1/EYA transcriptional complex will potently inhibit tumor progression. Although current attempts to develop inhibitors targeting this complex are still in the early stages, continued efforts toward developing better compounds may ultimately result in effective anti-cancer therapies.
Collapse
Affiliation(s)
- Melanie A Blevins
- University of Colorado Anschutz Medical Campus, Department of Biochemistry and Molecular Genetics , Aurora, CO 80045 , USA ,
| | | | | | | | | |
Collapse
|
29
|
Abstract
Cranial sensory placodes derive from discrete patches of the head ectoderm and give rise to numerous sensory structures. During gastrulation, a specialized "neural border zone" forms around the neural plate in response to interactions between the neural and nonneural ectoderm and signals from adjacent mesodermal and/or endodermal tissues. This zone subsequently gives rise to two distinct precursor populations of the peripheral nervous system: the neural crest and the preplacodal ectoderm (PPE). The PPE is a common field from which all cranial sensory placodes arise (adenohypophyseal, olfactory, lens, trigeminal, epibranchial, otic). Members of the Six family of transcription factors are major regulators of PPE specification, in partnership with cofactor proteins such as Eya. Six gene activity also maintains tissue boundaries between the PPE, neural crest, and epidermis by repressing genes that specify the fates of those adjacent ectodermally derived domains. As the embryo acquires anterior-posterior identity, the PPE becomes transcriptionally regionalized, and it subsequently becomes subdivided into specific placodes with distinct developmental fates in response to signaling from adjacent tissues. Each placode is characterized by a unique transcriptional program that leads to the differentiation of highly specialized cells, such as neurosecretory cells, sensory receptor cells, chemosensory neurons, peripheral glia, and supporting cells. In this review, we summarize the transcriptional and signaling factors that regulate key steps of placode development, influence subsequent sensory neuron specification, and discuss what is known about mutations in some of the essential PPE genes that underlie human congenital syndromes.
Collapse
Affiliation(s)
- Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA; George Washington University Institute for Neuroscience, Washington, DC, USA.
| | - Anthony-Samuel LaMantia
- George Washington University Institute for Neuroscience, Washington, DC, USA; Department of Pharmacology and Physiology, The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| |
Collapse
|
30
|
Identification of a novel nonsynonymous mutation of EYA1 disrupting splice site in a Korean patient with BOR syndrome. Mol Biol Rep 2014; 41:4321-7. [DOI: 10.1007/s11033-014-3303-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/14/2014] [Indexed: 10/25/2022]
|
31
|
Saint-Jeannet JP, Moody SA. Establishing the pre-placodal region and breaking it into placodes with distinct identities. Dev Biol 2014; 389:13-27. [PMID: 24576539 DOI: 10.1016/j.ydbio.2014.02.011] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 11/17/2022]
Abstract
Specialized sensory organs in the vertebrate head originate from thickenings in the embryonic ectoderm called cranial sensory placodes. These placodes, as well as the neural crest, arise from a zone of ectoderm that borders the neural plate. This zone separates into a precursor field for the neural crest that lies adjacent to the neural plate, and a precursor field for the placodes, called the pre-placodal region (PPR), that lies lateral to the neural crest. The neural crest domain and the PPR are established in response to signaling events mediated by BMPs, FGFs and Wnts, which differentially activate transcription factors in these territories. In the PPR, members of the Six and Eya families, act in part to repress neural crest specific transcription factors, thus solidifying a placode developmental program. Subsequently, in response to environmental cues the PPR is further subdivided into placodal territories with distinct characteristics, each expressing a specific repertoire of transcription factors that provide the necessary information for their progression to mature sensory organs. In this review we summarize recent advances in the characterization of the signaling molecules and transcriptional effectors that regulate PPR specification and its subdivision into placodal domains with distinct identities.
Collapse
Affiliation(s)
- Jean-Pierre Saint-Jeannet
- Department of Basic Science and Craniofacial Biology, New York University, College of Dentistry, 345 East 24th Street, New York City, NY 10010, USA.
| | - Sally A Moody
- Department of Anatomy and Regenerative Biology, The George Washington University, School of Medicine and Health Sciences, 2300 I (eye) Street, NW, Washington, DC 20037, USA.
| |
Collapse
|
32
|
Wu W, Ren Z, Li P, Yu D, Chen J, Huang R, Liu H. Six1: A critical transcription factor in tumorigenesis. Int J Cancer 2014; 136:1245-53. [DOI: 10.1002/ijc.28755] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Wangjun Wu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Huaian Academy of Nanjing Agricultural University; Huaian Jiangsu China
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding; Ministry of Agriculture; Key Lab of Agriculture Animal Genetics; Breeding and Reproduction; Ministry of Education; College of Animal Science; Huazhong Agricultural University; Wuhan Hubei China
| | - Pinghua Li
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Debing Yu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Jie Chen
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Ruihua Huang
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Honglin Liu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
33
|
Musharraf A, Kruspe D, Tomasch J, Besenbeck B, Englert C, Landgraf K. BOR-syndrome-associated Eya1 mutations lead to enhanced proteasomal degradation of Eya1 protein. PLoS One 2014; 9:e87407. [PMID: 24489909 PMCID: PMC3906160 DOI: 10.1371/journal.pone.0087407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/27/2013] [Indexed: 11/18/2022] Open
Abstract
Mutations in the human EYA1 gene have been associated with several human diseases including branchio-oto (BO) and branchio-oto-renal (BOR) syndrome, as well as congenital cataracts and ocular anterior segment anomalies. BOR patients suffer from severe malformations of the ears, branchial arches and kidneys. The phenotype of Eya1-heterozygous mice resembles the symptoms of human patients suffering from BOR syndrome. The Eya1 gene encodes a multifunctional protein that acts as a protein tyrosine phosphatase and a transcriptional coactivator. It has been shown that Eya1 interacts with Six transcription factors, which are also required for nuclear translocation of the Eya1 protein. We investigated the effects of seven disease-causing Eya1 missense mutations on Eya1 protein function, in particular cellular localization, ability to interact with Six proteins, and protein stability. We show here that the BOR-associated Eya1 missense mutations S454P, L472R, and L550P lead to enhanced proteasomal degradation of the Eya1 protein in mammalian cells. Moreover, Six proteins lead to a significant stabilization of Eya1, which is caused by Six-mediated protection from proteasomal degradation. In case of the mutant L550P, loss of interaction with Six proteins leads to rapid protein degradation. Our observations suggest that protein destabilization constitutes a novel disease causing mechanism for Eya1.
Collapse
Affiliation(s)
- Amna Musharraf
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
| | - Dagmar Kruspe
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
| | - Jürgen Tomasch
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
| | - Birgit Besenbeck
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
| | - Christoph Englert
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
| | - Kathrin Landgraf
- Leibniz Institute for Age Research - Fritz Lipmann Institute e. V. (FLI), Jena, Germany
- * E-mail:
| |
Collapse
|
34
|
Kohrt D, Crary J, Zimmer M, Patrick AN, Ford HL, Hinds PW, Grossel MJ. CDK6 binds and promotes the degradation of the EYA2 protein. Cell Cycle 2013; 13:62-71. [PMID: 24196439 PMCID: PMC3925736 DOI: 10.4161/cc.26755] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cyclin-dependent kinase 6 (Cdk6) is a D-Cyclin-activated kinase that is directly involved in driving the cell cycle through inactivation of pRB in G1 phase. Increasingly, evidence suggests that CDK6, while directly driving the cell cycle, may only be essential for proliferation of specialized cell types, agreeing with the notion that CDK6 also plays an important role in differentiation. Here, evidence is presented that CDK6 binds to and promotes degradation of the EYA2 protein. The EYA proteins are a family of proteins that activate genes essential for the development of multiple organs, regulate cell proliferation, and are misregulated in several types of cancer. This interaction suggests that CDK6 regulates EYA2 activity, a mechanism that could be important in development and in cancer.
Collapse
Affiliation(s)
- Dawn Kohrt
- Department of Biology; Connecticut College; New London, CT USA
| | - Jennifer Crary
- Department of Biology; Connecticut College; New London, CT USA; Department of Developmental, Molecular, and Chemical Biology; Tufts University School of Medicine, and Molecular Oncology Research Institute; Tufts Medical Center; Boston, MA USA
| | - Marc Zimmer
- Department of Chemistry; Connecticut College; New London, CT USA
| | - Aaron N Patrick
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Heide L Ford
- Department of Pharmacology; University of Colorado School of Medicine; Aurora, CO USA
| | - Philip W Hinds
- Department of Developmental, Molecular, and Chemical Biology; Tufts University School of Medicine, and Molecular Oncology Research Institute; Tufts Medical Center; Boston, MA USA
| | | |
Collapse
|
35
|
Abrogation of Eya1/Six1 disrupts the saccular phase of lung morphogenesis and causes remodeling. Dev Biol 2013; 382:110-23. [PMID: 23895934 DOI: 10.1016/j.ydbio.2013.07.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/27/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022]
Abstract
The Eya1 gene encodes a transcriptional co-activator that acts with Six1 to control the development of different organs. However, Six1-Eya1 interactions and functional roles in mesenchymal cell proliferation and differentiation as well as alveolarization during the saccular stage of lung development are still unknown. Herein, we provide the first evidence that Six1 and Eya1 act together to regulate mesenchymal development as well as alveolarization during the saccular phase of lung morphogenesis. Deletion of either or both Six1 and Eya1 genes results in a severe saccular phenotype, including defects of mesenchymal cell development and remodeling of the distal lung septae and arteries. Mutant lung histology at the saccular phase shows mesenchymal and saccular wall thickening, and abnormal proliferation of α-smooth muscle actin-positive cells, as well as increased mesenchymal/fibroblast cell differentiation, which become more sever when deleting both genes. Our study indicates that SHH but not TGF-β signaling pathway is a central mediator for the histologic alterations described in the saccular phenotype of Eya1(-/-) or Six1(-/-) lungs. Indeed, genetic reduction of SHH activity in vivo or inhibition of its activity in vitro substantially rescues lung mesenchymal and alveolar phenotype of mutant mice at the saccular phase. These findings uncover novel functions for Six1-Eya1-SHH pathway during the saccular phase of lung morphogenesis, providing a conceptual framework for future mechanistic and translational studies in this area.
Collapse
|
36
|
Xu PX. The EYA-SO/SIX complex in development and disease. Pediatr Nephrol 2013; 28:843-54. [PMID: 22806561 PMCID: PMC6592036 DOI: 10.1007/s00467-012-2246-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Eyes absent (EYA) and Sine oculis (SO/SIX) proteins function as transcriptional activation complexes and play essential roles in organogenesis during embryonic development in regulating cell proliferation and survival and coordination of particular differentiation programs. Mutations of the Eya and So/Six genes cause profound developmental defects in organisms as diverse as flies, frogs, fish, mice, and humans. EYA proteins also possess an intrinsic phosphatase activity, which is essential for normal development. Here, we review crucial roles of EYA and SO/SIX in development and disease in mice and humans.
Collapse
Affiliation(s)
- Pin-Xian Xu
- Department of Genetics and Genomic Sciences and Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
37
|
A multi-platform draft de novo genome assembly and comparative analysis for the Scarlet Macaw (Ara macao). PLoS One 2013; 8:e62415. [PMID: 23667475 PMCID: PMC3648530 DOI: 10.1371/journal.pone.0062415] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 03/21/2013] [Indexed: 12/31/2022] Open
Abstract
Data deposition to NCBI Genomes: This Whole Genome Shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession AMXX00000000 (SMACv1.0, unscaffolded genome assembly). The version described in this paper is the first version (AMXX01000000). The scaffolded assembly (SMACv1.1) has been deposited at DDBJ/EMBL/GenBank under the accession AOUJ00000000, and is also the first version (AOUJ01000000). Strong biological interest in traits such as the acquisition and utilization of speech, cognitive abilities, and longevity catalyzed the utilization of two next-generation sequencing platforms to provide the first-draft de novo genome assembly for the large, new world parrot Ara macao (Scarlet Macaw). Despite the challenges associated with genome assembly for an outbred avian species, including 951,507 high-quality putative single nucleotide polymorphisms, the final genome assembly (>1.035 Gb) includes more than 997 Mb of unambiguous sequence data (excluding N's). Cytogenetic analyses including ZooFISH revealed complex rearrangements associated with two scarlet macaw macrochromosomes (AMA6, AMA7), which supports the hypothesis that translocations, fusions, and intragenomic rearrangements are key factors associated with karyotype evolution among parrots. In silico annotation of the scarlet macaw genome provided robust evidence for 14,405 nuclear gene annotation models, their predicted transcripts and proteins, and a complete mitochondrial genome. Comparative analyses involving the scarlet macaw, chicken, and zebra finch genomes revealed high levels of nucleotide-based conservation as well as evidence for overall genome stability among the three highly divergent species. Application of a new whole-genome analysis of divergence involving all three species yielded prioritized candidate genes and noncoding regions for parrot traits of interest (i.e., speech, intelligence, longevity) which were independently supported by the results of previous human GWAS studies. We also observed evidence for genes and noncoding loci that displayed extreme conservation across the three avian lineages, thereby reflecting their likely biological and developmental importance among birds.
Collapse
|
38
|
Structure-function analyses of the human SIX1-EYA2 complex reveal insights into metastasis and BOR syndrome. Nat Struct Mol Biol 2013; 20:447-53. [PMID: 23435380 PMCID: PMC3618615 DOI: 10.1038/nsmb.2505] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/03/2013] [Indexed: 01/08/2023]
Abstract
SIX1 interacts with EYA to form a bipartite transcription factor essential for development. Loss of function of this complex causes branchio-oto-renal syndrome (BOR), while re-expression of SIX1 or EYA promotes metastasis. Here we describe the 2.0 Å structure of SIX1 bound to EYA2, which suggests a novel DNA binding mechanism for SIX1 and provides a rationale for the effect of BOR syndrome mutations. The structure also reveals that SIX1 uses predominantly a single helix to interact with EYA. Substitution of a single amino acid in this helix is sufficient to disrupt the SIX1–EYA interaction, SIX1-mediated epithelial-mesenchymal transition and metastasis in mouse models. Given that SIX1 and EYA are co-overexpressed in many tumor types, our data indicate that targeting the SIX1–EYA complex may be a potent approach to inhibit tumor progression in multiple cancer types.
Collapse
|
39
|
Natarajan G, Jeyachandran D, Subramaniyan B, Thanigachalam D, Rajagopalan A. Congenital anomalies of kidney and hand: a review. Clin Kidney J 2013; 6:144-9. [PMID: 26019842 PMCID: PMC4432441 DOI: 10.1093/ckj/sfs186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/18/2012] [Indexed: 11/17/2022] Open
Abstract
‘Acro-renal syndrome’ refers to co-occurrence of congenital renal and limb anomalies. The term acro-renal syndrome was coined by Curran et al. in 1972 though Dieker and Opitz were the first to report this phenomenon in three male patients in 1969. The common limb defects include oligodactyly, ectrodactyly, syndactyly or brachydactyly anomalies of the carpal and tarsal bones and the common renal anomalies observed are unilateral renal agenesis (URA), bilateral renal hypoplasia, ureteric hypoplasia, hydroureteronephrosis and duplication abnormalities. The acro-renal syndrome as originally described is rare, reported only in ∼20 patients in the international literature. We report a 23-year-old male patient with renal anomalies in the form of absent right kidney, left-sided vesicoureteric reflux (VUR) and skeletal anomalies viz short radius, absent first metacarpal ray in left hand and left undescended testis, consistent with Dieker's type acro-renal syndrome. Apart from the classical acro-renal syndrome, several anomalies of acro-renal patterns and the abnormal gene loci involved are described in the literature. This article is a comprehensive review of the development of kidneys, types of acro-renal syndromes, congenital anomalies of the kidney and urinary tract (CAKUT), syndromes associated with combined limb and renal anomalies, and anomalies associated with URA.
Collapse
Affiliation(s)
- Gopalakrishnan Natarajan
- Department of Nephrology , Madras Medical College and Rajiv Gandhi Government General Hospital , Chennai 600003 , India
| | - Dhanapriya Jeyachandran
- Department of Nephrology , Madras Medical College and Rajiv Gandhi Government General Hospital , Chennai 600003 , India
| | - Bala Subramaniyan
- Department of Nephrology , Madras Medical College and Rajiv Gandhi Government General Hospital , Chennai 600003 , India
| | - Dineshkumar Thanigachalam
- Department of Nephrology , Madras Medical College and Rajiv Gandhi Government General Hospital , Chennai 600003 , India
| | - Arul Rajagopalan
- Department of Nephrology , Madras Medical College and Rajiv Gandhi Government General Hospital , Chennai 600003 , India
| |
Collapse
|
40
|
The phosphatase-transcription activator EYA1 is targeted by anaphase-promoting complex/Cdh1 for degradation at M-to-G1 transition. Mol Cell Biol 2012; 33:927-36. [PMID: 23263983 DOI: 10.1128/mcb.01516-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The phosphatase and transactivator EYA family proteins are overexpressed in many cancer cell lines and are abundantly distributed in undifferentiated cells during development. Loss-of-function studies have shown that EYA1 is required for cell proliferation and survival during mammalian organogenesis. However, how EYA1 is regulated during development is unknown. Here, we report that EYA1 is regulated throughout the cell cycle via ubiquitin-mediated proteolysis. The level of EYA1 protein fluctuates in the cell cycle, peaking during mitosis and dropping drastically as cells exit into G(1). We found that EYA1 is efficiently degraded during mitotic exit in a Cdh1-dependent manner and that these two proteins physically interact. Overexpression of Cdh1 reduces the protein levels of ectopically expressed or endogenous EYA1, whereas depletion of Cdh1 by RNA interference stabilizes the EYA1 protein. Together, our results indicate that anaphase-promoting complex/cyclosome (APC/C)-Cdh1 specifically targets EYA1 for degradation during M-to-G(1) transition, failure of which may compromise cell proliferation and survival.
Collapse
|
41
|
Tadjuidje E, Hegde RS. The Eyes Absent proteins in development and disease. Cell Mol Life Sci 2012; 70:1897-913. [PMID: 22971774 DOI: 10.1007/s00018-012-1144-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 07/24/2012] [Accepted: 08/20/2012] [Indexed: 10/27/2022]
Abstract
The Eyes Absent (EYA) proteins, first described in the context of fly eye development, are now implicated in processes as disparate as organ development, innate immunity, DNA damage repair, photoperiodism, angiogenesis, and cancer metastasis. These functions are associated with an unusual combination of biochemical activities: tyrosine phosphatase and threonine phosphatase activities in separate domains, and transactivation potential when associated with a DNA-binding partner. EYA mutations are linked to multiorgan developmental disorders, as well as to adult diseases ranging from dilated cardiomyopathy to late-onset sensorineural hearing loss. With the growing understanding of EYA biochemical and cellular activity, biological function, and association with disease, comes the possibility that the EYA proteins are amenable to the design of targeted therapeutics. The availability of structural information, direct links to disease states, available animal models, and the fact that they utilize unconventional reaction mechanisms that could allow specificity, suggest that EYAs are well-positioned for drug discovery efforts. This review provides a summary of EYA structure, activity, and function, as they relate to development and disease, with particular emphasis on recent findings.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | |
Collapse
|
42
|
Ahmed M, Wong EYM, Sun J, Xu J, Wang F, Xu PX. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev Cell 2012; 22:377-90. [PMID: 22340499 DOI: 10.1016/j.devcel.2011.12.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 11/04/2011] [Accepted: 12/14/2011] [Indexed: 12/24/2022]
Abstract
Inner-ear hair cell differentiation requires Atoh1 function, while Eya1, Six1, and Sox2 are coexpressed in sensory progenitors and mutations in these genes cause sensorineural hearing loss. However, how these genes are linked functionally and the transcriptional networks controlling hair cell induction remain unclear. Here, we show (1) that Eya1/Six1 are necessary for hair cell development, and their coexpression in mouse cochlear explants is sufficient to induce hair cell fate in the nonsensory epithelium expressing low-level Sox2 by activating not only Atoh1-dependent but also Atoh1-independent pathways and (2) that both pathways induce Pou4f3 to promote hair cell differentiation. Sox2 cooperates with Eya1/Six1 to synergistically activate Atoh1 transcription via direct binding to the conserved Sox- and Six-binding sites in Atoh1 enhancers, and these proteins physically interact. Our findings demonstrate that direct and cooperative interactions between the Sox2, Six1, and Eya1 proteins coordinate Atoh1 expression to specify hair cell fate.
Collapse
Affiliation(s)
- Mohi Ahmed
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
43
|
Ahmed M, Xu J, Xu PX. EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development 2012; 139:1965-77. [PMID: 22513373 DOI: 10.1242/dev.071670] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inner ear neurogenesis depends upon the function of the proneural basic helix-loop-helix (bHLH) transcription factors NEUROG1 and NEUROD1. However, the transcriptional regulation of these factors is unknown. Here, using loss- and gain-of-function models, we show that EYA1 and SIX1 are crucial otic neuronal determination factors upstream of NEUROG1 and NEUROD1. Overexpression of both Eya1 and Six1 is sufficient to convert non-neuronal epithelial cells within the otocyst and cochlea as well as the 3T3 fibroblast cells into neurons. Strikingly, all the ectopic neurons express not only Neurog1 and Neurod1 but also mature neuronal markers such as neurofilament, indicating that Eya1 and Six1 function upstream of, and in the same pathway as, Neurog1 and Neurod1 to not only induce neuronal fate but also regulate their differentiation. We demonstrate that EYA1 and SIX1 interact directly with the SWI/SNF chromatin-remodeling subunits BRG1 and BAF170 to drive neurogenesis cooperatively in 3T3 cells and cochlear nonsensory epithelial cells, and that SOX2 cooperates with these factors to mediate neuronal differentiation. Importantly, we show that the ATPase BRG1 activity is required for not only EYA1- and SIX1-induced ectopic neurogenesis but also normal neurogenesis in the otocyst. These findings indicate that EYA1 and SIX1 are key transcription factors in initiating the neuronal developmental program, probably by recruiting and interacting with the SWI/SNF chromatin-remodeling complex to specifically mediate Neurog1 and Neurod1 transcription.
Collapse
Affiliation(s)
- Mohi Ahmed
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of NYU, New York, NY 10029, USA
| | | | | |
Collapse
|
44
|
Grigorieva IV, Thakker RV. Transcription factors in parathyroid development: lessons from hypoparathyroid disorders. Ann N Y Acad Sci 2012; 1237:24-38. [PMID: 22082362 DOI: 10.1111/j.1749-6632.2011.06221.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parathyroid developmental anomalies, which result in hypoparathyroidism, are common and may occur in one in 4,000 live births. Parathyroids, in man, develop from the endodermal cells of the third and fourth pharyngeal pouches, whereas, in the mouse they develop solely from the endoderm of the third pharyngeal pouches. In addition, neural crest cells that arise from the embryonic mid- and hindbrain also contribute to parathyroid gland development. The molecular signaling pathways that are involved in determining the differentiation of the pharyngeal pouch endoderm into parathyroid cells are being elucidated by studies of patients with hypoparathyroidism and appropriate mouse models. These studies have revealed important roles for a number of transcription factors, which include Tbx1, Gata3, Gcm2, Sox3, Aire1 and members of the homeobox (Hox) and paired box (Pax) families.
Collapse
Affiliation(s)
- Irina V Grigorieva
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology, and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford, United Kingdom
| | | |
Collapse
|
45
|
Alam K, Varshney M, Aziz M, Maheshwari V, Basha M, Gaur K, Ghani I. Multicystic renal dysplasia: a diagnostic dilemma. BMJ Case Rep 2011; 2011:bcr.03.2011.3989. [PMID: 22696732 DOI: 10.1136/bcr.03.2011.3989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 3-year-old male child had left-sided abdominal lump for 4 months. Radiological examination revealed a cystic mass in the left kidney. A tentative diagnosis of multicystic nephroma was made on clinical and radiological examination. Cytology was inconclusive. Nephrectomy was done. A final diagnosis of multicystic dysplasia was made on histological examination.
Collapse
Affiliation(s)
- Kiran Alam
- Department of Pathology, JN Medical College, Aligarh, India
| | | | | | | | | | | | | |
Collapse
|
46
|
EYA1 mutations associated with the branchio-oto-renal syndrome result in defective otic development in Xenopus laevis. Biol Cell 2010; 102:277-92. [PMID: 19951260 PMCID: PMC2825735 DOI: 10.1042/bc20090098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background information. The BOR (branchio-oto-renal) syndrome is a dominant disorder most commonly caused by mutations in the EYA1 (Eyes Absent 1) gene. Symptoms commonly include deafness and renal anomalies. Results. We have used the embryos of the frog Xenopus laevis as an animal model for early ear development to examine the effects of different EYA1 mutations. Four eya1 mRNAs encoding proteins correlated with congenital anomalies in human were injected into early stage embryos. We show that the expression of mutations associated with BOR, even in the presence of normal levels of endogenous eya1 mRNA, leads to morphologically abnormal ear development as measured by overall otic vesicle size, establishment of sensory tissue and otic innervation. The molecular consequences of mutant eya1 expression were assessed by QPCR (quantitative PCR) analysis and in situ hybridization. Embryos expressing mutant eya1 showed altered levels of multiple genes (six1, dach, neuroD, ngnr-1 and nt3) important for normal ear development. Conclusions. These studies lend support to the hypothesis that dominant-negative effects of EYA1 mutations may have a role in the pathogenesis of BOR.
Collapse
|
47
|
Nie X, Sun J, Gordon RE, Cai CL, Xu PX. SIX1 acts synergistically with TBX18 in mediating ureteral smooth muscle formation. Development 2010; 137:755-65. [PMID: 20110314 DOI: 10.1242/dev.045757] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dysfunction of the ureter often leads to urine flow impairment from the kidney to the bladder, causing dilation of the ureter and/or renal pelvis. Six1 is a crucial regulator of renal development: mutations in human SIX1 cause branchio-oto-renal (BOR) syndrome and Six1(-/-) mice exhibit renal agenesis, although the ureter is present. It remains unclear whether Six1 plays a role in regulating ureter morphogenesis. We demonstrate here that Six1 is differentially expressed during ureter morphogenesis. It was expressed in undifferentiated smooth muscle (SM) progenitors, but was downregulated in differentiating SM cells (SMCs) and had disappeared by E18.5. In Six1(-/-) mice, the ureteral mesenchymal precursors failed to condense and differentiate into normal SMCs and showed increased cell death, indicating that Six1 is required for the maintenance and normal differentiation of SM progenitors. A delay in SMC differentiation was observed in Six1(-/-) ureters. A lack of Six1 in the ureter led to hydroureter and hydronephrosis without anatomical obstruction when kidney formation was rescued in Six1(-/-) embryos by specifically expressing Six1 in the metanephric mesenchyme, but not the ureter, under control of the Eya1 promoter. We show that Six1 and Tbx18 genetically interact to synergistically regulate SMC development and ureter function and that their gene products form a complex in cultured cells and in the developing ureter. Two missense mutations in SIX1 from BOR patients reduced or abolished SIX1-TBX18 complex formation. These findings uncover an essential role for Six1 in establishing a functionally normal ureter and provide new insights into the molecular basis of urinary tract malformations in BOR patients.
Collapse
Affiliation(s)
- Xuguang Nie
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of New York University, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
48
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
49
|
Patrick AN, Schiemann BJ, Yang K, Zhao R, Ford HL. Biochemical and functional characterization of six SIX1 Branchio-oto-renal syndrome mutations. J Biol Chem 2009; 284:20781-90. [PMID: 19497856 DOI: 10.1074/jbc.m109.016832] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Branchio-oto-renal syndrome (BOR) is an autosomal dominant developmental disorder characterized by hearing loss, branchial arch defects, and renal anomalies. Recently, eight mutations in the SIX1 homeobox gene were discovered in BOR patients. To characterize the effect of SIX1 BOR mutations on the EYA-SIX1-DNA complex, we expressed and purified six of the eight mutants in Escherichia coli. We demonstrate that only the most N-terminal mutation in SIX1 (V17E) completely abolishes SIX1-EYA complex formation, whereas all of the other mutants are able to form a stable complex with EYA. We further show that only the V17E mutant fails to localize EYA to the nucleus and cannot be stabilized by EYA in the cell. The remaining five SIX1 mutants are instead all deficient in DNA binding. In contrast, V17E alone has a DNA binding affinity similar to that of wild type SIX1 in complex with the EYA co-factor. Finally, we show that all SIX1 BOR mutants are defective in transcriptional activation using luciferase reporter assays. Taken together, our experiments demonstrate that the SIX1 BOR mutations contribute to the pathology of the disease through at least two different mechanisms that involve: 1) abolishing the formation of the SIX1-EYA complex or 2) diminishing the ability of SIX1 to bind DNA. Furthermore, our data demonstrate for the first time that EYA: 1) requires the N-terminal region of the SIX1 Six domain for its interaction, 2) increases the level of the SIX1 protein within the cell, and 3) increases the DNA binding affinity of SIX1.
Collapse
Affiliation(s)
- Aaron N Patrick
- Program in Molecular Biology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|
50
|
Christensen KL, Patrick AN, McCoy EL, Ford HL. The six family of homeobox genes in development and cancer. Adv Cancer Res 2009; 101:93-126. [PMID: 19055944 DOI: 10.1016/s0065-230x(08)00405-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The homeobox gene superfamily encodes transcription factors that act as master regulators of development through their ability to activate or repress a diverse range of downstream target genes. Numerous families exist within the homeobox gene superfamily, and are classified on the basis of conservation of their homeodomains as well as additional motifs that contribute to DNA binding and to interactions with other proteins. Members of one such family, the Six family, form a transcriptional complex with Eya and Dach proteins, and together these proteins make up part of the retinal determination network first identified in Drosophila. This network is highly conserved in both invertebrate and vertebrate species, where it influences the development of numerous organs in addition to the eye, primarily through regulation of cell proliferation, survival, migration, and invasion. Mutations in Six, Eya, and Dach genes have been identified in a variety of human genetic disorders, demonstrating their critical role in human development. In addition, aberrant expression of Six, Eya, and Dach occurs in numerous human tumors, and Six1, in particular, plays a causal role both in tumor initiation and in metastasis. Emerging evidence for the importance of Six family members and their cofactors in numerous human tumors suggests that targeting of this complex may be a novel and powerful means to inhibit both tumor growth and progression.
Collapse
Affiliation(s)
- Kimberly L Christensen
- Program in Molecular Biology, University of Colorado School of Medicine, Denver, Colorado, USA
| | | | | | | |
Collapse
|