1
|
Kim J, Maldonado J, Pan DW, Quiñones PM, Zenteno S, Oghalai JS, Ricci AJ. Semicircular canal drug delivery safely targets the inner ear perilymphatic space. JCI Insight 2024; 9:e173052. [PMID: 39513368 PMCID: PMC11601569 DOI: 10.1172/jci.insight.173052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/12/2024] [Indexed: 11/15/2024] Open
Abstract
Effective, reproducible, and safe delivery of therapeutics into the inner ear is required for the prevention and treatment of hearing loss. A commonly used delivery method is via the posterior semicircular canal (PSCC); however, its specific targeting within the cochlea remains unclear, impacting precision and reproducibility. To assess safety and target specificity, we conducted in vivo recordings of the pharmacological manipulations delivered through the PSCC. Measurements of auditory brainstem response (ABR), vibrometry, and vestibular behavioral and sensory-evoked potential (VsEP) revealed preserved hearing and vestibular functions after artificial perilymph injections. Injection of curare, a mechanoelectrical transducer (MET) channel blocker that affects hearing when in the endolymph, had no effect on ABR or VsEP thresholds. Conversely, injection of CNQX, an AMPA receptor blocker, or lidocaine, a Na+ channel blocker, which affects hearing when in the perilymph, significantly increased both thresholds, indicating that PSCC injections selectively target the perilymphatic space. In vivo tracking of gold nanoparticles confirmed their exclusive distribution in the perilymph during PSCC injection, supporting the pharmacological finding. Together, PSCC injection is a safe method for inner ear delivery, specifically targeting the perilymphatic space. Our findings will allow for precise delivery of therapeutics within the inner ear for therapeutic and research purposes.
Collapse
Affiliation(s)
- Jinkyung Kim
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Jesus Maldonado
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - Dorothy W. Pan
- Caruso Department of Otolaryngology – Head and Neck Surgery, University of Southern California, Los Angeles, California, USA
| | - Patricia M. Quiñones
- Caruso Department of Otolaryngology – Head and Neck Surgery, University of Southern California, Los Angeles, California, USA
| | - Samantha Zenteno
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
| | - John S. Oghalai
- Caruso Department of Otolaryngology – Head and Neck Surgery, University of Southern California, Los Angeles, California, USA
| | - Anthony J. Ricci
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, California, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
2
|
de Haan S, Corbat AA, Cederroth CR, Autrum LG, Hankeova S, Driver EC, Canlon B, Kelley MW, Andersson ER. Jag1 represses Notch activation in lateral supporting cells and inhibits an outer hair cell fate in the medial cochlea. Development 2024; 151:dev202949. [PMID: 39373109 PMCID: PMC11574350 DOI: 10.1242/dev.202949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/25/2024] [Indexed: 10/08/2024]
Abstract
Notch signaling patterns the cochlear organ of Corti, and individuals with the JAG1/NOTCH2-related genetic disorder Alagille syndrome can thus experience hearing loss. We investigated the function of Jag1 in cochlear patterning and signaling using Jag1Ndr/Ndr mice, which are a model of Alagille syndrome. Jag1Ndr/Ndr mice exhibited expected vestibular and auditory deficits, a dose-dependent increase in ectopic inner hair cells, and a reduction in outer hair cells. Single cell RNA sequencing of the organ of Corti demonstrated a global dysregulation of genes associated with inner ear development and deafness. Analysis of individual cell types further revealed that Jag1 represses Notch activation in lateral supporting cells and demonstrated a function for Jag1 in gene regulation and development of outer hair cells. Surprisingly, ectopic 'outer hair cell-like' cells were present in the medial compartment and pillar cell region of Jag1Ndr/Ndr cochleae, yet they exhibited location-dependent expression of the inner hair cell fate-determinant Tbx2, suggesting Jag1 is required for Tbx2 to drive inner hair cell commitment. This study thus identifies new roles for Jag1 in supporting cells, and in outer hair cell specification and positioning.
Collapse
MESH Headings
- Animals
- Jagged-1 Protein/metabolism
- Jagged-1 Protein/genetics
- Mice
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/cytology
- Cochlea/metabolism
- Cochlea/cytology
- Receptors, Notch/metabolism
- Receptors, Notch/genetics
- Signal Transduction
- Cell Differentiation
- Labyrinth Supporting Cells/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/cytology
- Gene Expression Regulation, Developmental
- Organ of Corti/metabolism
- Organ of Corti/cytology
Collapse
Affiliation(s)
- Sandra de Haan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Agustin A Corbat
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Christopher R Cederroth
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
- Translational Hearing Research, Tübingen Hearing Research Center, Department of Otolaryngology, Head and Neck Surgery, University of Tübingen, Tübingen 72074, Germany
| | - Lisa G Autrum
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Simona Hankeova
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Elizabeth C Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara Canlon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emma R Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 17177, Sweden
| |
Collapse
|
3
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
4
|
Nian FS, Hou PS. Evolving Roles of Notch Signaling in Cortical Development. Front Neurosci 2022; 16:844410. [PMID: 35422684 PMCID: PMC9001970 DOI: 10.3389/fnins.2022.844410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/15/2022] [Indexed: 01/09/2023] Open
Abstract
Expansion of the neocortex is thought to pave the way toward acquisition of higher cognitive functions in mammals. The highly conserved Notch signaling pathway plays a crucial role in this process by regulating the size of the cortical progenitor pool, in part by controlling the balance between self-renewal and differentiation. In this review, we introduce the components of Notch signaling pathway as well as the different mode of molecular mechanisms, including trans- and cis-regulatory processes. We focused on the recent findings with regard to the expression pattern and levels in regulating neocortical formation in mammals and its interactions with other known signaling pathways, including Slit–Robo signaling and Shh signaling. Finally, we review the functions of Notch signaling pathway in different species as well as other developmental process, mainly somitogenesis, to discuss how modifications to the Notch signaling pathway can drive the evolution of the neocortex.
Collapse
Affiliation(s)
- Fang-Shin Nian
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Shan Hou
- Institute of Anatomy and Cell Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- *Correspondence: Pei-Shan Hou,
| |
Collapse
|
5
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
6
|
Balendran V, Skidmore JM, Ritter KE, Gao J, Cimerman J, Beyer LA, Hurd EA, Raphael Y, Martin DM. Chromatin remodeler CHD7 is critical for cochlear morphogenesis and neurosensory patterning. Dev Biol 2021; 477:11-21. [PMID: 34004180 DOI: 10.1016/j.ydbio.2021.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene transcription by chromatin remodeling proteins has recently emerged as an important contributing factor in inner ear development. Pathogenic variants in CHD7, the gene encoding Chromodomain Helicase DNA binding protein 7, cause CHARGE syndrome, which presents with malformations in the developing ear. Chd7 is broadly expressed in the developing mouse otocyst and mature auditory epithelium, yet the pathogenic effects of Chd7 loss in the cochlea are not well understood. Here we characterized cochlear epithelial phenotypes in mice with deletion of Chd7 throughout the otocyst (using Foxg1Cre/+ and Pax2Cre), in the otic mesenchyme (using TCre), in hair cells (using Atoh1Cre), in developing neuroblasts (using NgnCre), or in spiral ganglion neurons (using ShhCre/+). Pan-otic deletion of Chd7 resulted in shortened cochleae with aberrant projections and axonal looping, disorganized, supernumerary hair cells at the apical turn and a narrowed epithelium with missing hair cells in the middle region. Deletion of Chd7 in the otic mesenchyme had no effect on overall cochlear morphology. Loss of Chd7 in hair cells did not disrupt their formation or organization of the auditory epithelium. Similarly, absence of Chd7 in spiral ganglion neurons had no effect on axonal projections. In contrast, deletion of Chd7 in developing neuroblasts led to smaller spiral ganglia and disorganized cochlear neurites. Together, these observations reveal dosage-, tissue-, and time-sensitive cell autonomous roles for Chd7 in cochlear elongation and cochlear neuron organization, with minimal functions for Chd7 in hair cells. These studies provide novel information about roles for Chd7 in development of auditory neurons.
Collapse
Affiliation(s)
- Vinodh Balendran
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | | | - K Elaine Ritter
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Jingxia Gao
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Jelka Cimerman
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | | | - Yehoash Raphael
- Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Donna M Martin
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA; Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA; Human Genetics, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Żak M, Daudet N. A gradient of Wnt activity positions the neurosensory domains of the inner ear. eLife 2021; 10:59540. [PMID: 33704062 PMCID: PMC7993990 DOI: 10.7554/elife.59540] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
The auditory and vestibular organs of the inner ear and the neurons that innervate them originate from Sox2-positive and Notch-active neurosensory domains specified at early stages of otic development. Sox2 is initially present throughout the otic placode and otocyst, and then it becomes progressively restricted to a ventro-medial domain. Using gain- and loss-of-function approaches in the chicken otocyst, we show that these early changes in Sox2 expression are regulated in a dose-dependent manner by Wnt/beta-catenin signalling. Both high and very low levels of Wnt activity repress Sox2 and neurosensory competence. However, intermediate levels allow the maintenance of Sox2 expression and sensory organ formation. We propose that a dorso-ventral (high-to-low) gradient and wave of Wnt activity initiated at the dorsal rim of the otic placode progressively restricts Sox2 and Notch activity to the ventral half of the otocyst, thereby positioning the neurosensory competent domains in the inner ear.
Collapse
Affiliation(s)
- Magdalena Żak
- UCL Ear Institute, University College London, London, United Kingdom
| | - Nicolas Daudet
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
8
|
Ristori T, Sjöqvist M, Sahlgren CM. Ex Vivo Models to Decipher the Molecular Mechanisms of Genetic Notch Cardiovascular Disorders. Tissue Eng Part C Methods 2021; 27:167-176. [PMID: 33403934 PMCID: PMC7984653 DOI: 10.1089/ten.tec.2020.0327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022] Open
Abstract
Notch is an evolutionary, conserved, cell-cell signaling pathway that is central to several biological processes, from tissue morphogenesis to homeostasis. It is therefore not surprising that several genetic mutations of Notch components cause inherited human diseases, especially cardiovascular disorders. Despite numerous efforts, current in vivo models are still insufficient to unravel the underlying mechanisms of these pathologies, hindering the development of utmost needed medical therapies. In this perspective review, we discuss the limitations of current murine models and outline how the combination of microphysiological systems (MPSs) and targeted computational models can lead to breakthroughs in this field. In particular, while MPSs enable the experimentation on human cells in controlled and physiological environments, in silico models can provide a versatile tool to translate the in vitro findings to the more complex in vivo setting. As a showcase example, we focus on Notch-related cardiovascular diseases, such as Alagille syndrome, Adams-Oliver syndrome, and cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Impact statement In this review, a comprehensive overview of the limitations of current in vivo models of genetic Notch cardiovascular diseases is provided, followed by a discussion over the potential of microphysiological systems and computational models in overcoming these limitations and in potentiating drug testing and modeling of these pathologies.
Collapse
Affiliation(s)
- Tommaso Ristori
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Marika Sjöqvist
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| | - Cecilia M. Sahlgren
- Department of Biomedical Engineering, Technical University of Eindhoven, Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Faculty of Science and Engineering, Biosciences, Åbo Akademi University, Turku, Finland
- Turku Bioscience Centre, Åbo Akademi University and University of Turku, Turku, Finland
| |
Collapse
|
9
|
Reichrath J, Reichrath S. Notch Pathway and Inherited Diseases: Challenge and Promise. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:159-187. [PMID: 32060876 DOI: 10.1007/978-3-030-34436-8_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The evolutionary highly conserved Notch pathway governs many cellular core processes including cell fate decisions. Although it is characterized by a simple molecular design, Notch signaling, which first developed in metazoans, represents one of the most important pathways that govern embryonic development. Consequently, a broad variety of independent inherited diseases linked to defective Notch signaling has now been identified, including Alagille, Adams-Oliver, and Hajdu-Cheney syndromes, CADASIL (cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy), early-onset arteriopathy with cavitating leukodystrophy, lateral meningocele syndrome, and infantile myofibromatosis. In this review, we give a brief overview on molecular pathology and clinical findings in congenital diseases linked to the Notch pathway. Moreover, we discuss future developments in basic science and clinical practice that may emerge from recent progress in our understanding of the role of Notch in health and disease.
Collapse
Affiliation(s)
- Jörg Reichrath
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany.
| | - Sandra Reichrath
- Department of Dermatology, The Saarland University Hospital, Homburg, Germany
| |
Collapse
|
10
|
Notch Signalling: The Multitask Manager of Inner Ear Development and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:129-157. [DOI: 10.1007/978-3-030-34436-8_8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Notch Signaling and Embryonic Development: An Ancient Friend, Revisited. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:9-37. [PMID: 32060869 DOI: 10.1007/978-3-030-34436-8_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolutionary highly conserved Notch pathway, which first developed during evolution in metazoans and was first discovered in fruit flies (Drosophila melanogaster), governs many core processes including cell fate decisions during embryonic development. A huge mountain of scientific evidence convincingly demonstrates that Notch signaling represents one of the most important pathways that regulate embryogenesis from sponges, roundworms, Drosophila melanogaster, and mice to humans. In this review, we give a brief introduction on how Notch orchestrates the embryonic development of several selected tissues, summarizing some of the most relevant findings in the central nervous system, skin, kidneys, liver, pancreas, inner ear, eye, skeleton, heart, and vascular system.
Collapse
|
12
|
Van Hul N, Lendahl U, Andersson ER. Mouse Models for Diseases in the Cholangiocyte Lineage. Methods Mol Biol 2019; 1981:203-236. [PMID: 31016657 DOI: 10.1007/978-1-4939-9420-5_14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cholangiopathies are an important group of liver diseases affecting the biliary system, and the purpose of this review is to describe how diseases in the biliary system can be studied in mouse models. A particular focus is placed on mouse models for Alagille syndrome, a cholangiopathy with a strong genetic link to dysfunctional Notch signaling. Recently, a number of different genetic mouse models based on various manipulations of the Notch signaling pathway have been generated to study Alagille syndrome, and we discuss the resulting phenotypes, and possible causes for the phenotypic heterogeneity among the various models. In the final section, we provide a more general discussion on how well mouse models can be expected to mimic human liver disease, as well as an outlook toward the need for new technologies that can help us to gain new insights from mouse models for liver disease.
Collapse
Affiliation(s)
- Noémi Van Hul
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Urban Lendahl
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Yang LM, Cheah KSE, Huh SH, Ornitz DM. Sox2 and FGF20 interact to regulate organ of Corti hair cell and supporting cell development in a spatially-graded manner. PLoS Genet 2019; 15:e1008254. [PMID: 31276493 PMCID: PMC6636783 DOI: 10.1371/journal.pgen.1008254] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 07/17/2019] [Accepted: 06/18/2019] [Indexed: 01/24/2023] Open
Abstract
The mouse organ of Corti, housed inside the cochlea, contains hair cells and supporting cells that transduce sound into electrical signals. These cells develop in two main steps: progenitor specification followed by differentiation. Fibroblast Growth Factor (FGF) signaling is important in this developmental pathway, as deletion of FGF receptor 1 (Fgfr1) or its ligand, Fgf20, leads to the loss of hair cells and supporting cells from the organ of Corti. However, whether FGF20-FGFR1 signaling is required during specification or differentiation, and how it interacts with the transcription factor Sox2, also important for hair cell and supporting cell development, has been a topic of debate. Here, we show that while FGF20-FGFR1 signaling functions during progenitor differentiation, FGFR1 has an FGF20-independent, Sox2-dependent role in specification. We also show that a combination of reduction in Sox2 expression and Fgf20 deletion recapitulates the Fgfr1-deletion phenotype. Furthermore, we uncovered a strong genetic interaction between Sox2 and Fgf20, especially in regulating the development of hair cells and supporting cells towards the basal end and the outer compartment of the cochlea. To explain this genetic interaction and its effects on the basal end of the cochlea, we provide evidence that decreased Sox2 expression delays specification, which begins at the apex of the cochlea and progresses towards the base, while Fgf20-deletion results in premature onset of differentiation, which begins near the base of the cochlea and progresses towards the apex. Thereby, Sox2 and Fgf20 interact to ensure that specification occurs before differentiation towards the cochlear base. These findings reveal an intricate developmental program regulating organ of Corti development along the basal-apical axis of the cochlea.
Collapse
Affiliation(s)
- Lu M. Yang
- Department of Developmental Biology; Washington University School of Medicine; St. Louis, Missouri, United States of America
| | - Kathryn S. E. Cheah
- School of Biomedical Sciences; The University of Hong Kong; Pokfulam, Hong Kong, China
| | - Sung-Ho Huh
- Department of Developmental Biology; Washington University School of Medicine; St. Louis, Missouri, United States of America
- Holland Regenerative Medicine Program, and the Department of Neurological Sciences; University of Nebraska Medical Center; Omaha, Nebraska, United States of America
- * E-mail: (DMO); (SH)
| | - David M. Ornitz
- Department of Developmental Biology; Washington University School of Medicine; St. Louis, Missouri, United States of America
- * E-mail: (DMO); (SH)
| |
Collapse
|
14
|
Weston MD, Tarang S, Pierce ML, Pyakurel U, Rocha-Sanchez SM, McGee J, Walsh EJ, Soukup GA. A mouse model of miR-96, miR-182 and miR-183 misexpression implicates miRNAs in cochlear cell fate and homeostasis. Sci Rep 2018; 8:3569. [PMID: 29476110 PMCID: PMC5824881 DOI: 10.1038/s41598-018-21811-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 02/12/2018] [Indexed: 11/21/2022] Open
Abstract
Germline mutations in Mir96, one of three co-expressed polycistronic miRNA genes (Mir96, Mir182, Mir183), cause hereditary hearing loss in humans and mice. Transgenic FVB/NCrl- Tg(GFAP-Mir183,Mir96,Mir182)MDW1 mice (Tg1MDW), which overexpress this neurosensory-specific miRNA cluster in the inner ear, were developed as a model system to identify, in the aggregate, target genes and biologic processes regulated by the miR-183 cluster. Histological assessments demonstrate Tg1MDW/1MDW homozygotes have a modest increase in cochlear inner hair cells (IHCs). Affymetrix mRNA microarray data analysis revealed that downregulated genes in P5 Tg1MDW/1MDW cochlea are statistically enriched for evolutionarily conserved predicted miR-96, miR-182 or miR-183 target sites. ABR and DPOAE tests from 18 days to 3 months of age revealed that Tg1MDW/1MDW homozygotes develop progressive neurosensory hearing loss that correlates with histologic assessments showing massive losses of both IHCs and outer hair cells (OHCs). This mammalian miRNA misexpression model demonstrates a potency and specificity of cochlear homeostasis for one of the dozens of endogenously co-expressed, evolutionally conserved, small non-protein coding miRNA families. It should be a valuable tool to predict and elucidate miRNA-regulated genes and integrated functional gene expression networks that significantly influence neurosensory cell differentiation, maturation and homeostasis.
Collapse
MESH Headings
- Animals
- Cell Differentiation/genetics
- Disease Models, Animal
- Ear, Inner/metabolism
- Ear, Inner/pathology
- Gene Expression Regulation
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hearing Loss, Sensorineural/genetics
- Hearing Loss, Sensorineural/pathology
- Homeostasis/genetics
- Humans
- Mice
- Mice, Transgenic
- MicroRNAs/genetics
- Microarray Analysis
- RNA, Messenger/genetics
Collapse
Affiliation(s)
- Michael D Weston
- Department of Oral Biology, School of Dentistry, Creighton University, 780729 California Plaza, Omaha, NE 68178-0729, USA.
| | - Shikha Tarang
- Department of Oral Biology, School of Dentistry, Creighton University, 780729 California Plaza, Omaha, NE 68178-0729, USA
| | - Marsha L Pierce
- Department of Pharmacology, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Umesh Pyakurel
- Department of Oral Biology, School of Dentistry, Creighton University, 780729 California Plaza, Omaha, NE 68178-0729, USA
| | - Sonia M Rocha-Sanchez
- Department of Oral Biology, School of Dentistry, Creighton University, 780729 California Plaza, Omaha, NE 68178-0729, USA
| | - JoAnn McGee
- Developmental Auditory Physiology Laboratory, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131, USA
| | - Edward J Walsh
- Developmental Auditory Physiology Laboratory, Boys Town National Research Hospital, 555 North 30th Street, Omaha, NE 68131, USA
| | - Garrett A Soukup
- Department of Biomedical Sciences, School of Medicine, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
15
|
Mašek J, Andersson ER. The developmental biology of genetic Notch disorders. Development 2017; 144:1743-1763. [PMID: 28512196 DOI: 10.1242/dev.148007] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Notch signaling regulates a vast array of crucial developmental processes. It is therefore not surprising that mutations in genes encoding Notch receptors or ligands lead to a variety of congenital disorders in humans. For example, loss of function of Notch results in Adams-Oliver syndrome, Alagille syndrome, spondylocostal dysostosis and congenital heart disorders, while Notch gain of function results in Hajdu-Cheney syndrome, serpentine fibula polycystic kidney syndrome, infantile myofibromatosis and lateral meningocele syndrome. Furthermore, structure-abrogating mutations in NOTCH3 result in CADASIL. Here, we discuss these human congenital disorders in the context of known roles for Notch signaling during development. Drawing on recent analyses by the exome aggregation consortium (EXAC) and on recent studies of Notch signaling in model organisms, we further highlight additional Notch receptors or ligands that are likely to be involved in human genetic diseases.
Collapse
Affiliation(s)
- Jan Mašek
- Karolinska Institutet, Huddinge 14183, Sweden
| | | |
Collapse
|
16
|
Teng CS, Yen HY, Barske L, Smith B, Llamas J, Segil N, Go J, Sanchez-Lara PA, Maxson RE, Crump JG. Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear. Sci Rep 2017; 7:2497. [PMID: 28566723 PMCID: PMC5451394 DOI: 10.1038/s41598-017-02574-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 11/18/2022] Open
Abstract
Whereas Jagged1-Notch2 signaling is known to pattern the sensorineural components of the inner ear, its role in middle ear development has been less clear. We previously reported a role for Jagged-Notch signaling in shaping skeletal elements derived from the first two pharyngeal arches of zebrafish. Here we show a conserved requirement for Jagged1-Notch2 signaling in patterning the stapes and incus middle ear bones derived from the equivalent pharyngeal arches of mammals. Mice lacking Jagged1 or Notch2 in neural crest-derived cells (NCCs) of the pharyngeal arches display a malformed stapes. Heterozygous Jagged1 knockout mice, a model for Alagille Syndrome (AGS), also display stapes and incus defects. We find that Jagged1-Notch2 signaling functions early to pattern the stapes cartilage template, with stapes malformations correlating with hearing loss across all frequencies. We observe similar stapes defects and hearing loss in one patient with heterozygous JAGGED1 loss, and a diversity of conductive and sensorineural hearing loss in nearly half of AGS patients, many of which carry JAGGED1 mutations. Our findings reveal deep conservation of Jagged1-Notch2 signaling in patterning the pharyngeal arches from fish to mouse to man, despite the very different functions of their skeletal derivatives in jaw support and sound transduction.
Collapse
Affiliation(s)
- Camilla S Teng
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Hai-Yun Yen
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,Fulgent Diagnostics, Temple City, CA, 91780, USA
| | - Lindsey Barske
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Bea Smith
- Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Juan Llamas
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,USC Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Neil Segil
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.,USC Caruso Department of Otolaryngology - Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - John Go
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Pedro A Sanchez-Lara
- Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, 90033, USA
| | - Robert E Maxson
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - J Gage Crump
- Eli and Edythe Broad CIRM Center for Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
17
|
Sculpting the labyrinth: Morphogenesis of the developing inner ear. Semin Cell Dev Biol 2017; 65:47-59. [DOI: 10.1016/j.semcdb.2016.09.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/26/2016] [Accepted: 09/25/2016] [Indexed: 01/23/2023]
|
18
|
Liu L, Wada H, Matsubara N, Hozumi K, Itoh M. Identification of Domains for Efficient Notch Signaling Activity in Immobilized Notch Ligand Proteins. J Cell Biochem 2016; 118:785-796. [PMID: 27639253 DOI: 10.1002/jcb.25744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/14/2016] [Indexed: 11/05/2022]
Abstract
Notch is a critical signaling pathway that controls cell fate and tissue homeostasis, but the functional characterization of Notch ligand domains that activate Notch receptors remains incomplete. Here, we established a method for immobilizing Notch ligand proteins onto beads to measure time-dependent Notch activity after the addition of Notch ligand-coated beads. A comparison between activities by the Notch ligand found on the cell surface to that of the ligand immobilized on beads showed that immobilized Notch ligand protein produces comparable signal activity during the first 10 h. Follow-up truncation studies showed that the N-terminal epidermal growth factor (EGF) repeat three region of delta like canonical Notch ligand 4 (DLL4) or jagged 1 (JAG1) is the minimum region for activating Notch signaling, and the DLL4 EGF repeat three domain may have a role in activation through a mechanism other than by increasing binding affinity. In addition, we found that reconstruction of the DLL4 delta and OSM-11 (DOS) motif (N257P) resulted in an increase in both binding affinity and signaling activity, which suggests that the role of the DOS motif is conserved among Notch ligands. Furthermore, active DLL4 protein on beads promoted T cell differentiation or inhibited B cell differentiation in vitro, whereas JAG1 proteins on beads did not have any effect. Taken together, our findings provide unambiguous evidence for the role of different Notch ligands and their domains in Notch signal activation, and may be potential tools for controlling Notch signaling activation. J. Cell. Biochem. 118: 785-796, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ledi Liu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Hiroe Wada
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Natsuki Matsubara
- Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Motoyuki Itoh
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan.,Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
19
|
Wang Y, Liu Y, Nie H, Ma X, Xu Z. Alternative splicing of inner-ear-expressed genes. Front Med 2016; 10:250-7. [PMID: 27376950 DOI: 10.1007/s11684-016-0454-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 05/11/2016] [Indexed: 11/26/2022]
Abstract
Alternative splicing plays a fundamental role in the development and physiological function of the inner ear. Inner-ear-specific gene splicing is necessary to establish the identity and maintain the function of the inner ear. For example, exon 68 of Cadherin 23 (Cdh23) gene is subject to inner-ear-specific alternative splicing, and as a result, Cdh23(+ 68) is only expressed in inner ear hair cells. Alternative splicing along the tonotopic axis of the cochlea contributes to frequency tuning, particularly in lower vertebrates, such as chickens and turtles. Differential splicing of Kcnma1, which encodes for the α subunit of the Ca(2+)-activated K(+) channel (BK channel), has been suggested to affect the channel gating properties and is important for frequency tuning. Consequently, deficits in alternative splicing have been shown to cause hearing loss, as we can observe in Bronx Waltzer (bv) mice and Sfswap mutant mice. Despite the advances in this field, the regulation of alternative splicing in the inner ear remains elusive. Further investigation is also needed to clarify the mechanism of hearing loss caused by alternative splicing deficits.
Collapse
Affiliation(s)
- Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Yueyue Liu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Hongyun Nie
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, 250100, China
| | - Xin Ma
- School of Control Science and Engineering, Shandong University, Jinan, 250061, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, 250100, China.
| |
Collapse
|
20
|
Hayashi Y, Nishimune H, Hozumi K, Saga Y, Harada A, Yuzaki M, Iwatsubo T, Kopan R, Tomita T. A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons. Sci Rep 2016; 6:23969. [PMID: 27040987 PMCID: PMC4819173 DOI: 10.1038/srep23969] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/17/2016] [Indexed: 12/17/2022] Open
Abstract
Notch signaling plays crucial roles for cellular differentiation during development through γ-secretase-dependent intramembrane proteolysis followed by transcription of target genes. Although recent studies implicate that Notch regulates synaptic plasticity or cognitive performance, the molecular mechanism how Notch works in mature neurons remains uncertain. Here we demonstrate that a novel Notch signaling is involved in expression of synaptic proteins in postmitotic neurons. Levels of several synaptic vesicle proteins including synaptophysin 1 and VGLUT1 were increased when neurons were cocultured with Notch ligands-expressing NIH3T3 cells. Neuron-specific deletion of Notch genes decreased these proteins, suggesting that Notch signaling maintains the expression of synaptic vesicle proteins in a cell-autonomous manner. Unexpectedly, cGMP-dependent protein kinase (PKG) inhibitor, but not γ-secretase inhibitor, abolished the elevation of synaptic vesicle proteins, suggesting that generation of Notch intracellular domain is dispensable for this function. These data uncover a ligand-dependent, but γ-secretase-independent, non-canonical Notch signaling involved in presynaptic protein expression in postmitotic neurons.
Collapse
Affiliation(s)
- Yukari Hayashi
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Hiroshi Nishimune
- Department of Anatomy and Cell Biology, University of Kansas Medical School, Kansas City, KS 66160, USA
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Kanagawa 259-1193, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Shizuoka 411-8540, Japan
| | - Akihiro Harada
- Department of Cell Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Raphael Kopan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Taisuke Tomita
- Laboratory of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
21
|
Campbell DP, Chrysostomou E, Doetzlhofer A. Canonical Notch signaling plays an instructive role in auditory supporting cell development. Sci Rep 2016; 6:19484. [PMID: 26786414 PMCID: PMC4726253 DOI: 10.1038/srep19484] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023] Open
Abstract
The auditory sensory epithelium, composed of mechano-sensory hair cells (HCs) and highly specialized glial-like supporting cells (SCs), is critical for our ability to detect sound. SCs provide structural and functional support to HCs and play an essential role in cochlear development, homeostasis and repair. Despite their importance, however, surprisingly little is known about the molecular mechanisms guiding SC differentiation. Here, we provide evidence that in addition to its well-characterized inhibitory function, canonical Notch signaling plays a positive, instructive role in the differentiation of SCs. Using γ-secretase inhibitor DAPT to acutely block canonical Notch signaling, we identified a cohort of Notch-regulated SC-specific genes, with diverse functions in cell signaling, cell differentiation, neuronal innervation and synaptogenesis. We validated the newly identified Notch-regulated genes in vivo using genetic gain (Emx2Cre/+; Rosa26N1ICD/+) and loss-of-function approaches (Emx2Cre/+; Rosa26DnMAML1/+). Furthermore, we demonstrate that Notch over-activation in the differentiating murine cochlea (Emx2Cre/+; Rosa26N1ICD/+) actively promotes a SC-specific gene expression program. Finally, we show that outer SCs –so called Deiters’ cells are selectively lost by prolonged reduction (Emx2Cre/+; Rosa26DnMAML1/+/+) or abolishment of canonical Notch signaling (Fgfr3-iCreER; Rbpj−/Δ), indicating a critical role for Notch signaling in Deiters’ cell development.
Collapse
Affiliation(s)
- Dean P Campbell
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA.,Center for Sensory Biology, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA
| | - Elena Chrysostomou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA.,Center for Sensory Biology, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA
| | - Angelika Doetzlhofer
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA.,Center for Sensory Biology, Johns Hopkins University, School of Medicine Baltimore, MD 21205, USA
| |
Collapse
|
22
|
Tateya T, Sakamoto S, Imayoshi I, Kageyama R. In vivo overactivation of the Notch signaling pathway in the developing cochlear epithelium. Hear Res 2015. [DOI: 10.1016/j.heares.2015.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Davies KTJ, Bennett NC, Tsagkogeorga G, Rossiter SJ, Faulkes CG. Family Wide Molecular Adaptations to Underground Life in African Mole-Rats Revealed by Phylogenomic Analysis. Mol Biol Evol 2015; 32:3089-107. [PMID: 26318402 PMCID: PMC4652621 DOI: 10.1093/molbev/msv175] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During their evolutionary radiation, mammals have colonized diverse habitats. Arguably the subterranean niche is the most inhospitable of these, characterized by reduced oxygen, elevated carbon dioxide, absence of light, scarcity of food, and a substrate that is energetically costly to burrow through. Of all lineages to have transitioned to a subterranean niche, African mole-rats are one of the most successful. Much of their ecological success can be attributed to a diet of plant storage organs, which has allowed them to colonize climatically varied habitats across sub-Saharan Africa, and has probably contributed to the evolution of their diverse social systems. Yet despite their many remarkable phenotypic specializations, little is known about molecular adaptations underlying these traits. To address this, we sequenced the transcriptomes of seven mole-rat taxa, including three solitary species, and combined new sequences with existing genomic data sets. Alignments of more than 13,000 protein-coding genes encompassed, for the first time, all six genera and the full spectrum of ecological and social variation in the clade. We detected positive selection within the mole-rat clade and along ancestral branches in approximately 700 genes including loci associated with tumorigenesis, aging, morphological development, and sociality. By combining these results with gene ontology annotation and protein–protein networks, we identified several clusters of functionally related genes. This family wide analysis of molecular evolution in mole-rats has identified a suite of positively selected genes, deepening our understanding of the extreme phenotypic traits exhibited by this group.
Collapse
Affiliation(s)
- Kalina T J Davies
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Nigel C Bennett
- Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Georgia Tsagkogeorga
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Stephen J Rossiter
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| | - Christopher G Faulkes
- School of Biological & Chemical Sciences, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
24
|
Eddison M, Weber SJ, Ariza-McNaughton L, Lewis J, Daudet N. Numb is not a critical regulator of Notch-mediated cell fate decisions in the developing chick inner ear. Front Cell Neurosci 2015; 9:74. [PMID: 25814931 PMCID: PMC4357303 DOI: 10.3389/fncel.2015.00074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/19/2015] [Indexed: 11/27/2022] Open
Abstract
The Notch signaling pathway controls differentiation of hair cells and supporting cells in the vertebrate inner ear. Here, we have investigated whether Numb, a known regulator of Notch activity in Drosophila, is involved in this process in the embryonic chick. The chicken homolog of Numb is expressed throughout the otocyst at early stages of development and is concentrated at the basal pole of the cells. It is asymmetrically allocated at some cell divisions, as in Drosophila, suggesting that it could act as a determinant inherited by one of the two daughter cells and favoring adoption of a hair-cell fate. To test the implication of Numb in hair cell fate decisions and the regulation of Notch signaling, we used different methods to overexpress Numb at different stages of inner ear development. We found that sustained or late Numb overexpression does not promote hair cell differentiation, and Numb does not prevent the reception of Notch signaling. Surprisingly, none of the Numb-overexpressing cells differentiated into hair cells, suggesting that high levels of Numb protein could interfere with intracellular processes essential for hair cell survival. However, when Numb was overexpressed early and more transiently during ear development, no effect on hair cell formation was seen. These results suggest that in the inner ear at least, Numb does not significantly repress Notch activity and that its asymmetric distribution in dividing precursor cells does not govern the choice between hair cell and supporting cell fates.
Collapse
Affiliation(s)
- Mark Eddison
- Howard Hughes Medical Institute, Janelia Research Campus Ashburn, VA, USA
| | - Sara J Weber
- Ear Institute, University College London London, UK
| | - Linda Ariza-McNaughton
- Haematopoietic Stem cell Laboratory, Cancer Research UK, London Research Institute London, UK
| | - Julian Lewis
- Formerly of Vertebrate Development Laboratory, Cancer Research UK London, UK
| | | |
Collapse
|
25
|
Ma WR, Zhang J. Jag1b is essential for patterning inner ear sensory cristae by regulating anterior morphogenetic tissue separation and preventing posterior cell death. Development 2015; 142:763-73. [DOI: 10.1242/dev.113662] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory patches of the vertebrate inner ear, which contain hair cells and supporting cells, are essential for hearing and balance functions. How the stereotypically organized sensory patches are formed remains to be determined. In this study, we isolated a zebrafish mutant in which the jag1b gene is disrupted by an EGFP insertion. Loss of Jag1b causes cell death in the developing posterior crista and results in downregulation of fgf10a in the posterior prosensory cells. Inhibition of FGFR activity in wild-type embryos also causes loss of the posterior crista, suggesting that Fgf10a mediates Jag1b activity. By contrast, in the anterior prosensory domain, Jag1b regulates separation of a single morphogenetic field into anterior and lateral cristae by flattening cells destined to form a nonsensory epithelium between the two cristae. MAPK activation in the nonsensory epithelium precursors is required for the separation. In the jag1b mutant, MAPK activation and cell flattening are extended to anterior crista primordia, causing loss of anterior crista. More importantly, inhibition of MAPK activity, which blocks the differentiation of nonsensory epithelial cells, generated a fused large crista and extra hair cells. Thus, Jag1b uses two distinct mechanisms to form three sensory cristae in zebrafish.
Collapse
Affiliation(s)
- Wei-Rui Ma
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
26
|
Gehlhausen JR, Park SJ, Hickox AE, Shew M, Staser K, Rhodes SD, Menon K, Lajiness JD, Mwanthi M, Yang X, Yuan J, Territo P, Hutchins G, Nalepa G, Yang FC, Conway SJ, Heinz MG, Stemmer-Rachamimov A, Yates CW, Wade Clapp D. A murine model of neurofibromatosis type 2 that accurately phenocopies human schwannoma formation. Hum Mol Genet 2014; 24:1-8. [PMID: 25113746 DOI: 10.1093/hmg/ddu414] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is an autosomal dominant genetic disorder resulting from germline mutations in the NF2 gene. Bilateral vestibular schwannomas, tumors on cranial nerve VIII, are pathognomonic for NF2 disease. Furthermore, schwannomas also commonly develop in other cranial nerves, dorsal root ganglia and peripheral nerves. These tumors are a major cause of morbidity and mortality, and medical therapies to treat them are limited. Animal models that accurately recapitulate the full anatomical spectrum of human NF2-related schwannomas, including the characteristic functional deficits in hearing and balance associated with cranial nerve VIII tumors, would allow systematic evaluation of experimental therapeutics prior to clinical use. Here, we present a genetically engineered NF2 mouse model generated through excision of the Nf2 gene driven by Cre expression under control of a tissue-restricted 3.9kbPeriostin promoter element. By 10 months of age, 100% of Postn-Cre; Nf2(flox/flox) mice develop spinal, peripheral and cranial nerve tumors histologically identical to human schwannomas. In addition, the development of cranial nerve VIII tumors correlates with functional impairments in hearing and balance, as measured by auditory brainstem response and vestibular testing. Overall, the Postn-Cre; Nf2(flox/flox) tumor model provides a novel tool for future mechanistic and therapeutic studies of NF2-associated schwannomas.
Collapse
Affiliation(s)
- Jeffrey R Gehlhausen
- Department of Pediatrics, Herman B Wells Center for Pediatric Research Department of Biochemistry
| | - Su-Jung Park
- Department of Pediatrics, Herman B Wells Center for Pediatric Research Department of Biochemistry
| | - Ann E Hickox
- Department of Biomedical Engineering and Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA and
| | - Matthew Shew
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Karl Staser
- Department of Pediatrics, Herman B Wells Center for Pediatric Research Department of Biochemistry
| | - Steven D Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research Department of Anatomy and Cell Biology
| | - Keshav Menon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Jacquelyn D Lajiness
- Department of Pediatrics, Herman B Wells Center for Pediatric Research Department of Biochemistry
| | - Muithi Mwanthi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research Department of Microbiology and Immunology
| | - Xianlin Yang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | - Jin Yuan
- Department of Pediatrics, Herman B Wells Center for Pediatric Research
| | | | | | - Grzegorz Nalepa
- Department of Pediatrics, Herman B Wells Center for Pediatric Research Department of Biochemistry
| | - Feng-Chun Yang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research Department of Anatomy and Cell Biology
| | - Simon J Conway
- Department of Pediatrics, Herman B Wells Center for Pediatric Research Department of Biochemistry Department of Anatomy and Cell Biology
| | - Michael G Heinz
- Department of Biomedical Engineering and Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, USA and
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charles W Yates
- Department of Otolaryngology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - D Wade Clapp
- Department of Pediatrics, Herman B Wells Center for Pediatric Research Department of Biochemistry Department of Microbiology and Immunology
| |
Collapse
|
27
|
Abstract
The Notch signalling pathway is evolutionarily conserved and is crucial for the development and homeostasis of most tissues. Deregulated Notch signalling leads to various diseases, such as T cell leukaemia, Alagille syndrome and a stroke and dementia syndrome known as CADASIL, and so strategies to therapeutically modulate Notch signalling are of interest. Clinical trials of Notch pathway inhibitors in patients with solid tumours have been reported, and several approaches are under preclinical evaluation. In this Review, we focus on aspects of the pathway that are amenable to therapeutic intervention, diseases that could be targeted and the various Notch pathway modulation strategies that are currently being explored.
Collapse
|
28
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
29
|
The candidate splicing factor Sfswap regulates growth and patterning of inner ear sensory organs. PLoS Genet 2014; 10:e1004055. [PMID: 24391519 PMCID: PMC3879212 DOI: 10.1371/journal.pgen.1004055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 11/08/2013] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway is thought to regulate multiple stages of inner ear development. Mutations in the Notch signaling pathway cause disruptions in the number and arrangement of hair cells and supporting cells in sensory regions of the ear. In this study we identify an insertional mutation in the mouse Sfswap gene, a putative splicing factor, that results in mice with vestibular and cochlear defects that are consistent with disrupted Notch signaling. Homozygous Sfswap mutants display hyperactivity and circling behavior consistent with vestibular defects, and significantly impaired hearing. The cochlea of newborn Sfswap mutant mice shows a significant reduction in outer hair cells and supporting cells and ectopic inner hair cells. This phenotype most closely resembles that seen in hypomorphic alleles of the Notch ligand Jagged1 (Jag1). We show that Jag1; Sfswap compound mutants have inner ear defects that are more severe than expected from simple additive effects of the single mutants, indicating a genetic interaction between Sfswap and Jag1. In addition, expression of genes involved in Notch signaling in the inner ear are reduced in Sfswap mutants. There is increased interest in how splicing affects inner ear development and function. Our work is one of the first studies to suggest that a putative splicing factor has specific effects on Notch signaling pathway members and inner ear development.
Collapse
|
30
|
Toward Translating Molecular Ear Development to Generate Hair Cells from Stem Cells. ADULT STEM CELLS 2014. [DOI: 10.1007/978-1-4614-9569-7_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Noisa P, Lund C, Kanduri K, Lund R, Lähdesmäki H, Lahesmaa R, Lundin K, Chokechuwattanalert H, Otonkoski T, Tuuri T, Raivio T. Notch signaling regulates neural crest differentiation from human pluripotent stem cells. J Cell Sci 2014; 127:2083-94. [DOI: 10.1242/jcs.145755] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neural crest (NC) cells are specified at the border of neural plate and epiderm. They are capable of differentiating into various somatic cell types, including craniofacial and peripheral nerve tissues. Notch signaling plays significant roles during neurogenesis; however, its function during human NC development is poorly understood. Here, we generated self-renewing premigratory NC-like cells (pNCCs) from human pluripotent stem cells and investigated the roles of Notch signaling during the NC differentiation. pNCCs expressed various NC specifier genes, including SLUG, SOX10 and TWIST1, and were able to differentiate into most NC derivatives. Blocking Notch signaling during the pNCC differentiation suppressed the expression of NC specifier genes. In contrast, ectopic expression of activated Notch1 intracellular domain (NICD1) augmented the expression of NC specifier genes, and NICD1 was found to bind at their promoter regions. Notch activity was also required for the maintenance of premigratory NC state, and suppression of Notch led to generation of NC-derived neurons. Taken together, we provide a protocol for the generation of pNCCs, and show that Notch signaling regulates the formation, migration and differentiation of NC from hPSCs.
Collapse
|
32
|
Brini M, Calì T, Ottolini D, Carafoli E. The plasma membrane calcium pump in health and disease. FEBS J 2013; 280:5385-97. [PMID: 23413890 DOI: 10.1111/febs.12193] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/12/2022]
Abstract
The Ca(2+) ATPases of the plasma membrane (PMCA pumps) export Ca(2+) from all eukaryotic cells. In mammals they are the products of four separate genes. PMCA types 1 and 4 are distributed ubiquitously; PMCA types 2 and 3 are restricted to some tissues, the most important being the nervous system. Alternative splicing at two sites greatly increases the number of pump isoforms. The two ubiquitous isoforms are no longer considered as only housekeeping pumps as they also perform tissue-specific functions. The PMCAs are classical P-type pumps, their reaction cycle repeating that of all other pumps of the family. Their 3D structure has not been solved, but molecular modeling on SERCA pump templates shows the essential structural pattern of the latter. PMCAs are regulated by calmodulin, which interacts with high affinity with their cytosolic C-terminal tail. A second calmodulin-binding domain with lower affinity is present in some splicing variants of the pump. The PMCAs are essential to the regulation of cellular Ca(2+), but the all-important Ca(2+) signal is ambivalent: defects in its control generate various pathologies, the most thoroughly studied being those of genetic origin. Genetic defects of PMCA function produce disease phenotypes: the best characterized is a form of deafness in mice and in humans linked to PMCA2 mutations. A cerebellar X-linked human ataxia has recently been found to be caused by a mutation in the calmodulin-binding domain of PMCA3.
Collapse
Affiliation(s)
- Marisa Brini
- Department of Comparative Biomedicine and Food Science, University of Padova, Italy
| | | | | | | |
Collapse
|
33
|
Williams LH, Miller KA, Dahl HHM, Manji SSM. Characterization of a novel ENU-generated myosin VI mutant mouse strain with congenital deafness and vestibular dysfunction. Hear Res 2013; 299:53-62. [PMID: 23485424 DOI: 10.1016/j.heares.2013.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/12/2013] [Accepted: 02/15/2013] [Indexed: 11/30/2022]
Abstract
Myosin VI (Myo6) is known to play an important role in the mammalian auditory and vestibular systems. We have identified a novel N-ethyl-N-nitrosourea mutagenised mouse strain, charlie, carrying an intronic Myo6 splice site mutation. This mutation (IVS5+5G > A) results in skipping of exon 5, and is predicted to cause a frameshift and premature termination of the protein. We detected essentially no Myo6 transcript in tissue from charlie homozygous mutant mice (Myo6(chl/chl)). Myo6(chl/chl) mice exhibit vestibular dysfunction and profound hearing impairment when first tested at four weeks of age. Analysis of vestibular and cochlear hair cells by scanning electron microscopy and immunohistochemistry revealed highly disorganised hair bundles with irregular orientation and kinocilium position at postnatal stage P2-P3. Within a few weeks, the majority of hair cell stereocilia are missing, or fused and elongated, and degeneration of the sensory epithelium occurs. This novel mouse strain will be an important resource in elucidating the role myosin VI plays in the mammalian auditory system, as well as its non-auditory functions.
Collapse
Affiliation(s)
- Louise H Williams
- Genetic Hearing Research Laboratory, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia.
| | | | | | | |
Collapse
|
34
|
Neves J, Abelló G, Petrovic J, Giraldez F. Patterning and cell fate in the inner ear: a case for Notch in the chicken embryo. Dev Growth Differ 2012; 55:96-112. [PMID: 23252974 DOI: 10.1111/dgd.12016] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 01/08/2023]
Abstract
The development of the inner ear provides a beautiful example of one basic problem in development, that is, to understand how different cell types are generated at specific times and domains throughout embryonic life. The functional unit of the inner ear consists of hair cells, supporting cells and neurons, all deriving from progenitor cells located in the neurosensory competent domain of the otic placode. Throughout development, the otic placode resolves into the complex inner ear labyrinth, which holds the auditory and vestibular sensory organs that are innervated in a highly specific manner. How does the early competent domain of the otic placode give rise to the diverse specialized cell types of the different sensory organs of the inner ear? We review here our current understanding on the role of Notch signaling in coupling patterning and cell fate determination during inner ear development, with a particular emphasis on contributions from the chicken embryo as a model organism. We discuss further the question of how these two processes rely on two modes of operation of the Notch signaling pathway named lateral induction and lateral inhibition.
Collapse
Affiliation(s)
- Joana Neves
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | | | | | | |
Collapse
|
35
|
Hao J, Koesters R, Bouchard M, Gridley T, Pfannenstiel S, Plinkert PK, Zhang L, Praetorius M. Jagged1-mediated Notch signaling regulates mammalian inner ear development independent of lateral inhibition. Acta Otolaryngol 2012; 132:1028-35. [PMID: 22998557 DOI: 10.3109/00016489.2012.690533] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
CONCLUSION Jagged1-mediated Notch signaling regulates hair cell (HC) production in a distinct way rather than lateral inhibition mediated by Hes1 and Hes5. Jagged1 may interact with Notch3, probably via candidate downstream mediators Hesr1 and Hesr2, regulating the prosensory formation in the early stage. OBJECTIVES To explore the function of the Jagged1-mediated Notch signaling pathway in mammalian inner ear development and its possible mechanism. METHODS Using conditional gene targeting, a novel Jagged1 conditional knockout (Jag1-cko), Pax8(cre/+); Jag1(flox/flox), was established. The auditory brainstem response and swim ability test were utilized to identify functional disability. The expression of Jagged1, Notch3, Hes1, Hesr1, and Hesr2 was detected by immunofluorescence and immunohistochemistry. RESULTS Our Jag1-cko model was established and survived well. It presented hearing impairment and balance disturbance with 'waltzing' behavior. Cochleae and vestibular apparatus were all found in our Jag1-cko model. Patch deficiency of outer hair cells (OHCs) was found on the apical and middle turns of the auditory epithelium. OHCs were totally missing on the basal turn. The stereociliary bundles were disorientated on the cristae. Unlike Hes1, no expression of Notch3, Hesr1, and Hesr2 was found on embryonic day 13.5 of the Jag1-cko model.
Collapse
MESH Headings
- Animals
- Calcium-Binding Proteins/genetics
- Ear, Inner/embryology
- Evoked Potentials, Auditory, Brain Stem
- Gene Expression Regulation, Developmental
- Hair Cells, Auditory/metabolism
- Hair Cells, Auditory/physiology
- Intercellular Signaling Peptides and Proteins/genetics
- Jagged-1 Protein
- Mammals/genetics
- Membrane Proteins/genetics
- Mice
- Mice, Transgenic
- Models, Animal
- Polymerase Chain Reaction/methods
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Reference Values
- Sensitivity and Specificity
- Serrate-Jagged Proteins
- Signal Transduction/genetics
- Signal Transduction/physiology
Collapse
Affiliation(s)
- Jin Hao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, PR China
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Delayed fusion and altered gene expression contribute to semicircular canal defects in Chd7 deficient mice. Mech Dev 2012; 129:308-23. [PMID: 22705977 DOI: 10.1016/j.mod.2012.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 05/30/2012] [Accepted: 06/07/2012] [Indexed: 11/20/2022]
Abstract
Proper morphogenesis of inner ear semicircular canals requires precise regulation of cellular proliferation, epithelial-to-mesenchymal transition, and fusion of epithelial plates. Epigenetic regulation of these processes is not well understood, but is likely to involve chromatin remodeling enzymes. CHD7 is a chromodomain-containing, ATP dependent helicase protein that is highly expressed in the developing ear and is required for semicircular canal development in both humans and mice. Here we report that mice with heterozygous loss of Chd7 function exhibit delayed semicircular canal genesis, delayed Netrin1 expression and disrupted expression of genes that are critical for semicircular canal formation (Bmp2, Bmp4, Msx1 and Fgf10). Complete loss of Chd7 results in aplasia of the semicircular canals and sensory vestibular organs, with reduced or absent expression of Otx1, Hmx3, Jagged1, Lmo4, Msx1 and Sox2. Our results suggest that Chd7 may have critical selector gene functions during inner ear morphogenesis. Detailed analysis of the epigenetic modifications underlying these gene expression changes should provide insights into semicircular canal development and help in the design of therapies for individuals with inner ear malformations.
Collapse
|
37
|
Liu Z, Owen T, Fang J, Zuo J. Overactivation of Notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS One 2012; 7:e34123. [PMID: 22448289 PMCID: PMC3309011 DOI: 10.1371/journal.pone.0034123] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/22/2012] [Indexed: 12/25/2022] Open
Abstract
Background During mouse inner ear development, Notch1 signaling first specifies sensory progenitors, and subsequently controls progenitors to further differentiate into either hair cells (HCs) or supporting cells (SCs). Overactivation of NICD (Notch1 intracellular domain) at early embryonic stages leads to ectopic HC formation. However, it remains unclear whether such an effect can be elicited at later embryonic or postnatal stages, which has important implications in mouse HC regeneration by reactivation of Notch1 signaling. Methodology/Principal Findings We performed comprehensive in vivo inducible overactivation of NICD at various developmental stages. In CAGCreER+; Rosa26-NICDloxp/+ mice, tamoxifen treatment at embryonic day 10.5 (E10.5) generated ectopic HCs in the non-sensory regions in both utricle and cochlea, whereas ectopic HCs only appeared in the utricle when tamoxifen was given at E13. When tamoxifen was injected at postnatal day 0 (P0) and P1, no ectopic HCs were observed in either utricle or cochlea. Interestingly, Notch1 signaling induced new HCs in a non-cell-autonomous manner, because the new HCs did not express NICD. Adjacent to the new HCs were cells expressing the SC marker Sox10 (either NICD+ or NICD-negative). Conclusions/Significance Our data demonstrate that the developmental stage determines responsiveness of embryonic otic precursors and neonatal non-sensory epithelial cells to NICD overactivation, and that Notch 1 signaling in the wild type, postnatal inner ear is not sufficient for generating new HCs. Thus, our genetic mouse model is suitable to test additional pathways that could synergistically interact with Notch1 pathway to produce HCs at postnatal ages.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Cell Communication
- Cochlea/metabolism
- Cochlea/pathology
- Ear, Inner/cytology
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Female
- Fluorescent Antibody Technique
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Proteins/physiology
- RNA, Untranslated
- Receptors, Notch/physiology
- Regeneration/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Thomas Owen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- University of Bath, Bath, United Kingdom
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
38
|
Liu Z, Owen T, Fang J, Srinivasan RS, Zuo J. In vivo Notch reactivation in differentiating cochlear hair cells induces Sox2 and Prox1 expression but does not disrupt hair cell maturation. Dev Dyn 2012; 241:684-96. [PMID: 22354878 DOI: 10.1002/dvdy.23754] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Notch signaling is active in mouse cochlear prosensory progenitors but declines in differentiating sensory hair cells (HCs). Overactivation of the Notch1 intracellular domain (NICD) in progenitors blocks HC fate commitment and/or differentiation. However, it is not known whether reactivation of NICD in differentiating HCs also interrupts their developmental program and reactivates its downstream targets. RESULTS By analyzing Atoh1(CreER+) ; Rosa26-NICD(loxp/+) or Atoh1(CreER+) ; Rosa26-NICD(loxp/+) ; RBP-J(loxp/loxp) mice, we demonstrated that ectopic NICD in differentiating HCs caused reactivation of Sox2 and Prox1 in an RBP-J-dependent manner. Interestingly, Prox1 reactivation was exclusive to outer HCs (OHCs). In addition, lineage tracing analysis of Prox1(CreER/+) ; Rosa26-EYFP(loxp/+) and Prox1(CreEGFP/+) ; Rosa26-EYFP(loxp/+) mice showed that nearly all HCs experiencing Prox1 expression were OHCs. Surprisingly, these HCs still matured normally with expression of prestin, wild-type-like morphology, and uptake of FM4-64FX dye at adult ages. CONCLUSIONS Our results suggest that the developmental program of cochlear differentiating HCs is refractory to Notch reactivation and that Notch is an upstream regulator of Sox2 and Prox1 in cochlear development. In addition, our results support that Sox2 and Prox1 should not be the main blockers for terminal differentiation of HCs newly regenerated from postnatal cochlear SCs that still maintain Sox2 and Prox1 expression.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
39
|
Notch signaling and the developing inner ear. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 727:161-73. [PMID: 22399346 DOI: 10.1007/978-1-4614-0899-4_12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Sensory hair cells (HCs) and their associated nonsensory supporting cells (SCs) exhibit a typical mosaic pattern in each of the sensory patches in the inner ear. Notch signaling has been considered to conduct the formation of this mosaic pattern through one of its famous functions, known as 'lateral inhibition'. The two Notch ligands Delta-like1 and Jagged2 are believed to act synergistically at the stage of cell diversification in mammals. In addition, many current studies suggest that Notch signaling has another inductive, but not inhibiting, role in the determination of the prosensory region, which precedes the cell diversification of HCs and SCs and Jagged1 is thought to be an essential ligand in this process. Earlier in ear development, the first cell fate determination begins with the delamination of the neuroblasts from the otic epithelium. The delaminated neuroblasts migrate and coalesce to form cochleovestibular ganglion. Notch signaling pathway is thought to function during the delamination through its lateral inhibitory mechanism. Recently, many experiments examining Notch-related gene expression patterns and direct functional analyses of genes have revealed multiple important functions of Notch in inner ear development. Here, we survey a series of studies and discuss the issues that remain to be elucidated in the future.
Collapse
|
40
|
Neves J, Parada C, Chamizo M, Giráldez F. Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification. Development 2011; 138:735-44. [PMID: 21266409 DOI: 10.1242/dev.060657] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hair cells of the inner ear sensory organs originate from progenitor cells located at specific domains of the otic vesicle: the prosensory patches. Notch signalling is necessary for sensory development and loss of function of the Notch ligand jagged 1 (Jag1, also known as serrate 1) results in impaired sensory organs. However, the underlying mechanism of Notch function is unknown. Our results show that in the chicken otic vesicle, the Sox2 expression domain initially contains the nascent patches of Jag1 expression but, later on, Sox2 is only maintained in the Jag1-positive domains. Ectopic human JAG1 (hJag1) is able to induce Sox2 expression and enlarged sensory organs. The competence to respond to hJag1, however, is confined to the regions that expressed Sox2 early in development, suggesting that hJag1 maintains Sox2 expression rather than inducing it de novo. The effect is non-cell-autonomous and requires Notch signalling. hJag1 activates Notch, induces Hes/Hey genes and endogenous Jag1 in a non-cell-autonomous manner, which is consistent with lateral induction. The effects of hJag1 are mimicked by Jag2 but not by Dl1. Sox2 is sufficient to activate the Atoh1 enhancer and to ectopically induce sensory cell fate outside neurosensory-competent domains. We suggest that the prosensory function of Jag1 resides in its ability to generate discrete domains of Notch activity that maintain Sox2 expression within restricted areas of an extended neurosensory-competent domain. This provides a mechanism to couple patterning and cell fate specification during the development of sensory organs.
Collapse
Affiliation(s)
- Joana Neves
- CEXS, Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, C/Dr Aiguader 88, 08003-Barcelona, Spain
| | | | | | | |
Collapse
|
41
|
Hansson EM, Lanner F, Das D, Mutvei A, Marklund U, Ericson J, Farnebo F, Stumm G, Stenmark H, Andersson ER, Lendahl U. Control of Notch-ligand endocytosis by ligand-receptor interaction. J Cell Sci 2011; 123:2931-42. [PMID: 20720151 DOI: 10.1242/jcs.073239] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In Notch signaling, cell-bound ligands activate Notch receptors on juxtaposed cells, but the relationship between ligand endocytosis, ubiquitylation and ligand-receptor interaction remains poorly understood. To study the specific role of ligand-receptor interaction, we identified a missense mutant of the Notch ligand Jagged1 (Nodder, Ndr) that failed to interact with Notch receptors, but retained a cellular distribution that was similar to wild-type Jagged1 (Jagged1(WT)) in the absence of active Notch signaling. Both Jagged1(WT) and Jagged1(Ndr) interacted with the E3 ubiquitin ligase Mind bomb, but only Jagged1(WT) showed enhanced ubiquitylation after co-culture with cells expressing Notch receptor. Cells expressing Jagged1(WT), but not Jagged1(Ndr), trans-endocytosed the Notch extracellular domain (NECD) into the ligand-expressing cell, and NECD colocalized with Jagged1(WT) in early endosomes, multivesicular bodies and lysosomes, suggesting that NECD is routed through the endocytic degradation pathway. When coexpressed in the same cell, Jagged1(Ndr) did not exert a dominant-negative effect over Jagged1(WT) in terms of receptor activation. Finally, in Jag1(Ndr/Ndr) mice, the ligand was largely accumulated at the cell surface, indicating that engagement of the Notch receptor is important for ligand internalization in vivo. In conclusion, the interaction-dead Jagged1(Ndr) ligand provides new insights into the specific role of receptor-ligand interaction in the intracellular trafficking of Notch ligands.
Collapse
Affiliation(s)
- Emil M Hansson
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, SE-171 77 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bodson M, Breuskin I, Lefebvre P, Malgrange B. Hair cell progenitors: identification and regulatory genes. Acta Otolaryngol 2010. [DOI: 10.3109/00016480903121057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
43
|
A hearing and vestibular phenotyping pipeline to identify mouse mutants with hearing impairment. Nat Protoc 2010; 5:177-90. [PMID: 20057387 DOI: 10.1038/nprot.2009.204] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We describe a protocol for the production of mice carrying N-ethyl-N-nitrosourea (ENU) mutations and their screening for auditory and vestibular phenotypes. In comparison with the procedures describing individual phenotyping tests, this protocol integrates a set of tests for the comprehensive determination of the causes of hearing loss. It comprises a primary screen of relatively simple auditory and vestibular tests. A variety of secondary phenotyping protocols are also described for further investigating the deaf and vestibular mutants identified in the primary screen. The screen can be applied to potentially thousands of mutant mice, produced either by ENU or other mutagenesis approaches. Primary screening protocols take no longer than a few minutes, apart from ABR testing which takes upto 3.5 h per mouse. These protocols have been applied for the identification of mouse models of human deafness and are a key component for investigating the genes and genetic pathways involved in hereditary deafness.
Collapse
|
44
|
Murata J, Ohtsuka T, Tokunaga A, Nishiike S, Inohara H, Okano H, Kageyama R. Notch-Hes1 pathway contributes to the cochlear prosensory formation potentially through the transcriptional down-regulation of p27Kip1. J Neurosci Res 2010; 87:3521-34. [PMID: 19598246 DOI: 10.1002/jnr.22169] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Notch signaling pathway has a crucial role in the differentiation of hair cells and supporting cells by mediating "lateral inhibition" via the ligands Delta-like1 (Dll1) and Jagged2 (Jag2) and the effectors Hes1 and Hes5 during mammalian inner ear development. Recently, another Notch ligand, Jagged1 (Jag1)-dependent Notch activation, has been revealed to be important for the determination of the prosensory region in the earlier stage before cell differentiation. However, little is known about the effectors of the Notch pathway in this context. P27(Kip1), a cyclin-dependent kinase inhibitor, is also known to demarcate the prosensory region in the cochlear primordium, which consists of the sensory progenitors that have completed their terminal mitoses. Hes1 reportedly promotes precursor cell proliferation through the transcriptional down-regulation of p27(Kip1) in the thymus, liver, and brain. In this study, we observed Hes1 as a mediator between the Notch signaling pathway and the regulation of proliferation of sensory precursor cells by p27(Kip1) in the developing cochlea. We showed that Hes1, but not Hes5, was weakly expressed at the time of onset of p27(Kip1). The expression pattern of Hes1 prior to cell differentiation was similar to that of activated Notch1. P27(Kip1) was up-regulated and BrdU-positive S-phase cells were reduced in the developing cochlear epithelium of Hes1 null mice. These results suggest that the Notch-Hes1 pathway may contribute to the adequate proliferation of sensory precursor cells via the potential transcriptional down-regulation of p27(Kip1) expression and play a pivotal role in the correct prosensory determination.
Collapse
Affiliation(s)
- Junko Murata
- Department of Otolaryngology and Sensory Organ Surgery, Osaka University School of Medicine, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Notch signaling induced by canonical Notch ligands is critical for normal embryonic development and tissue homeostasis through the regulation of a variety of cell fate decisions and cellular processes. Activation of Notch signaling is normally tightly controlled by direct interactions with ligand-expressing cells, and dysregulated Notch signaling is associated with developmental abnormalities and cancer. While canonical Notch ligands are responsible for the majority of Notch signaling, a diverse group of structurally unrelated noncanonical ligands has also been identified that activate Notch and likely contribute to the pleiotropic effects of Notch signaling. Soluble forms of both canonical and noncanonical ligands have been isolated, some of which block Notch signaling and could serve as natural inhibitors of this pathway. Ligand activity can also be indirectly regulated by other signaling pathways at the level of ligand expression, serving to spatiotemporally compartmentalize Notch signaling activity and integrate Notch signaling into a molecular network that orchestrates developmental events. Here, we review the molecular mechanisms underlying the dual role of Notch ligands as activators and inhibitors of Notch signaling. Additionally, evidence that Notch ligands function independent of Notch is presented. We also discuss how ligand posttranslational modification, endocytosis, proteolysis, and spatiotemporal expression regulate their signaling activity.
Collapse
Affiliation(s)
- Brendan D'Souza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | |
Collapse
|
46
|
Driver EC, Kelley MW. Specification of cell fate in the mammalian cochlea. ACTA ACUST UNITED AC 2009; 87:212-21. [PMID: 19750520 DOI: 10.1002/bdrc.20154] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mammalian auditory sensation is mediated by the organ of Corti, a specialized sensory epithelium found in the cochlea of the inner ear. Proper auditory function requires that the many different cell types found in the sensory epithelium be precisely ordered within an exquisitely patterned cellular mosaic. The development of this mosaic depends on a series of cell fate decisions that transform the initially nearly uniform cochlear epithelium into the complex structure of the mature organ of Corti. The prosensory domain, which contains the progenitors of both the mechanosensory hair cells and their associated supporting cells, first becomes distinct from both the neural and the nonsensory domains. Further cell fate decisions subdivide prosensory cells into populations of inner and outer hair cells, and several different types of supporting cells. A number of different signaling pathways and transcription factors are known to be necessary for these developmental processes; in this review, we will summarize these results with an emphasis on recent findings.
Collapse
Affiliation(s)
- Elizabeth C Driver
- Section on Developmental Neuroscience, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
47
|
Hartman BH, Basak O, Nelson BR, Taylor V, Bermingham-McDonogh O, Reh TA. Hes5 expression in the postnatal and adult mouse inner ear and the drug-damaged cochlea. J Assoc Res Otolaryngol 2009; 10:321-40. [PMID: 19373512 PMCID: PMC2757554 DOI: 10.1007/s10162-009-0162-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 02/09/2009] [Indexed: 11/30/2022] Open
Abstract
The Notch signaling pathway is known to have multiple roles during development of the inner ear. Notch signaling activates transcription of Hes5, a homologue of Drosophila hairy and enhancer of split, which encodes a basic helix-loop-helix transcriptional repressor. Previous studies have shown that Hes5 is expressed in the cochlea during embryonic development, and loss of Hes5 leads to overproduction of auditory and vestibular hair cells. However, due to technical limitations and inconsistency between previous reports, the precise spatial and temporal pattern of Hes5 expression in the postnatal and adult inner ear has remained unclear. In this study, we use Hes5-GFP transgenic mice and in situ hybridization to report the expression pattern of Hes5 in the inner ear. We find that Hes5 is expressed in the developing auditory epithelium of the cochlea beginning at embryonic day 14.5 (E14.5), becomes restricted to a particular subset of cochlear supporting cells, is downregulated in the postnatal cochlea, and is not present in adults. In the vestibular system, we detect Hes5 in developing supporting cells as early as E12.5 and find that Hes5 expression is maintained in some adult vestibular supporting cells. In order to determine the effect of hair cell damage on Notch signaling in the cochlea, we damaged cochlear hair cells of adult Hes5-GFP mice in vivo using injection of kanamycin and furosemide. Although outer hair cells were killed in treated animals and supporting cells were still present after damage, supporting cells did not upregulate Hes5-GFP in the damaged cochlea. Therefore, absence of Notch-Hes5 signaling in the normal and damaged adult cochlea is correlated with lack of regeneration potential, while its presence in the neonatal cochlea and adult vestibular epithelia is associated with greater capacity for plasticity or regeneration in these tissues; which suggests that this pathway may be involved in regulating regenerative potential.
Collapse
Affiliation(s)
- Byron H. Hartman
- />Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195 USA
| | - Onur Basak
- />Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stubeweg 51, 79108 Freiburg, Germany
| | - Branden R. Nelson
- />Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195 USA
| | - Verdon Taylor
- />Department of Molecular Embryology, Max-Planck Institute of Immunobiology, Stubeweg 51, 79108 Freiburg, Germany
| | - Olivia Bermingham-McDonogh
- />Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195 USA
- />Virginia Merrill Bloedel Hearing Research Center at the University of Washington, Seattle, WA 98195 USA
| | - Thomas A. Reh
- />Department of Biological Structure, University of Washington, Box 357420, Seattle, WA 98195 USA
| |
Collapse
|
48
|
Puligilla C, Kelley MW. Building the world's best hearing aid; regulation of cell fate in the cochlea. Curr Opin Genet Dev 2009; 19:368-73. [PMID: 19604683 DOI: 10.1016/j.gde.2009.06.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 01/21/2023]
Abstract
In mammals, auditory perception is initially mediated through sensory cells located in a rigorously patterned mosaic of unique cell types located within the coiled cochlea. Identification of the factors that direct multipotent progenitor cells to develop as each of these specialized cell types has the potential to enhance our understanding of the development of the auditory system and to identify potential targets for regenerative therapies. Recent results have identified specific signaling molecules and pathways, including Notch, Hedgehog, Sox2 and Fgfs, that guide progenitor cells to develop first as a sensory precursor, referred to as a prosensory cell, and subsequently as one of the specialized cell types within the sensory mosaic.
Collapse
Affiliation(s)
- Chandrakala Puligilla
- Section on Developmental Neuroscience, National Institute on Deafness and other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
49
|
Abstract
Notch signaling regulates many aspects of metazoan development and tissue renewal. Accordingly, the misregulation or loss of Notch signaling underlies a wide range of human disorders, from developmental syndromes to adult-onset diseases and cancer. Notch signaling is remarkably robust in most tissues even though each Notch molecule is irreversibly activated by proteolysis and signals only once without amplification by secondary messenger cascades. In this Review, we highlight recent studies in Notch signaling that reveal new molecular details about the regulation of ligand-mediated receptor activation, receptor proteolysis, and target selection.
Collapse
|
50
|
Quiet as a mouse: dissecting the molecular and genetic basis of hearing. Nat Rev Genet 2008; 9:277-90. [PMID: 18283275 DOI: 10.1038/nrg2309] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mouse genetics has made crucial contributions to the understanding of the molecular mechanisms of hearing. With the help of a plethora of mouse mutants, many of the key genes that are involved in the development and functioning of the auditory system have been elucidated. Mouse mutants continue to shed light on the genetic and physiological bases of human hearing impairment, including both early- and late-onset deafness. A combination of genetic and physiological studies of mouse mutant lines, allied to investigations into the protein networks of the stereocilia bundle in the inner ear, are identifying key complexes that are crucial for auditory function and for providing profound insights into the underlying causes of hearing loss.
Collapse
|