1
|
Makarchikov AF, Wins P, Bettendorff L. Biochemical and medical aspects of vitamin B 1 research. Neurochem Int 2025; 185:105962. [PMID: 40058602 DOI: 10.1016/j.neuint.2025.105962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/15/2025]
Abstract
Vitamin B1 is an indispensable food factor for the human and animal body. In animals, vitamin B1 is found in the form of thiamine and its phosphate esters - thiamine mono-, di- and triphosphate, as well as an adenylated derivative - adenosine thiamine triphosphate. At present, the only vitamin B1 form with biochemical functions being elucidated is thiamine diphosphate, which serves as a coenzyme for several important enzymes involved in carbohydrate, amino acid, fatty acid and energy metabolism. Here we review the latest developments in the field of vitamin B1 research in animals. Transport, metabolism and biological role of thiamine and its derivatives are considered as well as the involvement of vitamin B1-dependent processes in human diseases and its therapeutic issues, a field that has gained momentum with several important recent developments.
Collapse
Affiliation(s)
- Alexander F Makarchikov
- Grodno State Agrarian University, 28 Tereshkova St., 230005, Grodno, Belarus; Institute of Biochemistry of Biologically Active Compounds of NAS of Belarus, 7 Antoni Tyzenhauz Square, 230023, Grodno, Belarus
| | - Pierre Wins
- Laboratory of Neurophysiology, GIGA Institute, University of Liège, Avenue Hippocrate 15, B-4000, Liege, Belgium
| | - Lucien Bettendorff
- Laboratory of Neurophysiology, GIGA Institute, University of Liège, Avenue Hippocrate 15, B-4000, Liege, Belgium.
| |
Collapse
|
2
|
Jiahui W, Xiang Y, Youhuan Z, Xiaomin M, Yuanzhu G, Dejian Z, Jie W, Yinkun F, Shi F, Juncheng S, Masha H, Marcia H, Peiyi W, Yingjie X, Wen Y. The mitochondrial DNAJC co-chaperone TCAIM reduces α-ketoglutarate dehydrogenase protein levels to regulate metabolism. Mol Cell 2025; 85:638-651.e9. [PMID: 39889707 DOI: 10.1016/j.molcel.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/01/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
Mitochondrial heat shock proteins and co-chaperones play crucial roles in maintaining proteostasis by regulating unfolded proteins, usually without specific target preferences. In this study, we identify a DNAJC-type co-chaperone: T cell activation inhibitor, mitochondria (TCAIM), and demonstrate its specific binding to α-ketoglutarate dehydrogenase (OGDH), a key rate-limiting enzyme in mitochondrial metabolism. This interaction suppresses OGDH function and subsequently reduces carbohydrate catabolism in both cultured cells and murine models. Using cryoelectron microscopy (cryo-EM), we resolve the human OGDH-TCAIM complex and reveal that TCAIM binds to OGDH without altering its apo structure. Most importantly, we discover that TCAIM facilitates the reduction of functional OGDH through its interaction, which depends on HSPA9 and LONP1. Our findings unveil a role of the mitochondrial proteostasis system in regulating a critical metabolic enzyme and introduce a previously unrecognized post-translational regulatory mechanism.
Collapse
Affiliation(s)
- Wang Jiahui
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yu Xiang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zhong Youhuan
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ma Xiaomin
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gao Yuanzhu
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhou Dejian
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Biophysics, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Wang Jie
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fu Yinkun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Fan Shi
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Su Juncheng
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huang Masha
- Department of Gastrointestinal Surgery, Renji Hospital Affiliated, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haigis Marcia
- Department of Cell Biology at Harvard Medical School, Boston, MA 02115, USA
| | - Wang Peiyi
- Cryo-EM Center, Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xu Yingjie
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yang Wen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai, China.
| |
Collapse
|
3
|
Wu R, Khamrui S, Dodatko T, Leandro J, Sabovic A, Violante S, Cross JR, Marsan E, Kumar K, DeVita RJ, Lazarus MB, Houten SM. Characterization, Structure, and Inhibition of the Human Succinyl-CoA:glutarate-CoA Transferase, a Putative Genetic Modifier of Glutaric Aciduria Type 1. ACS Chem Biol 2024; 19:1544-1553. [PMID: 38915184 PMCID: PMC11259535 DOI: 10.1021/acschembio.4c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Glutaric Aciduria Type 1 (GA1) is a serious inborn error of metabolism with no pharmacological treatments. A novel strategy to treat this disease is to divert the toxic biochemical intermediates to less toxic or nontoxic metabolites. Here, we report a putative novel target, succinyl-CoA:glutarate-CoA transferase (SUGCT), which we hypothesize suppresses the GA1 metabolic phenotype through decreasing glutaryl-CoA and the derived 3-hydroxyglutaric acid. SUGCT is a type III CoA transferase that uses succinyl-CoA and glutaric acid as substrates. We report the structure of SUGCT, develop enzyme- and cell-based assays, and identify valsartan and losartan carboxylic acid as inhibitors of the enzyme in a high-throughput screen of FDA-approved compounds. The cocrystal structure of SUGCT with losartan carboxylic acid revealed a novel pocket in the active site and further validated the high-throughput screening approach. These results may form the basis for the future development of new pharmacological intervention to treat GA1.
Collapse
Affiliation(s)
- Ruoxi Wu
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Amanda Sabovic
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Sara Violante
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States
| | - Justin R Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, New York 10021, United States
| | - Eric Marsan
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Kunal Kumar
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J DeVita
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Michael B Lazarus
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
4
|
Wongkittichote P, Pantano C, He M, Hong X, Demczko MM. Clinical, biochemical and molecular characterization of a new case with FDX2-related mitochondrial disorder: Potential biomarkers and treatment options. JIMD Rep 2024; 65:102-109. [PMID: 38444577 PMCID: PMC10910223 DOI: 10.1002/jmd2.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 03/07/2024] Open
Abstract
Ferredoxin-2 (FDX2) is an electron transport protein required for iron-sulfur clusters biosynthesis. Pathogenic variants in FDX2 have been associated with autosomal recessive FDX2-related disorder characterized by mitochondrial myopathy with or without optic atrophy and leukoencephalopathy. We described a new case harboring compound heterozygous variants in FDX2 who presented with recurrent rhabdomyolysis with severe episodes affecting respiratory muscle. Biochemical analysis of the patients revealed hyperexcretion of 2-hydroxyadipic acid, along with previously reported biochemical abnormalities. The proband demonstrated increased lactate and creatine kinase (CK) with increased amount of glucose infusion. Lactate and CK drastically decreased when parenteral nutrition containing high protein and lipid contents with low glucose was initiated. Overall, we described a new case of FDX2-related disorder and compare clinical, biochemical and molecular findings with previously reported cases. We demonstrated that 2-hydroxyadipic acid biomarker could be used as an adjunct biomarker for FDX2-related disorder and the use of parenteral nutrition as a treatment option for the patient with FDX2-related disorder during rhabdomyolysis episode. Highlights 2-Hydroxyadipic acid can serve as a potential adjunct biomarker for iron-sulfur assembly defects and lipoic acid biosynthesis disorders. Parenteral nutrition containing high lipid and protein content could be used to reverse acute rhabdomyolysis episodes in the patients with FDX2-related disorder.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pediatrics, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
| | - Cassandra Pantano
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Miao He
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Xinying Hong
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Matthew M. Demczko
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- University of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
5
|
Khamrui S, Dodatko T, Wu R, Leandro J, Sabovic A, Violante S, Cross JR, Marsan E, Kumar K, DeVita RJ, Lazarus MB, Houten SM. Characterization, structure and inhibition of the human succinyl-CoA:glutarate-CoA transferase, a genetic modifier of glutaric aciduria type 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.578422. [PMID: 38370847 PMCID: PMC10871334 DOI: 10.1101/2024.02.07.578422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Glutaric Aciduria Type 1 (GA1) is a serious inborn error of metabolism with no pharmacological treatments. A novel strategy to treat this disease is to divert the toxic biochemical intermediates to less toxic or non-toxic metabolites. Here, we report a novel target, SUGCT, which we hypothesize suppresses the GA1 metabolic phenotype through decreasing glutaryl-CoA. We report the structure of SUGCT, the first eukaryotic structure of a type III CoA transferase, develop a high-throughput enzyme assay and a cell-based assay, and identify valsartan and losartan carboxylic acid as inhibitors of the enzyme validating the screening approach. These results may form the basis for future development of new pharmacological intervention to treat GA1.
Collapse
Affiliation(s)
- Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ruoxi Wu
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Amanda Sabovic
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Violante
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Justin R. Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Eric Marsan
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kunal Kumar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
6
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Lin SJ, Vona B, Lau T, Huang K, Zaki MS, Aldeen HS, Karimiani EG, Rocca C, Noureldeen MM, Saad AK, Petree C, Bartolomaeus T, Abou Jamra R, Zifarelli G, Gotkhindikar A, Wentzensen IM, Liao M, Cork EE, Varshney P, Hashemi N, Mohammadi MH, Rad A, Neira J, Toosi MB, Knopp C, Kurth I, Challman TD, Smith R, Abdalla A, Haaf T, Suri M, Joshi M, Chung WK, Moreno-De-Luca A, Houlden H, Maroofian R, Varshney GK. Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity. Genome Med 2023; 15:102. [PMID: 38031187 PMCID: PMC10688095 DOI: 10.1186/s13073-023-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders".
Collapse
Affiliation(s)
- Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Center, Eberhard Karls University, Tübingen, 72076, Germany
| | - Tracy Lau
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Huda Shujaa Aldeen
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace London, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Mahmoud M Noureldeen
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed K Saad
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | | | | | | | - Emalyn Elise Cork
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aboulfazl Rad
- Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Center, Eberhard Karls University, Tübingen, 72076, Germany
| | - Juanita Neira
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Thomas D Challman
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Rebecca Smith
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Asmahan Abdalla
- Department of Pediatric Endocrinology, Gaafar Ibn Auf Children's Tertiary Hospital, Khartoum, Sudan
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Manali Joshi
- Bioinformatics Centre, S. P. Pune University, Pune, India
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospitaland, Harvard Medical School , Boston, MA, USA
| | - Andres Moreno-De-Luca
- Department of Diagnostic Radiology, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK.
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
8
|
Wongkittichote P, Cuddapah SR, Master SR, Grange DK, Dietzen D, Roper SM, Ganetzky RD. Biochemical characterization of patients with dihydrolipoamide dehydrogenase deficiency. JIMD Rep 2023; 64:367-374. [PMID: 37701333 PMCID: PMC10494496 DOI: 10.1002/jmd2.12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 09/14/2023] Open
Abstract
Dihydrolipoamide dehydrogenase (DLD; E3) oxidizes lipoic acid. Restoring the oxidized state allows lipoic acid to act as a necessary electron sink for the four mitochondrial keto-acid dehydrogenases: pyruvate dehydrogenase, alpha-ketoglutarate dehydrogenase, branched-chain α-keto-acid dehydrogenase, and 2-oxoadipate dehydrogenase. DLD deficiency (DLDD) is caused by biallelic pathogenic variants in DLD. Three major forms have been described: encephalopathic, hepatic, and myopathic, although DLDD patients exhibit overlapping phenotypes. Hyperlactatemia, hyperexcretion of tricarboxylic acid cycle (TCA) metabolites and branched-chain keto acids, increased plasma branched-chain amino acids and allo-isoleucine are intermittent metabolic abnormalities reported in patients with DLDD. However, the diagnostic performance of these metabolites has never been studied. Therefore, we sought to systematically evaluate the diagnostic utility of these biomarkers for DLDD. We retrospectively analyzed the results of biochemical testing of six unrelated DLDD patients, including values obtained during both well visits and acute decompensation episodes. Elevation of branched-chain amino acid concentrations was not consistently observed. We found that five of six patients in our cohort had a maximum lifetime value of allo-isoleucine of 6 μmol/L, showing that alloisoleucine elevations even during illness may be subtle. Urine organic acid analysis (UOA) during acute decompensation episodes was abnormal in all cases; however, the pattern of abnormalities had high intersubject variability. No single biomarker was universally present, even in patients experiencing metabolic decompensation. We also observed novel biochemical associations: three patients had hyperexcretion of TCA cycle metabolites during crisis; in two patients, 2-ketoadipic and 2-hydroxyadipic acids, by products of lysine degradation, were detected. We propose that these result from 2-oxoadipate dehydrogenase deficiency, an underappreciated biochemical abnormality in DLD. Given the diversity of biochemical profiles among the patients with DLDD, we conclude that accurate biochemical diagnosis relies on a high index of suspicion and multipronged biochemical analysis, including both plasma amino acid and urine organic acid quantitation during decompensation. Biochemical diagnosis during the well state is challenging. We emphasize the critical importance of multiple simultaneous biochemical tests for diagnosis and monitoring of DLDD. We also highlight the under-recognized role of DLD in the lysine degradation pathway. Larger cohorts of patients are needed to establish a correlation between the biochemical pattern and clinical outcomes, as well as a genotype-phenotype correlation.
Collapse
Affiliation(s)
- Parith Wongkittichote
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Sanmati R. Cuddapah
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Stephen R. Master
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Dorothy K. Grange
- Division of Genetics and Genomic Medicine, Department of PediatricsWashington University School of MedicineSt. LouisMissouriUSA
| | - Dennis Dietzen
- Department of Pathology & ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Stephen M. Roper
- Department of Pathology & ImmunologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Rebecca D. Ganetzky
- Division of Human GeneticsChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
9
|
Houten SM, Dodatko T, Dwyer W, Violante S, Chen H, Stauffer B, DeVita RJ, Vaz FM, Cross JR, Yu C, Leandro J. Acyl-CoA dehydrogenase substrate promiscuity: Challenges and opportunities for development of substrate reduction therapy in disorders of valine and isoleucine metabolism. J Inherit Metab Dis 2023; 46:931-942. [PMID: 37309295 PMCID: PMC10526699 DOI: 10.1002/jimd.12642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Toxicity of accumulating substrates is a significant problem in several disorders of valine and isoleucine degradation notably short-chain enoyl-CoA hydratase (ECHS1 or crotonase) deficiency, 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, propionic acidemia (PA), and methylmalonic aciduria (MMA). Isobutyryl-CoA dehydrogenase (ACAD8) and short/branched-chain acyl-CoA dehydrogenase (SBCAD, ACADSB) function in the valine and isoleucine degradation pathways, respectively. Deficiencies of these acyl-CoA dehydrogenase (ACAD) enzymes are considered biochemical abnormalities with limited or no clinical consequences. We investigated whether substrate reduction therapy through inhibition of ACAD8 and SBCAD can limit the accumulation of toxic metabolic intermediates in disorders of valine and isoleucine metabolism. Using analysis of acylcarnitine isomers, we show that 2-methylenecyclopropaneacetic acid (MCPA) inhibited SBCAD, isovaleryl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase, but not ACAD8. MCPA treatment of wild-type and PA HEK-293 cells caused a pronounced decrease in C3-carnitine. Furthermore, deletion of ACADSB in HEK-293 cells led to an equally strong decrease in C3-carnitine when compared to wild-type cells. Deletion of ECHS1 in HEK-293 cells caused a defect in lipoylation of the E2 component of the pyruvate dehydrogenase complex, which was not rescued by ACAD8 deletion. MCPA was able to rescue lipoylation in ECHS1 KO cells, but only in cells with prior ACAD8 deletion. SBCAD was not the sole ACAD responsible for this compensation, which indicates substantial promiscuity of ACADs in HEK-293 cells for the isobutyryl-CoA substrate. Substrate promiscuity appeared less prominent for 2-methylbutyryl-CoA at least in HEK-293 cells. We suggest that pharmacological inhibition of SBCAD to treat PA should be investigated further.
Collapse
Affiliation(s)
- Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - William Dwyer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sara Violante
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Brandon Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Frédéric M. Vaz
- Amsterdam UMC location University of Amsterdam, Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children’s Hospital, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Justin R. Cross
- The Donald B. and Catherine C. Marron Cancer Metabolism Center, Memorial Sloan Kettering Cancer Center, New York, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Bunik V. The Therapeutic Potential of Vitamins B1, B3 and B6 in Charcot-Marie-Tooth Disease with the Compromised Status of Vitamin-Dependent Processes. BIOLOGY 2023; 12:897. [PMID: 37508330 PMCID: PMC10376249 DOI: 10.3390/biology12070897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023]
Abstract
Understanding the molecular mechanisms of neurological disorders is necessary for the development of personalized medicine. When the diagnosis considers not only the disease symptoms, but also their molecular basis, treatments tailored to individual patients may be suggested. Vitamin-responsive neurological disorders are induced by deficiencies in vitamin-dependent processes. These deficiencies may occur due to genetic impairments of proteins whose functions are involved with the vitamins. This review considers the enzymes encoded by the DHTKD1, PDK3 and PDXK genes, whose mutations are observed in patients with Charcot-Marie-Tooth (CMT) disease. The enzymes bind or produce the coenzyme forms of vitamins B1 (thiamine diphosphate, ThDP) and B6 (pyridoxal-5'-phosphate, PLP). Alleviation of such disorders through administration of the lacking vitamin or its derivative calls for a better introduction of mechanistic knowledge to medical diagnostics and therapies. Recent data on lower levels of the vitamin B3 derivative, NAD+, in the blood of patients with CMT disease vs. control subjects are also considered in view of the NAD-dependent mechanisms of pathological axonal degeneration, suggesting the therapeutic potential of vitamin B3 in these patients. Thus, improved diagnostics of the underlying causes of CMT disease may allow patients with vitamin-responsive disease forms to benefit from the administration of the vitamins B1, B3, B6, their natural derivatives, or their pharmacological forms.
Collapse
Affiliation(s)
- Victoria Bunik
- Belozersky Institute of Physicochemical Biology, Department of Biokinetics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia
- Department of Biochemistry, Sechenov University, 119048 Moscow, Russia
| |
Collapse
|
11
|
Probing the E1o-E2o and E1a-E2o Interactions in Binary Subcomplexes of the Human 2-Oxoglutarate Dehydrogenase and 2-Oxoadipate Dehydrogenase Complexes by Chemical Cross-Linking Mass Spectrometry and Molecular Dynamics Simulation. Int J Mol Sci 2023; 24:ijms24054555. [PMID: 36901986 PMCID: PMC10003691 DOI: 10.3390/ijms24054555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
The human 2-oxoglutarate dehydrogenase complex (hOGDHc) is a key enzyme in the tricarboxylic acid cycle and is one of the main regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. Evidence was obtained for formation of a hybrid complex between the hOGDHc and its homologue the 2-oxoadipate dehydrogenase complex (hOADHc) in the L-lysine metabolic pathway, suggesting a crosstalk between the two distinct pathways. Findings raised fundamental questions about the assembly of hE1a (2-oxoadipate-dependent E1 component) and hE1o (2-oxoglutarate-dependent E1) to the common hE2o core component. Here we report chemical cross-linking mass spectrometry (CL-MS) and molecular dynamics (MD) simulation analyses to understand assembly in binary subcomplexes. The CL-MS studies revealed the most prominent loci for hE1o-hE2o and hE1a-hE2o interactions and suggested different binding modes. The MD simulation studies led to the following conclusions: (i) The N-terminal regions in E1s are shielded by, but do not interact directly with hE2o. (ii) The hE2o linker region exhibits the highest number of H-bonds with the N-terminus and α/β1 helix of hE1o, yet with the interdomain linker and α/β1 helix of hE1a. (iii) The C-termini are involved in dynamic interactions in complexes, suggesting the presence of at least two conformations in solution.
Collapse
|
12
|
Functional Versatility of the Human 2-Oxoadipate Dehydrogenase in the L-Lysine Degradation Pathway toward Its Non-Cognate Substrate 2-Oxopimelic Acid. Int J Mol Sci 2022; 23:ijms23158213. [PMID: 35897808 PMCID: PMC9367764 DOI: 10.3390/ijms23158213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 11/17/2022] Open
Abstract
The human 2-oxoadipate dehydrogenase complex (OADHc) in L-lysine catabolism is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA and NADH (+H+). Genetic findings have linked the DHTKD1 encoding 2-oxoadipate dehydrogenase (E1a), the first component of the OADHc, to pathogenesis of AMOXAD, eosinophilic esophagitis (EoE), and several neurodegenerative diseases. A multipronged approach, including circular dichroism spectroscopy, Fourier Transform Mass Spectrometry, and computational approaches, was applied to provide novel insight into the mechanism and functional versatility of the OADHc. The results demonstrate that E1a oxidizes a non-cognate substrate 2-oxopimelate (OP) as well as OA through the decarboxylation step, but the OADHc was 100-times less effective in reactions producing adipoyl-CoA and NADH from the dihydrolipoamide succinyltransferase (E2o) and dihydrolipoamide dehydrogenase (E3). The results revealed that the E2o is capable of producing succinyl-CoA, glutaryl-CoA, and adipoyl-CoA. The important conclusions are the identification of: (i) the functional promiscuity of E1a and (ii) the ability of the E2o to form acyl-CoA products derived from homologous 2-oxo acids with five, six, and even seven carbon atoms. The findings add to our understanding of both the OADHc function in the L-lysine degradative pathway and of the molecular mechanisms leading to the pathogenesis associated with DHTKD1 variants.
Collapse
|
13
|
Osmanovic A, Gogol I, Martens H, Widjaja M, Müller K, Schreiber-Katz O, Feuerhake F, Langhans CD, Schmidt G, Andersen PM, Ludolph AC, Weishaupt JH, Brand F, Petri S, Weber RG. Heterozygous DHTKD1 Variants in Two European Cohorts of Amyotrophic Lateral Sclerosis Patients. Genes (Basel) 2021; 13:84. [PMID: 35052424 PMCID: PMC8774751 DOI: 10.3390/genes13010084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/26/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive upper and lower motor neuron (LMN) loss. As ALS and other neurodegenerative diseases share genetic risk factors, we performed whole-exome sequencing in ALS patients focusing our analysis on genes implicated in neurodegeneration. Thus, variants in the DHTKD1 gene encoding dehydrogenase E1 and transketolase domain containing 1 previously linked to 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth (CMT) disease type 2, and spinal muscular atrophy (SMA) were identified. In two independent European ALS cohorts (n = 643 cases), 10 sporadic cases of 225 (4.4%) predominantly sporadic patients of cohort 1, and 12 familial ALS patients of 418 (2.9%) ALS families of cohort 2 harbored 14 different rare heterozygous DHTKD1 variants predicted to be deleterious. Four DHTKD1 variants were previously described pathogenic variants, seven were recurrent, and eight were located in the E1_dh dehydrogenase domain. Nonsense variants located in the E1_dh domain were significantly more prevalent in ALS patients versus controls. The phenotype of ALS patients carrying DHTKD1 variants partially overlapped with CMT and SMA by presence of sensory impairment and a higher frequency of LMN-predominant cases. Our results argue towards rare heterozygous DHTKD1 variants as potential contributors to ALS phenotype and, possibly, pathogenesis.
Collapse
Affiliation(s)
- Alma Osmanovic
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
- Essen Center for Rare Diseases (EZSE), University Hospital Essen, 45147 Essen, Germany
| | - Isabel Gogol
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Helge Martens
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
| | - Maylin Widjaja
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Kathrin Müller
- Department of Neurology, University of Ulm, 89070 Ulm, Germany; (K.M.); (A.C.L.); (J.H.W.)
| | | | - Friedrich Feuerhake
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
| | - Claus-Dieter Langhans
- GCMS Laboratory, Dietmar Hopp Metabolic Center, University Children’s Hospital, 69120 Heidelberg, Germany;
| | - Gunnar Schmidt
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
| | - Peter M. Andersen
- Department of Clinical Sciences, Neurosciences, Umeå University, 90185 Umeå, Sweden;
| | - Albert C. Ludolph
- Department of Neurology, University of Ulm, 89070 Ulm, Germany; (K.M.); (A.C.L.); (J.H.W.)
| | - Jochen H. Weishaupt
- Department of Neurology, University of Ulm, 89070 Ulm, Germany; (K.M.); (A.C.L.); (J.H.W.)
- Division for Neurodegenerative Diseases, Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Frank Brand
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ruthild G. Weber
- Department of Human Genetics, Hannover Medical School, 30625 Hannover, Germany; (A.O.); (I.G.); (H.M.); (M.W.); (G.S.); (F.B.)
| |
Collapse
|
14
|
The biochemical subtype is a predictor for cognitive function in glutaric aciduria type 1: a national prospective follow-up study. Sci Rep 2021; 11:19300. [PMID: 34588557 PMCID: PMC8481501 DOI: 10.1038/s41598-021-98809-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
The aim of the study was a systematic evaluation of cognitive development in individuals with glutaric aciduria type 1 (GA1), a rare neurometabolic disorder, identified by newborn screening in Germany. This national, prospective, observational, multi-centre study includes 107 individuals with confirmed GA1 identified by newborn screening between 1999 and 2020 in Germany. Clinical status, development, and IQ were assessed using standardized tests. Impact of interventional and non-interventional parameters on cognitive outcome was evaluated. The majority of tested individuals (n = 72) showed stable IQ values with age (n = 56 with IQ test; median test age 11 years) but a significantly lower performance (median [IQR] IQ 87 [78-98]) than in general population, particularly in individuals with a biochemical high excreter phenotype (84 [75-96]) compared to the low excreter group (98 [92-105]; p = 0.0164). For all patients, IQ results were homogenous on subscale levels. Sex, clinical motor phenotype and quality of metabolic treatment had no impact on cognitive functions. Long-term neurologic outcome in GA1 involves both motor and cognitive functions. The biochemical high excreter phenotype is the major risk factor for cognitive impairment while cognitive functions do not appear to be impacted by current therapy and striatal damage. These findings implicate the necessity of new treatment concepts.
Collapse
|
15
|
Nemeria NS, Zhang X, Leandro J, Zhou J, Yang L, Houten SM, Jordan F. Toward an Understanding of the Structural and Mechanistic Aspects of Protein-Protein Interactions in 2-Oxoacid Dehydrogenase Complexes. Life (Basel) 2021; 11:407. [PMID: 33946784 PMCID: PMC8146983 DOI: 10.3390/life11050407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
The 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in the tricarboxylic acid (TCA) cycle and represents one of the major regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. The OGDHc impacts cell metabolic and cell signaling pathways through the coupling of 2-oxoglutarate metabolism to gene transcription related to tumor cell proliferation and aging. DHTKD1 is a gene encoding 2-oxoadipate dehydrogenase (E1a), which functions in the L-lysine degradation pathway. The potentially damaging variants in DHTKD1 have been associated to the (neuro) pathogenesis of several diseases. Evidence was obtained for the formation of a hybrid complex between the OGDHc and E1a, suggesting a potential cross talk between the two metabolic pathways and raising fundamental questions about their assembly. Here we reviewed the recent findings and advances in understanding of protein-protein interactions in OGDHc and 2-oxoadipate dehydrogenase complex (OADHc), an understanding that will create a scaffold to help design approaches to mitigate the effects of diseases associated with dysfunction of the TCA cycle or lysine degradation. A combination of biochemical, biophysical and structural approaches such as chemical cross-linking MS and cryo-EM appears particularly promising to provide vital information for the assembly of 2-oxoacid dehydrogenase complexes, their function and regulation.
Collapse
Affiliation(s)
- Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Joao Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Jieyu Zhou
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Luying Yang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (J.L.); (S.M.H.)
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, NJ 07102, USA; (J.Z.); (L.Y.)
| |
Collapse
|
16
|
Leandro J, Bender A, Dodatko T, Argmann C, Yu C, Houten SM. Glutaric aciduria type 3 is a naturally occurring biochemical trait in inbred mice of 129 substrains. Mol Genet Metab 2021; 132:139-145. [PMID: 33483254 DOI: 10.1016/j.ymgme.2021.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 11/24/2022]
Abstract
The glutaric acidurias are a group of inborn errors of metabolism with different etiologies. Glutaric aciduria type 3 (GA3) is a biochemical phenotype with uncertain clinical relevance caused by a deficiency of succinyl-CoA:glutarate-CoA transferase (SUGCT). SUGCT catalyzes the succinyl-CoA-dependent conversion of glutaric acid into glutaryl-CoA preventing urinary loss of the organic acid. Here, we describe the presence of a GA3 trait in mice of 129 substrains due to SUGCT deficiency, which was identified by screening of urine organic acid profiles obtained from different inbred mouse strains including 129S2/SvPasCrl. Molecular and biochemical analyses in an F2 population of the parental C57BL/6J and 129S2/SvPasCrl strains (B6129F2) confirmed that the GA3 trait occurred in Sugct129/129 animals. We evaluated the impact of SUGCT deficiency on metabolite accumulation in the glutaric aciduria type 1 (GA1) mouse model. We found that GA1 mice with SUGCT deficiency have decreased excretion of urine 3-hydroxyglutaric acid and decreased levels glutarylcarnitine in urine, plasma and kidney. Our work demonstrates that SUGCT contributes to the production of glutaryl-CoA under conditions of low and pathologically high glutaric acid levels. Our work also highlights the notion that unexpected biochemical phenotypes can occur in widely used inbred animal lines.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aaron Bender
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mount Sinai Genomics, Inc, Stamford, CT 06902, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
17
|
Wang C, Calcutt MW, Ferguson JF. Knock-Out of DHTKD1 Alters Mitochondrial Respiration and Function, and May Represent a Novel Pathway in Cardiometabolic Disease Risk. Front Endocrinol (Lausanne) 2021; 12:710698. [PMID: 34484123 PMCID: PMC8414881 DOI: 10.3389/fendo.2021.710698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/26/2021] [Indexed: 01/14/2023] Open
Abstract
Cardiometabolic disease affects the majority of individuals worldwide. The metabolite α-aminoadipic acid (2-AAA) was identified as a biomarker of Type 2 Diabetes (T2D). However, the mechanisms underlying this association remain unknown. DHTKD1, a central gene in the 2-AAA pathway, has been linked to 2-AAA levels and metabolic phenotypes. However, relatively little is known about its function. Here we report that DHTKD1 knock-out (KO) in HAP-1 cells leads to impaired mitochondrial structure and function. Despite impaired mitochondrial respiration and less ATP production, normal cell proliferation rate is maintained, potentially through a series of compensatory mechanisms, including increased mitochondrial content and Akt activation, p38, and ERK signaling. Common variants in DHTKD1 associate with Type 2 Diabetes and cardiometabolic traits in large genome-wide associations studies. These findings highlight the vital role of DHTKD1 in cellular metabolism and establish DHTKD1-mediated mitochondrial dysfunction as a potential novel pathway in cardiometabolic disease.
Collapse
Affiliation(s)
- Chuan Wang
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - M. Wade Calcutt
- Department of Biochemistry, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN, United States
| | - Jane F. Ferguson
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- *Correspondence: Jane F. Ferguson,
| |
Collapse
|
18
|
Leandro J, Dodatko T, DeVita RJ, Chen H, Stauffer B, Yu C, Houten SM. Deletion of 2-aminoadipic semialdehyde synthase limits metabolite accumulation in cell and mouse models for glutaric aciduria type 1. J Inherit Metab Dis 2020; 43:1154-1164. [PMID: 32567100 DOI: 10.1002/jimd.12276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 11/10/2022]
Abstract
Glutaric aciduria type 1 (GA1) is an inborn error of lysine degradation characterized by acute encephalopathy that is caused by toxic accumulation of lysine degradation intermediates. We investigated the efficacy of substrate reduction through inhibition of 2-aminoadipic semialdehyde synthase (AASS), an enzyme upstream of the defective glutaryl-CoA dehydrogenase (GCDH), in a cell line and mouse model of GA1. We show that loss of AASS function in GCDH-deficient HEK-293 cells leads to an approximately fivefold reduction in the established GA1 clinical biomarker glutarylcarnitine. In the GA1 mouse model, deletion of Aass leads to a 4.3-, 3.8-, and 3.2-fold decrease in the glutaric acid levels in urine, brain, and liver, respectively. Parallel decreases were observed in urine and brain 3-hydroxyglutaric acid levels, and plasma, urine, and brain glutarylcarnitine levels. These in vivo data demonstrate that the saccharopine pathway is the main source of glutaric acid production in the brain and periphery of a mouse model for GA1, and support the notion that pharmacological inhibition of AASS may represent an attractive strategy to treat GA1.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai New York, New York, USA
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hongjie Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Brandon Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Mount Sinai Genomics, Inc., Stamford, Connecticut, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
19
|
Leandro J, Houten SM. The lysine degradation pathway: Subcellular compartmentalization and enzyme deficiencies. Mol Genet Metab 2020; 131:14-22. [PMID: 32768327 DOI: 10.1016/j.ymgme.2020.07.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 02/07/2023]
Abstract
Lysine degradation via formation of saccharopine is a pathway confined to the mitochondria. The second pathway for lysine degradation, the pipecolic acid pathway, is not yet fully elucidated and known enzymes are localized in the mitochondria, cytosol and peroxisome. The tissue-specific roles of these two pathways are still under investigation. The lysine degradation pathway is clinically relevant due to the occurrence of two severe neurometabolic disorders, pyridoxine-dependent epilepsy (PDE) and glutaric aciduria type 1 (GA1). The existence of three other disorders affecting lysine degradation without apparent clinical consequences opens up the possibility to find alternative therapeutic strategies for PDE and GA1 through pathway modulation. A better understanding of the mechanisms, compartmentalization and interplay between the different enzymes and metabolites involved in lysine degradation is of utmost importance.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
20
|
Leandro J, Khamrui S, Wang H, Suebsuwong C, Nemeria NS, Huynh K, Moustakim M, Secor C, Wang M, Dodatko T, Stauffer B, Wilson CG, Yu C, Arkin MR, Jordan F, Sanchez R, DeVita RJ, Lazarus MB, Houten SM. Inhibition and Crystal Structure of the Human DHTKD1-Thiamin Diphosphate Complex. ACS Chem Biol 2020; 15:2041-2047. [PMID: 32633484 DOI: 10.1021/acschembio.0c00114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
DHTKD1 is the E1 component of the 2-oxoadipate dehydrogenase complex, which is an enzyme involved in the catabolism of (hydroxy-)lysine and tryptophan. Mutations in DHTKD1 have been associated with 2-aminoadipic and 2-oxoadipic aciduria, Charcot-Marie-Tooth disease type 2Q and eosinophilic esophagitis, but the pathophysiology of these clinically distinct disorders remains elusive. Here, we report the identification of adipoylphosphonic acid and tenatoprazole as DHTKD1 inhibitors using targeted and high throughput screening, respectively. We furthermore elucidate the DHTKD1 crystal structure with thiamin diphosphate bound at 2.25 Å. We also report the impact of 10 disease-associated missense mutations on DHTKD1. Whereas the majority of the DHTKD1 variants displayed impaired folding or reduced thermal stability in combination with absent or reduced enzyme activity, three variants showed no abnormalities. Our work provides chemical and structural tools for further understanding of the function of DHTKD1 and its role in several human pathologies.
Collapse
Affiliation(s)
- João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Susmita Khamrui
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Hui Wang
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chalada Suebsuwong
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Natalia S. Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, United States
| | - Khoi Huynh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Moses Moustakim
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Cody Secor
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - May Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Tetyana Dodatko
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Brandon Stauffer
- Mount Sinai Genomics, Inc, Stamford, Connecticut 06902, United States
| | - Christopher G. Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Chunli Yu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Mount Sinai Genomics, Inc, Stamford, Connecticut 06902, United States
| | - Michelle R. Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, United States
| | - Roberto Sanchez
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Robert J. DeVita
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Michael B. Lazarus
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Sander M. Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| |
Collapse
|
21
|
Zhang X, Nemeria NS, Leandro J, Houten S, Lazarus M, Gerfen G, Ozohanics O, Ambrus A, Nagy B, Brukh R, Jordan F. Structure-function analyses of the G729R 2-oxoadipate dehydrogenase genetic variant associated with a disorder of l-lysine metabolism. J Biol Chem 2020; 295:8078-8095. [PMID: 32303640 PMCID: PMC7278340 DOI: 10.1074/jbc.ra120.012761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
2-Oxoadipate dehydrogenase (E1a, also known as DHTKD1, dehydrogenase E1, and transketolase domain-containing protein 1) is a thiamin diphosphate-dependent enzyme and part of the 2-oxoadipate dehydrogenase complex (OADHc) in l-lysine catabolism. Genetic findings have linked mutations in the DHTKD1 gene to several metabolic disorders. These include α-aminoadipic and α-ketoadipic aciduria (AMOXAD), a rare disorder of l-lysine, l-hydroxylysine, and l-tryptophan catabolism, associated with clinical presentations such as developmental delay, mild-to-severe intellectual disability, ataxia, epilepsy, and behavioral disorders that cannot currently be managed by available treatments. A heterozygous missense mutation, c.2185G→A (p.G729R), in DHTKD1 has been identified in most AMOXAD cases. Here, we report that the G729R E1a variant when assembled into OADHc in vitro displays a 50-fold decrease in catalytic efficiency for NADH production and a significantly reduced rate of glutaryl-CoA production by dihydrolipoamide succinyl-transferase (E2o). However, the G729R E1a substitution did not affect any of the three side-reactions associated solely with G729R E1a, prompting us to determine the structure-function effects of this mutation. A multipronged systematic analysis of the reaction rates in the OADHc pathway, supplemented with results from chemical cross-linking and hydrogen-deuterium exchange MS, revealed that the c.2185G→A DHTKD1 mutation affects E1a-E2o assembly, leading to impaired channeling of OADHc intermediates. Cross-linking between the C-terminal region of both E1a and G729R E1a with the E2o lipoyl and core domains suggested that correct positioning of the C-terminal E1a region is essential for the intermediate channeling. These findings may inform the development of interventions to counter the effects of pathogenic DHTKD1 mutations.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Natalia S Nemeria
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - João Leandro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Sander Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Michael Lazarus
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Gary Gerfen
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, New York 10641-2304
| | - Oliver Ozohanics
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Attila Ambrus
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Balint Nagy
- Department of Medical Biochemistry, MTA-SE Laboratory for Neurobiochemistry, Semmelweis University, Budapest H-1094, Hungary
| | - Roman Brukh
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| | - Frank Jordan
- Department of Chemistry, Rutgers, The State University of New Jersey, Newark, New Jersey 07102
| |
Collapse
|