1
|
Sun Q, Xu P, Mao A, Huang S, Li J, Chen L, Li J, Kan H, Huang J, Ji W, Si D, Yan J, Chen ZJ, Gao X, Gao Y. Targeted long-read sequencing enables higher diagnostic yield of ADPKD by accurate PKD1 genetic analysis. NPJ Genom Med 2025; 10:22. [PMID: 40069205 PMCID: PMC11897170 DOI: 10.1038/s41525-025-00477-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/03/2025] [Indexed: 03/15/2025] Open
Abstract
Genetic diagnosis of ADPKD has been challenging due to the variant heterogeneity, presence of duplicated segments, and high GC content of exon 1 in PKD1. In our reproductive center, 40 patients were still genetically undiagnosed or diagnosed without single-nucleotide resolution after testing with a short-read sequencing panel in 312 patients with ADPKD phenotype. A combination of long-range PCR and long-read sequencing approach for PKD1 was performed on these 40 patients. LRS additionally identified 10 pathogenic or likely pathogenic PKD1 variants, including four patients with microgene conversion (c.160_166dup, c.2180T>C, and c.8161+1G>A) between PKD1 and its pseudogenes, three with indels (c.-49_43del, c.2985+2_2985+4del, and c.10709_10760dup), one with likely pathogenic deep intronic variant (c.2908-107G>A) and two with large deletions. LRS also identified nine PKD1 CNVs and precisely determined the breakpoints, while SRS failed to identify two of these CNVs. Therefore, LRS enables higher diagnostic yield of ADPKD and provides significant benefits for genetic counseling.
Collapse
Affiliation(s)
- Qian Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Peiwen Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Aiping Mao
- Department of Research and Development, Berry Genomics Corporation, Beijing, China
| | - Sexin Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Jie Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Libao Chen
- Department of Research and Development, Berry Genomics Corporation, Beijing, China
| | - Jing Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Haopeng Kan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Ju Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Wenkai Ji
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Dayong Si
- School of Life Science, Jilin University, Changchun, China
| | - Junhao Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China.
| | - Yuan Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Cheeloo College of Medicine, Shandong University, Jinan, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, China.
| |
Collapse
|
2
|
Qiu X, Jin X, Li J, Zhang Y, Ma J, Zheng F. Long-Read Sequencing Identified a PKD1 Gene Conversion in ADPKD Rather Than the False-Positive Exon Deletion Indicated by WES and MLPA. Hum Mutat 2024; 2024:7225526. [PMID: 40225921 PMCID: PMC11919013 DOI: 10.1155/2024/7225526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/16/2024] [Accepted: 08/14/2024] [Indexed: 04/15/2025]
Abstract
Whole exome sequencing (WES) has become an increasingly common technique for identifying the genetic cause of Mendelian genetic diseases. However, it may fail to detect the complex regions of the genome. Here, we investigated the genetic etiology of a pedigree with autosomal dominant polycystic kidney disease (ADPKD) using a combination of WES, multiplex ligation-dependent probe amplification (MLPA), Sanger sequencing, and long-read sequencing (LRS). Initially, WES of the proband revealed a heterozygous variant c.7391G>C in PKD1 Exon 18, along with a heterozygous deletion of the 17th and 18th exons of PKD1 detected by exome-based copy number variation (CNV) analysis. MLPA confirmed the PKD1 heterozygous deletion of Exon 18. Except for c.7391G>C, Sanger sequencing identified four other heterozygous variants (c.7278T>C, c.7288C>T, c.7344C>G, and c.7365C>T) in Exon 18 of PKD1. Subsequently, LRS uncovered seven clustered substitution variants (c.7209+28C>T, c.7210-16C>T, c.7278T>C, c.7288C>T, c.7344C>G, c.7365C>T, and c.7391G>C), with six of them omitted by WES due to interference from PKD1 pseudogenes. Combining LRS results with cosegregation of the pedigree analysis, we found these variants were in cis and converted from PKD1 pseudogenes, covering a region of at least 282 bp. Notably, the paralogous sequence variants of c.7288C>T introduced a premature stop codon of PKD1, leading to a function loss, and were classified as pathogenic (PVS1+PS4+PM2) according to the ACMG/AMP guideline. Our study highlights the limitations of WES/MLPA and the importance of utilizing complementary tools like LRS for comprehensive variant detection in PKD1.
Collapse
Affiliation(s)
- Xueping Qiu
- Center for Gene Diagnosis & Department of Laboratory MedicineZhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xin Jin
- Center for Gene Diagnosis & Department of Laboratory MedicineZhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Li
- Center for Gene Diagnosis & Department of Laboratory MedicineZhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yuanzhen Zhang
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan 430071, China
| | - Jianhong Ma
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan 430071, China
| | - Fang Zheng
- Center for Gene Diagnosis & Department of Laboratory MedicineZhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
3
|
Zhu M, Wang Y, Lu T, Guo J, Li L, Hsieh MH, Gopal P, Han Y, Fujiwara N, Wallace DP, Yu ASL, Fang X, Ransom C, Verschleisser S, Hsiehchen D, Hoshida Y, Singal AG, Yopp A, Wang T, Zhu H. PKD1 mutant clones within cirrhotic livers inhibit steatohepatitis without promoting cancer. Cell Metab 2024; 36:1711-1725.e8. [PMID: 38901424 DOI: 10.1016/j.cmet.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/16/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024]
Abstract
Somatic mutations in non-malignant tissues are selected for because they confer increased clonal fitness. However, it is uncertain whether these clones can benefit organ health. Here, ultra-deep targeted sequencing of 150 liver samples from 30 chronic liver disease patients revealed recurrent somatic mutations. PKD1 mutations were observed in 30% of patients, whereas they were only detected in 1.3% of hepatocellular carcinomas (HCCs). To interrogate tumor suppressor functionality, we perturbed PKD1 in two HCC cell lines and six in vivo models, in some cases showing that PKD1 loss protected against HCC, but in most cases showing no impact. However, Pkd1 haploinsufficiency accelerated regeneration after partial hepatectomy. We tested Pkd1 in fatty liver disease, showing that Pkd1 loss was protective against steatosis and glucose intolerance. Mechanistically, Pkd1 loss selectively increased mTOR signaling without SREBP-1c activation. In summary, PKD1 mutations exert adaptive functionality on the organ level without increasing transformation risk.
Collapse
Affiliation(s)
- Min Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yunguan Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Pediatric Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Tianshi Lu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jason Guo
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lin Li
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Meng-Hsiung Hsieh
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yi Han
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Naoto Fujiwara
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darren P Wallace
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Alan S L Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Xiangyi Fang
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Crystal Ransom
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Sara Verschleisser
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Hsiehchen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yujin Hoshida
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Amit G Singal
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Yopp
- Department of Surgery, Division of Surgical Oncology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tao Wang
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, Children's Research Institute Mouse Genome Engineering Core, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Suzuki Y, Katayama K, Saiki R, Hirabayashi Y, Murata T, Ishikawa E, Ito M, Dohi K. Mutation Analysis of Autosomal-Dominant Polycystic Kidney Disease Patients. Genes (Basel) 2023; 14:443. [PMID: 36833371 PMCID: PMC9956291 DOI: 10.3390/genes14020443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Autosomal-dominant polycystic kidney disease (ADPKD) is characterized by bilateral kidney cysts that ultimately lead to end-stage kidney disease. While the major causative genes of ADPKD are PKD1 and PKD2, other genes are also thought to be involved. Fifty ADPKD patients were analyzed by exome sequencing or multiplex ligation-dependent probe amplification (MLPA), followed by long polymerase chain reaction and Sanger sequencing. Variants in PKD1 or PKD2 or GANAB were detected in 35 patients (70%). Exome sequencing identified 24, 7, and 1 variants in PKD1, PKD2, and GANAB, respectively, in 30 patients. MLPA analyses identified large deletions in PKD1 in three patients and PKD2 in two patients. We searched 90 cyst-associated genes in 15 patients who were negative by exome sequencing and MLPA analyses, and identified 17 rare variants. Four of them were considered "likely pathogenic" or "pathogenic" variants according to the American College of Medical Genetics and Genomics guidelines. Of the 11 patients without a family history, four, two, and four variants were found in PKD1, PKD2, and other genes, respectively, while no causative gene was identified in one patient. While the pathogenicity of each variant in these genes should be carefully assessed, a comprehensive genetic analysis may be useful in cases of atypical ADPKD.
Collapse
Affiliation(s)
- Yasuo Suzuki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
- Department of Kidney center, Suzuka Kaisei Hospital, Suzuka 513-8505, Japan
| | - Kan Katayama
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Ryosuke Saiki
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Yosuke Hirabayashi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Tomohiro Murata
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Eiji Ishikawa
- Department of Nephrology, Saiseikai Matsusaka General Hospital, Matsusaka 515-0003, Japan
| | - Masaaki Ito
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| | - Kaoru Dohi
- Department of Cardiology and Nephrology, Mie University Graduate School of Medicine, Tsu 514-8507, Japan
| |
Collapse
|
5
|
Fragiadaki M, Macleod FM, Ong ACM. The Controversial Role of Fibrosis in Autosomal Dominant Polycystic Kidney Disease. Int J Mol Sci 2020; 21:ijms21238936. [PMID: 33255651 PMCID: PMC7728143 DOI: 10.3390/ijms21238936] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) is characterized by the progressive growth of cysts but it is also accompanied by diffuse tissue scarring or fibrosis. A number of recent studies have been published in this area, yet the role of fibrosis in ADPKD remains controversial. Here, we will discuss the stages of fibrosis progression in ADPKD, and how these compare with other common kidney diseases. We will also provide a detailed overview of some key mechanistic pathways to fibrosis in the polycystic kidney. Specifically, the role of the 'chronic hypoxia hypothesis', persistent inflammation, Transforming Growth Factor beta (TGFβ), Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) and microRNAs will be examined. Evidence for and against a pathogenic role of extracellular matrix during ADPKD disease progression will be provided.
Collapse
|
6
|
Khadangi F, Torkamanzehi A, Kerachian MA. Identification of missense and synonymous variants in Iranian patients suffering from autosomal dominant polycystic kidney disease. BMC Nephrol 2020; 21:408. [PMID: 32957937 PMCID: PMC7507688 DOI: 10.1186/s12882-020-02069-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD), the predominant type of inherited kidney disorder, occurs due to PKD1 and PKD2 gene mutations. ADPKD diagnosis is made primarily by kidney imaging. However, molecular genetic analysis is required to confirm the diagnosis. It is critical to perform a molecular genetic analysis when the imaging diagnosis is uncertain, particularly in simplex cases (i.e. a single occurrence in a family), in people with remarkably mild symptoms, or in individuals with atypical presentations. The main aim of this study is to determine the frequency of PKD1 gene mutations in Iranian patients with ADPKD diagnosis. Methods Genomic DNA was extracted from blood samples from 22 ADPKD patients, who were referred to the Qaem Hospital in Mashhad, Iran. By using appropriate primers, 16 end exons of PKD1 gene that are regional hotspots, were replicated with PCR. Then, PCR products were subjected to DNA directional Sanger sequencing. Results The DNA sequencing in the patients has shown that exons 35, 36 and 37 were non- polymorphic, and that most mutations had occurred in exons 44 and 45. In two patients, an exon-intron boundary mutation had occurred in intron 44. Most of the variants were missense and synonymous types. Conclusion In the present study, we have shown the occurrence of nine novel missense or synonymous variants in PKD1 gene. These data could contribute to an improved diagnostic and genetic counseling in clinical settings.
Collapse
Affiliation(s)
- Fatemeh Khadangi
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Adam Torkamanzehi
- Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Raj S, Singh RG, Das P. Mutational screening of PKD1 and PKD2 in Indian ADPKD patients identified 95 genetic variants. Mutat Res 2020; 821:111718. [PMID: 32823016 DOI: 10.1016/j.mrfmmm.2020.111718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 05/01/2020] [Accepted: 07/21/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Mutation screening of autosomal dominant polycystic kidney disease (ADPKD) cases imply the major involvement of PKD1 mutations in 85% of patients while rest of the cases harbor mutation in PKD2, DNAJB11 and GANAB. This essentially indicates that individual's genotype holds the key for disease susceptibility and its severity. METHODS For finding genetic variability underlying the disease pathophysiology, 84 Indian ADPKD cases, 31 family members (12 susceptible) and 122 age matched control were screened for PKD1 and PKD2 using Sanger sequencing, PCR-RFLP and ARMS-PCR. RESULTS Genetic screening of Indian ADPKD cases revealed total 67 variants in PKD1 and 28 variants in PKD2. Among the identified variants in PKD1 and PKD2 genes, 35.79% were novel variants and 64.2% recurrent. Further, subcategorization of PKD1 variants showed 14 truncation/frameshift, 21 nonsynonymous, 25 synonymous and 7 intronic variants. Moreover, we observed 40 families with PKD1 pathogenic variants, 7 families with PKD2 pathogenic variants, 9 families with PKD1 & PKD2 pathogenic variants, and 26 families with PKD1/PKD2/PKD1-PKD2 non-pathogenic genetic variants. CONCLUSION Present study represented genetic background of Indian ADPKD cases which will be helpful in disease management as well as finding the genetically matched donor for kidney transplant.
Collapse
Affiliation(s)
- Sonam Raj
- Banaras Hindu University, Varanasi, 221005, India.
| | - Rana Gopal Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Parimal Das
- Centre for Genetic Disorders, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
8
|
Kim H, Sung J, Kim H, Ryu H, Cho Park H, Oh YK, Lee HS, Oh KH, Ahn C. Expression and secretion of CXCL12 are enhanced in autosomal dominant polycystic kidney disease. BMB Rep 2020. [PMID: 31186083 PMCID: PMC6675246 DOI: 10.5483/bmbrep.2019.52.7.112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), one of the most common human monogenic diseases (frequency of 1/1000-1/400), is characterized by numerous fluid-filled renal cysts (RCs). Inactivation of the PKD1 or PKD2 gene by germline and somatic mutations is necessary for cyst formation in ADPKD. To mechanistically understand cyst formation and growth, we isolated RCs from Korean patients with ADPKD and immortalized them with human telomerase reverse transcriptase (hTERT). Three hTERT-immortalized RC cell lines were characterized as proximal epithelial cells with germline and somatic PKD1 mutations. Thus, we first established hTERT-immortalized proximal cyst cells with somatic PKD1 mutations. Through transcriptome sequencing and Gene Ontology (GO) analysis, we found that upregulated genes were related to cell division and that downregulated genes were related to cell differentiation. We wondered whether the upregulated gene for the chemokine CXCL12 is related to the mTOR signaling pathway in cyst growth in ADPKD. CXCL12 mRNA expression and secretion were increased in RC cell lines. We then examined CXCL12 levels in RC fluids from patients with ADPKD and found increased CXCL12 levels. The CXCL12 receptor CXC chemokine receptor 4 (CXCR4) was upregulated, and the mTOR signaling pathway, which is downstream of the CXCL12/CXCR4 axis, was activated in ADPKD kidney tissue. To confirm activation of the mTOR signaling pathway by CXCL12 via CXCR4, we treated the RC cell lines with recombinant CXCL12 and the CXCR4 antagonist AMD3100; CXCL12 induced the mTOR signaling pathway, but the CXCR4 antagonist AMD3100 blocked the mTOR signaling pathway. Taken together, these results suggest that enhanced CXCL12 in RC fluids activates the mTOR signaling pathway via CXCR4 in ADPKD cyst growth.
Collapse
Affiliation(s)
- Hyunho Kim
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea
| | - Jinmo Sung
- Center for Medical Innovation, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea
| | - Hyunsuk Kim
- Internal Medicine, Hallym University Medical Center, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Korea
| | - Hyunjin Ryu
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Hayne Cho Park
- Department of Internal Medicine, Hallym University Medical Center, Kangnam Sacred Heart Hospital, Seoul 07441, Korea
| | - Yun Kyu Oh
- Department of Internal Medicine, Seoul National University Boramae Medical Center, Seoul 07061, Korea
| | - Hyun-Seob Lee
- Genomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul 03082, Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Curie Ahn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
9
|
Kataoka H, Fukuoka H, Makabe S, Yoshida R, Teraoka A, Ushio Y, Akihisa T, Manabe S, Sato M, Mitobe M, Tsuchiya K, Nitta K, Mochizuki T. Prediction of Renal Prognosis in Patients with Autosomal Dominant Polycystic Kidney Disease Using PKD1/PKD2 Mutations. J Clin Med 2020; 9:jcm9010146. [PMID: 31948117 PMCID: PMC7019244 DOI: 10.3390/jcm9010146] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/03/2020] [Indexed: 01/12/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) patients with PKD1 mutations, particularly those with truncating mutations, show poor prognosis. However, the differences in disease progression with different mutation types are unclear. Here, a comparative study was conducted on the renal prognosis of patients with ADPKD who were categorized based on genotype (PKD1 versus PKD2 mutation), mutation type (truncating mutation: nonsense, frameshift, splicing mutation, and large deletion; non-truncating mutation: substitution and in-frame deletion), and mutation position. A total of 123 patients visiting our hospital were enrolled. Renal prognosis was poor for those with PKD1 splicing, PKD1 frameshift, and PKD2 splicing mutations. Despite the truncating mutation, the renal prognosis was relatively favorable for patients with nonsense mutations. Three out of five patients with PKD2 mutation required renal replacement therapy before 58 years of age. In conclusion, we showed that renal prognosis differs according to mutation types in both PKD1 and PKD2, and that it was favorable for those with nonsense mutations among patients with PKD1 truncating mutations. It was also confirmed that renal prognosis was not always favorable in patients with PKD2 mutations. A detailed assessment of mutation types may be useful for predicting the renal prognosis of patients with ADPKD.
Collapse
Affiliation(s)
- Hiroshi Kataoka
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
- Clinical Research Division for Polycystic Kidney Disease, Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
| | - Hinata Fukuoka
- Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | - Shiho Makabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Rie Yoshida
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Atsuko Teraoka
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Yusuke Ushio
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Taro Akihisa
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Shun Manabe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Masayo Sato
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Michihiro Mitobe
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Ken Tsuchiya
- Department of Blood Purification, Tokyo Women’s Medical University, Tokyo 162-8666, Japan;
| | - Kosaku Nitta
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
| | - Toshio Mochizuki
- Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan; (H.K.); (S.M.); (R.Y.); (A.T.); (Y.U.); (T.A.); (S.M.); (M.S.); (M.M.); (K.N.)
- Clinical Research Division for Polycystic Kidney Disease, Department of Nephrology, Tokyo Women’s Medical University, Tokyo 162-8666, Japan
- Correspondence: ; Tel.: +81-3-3353-8111
| |
Collapse
|
10
|
Pandita S, Ramachandran V, Balakrishnan P, Rolfs A, Brandau O, Eichler S, Bhalla AK, Khullar D, Amitabh V, Ramanarayanan S, Kher V, Verma J, Kohli S, Saxena R, Verma IC. Identification of PKD1 and PKD2 gene variants in a cohort of 125 Asian Indian patients of ADPKD. J Hum Genet 2019; 64:409-419. [PMID: 30816285 DOI: 10.1038/s10038-019-0582-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 11/09/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease (ADPKD) accounts for 2.6% of the patients with chronic kidney disease in India. ADPKD is caused by pathogenic variants in either PKD1 or PKD2 gene. There is no comprehensive genetic data from Indian subcontinent. We aimed to identify the pathogenic variants in the heterogeneous Indian population. PKD1 and PKD2 variants were identified by direct gene sequencing and/or multiplex ligation-dependent probe amplification (MLPA) in 125 unrelated patients of ADPKD. The pathogenic potential of the variants was evaluated computationally and were classified according to ACMG guidelines. Overall 300 variants were observed in PKD1 and PKD2 genes, of which 141 (47%) have been reported previously as benign. The remaining 159 variants were categorized into different classes based on their pathogenicity. Pathogenic variants were observed in 105 (84%) of 125 patients, of which 99 (94.3%) were linked to PKD1 gene and 6 (6.1%) to PKD2 gene. Of 159 variants, 97 were novel variants, of which 43 (44.33%) were pathogenic, and 10 (10.31%) were of uncertain significance. Our data demonstrate the diverse genotypic makeup of single gene disorders in India as compared to the West. These data would be valuable in counseling and further identification of probable donors among the relatives of patients with ADPKD.
Collapse
Affiliation(s)
- Shewata Pandita
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
- Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India.
| | - Vijaya Ramachandran
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
- South West Thames Regional Genetics Laboratory, St. George's University Hospitals NHS Foundation Trust, London, SW17 0QT, UK
| | - Prahlad Balakrishnan
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | | | | | | | - Anil Kumar Bhalla
- Institute of Renal Sciences, Sir Ganga Ram Hospital, New Delhi, India
| | - Dinesh Khullar
- Department of Nephrology & Renal Transplant Medicine, Max Super Speciality Hospital, New Delhi, India
| | - Vindu Amitabh
- Department of Nephrology, Safdarjung Hospital, New Delhi, India
| | - Sivaramakrishnan Ramanarayanan
- Department of Nephrology, PGIMER-Dr Ram Manohar Lohia Hospital, Delhi, India
- Division of Nephrology & Renal Transplant Medicine, Fortis Escorts, New Delhi, India
| | - Vijay Kher
- Division of Nephrology & Renal Transplant Medicine, Fortis Escorts, New Delhi, India
| | - Jyotsna Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Sudha Kohli
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Renu Saxena
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ishwar Chander Verma
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India.
| |
Collapse
|
11
|
Mochizuki T, Teraoka A, Akagawa H, Makabe S, Akihisa T, Sato M, Kataoka H, Mitobe M, Furukawa T, Tsuchiya K, Nitta K. Mutation analyses by next-generation sequencing and multiplex ligation-dependent probe amplification in Japanese autosomal dominant polycystic kidney disease patients. Clin Exp Nephrol 2019; 23:1022-1030. [PMID: 30989420 DOI: 10.1007/s10157-019-01736-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD), one of the most common hereditary kidney diseases, causes gradual growth of cysts in the kidneys, leading to renal failure. Owing to the advanced technology of next-generation sequencing (NGS), genetic analyses of the causative genes PKD1 and PKD2 have been improved. METHODS We performed genetic analyses of 111 Japanese ADPKD patients using hybridization-based NGS and long-range (LR)-PCR-based NGS. Additionally, genetic analyses in exon 1 of PKD1 using Sanger sequencing because of an extremely low coverage of NGS and those using multiplex ligation-dependent probe amplification (MLPA) were performed. RESULTS The detection rate using NGS for 111 patients was 86.5%. One mutation in exon 1 of PKD1 and five deletions detected by MLPA were identified. When combined, the total detection rate was 91.9%. CONCLUSION Although NGS is useful, we propose the addition of Sanger sequencing for exon 1 of PKD1 and MLPA as indispensable for identifying mutations not detected by NGS.
Collapse
Affiliation(s)
- Toshio Mochizuki
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan. .,Clinical Research Division for Polycystic Kidney Disease, Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan.
| | - Atsuko Teraoka
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroyuki Akagawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences (TIIMS), Tokyo, Japan
| | - Shiho Makabe
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Taro Akihisa
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayo Sato
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Hiroshi Kataoka
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan.,Clinical Research Division for Polycystic Kidney Disease, Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Michihiro Mitobe
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Toru Furukawa
- Tokyo Women's Medical University Institute for Integrated Medical Sciences (TIIMS), Tokyo, Japan.,Department of Histopathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ken Tsuchiya
- Department of Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
12
|
Ali H, Al-Mulla F, Hussain N, Naim M, Asbeutah AM, AlSahow A, Abu-Farha M, Abubaker J, Al Madhoun A, Ahmad S, Harris PC. PKD1 Duplicated regions limit clinical Utility of Whole Exome Sequencing for Genetic Diagnosis of Autosomal Dominant Polycystic Kidney Disease. Sci Rep 2019; 9:4141. [PMID: 30858458 PMCID: PMC6412018 DOI: 10.1038/s41598-019-40761-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/21/2019] [Indexed: 12/18/2022] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited monogenic renal disease characterised by the accumulation of clusters of fluid-filled cysts in the kidneys and is caused by mutations in PKD1 or PKD2 genes. ADPKD genetic diagnosis is complicated by PKD1 pseudogenes located proximal to the original gene with a high degree of homology. The next generation sequencing (NGS) technology including whole exome sequencing (WES) and whole genome sequencing (WGS), is becoming more affordable and its use in the detection of ADPKD mutations for diagnostic and research purposes more widespread. However, how well does NGS technology compare with the Gold standard (Sanger sequencing) in the detection of ADPKD mutations? Is a question that remains to be answered. We have evaluated the efficacy of WES, WGS and targeted enrichment methodologies in detecting ADPKD mutations in the PKD1 and PKD2 genes in patients who were clinically evaluated by ultrasonography and renal function tests. Our results showed that WES detected PKD1 mutations in ADPKD patients with 50% sensitivity, as the reading depth and sequencing quality were low in the duplicated regions of PKD1 (exons 1-32) compared with those of WGS and target enrichment arrays. Our investigation highlights major limitations of WES in ADPKD genetic diagnosis. Enhancing reading depth, quality and sensitivity of WES in the PKD1 duplicated regions (exons 1-32) is crucial for its potential diagnostic or research applications.
Collapse
Affiliation(s)
- Hamad Ali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait.
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait.
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait.
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait.
| | - Naser Hussain
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait
| | - Medhat Naim
- Division of Nephrology, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait
| | - Akram M Asbeutah
- Department of Radiological Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Jabriya, Kuwait
| | - Ali AlSahow
- Division of Nephrology, Al-Jahra Hospital, Ministry of Health, Al-Jahra, Kuwait
| | - Mohamed Abu-Farha
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Jehad Abubaker
- Department of Biochemistry and Molecular Biology, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute (DDI), Dasman, Kuwait
| | - Sajjad Ahmad
- Department of Cornea and External Diseases, Moorfields Eye Hospital-NHS Foundation Trust, London, United Kingdom
- Institute of Ophthalmology, University Collage London (UCL), London, United Kingdom
| | - Peter C Harris
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, USA
| |
Collapse
|
13
|
The mutation-free embryo for in vitro fertilization selected by MALBAC-PGD resulted in a healthy live birth from a family carrying PKD 1 mutation. J Assist Reprod Genet 2017; 34:1653-1658. [PMID: 28825164 DOI: 10.1007/s10815-017-1018-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/02/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD, autosomal dominant PKD or adult-onset PKD) is the most prevalent and potentially lethal kidney disease that is hereditary and lacks effective treatment. Preimplantation genetic diagnosis (PGD) of embryos in assistant reproductive technology (ART) helps to select mutation-free embryos for blocking ADPKD inheritance from the parents to their offspring. However, there are multiple pseudogenes in the PKD1 coding region, which make blocking ADPKD inheritance by PGD complicated and difficult. Therefore, this technique has not been recommended and used routinely to ADPKD family plan. METHODS AND RESULTS Here, we report a new strategy of performing PGD in screening (target-) mutation-free embryos. We firstly used a long-range PCR amplification and next generation sequencing to identify the potential PKD1 mutant(s). After pathogenic variants were detected, multiple annealing and looping-based amplification cycles (MALBAC), a recently developed whole genome amplification method, was used to screen embryo cells. We successfully distinguished the mutated allele among pseudogenes and obtained mutation-free embryos for implantation. The first embryo transfer attempt resulted in a healthy live birth free of ADPKD condition and chromosomal anomalies which was confirmed by aminocentesis at week 18 of gestation, and by performing live birth genetic screening. CONCLUSIONS The first MALBAC-PGD attempt in ADPKD patient resulted in a healthy live birth free of ADPKD and chromosomal anomalies. MALBAC-PGD also enables selecting embryos without aneuploidy together and target gene mutation, thereby increasing implantation and live birth rates.
Collapse
|
14
|
Liu B, Chen SC, Yang YM, Yan K, Qian YQ, Zhang JY, Hu YT, Dong MY, Jin F, Huang HF, Xu CM. Identification of novel PKD1 and PKD2 mutations in a Chinese population with autosomal dominant polycystic kidney disease. Sci Rep 2015; 5:17468. [PMID: 26632257 PMCID: PMC4668380 DOI: 10.1038/srep17468] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most frequently inherited renal diseases caused by mutations in PKD1 and PKD2. We performed mutational analyses of PKD genes in 49 unrelated patients using direct PCR-sequencing and multiplex ligation-dependent probe amplification (MLPA) for PKD1 and PKD2. RT-PCR analysis was also performed in a family with a novel PKD2 splicing mutation. Disease-causing mutations were identified in 44 (89.8%) of the patients: 42 (95.5%) of the patients showed mutations in PKD1, and 2 (4.5%) showed mutations in PKD2. Ten nonsense, 17 frameshift, 4 splicing and one in-frame mutation were found in 32 of the patients. Large rearrangements were found in 3 patients, and missense mutations were found in 9 patients. Approximately 61.4% (27/44) of the mutations are first reported with a known mutation rate of 38.6%. RNA analysis of a novel PKD2 mutation (c.595_595 + 14delGGTAAGAGCGCGCGA) suggested monoallelic expression of the wild-type allele. Furthermore, patients with PKD1-truncating mutations reached end-stage renal disease (ESRD) earlier than patients with non-truncating mutations (47 ± 3.522 years vs. 59 ± 11.687 years, P = 0.016). The mutation screening of PKD genes in Chinese ADPKD patients will enrich our mutation database and significantly contribute to improve genetic counselling for ADPKD patients.
Collapse
Affiliation(s)
- Bei Liu
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Song-Chang Chen
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yan-Mei Yang
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Kai Yan
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Ye-Qing Qian
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Jun-Yu Zhang
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Yu-Ting Hu
- Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Min-Yue Dong
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - Fan Jin
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China
| | - He-Feng Huang
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| | - Chen-Ming Xu
- Women's Hospital School of Medicine Zhejiang University, Hangzhou 310006, P. R. China.,Key Laboratory of Reproductive Genetics (Zhejiang University), Ministry of Education, Hangzhou 310006, P. R. China.,Institute of Embryo-Fetal Original Adult Disease Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P.R. China.,The International Peace Maternity &Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200030, P. R. China
| |
Collapse
|
15
|
Gonzalez-Paredes FJ, Ramos-Trujillo E, Claverie-Martin F. Defective pre-mRNA splicing in PKD1 due to presumed missense and synonymous mutations causing autosomal dominant polycystic disease. Gene 2014; 546:243-9. [DOI: 10.1016/j.gene.2014.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Revised: 05/21/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
16
|
Abstract
Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability.
Collapse
Affiliation(s)
- Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| |
Collapse
|
17
|
Novel mutations of PKD genes in the Czech population with autosomal dominant polycystic kidney disease. BMC MEDICAL GENETICS 2014; 15:41. [PMID: 24694054 PMCID: PMC3992149 DOI: 10.1186/1471-2350-15-41] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 03/10/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary renal disorder caused by mutation in either one of two genes, PKD1 and PKD2. High structural and sequence complexity of PKD genes makes the mutational diagnostics of ADPKD challenging. The present study is the first detailed analysis of both PKD genes in a cohort of Czech patients with ADPKD using High Resolution Melting analysis (HRM) and Multiplex Ligation-dependent Probe Amplification (MLPA). METHODS The mutational analysis of PKD genes was performed in a set of 56 unrelated patients. For mutational screening of the PKD1 gene, the long-range PCR (LR-PCR) strategy followed by nested PCR was used. Resulting PCR fragments were analyzed by HRM; the positive cases were reanalyzed and confirmed by direct sequencing. Negative samples were further examined for sequence changes in the PKD2 gene by the method of HRM and for large rearrangements of both PKD1 and PKD2 genes by MLPA. RESULTS Screening of the PKD1 gene revealed 36 different likely pathogenic germline sequence changes in 37 unrelated families/individuals. Twenty-five of these sequence changes were described for the first time. Moreover, a novel large deletion was found within the PKD1 gene in one patient. Via the mutational analysis of the PKD2 gene, two additional likely pathogenic mutations were detected. CONCLUSIONS Probable pathogenic mutation was detected in 71% of screened patients. Determination of PKD mutations and their type and localization within corresponding genes could help to assess clinical prognosis of ADPKD patients and has major benefit for prenatal and/or presymptomatic or preimplantational diagnostics in affected families as well.
Collapse
|
18
|
Autosomal dominant polycystic kidney disease in a family with mosaicism and hypomorphic allele. BMC Nephrol 2013; 14:59. [PMID: 23496908 PMCID: PMC3621255 DOI: 10.1186/1471-2369-14-59] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/26/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common form of inherited kidney disease that results in renal failure. ADPKD is a systemic disorder with cysts and connective tissue abnormalities involving many organs. ADPKD caused by mutations in PKD1 gene is significantly more severe than the cases caused by PKD2 gene mutations. The large intra-familial variability of ADPKD highlights a role for genetic background. CASE PRESENTATION Here we report a case of ADPKD family initially appearing unlinked to the PKD1 or PKD2 loci and the influence of mosaicism and hypomorphic allele on the variability of the clinical course of the disease. A grandmother with the PKD1 gene mutation in mosaicism (p.Val1105ArgfsX4) and with mild clinical course of ADPKD (end stage renal failure at the age of 77) seemed to have ADPKD because of PKD2 gene mutation. On the other hand, her grandson had a severe clinical course (end stage renal disease at the age of 45) in spite of the early treatment of mild hypertension. There was found by mutational analysis of PKD genes that the severe clinical course was caused by PKD1 gene frameshifting mutation inherited from his father and mildly affected grandmother in combination with inherited hypomorphic PKD1 allele with described missense mutation (p.Thr2250Met) from his clinically healthy mother. The sister with two cysts and with PKD1 hypomorphic allele became the kidney donor to her severely affected brother. CONCLUSION We present the first case of ADPKD with the influence of mosaicism and hypomorphic allele of the PKD1 gene on clinical course of ADPKD in one family. Moreover, this report illustrates the role of molecular genetic testing in assessing young related kidney donors for patients with ADPKD.
Collapse
|
19
|
Vasquez KM, Wang G. The yin and yang of repair mechanisms in DNA structure-induced genetic instability. Mutat Res 2013; 743-744:118-131. [PMID: 23219604 PMCID: PMC3661696 DOI: 10.1016/j.mrfmmm.2012.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 11/21/2012] [Accepted: 11/24/2012] [Indexed: 01/14/2023]
Abstract
DNA can adopt a variety of secondary structures that deviate from the canonical Watson-Crick B-DNA form. More than 10 types of non-canonical or non-B DNA secondary structures have been characterized, and the sequences that have the capacity to adopt such structures are very abundant in the human genome. Non-B DNA structures have been implicated in many important biological processes and can serve as sources of genetic instability, implicating them in disease and evolution. Non-B DNA conformations interact with a wide variety of proteins involved in replication, transcription, DNA repair, and chromatin architectural regulation. In this review, we will focus on the interactions of DNA repair proteins with non-B DNA and their roles in genetic instability, as the proteins and DNA involved in such interactions may represent plausible targets for selective therapeutic intervention.
Collapse
Affiliation(s)
- Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States.
| | - Guliang Wang
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd. R1800, Austin, TX 78723, United States
| |
Collapse
|
20
|
Audrézet MP, Cornec-Le Gall E, Chen JM, Redon S, Quéré I, Creff J, Bénech C, Maestri S, Le Meur Y, Férec C. Autosomal dominant polycystic kidney disease: comprehensive mutation analysis of PKD1 and PKD2 in 700 unrelated patients. Hum Mutat 2012; 33:1239-50. [PMID: 22508176 DOI: 10.1002/humu.22103] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/02/2012] [Indexed: 11/06/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD), the most common inherited kidney disorder, is caused by mutations in PKD1 or PKD2. The molecular diagnosis of ADPKD is complicated by extensive allelic heterogeneity and particularly by the presence of six highly homologous sequences of PKD1 exons 1-33. Here, we screened PKD1 and PKD2 for both conventional mutations and gross genomic rearrangements in up to 700 unrelated ADPKD patients--the largest patient cohort to date--by means of direct sequencing, followed by quantitative fluorescent multiplex polymerase chain reaction or array-comparative genomic hybridization. This resulted in the identification of the largest number of new pathogenic mutations (n = 351) in a single publication, expanded the spectrum of known ADPKD pathogenic mutations by 41.8% for PKD1 and by 23.8% for PKD2, and provided new insights into several issues, such as the population-dependent distribution of recurrent mutations compared with founder mutations and the relative paucity of pathogenic missense mutations in the PKD2 gene. Our study, together with others, highlights the importance of developing novel approaches for both mutation detection and functional validation of nondefinite pathogenic mutations to increase the diagnostic value of molecular testing for ADPKD.
Collapse
|
21
|
Rossetti S, Hopp K, Sikkink RA, Sundsbak JL, Lee YK, Kubly V, Eckloff BW, Ward CJ, Winearls CG, Torres VE, Harris PC. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol 2012; 23:915-33. [PMID: 22383692 DOI: 10.1681/asn.2011101032] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1-32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a strategy to analyze both the PKD1 and PKD2 genes using next-generation sequencing by pooling long-range PCR amplicons and multiplexing bar-coded libraries. We used this approach to characterize a cohort of 230 patients with ADPKD. This process detected definitely and likely pathogenic variants in 115 (63%) of 183 patients with typical ADPKD. In addition, we identified atypical mutations, a gene conversion, and one missed mutation resulting from allele dropout, and we characterized the pattern of deep intronic variation for both genes. In summary, this strategy involving next-generation sequencing is a model for future genetic characterization of large ADPKD populations.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bataille S, Berland Y, Fontes M, Burtey S. High Resolution Melt analysis for mutation screening in PKD1 and PKD2. BMC Nephrol 2011; 12:57. [PMID: 22008521 PMCID: PMC3206831 DOI: 10.1186/1471-2369-12-57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2011] [Accepted: 10/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disorder. It is characterized by focal development and progressive enlargement of renal cysts leading to end-stage renal disease. PKD1 and PKD2 have been implicated in ADPKD pathogenesis but genetic features and the size of PKD1 make genetic diagnosis tedious. METHODS We aim to prove that high resolution melt analysis (HRM), a recent technique in molecular biology, can facilitate molecular diagnosis of ADPKD. We screened for mutations in PKD1 and PKD2 with HRM in 37 unrelated patients with ADPKD. RESULTS We identified 440 sequence variants in the 37 patients. One hundred and thirty eight were different. We found 28 pathogenic mutations (25 in PKD1 and 3 in PKD2 ) within 28 different patients, which is a diagnosis rate of 75% consistent with literature mean direct sequencing diagnosis rate. We describe 52 new sequence variants in PKD1 and two in PKD2. CONCLUSION HRM analysis is a sensitive and specific method for molecular diagnosis of ADPKD. HRM analysis is also costless and time sparing. Thus, this method is efficient and might be used for mutation pre-screening in ADPKD genes.
Collapse
Affiliation(s)
- Stanislas Bataille
- EA 4263 Thérapie des Maladies Génétiques, Faculté de Médecine, Université de la Méditerranée, Boulevard Jean Moulin 13005 Marseille, France
| | | | | | | |
Collapse
|
23
|
Hoefele J, Mayer K, Scholz M, Klein HG. Novel PKD1 and PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). Nephrol Dial Transplant 2010; 26:2181-8. [PMID: 21115670 DOI: 10.1093/ndt/gfq720] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic renal disorder with an incidence of 1:1000. Mutations in two genes (PKD1 and PKD2) have been identified as causative. Eighty-five percent of patients with ADPKD carry their mutation in the PKD1 gene. So far, > 500 mutations for PKD1 and > 120 mutations for PKD2, respectively, are known. METHODS In this study, we performed mutation analysis of PKD1 and PKD2 by exon sequencing in patients during routine molecular diagnostics for ADPKD. RESULTS In total, 60 mutations were identified in 93 patients representing a mutation detection efficiency of 64.5%. Fifty-two mutations were identified in PKD1 (86.7%) and 8 in PKD2 (13.3%). These include 41 novel mutations detected in PKD1 and 5 novel mutations in PKD2. Accordingly, our data expand the spectrum of known PKD mutations by 8% for PKD1 (41/513) and 4.2% for PKD2 (5/120). These results are in agreement with the detection ranges of 42%, 63% and 64% for definitive disease-causing mutations, and 78%, 86% and 89% for all identified variants reported in several comprehensive mutation screening reports. CONCLUSIONS The increased number of known mutations will facilitate future studies into genotype-phenotype correlations.
Collapse
Affiliation(s)
- Julia Hoefele
- Center for Human Genetics and Laboratory Medicine Dr Klein and Dr Rost, Martinsried, Germany.
| | | | | | | |
Collapse
|
24
|
Ghosh S, Majumder P, Pradhan SK, Dasgupta D. Mechanism of interaction of small transcription inhibitors with DNA in the context of chromatin and telomere. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:795-809. [PMID: 20638489 DOI: 10.1016/j.bbagrm.2010.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/23/2010] [Accepted: 06/30/2010] [Indexed: 01/13/2023]
Abstract
Small molecules from natural and synthetic sources have long been employed as human drugs. The transcription inhibitory potential of one class of these molecules has paved their use as anticancer drugs. The principal mode of action of these molecules is via reversible interaction with genomic DNA, double and multiple stranded. In this article we have revisited the mechanism of the interaction in the context of chromatin and telomere. The established modes of association of these molecules with double helical DNA provide a preliminary mechanism of their transcription inhibitory potential, but the scenario assumes a different dimension when the genomic DNA is associated with proteins in the transcription apparatus of both prokaryotic and eukaryotic organisms. We have discussed this altered scenario as a prelude to understand the chemical biology of their action in the cell. For the telomeric quadruplex DNA, we have reviewed the mechanism of their association with the quadruplex and resultant cellular consequence.
Collapse
Affiliation(s)
- Saptaparni Ghosh
- Biophysics Division, Saha Institute of Nuclear Physics, Sector-I, Block-AF, Bidhan Nagar, Kolkata Pin, 700064, India
| | | | | | | |
Collapse
|
25
|
Deltas C, Papagregoriou G. Cystic diseases of the kidney: molecular biology and genetics. Arch Pathol Lab Med 2010; 134:569-82. [PMID: 20367309 DOI: 10.5858/134.4.569] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Cystic diseases of the kidney are a very heterogeneous group of renal inherited conditions, with more than 33 genes involved and encompassing X-linked, autosomal dominant, and autosomal recessive inheritance. Although mostly monogenic with mendelian inheritance, there are clearly examples of oligogenic inheritance, such as 3 mutations in 2 genes, while the existence of genetic modifiers is perhaps the norm, based on the extent of variable expressivity and the broad spectrum of symptoms. OBJECTIVES To present in the form of a mini review the major known cystic diseases of the kidney for which genes have been mapped or cloned and characterized, with some information on their cellular and molecular biology and genetics, and to pay special attention to commenting on the issues of molecular diagnostics, in view of the genetic and allelic heterogeneity. Data Sources.-We used major reviews that make excellent detailed presentation of the various diseases, as well as original publications. CONCLUSIONS There is already extensive genetic heterogeneity in the group of cystic diseases of the kidney; however, there are still many more genes awaiting to be discovered that are implicated or mutated in these diseases. In addition, the synergism and interaction among this repertoire of gene products is largely unknown, while a common unifying aspect is the expression of nearly all of them at the primary cilium or the basal body. A major interplay of functions is anticipated, while mutations in all converge in the unifying phenotype of cyst formation.
Collapse
|
26
|
Pei Y, Watnick T. Diagnosis and screening of autosomal dominant polycystic kidney disease. Adv Chronic Kidney Dis 2010; 17:140-52. [PMID: 20219617 PMCID: PMC2841025 DOI: 10.1053/j.ackd.2009.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of kidney failure and accounts for approximately 5% of ESRD population in the United States. The disorder is characterized by the focal and sporadic development of renal cysts, which increase in size and number with age. Mutations of PKD1 and PKD2 account for most of the cases. Although the clinical manifestations of both gene types overlap completely, PKD1 is associated with more severe disease than PKD2, with larger kidneys and earlier onset of ESRD. In general, renal ultrasonography is commonly used for the diagnosis of ADPKD, and age-dependent criteria have been defined for subjects at risk of PKD1. However, the utility of the PKD1 ultrasound criteria in the clinic setting is unclear because their performance characteristics have not been defined for the milder PKD2 and the gene type for most test subjects is unknown. Recently, highly predictive ultrasound diagnostic criteria have been derived for at-risk subjects of unknown gene type. Additionally, both DNA linkage or gene-based direct sequencing are now available for the diagnosis of ADPKD, especially in subjects with equivocal imaging results, subjects with a negative or indeterminate family history, or in younger at-risk individuals being evaluated as potential living-related kidney donors. Here, we review the clinical utilities and limitations of both imaging- and molecular-based diagnostic tests and outline our approach for the evaluation of individuals suspected to have ADPKD.
Collapse
Affiliation(s)
- York Pei
- Divisions of Nephrology and Genomic Medicine, University Health Network and University of Toronto
| | - Terry Watnick
- Toronto, Ontario, Canada; Division of Nephrology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
27
|
Huang E, Samaniego-Picota M, McCune T, Melancon JK, Montgomery RA, Ugarte R, Kraus E, Womer K, Rabb H, Watnick T. DNA testing for live kidney donors at risk for autosomal dominant polycystic kidney disease. Transplantation 2009; 87:133-7. [PMID: 19136903 PMCID: PMC2841023 DOI: 10.1097/tp.0b013e318191e729] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by age-dependent growth of kidney cysts with end-stage renal disease developing in approximately 50% of affected individuals. Living donors from ADPKD families are at risk for developing ADPKD and may be excluded from renal donation if the diagnosis cannot be conclusively ruled out. Radiographic imaging may be adequate to screen for kidney cysts in most at-risk donors but may fail to identify affected individuals younger than 40 years or older individuals from families with mild disease. In this article, we report a strategy that incorporates genetic testing in the evaluation of live kidney donors at risk for ADPKD whose disease status cannot be established with certainty on the basis of imaging studies alone. We show that DNA diagnostics can be used to enhance safe donation for certain living donor candidates at risk for ADPKD.
Collapse
Affiliation(s)
- Edmund Huang
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, Maryland, 21205
| | - Millie Samaniego-Picota
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, Maryland, 21205
| | - Thomas McCune
- Kidney Transplant Program, Sentara Norfolk General Hospital, 600 Gresham Drive Norfolk, VA 23507
| | - Joseph K. Melancon
- Department of Surgery, Johns Hopkins University School of Medicine, Comprehensive Transplant Center, 720 Rutland Avenue, Turner 36, Baltimore, MD 21205
| | - Robert A. Montgomery
- Department of Surgery, Johns Hopkins University School of Medicine, Comprehensive Transplant Center, 720 Rutland Avenue, Turner 36, Baltimore, MD 21205
| | - Richard Ugarte
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, Maryland, 21205
| | - Edward Kraus
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, Maryland, 21205
| | - Karl Womer
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, Maryland, 21205
| | - Hamid Rabb
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, Maryland, 21205
| | - Terry Watnick
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, 1830 E. Monument Street, Suite 416, Baltimore, Maryland, 21205
| |
Collapse
|
28
|
Symmons O, Váradi A, Arányi T. How segmental duplications shape our genome: recent evolution of ABCC6 and PKD1 Mendelian disease genes. Mol Biol Evol 2008; 25:2601-13. [PMID: 18791038 DOI: 10.1093/molbev/msn202] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The completion of the Human Genome Project has brought the understanding that our genome contains an unexpectedly large proportion of segmental duplications. This poses the challenge of elucidating the consequences of recent duplications on physiology. We have conducted an in-depth study of a subset of segmental duplications on chromosome 16. We focused on PKD1 and ABCC6 duplications because mutations affecting these genes are responsible for the Mendelian disorders autosomal dominant polycystic kidney disease and pseudoxanthoma elasticum, respectively. We establish that duplications of PKD1 and ABCC6 are associated to low-copy repeat 16a and show that such duplications have occurred several times independently in different primate species. We demonstrate that partial duplication of PKD1 and ABCC6 has numerous consequences: the pseudogenes give rise to new transcripts and mediate gene conversion, which not only results in disease-causing mutations but also serves as a reservoir for sequence variation. The duplicated segments are also involved in submicroscopic and microscopic genomic rearrangements, contributing to structural variation in human and chromosomal break points in the gibbon. In conclusion, our data shed light on the recent and ongoing evolution of chromosome 16 mediated by segmental duplication and deepen our understanding of the history of two Mendelian disorder genes.
Collapse
Affiliation(s)
- Orsolya Symmons
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
29
|
Jain A, Wang G, Vasquez KM. DNA triple helices: biological consequences and therapeutic potential. Biochimie 2008; 90:1117-30. [PMID: 18331847 PMCID: PMC2586808 DOI: 10.1016/j.biochi.2008.02.011] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 02/08/2008] [Indexed: 01/25/2023]
Abstract
DNA structure is a critical element in determining its function. The DNA molecule is capable of adopting a variety of non-canonical structures, including three-stranded (i.e. triplex) structures, which will be the focus of this review. The ability to selectively modulate the activity of genes is a long-standing goal in molecular medicine. DNA triplex structures, either intermolecular triplexes formed by binding of an exogenously applied oligonucleotide to a target duplex sequence, or naturally occurring intramolecular triplexes (H-DNA) formed at endogenous mirror repeat sequences, present exploitable features that permit site-specific alteration of the genome. These structures can induce transcriptional repression and site-specific mutagenesis or recombination. Triplex-forming oligonucleotides (TFOs) can bind to duplex DNA in a sequence-specific fashion with high affinity, and can be used to direct DNA-modifying agents to selected sequences. H-DNA plays important roles in vivo and is inherently mutagenic and recombinogenic, such that elements of the H-DNA structure may be pharmacologically exploitable. In this review we discuss the biological consequences and therapeutic potential of triple helical DNA structures. We anticipate that the information provided will stimulate further investigations aimed toward improving DNA triplex-related gene targeting strategies for biotechnological and potential clinical applications.
Collapse
Affiliation(s)
- Aklank Jain
- Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park--Research Division, 1808 Park Road 1-C, P.O. Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
30
|
Garcia-Gonzalez MA, Jones JG, Allen SK, Palatucci CM, Batish SD, Seltzer WK, Lan Z, Allen E, Qian F, Lens XM, Pei Y, Germino GG, Watnick TJ. Evaluating the clinical utility of a molecular genetic test for polycystic kidney disease. Mol Genet Metab 2007; 92:160-7. [PMID: 17574468 PMCID: PMC2085355 DOI: 10.1016/j.ymgme.2007.05.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Accepted: 05/02/2007] [Indexed: 10/23/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is estimated to affect 1/600-1/1000 individuals worldwide. The disease is characterized by age dependent renal cyst formation that results in kidney failure during adulthood. Although ultrasound imaging may be an adequate diagnostic tool in at risk individuals older than 30, this modality may not be sufficiently sensitive in younger individuals or for those from PKD2 families who have milder disease. DNA based assays may be indicated in certain clinical situations where imaging cannot provide a definitive clinical diagnosis. The goal of this study was to evaluate the utility of direct DNA analysis in a test sample of 82 individuals who were judged to have polycystic kidney disease by standard clinical criteria. The samples were analyzed using a commercially available assay that employs sequencing of both genes responsible for the disorder. Definite disease causing mutations were identified in 34 (approximately 42%) study participants. An additional 30 (approximately 37%) subjects had either in frame insertions/deletions, non-canonical splice site alterations or a combination of missense changes that were also judged likely to be pathogenic. We noted striking sequence variability in the PKD1 gene, with a mean of 13.1 variants per participant (range 0-60). Our results and analysis highlight the complexity of assessing the pathogenicity of missense variants particularly when individuals have multiple amino acid substitutions. We conclude that a significant fraction of ADPKD mutations are caused by amino acid substitutions that need to be interpreted carefully when utilized in clinical decision-making.
Collapse
Affiliation(s)
- Miguel A. Garcia-Gonzalez
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Nephrology, Baltimore, MD
- Laboratorio de Investigación en Nefroloxía, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | | | - Susan K. Allen
- Athena Diagnostics, Inc. 377 Plantation St. Worcester, MA
| | | | - Sat D. Batish
- Athena Diagnostics, Inc. 377 Plantation St. Worcester, MA
| | | | - Zheng Lan
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Nephrology, Baltimore, MD
| | - Erica Allen
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Nephrology, Baltimore, MD
| | - Feng Qian
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Nephrology, Baltimore, MD
| | - Xose M. Lens
- Laboratorio de Investigación en Nefroloxía, Complexo Hospitalario Universitario de Santiago, Santiago de Compostela, Spain
| | - York Pei
- Division of Nephrology, Department of Medicine, Toronto General Hospital and University of Toronto, Toronto, Ontario M5G2C4, Canada
| | - Gregory G. Germino
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Nephrology, Baltimore, MD
| | - Terry J. Watnick
- Johns Hopkins University School of Medicine, Department of Medicine, Division of Nephrology, Baltimore, MD
| |
Collapse
|
31
|
Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP, Harris PC. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2007; 18:2143-60. [PMID: 17582161 DOI: 10.1681/asn.2006121387] [Citation(s) in RCA: 316] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutation-based molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) is complicated by genetic and allelic heterogeneity, large multi-exon genes, duplication of PKD1, and a high level of unclassified variants (UCV). Present mutation detection levels are 60 to 70%, and PKD1 and PKD2 UCV have not been systematically classified. This study analyzed the uniquely characterized Consortium for Radiologic Imaging Study of PKD (CRISP) ADPKD population by molecular analysis. A cohort of 202 probands was screened by denaturing HPLC, followed by direct sequencing using a clinical test of 121 with no definite mutation (plus controls). A subset was also screened for larger deletions, and reverse transcription-PCR was used to test abnormal splicing. Definite mutations were identified in 127 (62.9%) probands, and all UCV were assessed for their potential pathogenicity. The Grantham Matrix Score was used to score the significance of the substitution and the conservation of the residue in orthologs and defined domains. The likelihood for aberrant splicing and contextual information about the UCV within the patient (including segregation analysis) was used in combination to define a variant score. From this analysis, 44 missense plus two atypical splicing and seven small in-frame changes were defined as probably pathogenic and assigned to a mutation group. Mutations were thus defined in 180 (89.1%) probands: 153 (85.0%) PKD1 and 27 (15.0%) PKD2. The majority were unique to a single family, but recurrent mutations accounted for 30.0% of the total. A total of 190 polymorphic variants were identified in PKD1 (average of 10.1 per patient) and eight in PKD2. Although nondefinite mutation data must be treated with care in the clinical setting, this study shows the potential for molecular diagnostics in ADPKD that is likely to become increasingly important as therapies become available.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Vouk K, Strmecki L, Stekrova J, Reiterova J, Bidovec M, Hudler P, Kenig A, Jereb S, Zupanic-Pajnic I, Balazic J, Haarpaintner G, Leskovar B, Adamlje A, Skoflic A, Dovc R, Hojs R, Komel R. PKD1 and PKD2 mutations in Slovenian families with autosomal dominant polycystic kidney disease. BMC MEDICAL GENETICS 2006; 7:6. [PMID: 16430766 PMCID: PMC1434729 DOI: 10.1186/1471-2350-7-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 01/23/2006] [Indexed: 11/13/2022]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is a genetically heterogeneous disorder caused by mutations in at least two different loci. Prior to performing mutation screening, if DNA samples of sufficient number of family members are available, it is worthwhile to assign the gene involved in disease progression by the genetic linkage analysis. METHODS We collected samples from 36 Slovene ADPKD families and performed linkage analysis in 16 of them. Linkage was assessed by the use of microsatellite polymorphic markers, four in the case of PKD1 (KG8, AC2.5, CW3 and CW2) and five for PKD2 (D4S1534, D4S2929, D4S1542, D4S1563 and D4S423). Partial PKD1 mutation screening was undertaken by analysing exons 23 and 31-46 and PKD2 . RESULTS Lod scores indicated linkage to PKD1 in six families and to PKD2 in two families. One family was linked to none and in seven families linkage to both genes was possible. Partial PKD1 mutation screening was performed in 33 patients (including 20 patients from the families where linkage analysis could not be performed). We analysed PKD2 in 2 patients where lod scores indicated linkage to PKD2 and in 7 families where linkage to both genes was possible. We detected six mutations and eight polymorphisms in PKD1 and one mutation and three polymorphisms in PKD2. CONCLUSION In our study group of ADPKD patients we detected seven mutations: three frameshift, one missense, two nonsense and one putative splicing mutation. Three have been described previously and 4 are novel. Three newly described framesfift mutations in PKD1 seem to be associated with more severe clinical course of ADPKD. Previously described nonsense mutation in PKD2 seems to be associated with cysts in liver and milder clinical course.
Collapse
Affiliation(s)
- Katja Vouk
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Lana Strmecki
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Jitka Stekrova
- Department of Medical Genetics and Department of Nephrology,1Faculty of Medicine, Charles University, Albertov 2, 12800 Prague 2, Czech Republic
| | - Jana Reiterova
- Department of Medical Genetics and Department of Nephrology,1Faculty of Medicine, Charles University, Albertov 2, 12800 Prague 2, Czech Republic
| | - Matjaz Bidovec
- Children's Hospital Ljubljana, Clinic for Paediatric Nephrology and Radiology Unit, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Petra Hudler
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Anton Kenig
- Children's Hospital Ljubljana, Clinic for Paediatric Nephrology and Radiology Unit, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Simona Jereb
- Children's Hospital Ljubljana, Clinic for Paediatric Nephrology and Radiology Unit, Vrazov trg 1, 1000 Ljubljana, Slovenia
| | - Irena Zupanic-Pajnic
- Institute of Forensic Medicine, Faculty of Medicine, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Joze Balazic
- Institute of Forensic Medicine, Faculty of Medicine, Korytkova 2, 1000 Ljubljana, Slovenia
| | - Guido Haarpaintner
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| | - Bostjan Leskovar
- Trbovlje General Hospital, Dialysis Department, Rudarska 7, Trbovlje, Slovenia
| | - Anton Adamlje
- Trbovlje General Hospital, Dialysis Department, Rudarska 7, Trbovlje, Slovenia
| | - Antun Skoflic
- Celje General Hospital, Nephrology Department and Dialysis Centre, Oblakova 5, 3000 Celje, Slovenia
| | - Reina Dovc
- Celje General Hospital, Nephrology Department and Dialysis Centre, Oblakova 5, 3000 Celje, Slovenia
| | - Radovan Hojs
- Maribor General Hospital, Clinical Department for Internal Medicine, Nephrology Department, 2000 Maribor, Slovenia
| | - Radovan Komel
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
33
|
Guntaka RV, Varma BR, Weber KT. Triplex-forming oligonucleotides as modulators of gene expression. Int J Biochem Cell Biol 2003; 35:22-31. [PMID: 12467644 DOI: 10.1016/s1357-2725(02)00165-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triplex-forming oligonucleotides (TFOs) have gained prominence in the recent years because of their potential applications in antigene therapy. In particular they have been used as (i) inducers of site-specific mutations, (ii) reagents that selectively and specifically cleave target DNA, and (iii) as modulators of gene expression. In this mini-review, we have made an attempt to highlight the characteristics of these TFOs and the effects of various modifications in the phosphate backbone as well as in the purine and pyrimidine moieties, which contribute to the stability and efficiency of triplex formation. Studies to explore the mechanism of down-regulation of transcription of various genes suggest that at least some TFOs exert their effect by inhibiting binding of specific transcription factors to their cognate cis-acting elements. Recent reports indicate the presence of these potential triplex-forming DNA structures in the genomes of prokaryotes and eukaryotes that may play a major role in target site selection and chromosome segregation as well as in the cause of heritable diseases. Finally, some potential problems in the development of these TFOs as antigene therapeutic agents have also been discussed.
Collapse
Affiliation(s)
- Ramareddy V Guntaka
- Department of Molecular Sciences, University of Tennessee Health Science Center, 858 Madison Ave., Memphis, TN 38163, USA.
| | | | | |
Collapse
|
34
|
Qian F, Boletta A, Bhunia AK, Xu H, Liu L, Ahrabi AK, Watnick TJ, Zhou F, Germino GG. Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Natl Acad Sci U S A 2002; 99:16981-6. [PMID: 12482949 PMCID: PMC139255 DOI: 10.1073/pnas.252484899] [Citation(s) in RCA: 236] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Polycystin-1 plays an essential role in renal tubular morphogenesis, and disruption of its function causes cystogenesis in human autosomal-dominant polycystic kidney disease (ADPKD). We demonstrated that polycystin-1 undergoes cleavage at G protein coupled receptor proteolytic site in a process that requires the receptor for egg jelly domain. Most of the N-terminal fragment remains tethered at the cell surface, although a small amount is secreted. PKD1-associated mutations in the receptor for egg jelly domain disrupt cleavage, abolish the ability of polycystin-1 to activate signal transducer and activator of transcription-1, and induce tubulogenesis in vitro. We conclude that the cleavage of polycystin-1 is likely essential for its biologic activity.
Collapse
Affiliation(s)
- Feng Qian
- Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Inoue S, Inoue K, Utsunomiya M, Nozaki JI, Yamada Y, Iwasa T, Mori E, Yoshinaga T, Koizumi A. Mutation analysis in PKD1 of Japanese autosomal dominant polycystic kidney disease patients. Hum Mutat 2002; 19:622-8. [PMID: 12007219 DOI: 10.1002/humu.10080] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic renal disorder (incidence, 1:1,000). The mutation of PKD1 is thought to account for 85% of ADPKD. Although a considerable number of studies on PKD1 mutation have been published recently, most of them concern Caucasian ADPKD patients. In the present study, we examined PKD1 mutations in Japanese ADPKD patients. Long-range polymerase chain reaction (LR-PCR) with PKD1-specific primers followed by nested PCR was used to analyze the duplicated region of PKD1. Six novel chain-terminating mutations were detected: three nonsense mutations (Q2014X transition in exon 15, Q2969X in exon 24, and E2810X in exon 23), two deletions (2132del29 in exon10 and 7024delAC in exon 15), and one splicing mutation (IVS21-2delAG). There was also one nonconservative missense mutation (T2083I). Two other potentially pathogenic missense mutations (G2814R and L2816P) were on the downstream site of one nonsense mutation. These three mutations and a following polymorphism (8662C>T) were probably the result of gene conversion from one of the homologous genes to PKD1. Six other polymorphisms were found. Most PKD1 mutations in Japanese ADPKD patients were novel and definitely pathogenic. One pedigree did not link to either PKD1 or PKD2.
Collapse
Affiliation(s)
- Sumiko Inoue
- Department of Environmental and Health Sciences, Kyoto University School of Public Health, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
McCluskey M, Schiavello T, Hunter M, Hantke J, Angelicheva D, Bogdanova N, Markoff A, Thomas M, Dworniczak B, Horst J, Kalaydjieva L. Mutation detection in the duplicated region of the polycystic kidney disease 1 (PKD1) gene in PKD1-linked Australian families. Hum Mutat 2002; 19:240-50. [PMID: 11857740 DOI: 10.1002/humu.10045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Screening for disease-causing mutations in the duplicated region of the PKD1 gene was performed in 17 unrelated Australian individuals with PKD1-linked autosomal dominant polycystic kidney disease. Exons 2-21 and 23-34 were assayed using PKD1-specific PCR amplification and direct sequencing. We have identified 12 novel probably pathogenic DNA variants, including five truncating mutations (Q563X, c.5105delAT, c.5159delG, S2269X, c.9847delC), two in-frame deletions (c.7472del3, c.9292del39), and two splice-site mutations (IVS14+1G>C, IVS16+1G>T). Three of the mutations (G381C, Y2185D, G2785D) were predicted to lead to the replacement of conserved amino acid residues, with ensuing changes in protein conformation. Defects in the duplicated region of PKD1 thus account for 63% of our patients. Together with the previously detected mutations (Q4041X, R4227P) in the 3 region of the gene, the study has achieved an overall mutation detection rate of 74%. In addition, we have detected 31 variants (nine novel and 22 previously published) that did not segregate with the disease and were considered to be neutral polymorphisms. Three of the nine novel polymorphisms were missense mutations with a predicted effect on protein conformation, emphasizing the problems of interpretation in PKD1 mutation screening.
Collapse
Affiliation(s)
- Marie McCluskey
- Centre for Human Genetics, Edith Cowan University, Joondalup, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is an inherited nephropathy, usually of late onset (onset between third to seventh decade), primarily characterized by the formation of fluid-filled cysts in the kidneys. It is one of the most frequent inherited conditions affecting approximately 1:1,000 Caucasians. Two major genes have been identified and characterized in detail: PKD1 and PKD2, mapping on chromosomes 16p13.3 and 4q21-23, respectively. A third gene, PKD3, has been implicated in selected families. Polycystic kidney disease of types 1 or 2 follows a very similar course of symptoms, both being multisystem pleiotropic disorders of indistinguishable picture on clinical grounds. The only difference is that patients with PKD2 mutations run a milder course compared to PKD1 carriers, with an average 10-20 years later age of onset and lower probability to reach end-stage-renal failure. The proteins polycystin-1 and -2 are trans-membranous glycoproteins hypothesized to participate in a common signaling pathway, interacting with each other and with other proteins, and coordinately expressed in normal and cystic tissue. Renal cysts most probably arise after a second somatic event, which inactivates the inherited healthy allele of the same gene, or perhaps one of the alleles of the other gene counterpart, generating a trans-heterozygous state. This article reviews the reported mutations in PKD2. Mutations of all kinds have been reported over the entire sequence of the PKD2 gene, with no apparent significant clustering and with some evidence of genotype/phenotype correlation. Most families harbor their own private mutations but a few recurrent events have been reported in unrelated families.
Collapse
Affiliation(s)
- C C Deltas
- The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.
| |
Collapse
|
38
|
Peters DJ, Ariyurek Y, van Dijk M, Breuning MH. Mutation detection for exons 2 to 10 of the polycystic kidney disease 1 (PKD1)-gene by DGGE. Eur J Hum Genet 2001; 9:957-60. [PMID: 11840199 DOI: 10.1038/sj.ejhg.5200756] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2001] [Revised: 11/08/2001] [Accepted: 11/09/2001] [Indexed: 11/09/2022] Open
Abstract
The PKD1-gene encodes a 14 kb transcript spanning a 50 kb genomic interval. Two-thirds of the gene is reiterated at another locus on the same chromosome. Using Long Range PCR with primers in intron 1 and exon 11, 6.8 kb PKD1 specific fragments were generated on genomic DNA. These products were used as templates for nested PCR's to screen exons 2-10 by Denaturing Gradient Gel Electrophoresis (DGGE). Upon analysis of 36 patients, a total of 11 different sequence variants were observed: A nonsense mutation in exon 2, a frameshift mutation in exon 8 and furthermore, two amino acid changes, two silent polymorphisms and five intronic variants.
Collapse
Affiliation(s)
- D J Peters
- Department of Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
39
|
Afzal AR, Jeffery S. Amplification of a 13.5-kb region of the PKD1 gene containing the 2.5-kb polypyrimidine tract in intron 21 facilitates mutation detection in this gene. GENETIC TESTING 2001; 5:57-9. [PMID: 11336403 DOI: 10.1089/109065701750168761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Mutation detection in the PKD1 gene proved to be difficult because two-thirds of the gene is reiterated several times on chromosome 16. Long-range PCR has been used previously to overcome this limitation, but due to a 2.5-kb polypyrimidine tract in intron 21, the screening capacity of the PKD1 gene using this technique was hindered. Here we report the measures that we have used to overcome this limitation.
Collapse
Affiliation(s)
- A R Afzal
- Department of Medical Genetics, St. George's Hospital Medical School, London UK
| | | |
Collapse
|
40
|
Abstract
Autosomal dominant polycystic kidney disease is a common inherited disorder, which is characterised by the formation of fluid-filled cysts in both kidneys that leads to progressive renal failure. Mutations in two genes, PKD1 and PKD2, are associated with the disorder. We describe the various factors that cause variation in disease progression between patients. These include whether the patient has a germline mutation in the PKD1 or in the PKD2 gene, and the nature of the mutation. Detection of mutations in PKD1 is complicated, but the total number identified is rising and will enable genotype-to-phenotype studies. Another factor affecting disease progression is the occurrence of somatic mutations in PKD genes. Furthermore, modifying genes might directly affect the function of polycystins by affecting the rate of somatic mutations or the rate of protein interactions, or they might affect cystogenesis itself or clinical factors associated with disease progression. Finally, environmental factors that speed up or slow down progress towards chronic renal failure have been identified in rodents.
Collapse
Affiliation(s)
- D J Peters
- Department of Human and Clinical Genetics, Leiden University Medical Centre, 2333AL, Leiden, Netherlands.
| | | |
Collapse
|
41
|
Bouba I, Koptides M, Mean R, Costi CE, Demetriou K, Georgiou I, Pierides A, Siamopoulos K, Deltas CC. Novel PKD1 deletions and missense variants in a cohort of Hellenic polycystic kidney disease families. Eur J Hum Genet 2001; 9:677-84. [PMID: 11571556 DOI: 10.1038/sj.ejhg.5200696] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Revised: 06/05/2001] [Accepted: 06/07/2001] [Indexed: 01/07/2023] Open
Abstract
The autosomal dominant form of polycystic kidney disease is a very frequent genetically heterogeneous inherited condition affecting approximately 1 : 1000 individuals of the Caucasian population. The main symptom is the formation of fluid-filled cysts in the kidneys, which grow progressively in size and number with age, and leading to end-stage renal failure in approximately 50% of patients by age 60. About 85% of cases are caused by mutations in the PKD1 gene on chromosome 16p13.3, which encodes for polycystin-1, a membranous glycoprotein with 4302 amino acids and multiple domains. Mutation detection is still a challenge owing to various sequence characteristics that prevent easy PCR amplification and sequencing. Here we attempted a systematic screening of part of the duplicated region of the gene in a large cohort of 53 Hellenic families with the use of single-strand conformation polymorphism analysis of exons 16-34. Our analysis revealed eight most probably disease causing mutations, five deletions and three single amino acid substitutions, in the REJ domain of the protein. In one family, a 3-bp and an 8-bp deletion in exons 20 and 21 respectively, were co-inherited on the same PKD1 chromosome, causing disease in the mother and three sons. Interestingly we did not find any termination codon defects, so common in the unique part of the PKD1 gene. In the same cohort we identified 11 polymorphic sequence variants, four of which resulted in amino acid variations. This supports the notion that the PKD1 gene may be prone to mutagenesis, justifying the relatively high prevalence of polycystic kidney disease.
Collapse
Affiliation(s)
- I Bouba
- The Cyprus Institute of Neurology and Genetics, Department of Molecular Genetics, Nicosia, Cyprus
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bacolla A, Jaworski A, Connors TD, Wells RD. Pkd1 unusual DNA conformations are recognized by nucleotide excision repair. J Biol Chem 2001; 276:18597-604. [PMID: 11279140 DOI: 10.1074/jbc.m100845200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The 2.5-kilobase pair poly(purine.pyrimidine) (poly(R.Y)) tract present in intron 21 of the polycystic kidney disease 1 (PKD1) gene has been proposed to contribute to the high mutation frequency of the gene. To evaluate this hypothesis, we investigated the growth rates of 11 Escherichia coli strains, with mutations in the nucleotide excision repair, SOS, and topoisomerase I and/or gyrase genes, harboring plasmids containing the full-length tract, six 5'-truncations of the tract, and a control plasmid (pSPL3). The full-length poly(R.Y) tract induced dramatic losses of cell viability during the first few hours of growth and lengthened the doubling times of the populations in strains with an inducible SOS response. The extent of cell loss was correlated with the length of the poly(R.Y) tract and the levels of negative supercoiling as modulated by the genotype of the strains or drugs that specifically inhibited DNA gyrase or bound to DNA directly, thereby affecting conformations at specific loci. We conclude that the unusual DNA conformations formed by the PKD1 poly(R.Y) tract under the influence of negative supercoiling induced the SOS response pathway, and they were recognized as lesions by the nucleotide excision repair system and were cleaved, causing delays in cell division and loss of the plasmid. These data support a role for this sequence in the mutation of the PKD1 gene by stimulating repair and/or recombination functions.
Collapse
Affiliation(s)
- A Bacolla
- Institute of Biosciences and Technology, Center for Genome Research, Texas A & M University System Health Science Center, Texas Medical Center, Houston, Texas 77030-3303, USA
| | | | | | | |
Collapse
|
43
|
Phakdeekitcharoen B, Watnick TJ, Germino GG. Mutation analysis of the entire replicated portion of PKD1 using genomic DNA samples. J Am Soc Nephrol 2001; 12:955-963. [PMID: 11316854 DOI: 10.1681/asn.v125955] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The replicated portion of PKD1, which comprises nearly 70% of the length of the gene, is predicted to harbor at least 85% of the mutations present in affected autosomal dominant polycystic kidney disease type 1 pedigrees. The relative paucity of reported mutations involving this segment is attributable to the significant technical challenges posed by the genomic structure of the gene. Previous genomic DNA-based strategies were unable to evaluate exons 1 and 22 and relied on the use of 10- to 13-kb PCR products. In this report, a set of six novel primer pair combinations, which can be used with previously reported reagents to analyze all of the exons in the replicated region (exons 1 to 34), are described. No product is greater than 5.8 kb in length, and various primer combinations can be used to reduce this length in half. Using this approach, two new pathogenic mutations, four novel disease-associated missense substitutions, and six new normal variants were identified. These new reagents should prove useful to investigators interested in performing DNA testing for this disorder.
Collapse
Affiliation(s)
- Bunyong Phakdeekitcharoen
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Division of Nephrology, Department of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Terry J Watnick
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gregory G Germino
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
44
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common and systemic disease characterized by formation of focal cysts. Of the three potential causes of cysts, downstream obstruction, compositional changes in extracellular matrix, and proliferation of partially dedifferentiated cells, evidence strongly supports the latter as the primary abnormality. In the vast majority of cases, the disease is caused by mutations in PKD1 or PKD2, and appears to be recessive at the cellular level. Somatic second hits in the normal allele of cells containing the germ line mutation initiate or accelerate formation of cysts. The intrinsically high frequency of somatic second hits in epithelia appears to be sufficient to explain the frequent occurrence of somatic second hits in the disease-causing genes. PKD1 and PKD2 encode a putative adhesive/ion channel regulatory protein and an ion channel, respectively. The two proteins interact directly in vitro. Their cellular and subcellular localization suggest that they may also function independently in a common signaling pathway that may involve the membrane skeleton and that links cell-cell and cell-matrix adhesion to the development of cell polarity.
Collapse
Affiliation(s)
- M A Arnaout
- Renal Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
45
|
Afzal AR, Florêncio RN, Taylor R, Patton MA, Saggar-Malik A, Jeffery S. Novel mutations in the duplicated region of the polycystic kidney disease 1 (PKD1) gene provides supporting evidence for gene conversion. GENETIC TESTING 2001; 4:365-70. [PMID: 11216660 DOI: 10.1089/109065700750065108] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human single-gene disorders, and is the most common inherited form of cystic kidney disease. It is estimated that approximately 85% of ADPKD is due to mutations in the PKD1 gene, which is located on chromosome 16p13.3. Mutation analysis in this gene is difficult, because more than two-thirds of reiterated several times at 16p13.1. In this study, mutation screening in 90 ADPKD patients was carried out on exons in the duplicated region of the PKD1 gene (23-34), using genomic long-range PCR followed by nested PCR and single-strand conformation polymorphism (SSCP), and finally cycle sequencing. Two nonconservative missense mutations were detected in exons 25 and 31, and two conservative mutations were found in exons 24 and 29. A novel splicing mutation, which is expected to cause skipping of exon 30, was detected in one case. Moreover, six intronic variants, three silent variants, and one polymorphic variant were detected in this study. Comparison between some of these changes and published sequences from the homologous genes on 16p13.1, revealed supporting evidence for the gene conversion theory as a mechanism responsible for some of the mutations in the PKD1 gene. Factors likely to facilitate gene conversion in this region of the PKD1 gene are discussed.
Collapse
Affiliation(s)
- A R Afzal
- Department of Medical Genetics, St George's Hospital Medical School, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
46
|
Rossetti S, Strmecki L, Gamble V, Burton S, Sneddon V, Peral B, Roy S, Bakkaloglu A, Komel R, Winearls CG, Harris PC. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am J Hum Genet 2001; 68:46-63. [PMID: 11115377 PMCID: PMC1234934 DOI: 10.1086/316939] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2000] [Accepted: 11/09/2000] [Indexed: 01/16/2023] Open
Abstract
Mutation screening of the major autosomal dominant polycystic kidney disease (ADPKD) locus, PKD1, has proved difficult because of the large transcript and complex reiterated gene region. We have developed methods, employing long polymerase chain reaction (PCR) and specific reverse transcription-PCR, to amplify all of the PKD1 coding area. The gene was screened for mutations in 131 unrelated patients with ADPKD, using the protein-truncation test and direct sequencing. Mutations were identified in 57 families, and, including 24 previously characterized changes from this cohort, a detection rate of 52.3% was achieved in 155 families. Mutations were found in all areas of the gene, from exons 1 to 46, with no clear hotspot identified. There was no significant difference in mutation frequency between the single-copy and duplicated areas, but mutations were more than twice as frequent in the 3' half of the gene, compared with the 5' half. The majority of changes were predicted to truncate the protein through nonsense mutations (32%), insertions or deletions (29.6%), or splicing changes (6.2%), although the figures were biased by the methods employed, and, in sequenced areas, approximately 50% of all mutations were missense or in-frame. Studies elsewhere have suggested that gene conversion may be a significant cause of mutation at PKD1, but only 3 of 69 different mutations matched PKD1-like HG sequence. A relatively high rate of new PKD1 mutation was calculated, 1.8x10-5 mutations per generation, consistent with the many different mutations identified (69 in 81 pedigrees) and suggesting significant selection against mutant alleles. The mutation detection rate, in this study, of >50% is comparable to that achieved for other large multiexon genes and shows the feasibility of genetic diagnosis in this disorder.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Lana Strmecki
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Vicki Gamble
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Sarah Burton
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Vicky Sneddon
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Belén Peral
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Sushmita Roy
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Aysin Bakkaloglu
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Radovan Komel
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Christopher G. Winearls
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Peter C. Harris
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| |
Collapse
|
47
|
Sankaranarayanan K, Chakraborty R. Ionizing radiation and genetic risks. XII. The concept of "potential recoverability correction factor" (PRCF) and its use for predicting the risk of radiation-inducible genetic disease in human live births. Mutat Res 2000; 453:129-81. [PMID: 11024484 DOI: 10.1016/s0027-5107(00)00107-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genetic risks of radiation exposure of humans are generally expressed as expected increases in the frequencies of genetic diseases over those that occur naturally in the population as a result of spontaneous mutations. Since human data on radiation-induced germ cell mutations and genetic diseases remain scanty, the rates derived from the induced frequencies of mutations in mouse genes are used for this purpose. Such an extrapolation from mouse data to the risk of genetic diseases will be valid only if the average rates of inducible mutations in human genes of interest and the average rates of induced mutations in mice are similar. Advances in knowledge of human genetic diseases and in molecular studies of radiation-induced mutations in experimental systems now question the validity of the above extrapolation. In fact, they (i) support the view that only in a limited number of genes in the human genome, induced mutations may be compatible with viability and hence recoverable in live births and (ii) suggest that the average rate of induced mutations in human genes of interest from the disease point of view will be lower than that assumed from mouse results. Since, at present, there is no alternative to the use of mouse data on induced mutation rates, there is a need to bridge the gap between these and the risk of potentially inducible genetic diseases in human live births. In this paper, we advance the concept of what we refer to here as "the potential recoverability correction factor" (PRCF) to bridge the above gap in risk estimation and present a method to estimate PRCF. In developing the concept of PRCF, we first used the available information on radiation-induced mutations recovered in experimental studies to define some criteria for assessing potential recoverability of induced mutations and then applied these to human genes on a gene-by-gene basis. The analysis permitted us to estimate unweighted PRCFs (i.e. the fraction of genes among the total studied that might contribute to recoverable induced mutations) and weighted PRCFs (i.e. PRCFs weighted by the incidences of the respective diseases). The estimates are: 0.15 (weighted) to 0.30 (unweighted) for autosomal dominant and X-linked diseases and 0.02 (weighted) to 0.09 (unweighted) for chronic multifactorial diseases. The PRCF calculations are unnecessary for autosomal recessive diseases since the risks projected for the first few generations even without using PRCFs are already very small. For congenital abnormalities, PRCFs cannot be reliably estimated. With the incorporation of PRCF into the equation used for predicting risk, the risk per unit dose becomes the product of four quantities (risk per unit dose=Px(1/DD)xMCxPRCF) where P is the baseline frequency of the genetic disease, 1/DD is the relative mutation risk per unit dose, MC is the mutation component and PRCF is the disease-class-specific potential recoverability correction factor instead of the first three (as has been the case thus far). Since PRCF is a fraction, it is obvious that the estimate of risk obtained with the revised risk equation will be smaller than previously calculated values.
Collapse
Affiliation(s)
- K Sankaranarayanan
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University Medical Centre, Sylvius Laboratories, Wassenaarseweg 72, 2333, AL Leiden, The Netherlands.
| | | |
Collapse
|
48
|
Phakdeekitcharoen B, Watnick TJ, Ahn C, Whang DY, Burkhart B, Germino GG. Thirteen novel mutations of the replicated region of PKD1 in an Asian population. Kidney Int 2000; 58:1400-12. [PMID: 11012875 DOI: 10.1046/j.1523-1755.2000.00302.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Mutations of PKD1 are thought to account for approximately 85% of all mutations in autosomal dominant polycystic kidney disease (ADPKD). The search for PKD1 mutations has been hindered by both its large size and complicated genomic structure. To date, few mutations that affect the replicated segment of PKD1 have been described, and virtually all have been reported in Caucasian patients. METHODS In the present study, we have used a long-range polymerase chain reaction (PCR)-based strategy previously developed by our laboratory to analyze exons in the replicated region of PKD1 in a population of 41 unrelated Thai and 6 unrelated Korean families with ADPKD. We have amplified approximately 3.5 and approximately 5 kb PKD1 gene-specific fragments (5'MR and 5'LR) containing exons 13 to 15 and 15 to 21 and performed single-stand conformation analysis (SSCA) on nested PCR products. RESULTS Nine novel pathogenic mutations were detected, including six nonsense and three frameshift mutations. One of the deletions was shown to be a de novo mutation. Four potentially pathogenic variants, including one 3 bp insertion and three missense mutations, were also discovered. Two of the nonconservative amino acid substitutions were predicted to disrupt the three-dimensional structure of the PKD repeats. In addition, six polymorphisms, including two missense and four silent nucleotide substitutions, were identified. Approximately 25% of both the pathogenic and normal variants were found to be present in at least one of the homologous loci. CONCLUSION To our knowledge, this is the first report of mutation analysis of the replicated region of PKD1 in a non-Caucasian population. The methods used in this study are widely applicable and can be used to characterize PKD1 in a number of ethnic groups using DNA samples prepared using standard techniques. Our data suggest that gene conversion may play a significant role in producing variability of the PKD1 sequence in this population. The identification of additional mutations will help guide the study of polycystin-1 and better help us to understand the pathophysiology of this common disease.
Collapse
Affiliation(s)
- B Phakdeekitcharoen
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
49
|
Watnick T, He N, Wang K, Liang Y, Parfrey P, Hefferton D, St George-Hyslop P, Germino G, Pei Y. Mutations of PKD1 in ADPKD2 cysts suggest a pathogenic effect of trans-heterozygous mutations. Nat Genet 2000; 25:143-4. [PMID: 10835625 DOI: 10.1038/75981] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1 and PKD2. The products of these genes associate to form heteromeric complexes. Several models have been proposed to explain the mechanism of cyst formation. Here we find somatic mutations of PKD2 in 71% of ADPKD2 cysts analysed. Clonal somatic mutations of PKD1 were identified in a subset of cysts that lacked PKD2 mutations.
Collapse
Affiliation(s)
- T Watnick
- [1] Department of Medicine, Division of Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Perhaps nothing in the fields of medicine and nephrology is moving more rapidly than genetics. From this movement are opportunities for discovery, new therapy, and better counseling for patients. At a level of basic science, renal medicine has been a consistent contributor to this emerging discipline, but our current approach to training in the methods and uses of human genetics probably will not keep up with the technology, nor the needs of the modern bedside practitioner. The facile use of genetics in the next century will require the construction and exploration of new disease models, rededication to human informatics, and teaching the language of molecular and population genomics.
Collapse
Affiliation(s)
- A L George
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|