1
|
Mayfield JM, Hitefield NL, Czajewski I, Vanhye L, Holden L, Morava E, van Aalten DMF, Wells L. O-GlcNAc transferase congenital disorder of glycosylation (OGT-CDG): Potential mechanistic targets revealed by evaluating the OGT interactome. J Biol Chem 2024; 300:107599. [PMID: 39059494 PMCID: PMC11381892 DOI: 10.1016/j.jbc.2024.107599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
O-GlcNAc transferase (OGT) is the sole enzyme responsible for the post-translational modification of O-GlcNAc on thousands of target nucleocytoplasmic proteins. To date, nine variants of OGT that segregate with OGT Congenital Disorder of Glycosylation (OGT-CDG) have been reported and characterized. Numerous additional variants have been associated with OGT-CDG, some of which are currently undergoing investigation. This disorder primarily presents with global developmental delay and intellectual disability (ID), alongside other variable neurological features and subtle facial dysmorphisms in patients. Several hypotheses aim to explain the etiology of OGT-CDG, with a prominent hypothesis attributing the pathophysiology of OGT-CDG to mutations segregating with this disorder disrupting the OGT interactome. The OGT interactome consists of thousands of proteins, including substrates as well as interactors that require noncatalytic functions of OGT. A key aim in the field is to identify which interactors and substrates contribute to the primarily neural-specific phenotype of OGT-CDG. In this review, we will discuss the heterogenous phenotypic features of OGT-CDG seen clinically, the variable biochemical effects of mutations associated with OGT-CDG, and the use of animal models to understand this disorder. Furthermore, we will discuss how previously identified OGT interactors causal for ID provide mechanistic targets for investigation that could explain the dysregulated gene expression seen in OGT-CDG models. Identifying shared or unique altered pathways impacted in OGT-CDG patients will provide a better understanding of the disorder as well as potential therapeutic targets.
Collapse
Affiliation(s)
- Johnathan M Mayfield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Naomi L Hitefield
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | | | - Lotte Vanhye
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura Holden
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Eva Morava
- Department of Clinical Genomics and Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daan M F van Aalten
- School of Life Sciences, University of Dundee, Dundee, UK; Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
| | - Lance Wells
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
2
|
Gogus B, Elmas M, Turk Boru U. Genetic aspects of ataxias in a cohort of Turkish patients. Neurol Sci 2024; 45:4349-4365. [PMID: 38587696 PMCID: PMC11306380 DOI: 10.1007/s10072-024-07484-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Ataxia is one of the clinical findings of the movement disorder disease group. Although there are many underlying etiological reasons, genetic etiology has an increasing significance thanks to the recently developing technology. The aim of this study is to present the variants detected in WES analysis excluding non-genetic causes, in patients with ataxia. METHODS Thirty-six patients who were referred to us with findings of ataxia and diagnosed through WES or other molecular genetic analysis methods were included in our study. At the same time, information such as the onset time of the complaints, consanguinity status between parents, and the presence of relatives with similar symptoms were evaluated. If available, the patient's biochemical and radiological test results were presented. RESULTS Thirty-six patients were diagnosed through WES or CES. The rate of detected autosomal recessive inheritance disease was 80.5%, while that of autosomal dominant inheritance disease was 19.5%. Abnormal cerebellum was detected on brain MRI images in 26 patients, while polyneuropathy was detected on EMG in eleven of them. While the majority of the patients were compatible with similar cases reported in the literature, five patients had different/additional features (variants in MCM3AP, AGTPBP1, GDAP2, and SH3TC2 genes). CONCLUSIONS The diagnosis of ataxia patients with unknown etiology is made possible thanks to these clues. Consideration of a genetic approach is recommended in patients with ataxia of unknown etiology.
Collapse
Affiliation(s)
- Basak Gogus
- Ministry of Health General Directorate of Public Health, Ankara, Turkey.
- Department of Medical Genetics, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey.
| | - Muhsin Elmas
- Department of Medical Genetics, İstanbul Medipol University, Istanbul, Turkey
| | - Ulku Turk Boru
- Department of Neurology, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
| |
Collapse
|
3
|
Liu C, Xie Q, Hu Q, Xiang B, Zhao K, Chen X, Zheng F. Identification of biallelic mutations in MCM3AP and comprehensive literature analysis. Front Genet 2024; 15:1405644. [PMID: 39228414 PMCID: PMC11368841 DOI: 10.3389/fgene.2024.1405644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024] Open
Abstract
Background Minichromosome maintenance complex component 3 associated protein (MCM3AP) is a gene in which mutations can result in autosomal recessive peripheral neuropathy with or without impaired intellectual development. The MCM3AP genotype-phenotype correlation and prognosis remain unclear. The aim of this study was to explore the genotype-phenotype correlations pertaining to MCM3AP. Methods Whole-exome sequencing (WES) combined with copy number variation sequencing (CNV-seq) were performed on the genomic DNA isolated from a Chinese family, and Sanger sequencing, quantitative PCR and cDNA analyses were performed to examine the mutations. The retrospective study was conducted on 28 individuals with biallelic MCM3AP mutation-related diseases, including features such as mutations, motor development impairment, intellectual disability, weakness/atrophy, and cerebral magnetic resonance imaging abnormalities. Results Sequencing identified novel compound heterozygous mutations in MCM3AP, namely, a paternal variant c.1_5426del (loss of exons 1-25) and a maternal splicing variant c.1858 + 3A>G. Functional studies revealed that the variant c.1858 + 3A>G resulted in the heterozygous deletion of exon 5, thereby affecting splicing functionality. Furthermore, the compound heterozygous mutation may affect the functionality of the protein domain. Retrospective analysis revealed different genotype-phenotype correlations for the pathogenic variants in biallelic MCM3AP: all individuals (100%) with mutations outside the Sac3 domain exhibited early-onset symptoms, motor developmental delays, and cognitive abnormalities, conversely, the proportions of individuals carrying mutations within the domain were 26.7% (motor delays) and 46.7% (cognitive abnormalities). Conclusion Our findings further expand the genetic mutation spectrum of biallelic MCM3AP and highlight the genotype-phenotype associations. Additionally, we elaborate on the importance of rehabilitation intervention.
Collapse
Affiliation(s)
- Chan Liu
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qingfeng Xie
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Quan Hu
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bingwu Xiang
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Kaiyi Zhao
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang Chen
- Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feixia Zheng
- Department of Pediatrics Neurology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
4
|
Sakai Y, Kuwahara K. Carcinogenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. Pathol Int 2024; 74:103-118. [PMID: 38411330 DOI: 10.1111/pin.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Perturbation of genes is important for somatic hypermutation to increase antibody affinity during B-cell immunity; however, it may also promote carcinogenesis. Previous studies have revealed that transcription is an important process that can induce DNA damage and genomic instability. Transciption-export-2 (TREX-2) complex, which regulates messenger RNA (mRNA) nuclear export, has been studied in the budding yeast Saccharomyces cerevisiae; however, recent studies have started investigating the molecular function of the mammalian TREX-2 complex. The central molecule in the TREX-2 complex, that is, germinal center-associated nuclear protein (GANP), is closely associated with antibody affinity maturation as well as cancer etiology. In this review, we focus on carcinogenesis, lymphomagenesis, and teratomagenesis caused by transcription-coupled DNA damage through GANP and other components of the TREX-2 complex. We review the basic machinery of mRNA nuclear export and transcription-coupled DNA damage. We then briefly describe the immunological relationship between GANP and the affinity maturation of antibodies. Finally, we illustrate that the aberrant expression of the components of the TREX-2 complex, especially GANP, is associated with the etiology of various solid tumors, lymphomas, and testicular teratoma. These components serve as reliable predictors of cancer prognosis and response to chemotherapy.
Collapse
Affiliation(s)
- Yasuhiro Sakai
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka, Japan
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Aichi, Japan
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology, Kindai University Hospital, Osaka, Japan
| |
Collapse
|
5
|
Tiivoja E, Reinson K, Muru K, Rähn K, Muhu K, Mauring L, Kahre T, Pajusalu S, Õunap K. The prevalence of inherited metabolic disorders in Estonian population over 30 years: A significant increase during study period. JIMD Rep 2022; 63:604-613. [PMID: 36341167 PMCID: PMC9626666 DOI: 10.1002/jmd2.12325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2022] Open
Abstract
Inherited metabolic disorders (IMD) are a group of hereditary diseases wherein the impairment of a biochemical pathway is intrinsic to the pathophysiology of the disease. Estonia's small population and nationwide digitalised healthcare system make it possible to perform an epidemiological study that covers the whole population. A study was performed in Tartu University Hospital, which is the only tertiary care unit in Estonia for diagnosing patients with IMD, to define the prevalence and live birth prevalence of IMDs and the effectiveness of new diagnostic methods on the diagnosis of IMD. During the retrospective study period from 1990 to 2017, 333 patients were diagnosed with IMD. Statistical analysis showed a significant increase in IMD diagnoses per year from 0.47 to 2.51 cases per 100 000 persons (p < 0.0001) during the study period. Live birth prevalence of IMD in Estonia was calculated to be 41.52 cases per 100 000 live births. The most frequently diagnosed IMD groups were disorders of amino acid metabolism, disorders of complex molecule degradation, mitochondrial disorders, and disorders of tetrapyrrole metabolism. Phenylketonuria was the most frequently diagnosed disorder of all IMD (21.6%). Our results correlated well with data from other developed countries and, along with high birth prevalence, add confidence in the effectiveness of our diagnostic yield. Implementation of new diagnostic methods during study period may largely account for the significant increase in the number of IMD diagnoses per year. We conclude that the implementation of new diagnostic methods continues to be important and contributes to better diagnosis of rare diseases.
Collapse
Affiliation(s)
- Elis Tiivoja
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Karit Reinson
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Kai Muru
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Kristi Rähn
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Kristina Muhu
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
| | - Laura Mauring
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Eye ClinicTartu University HospitalTartuEstonia
| | - Tiina Kahre
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Laboratory Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Sander Pajusalu
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Laboratory Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| | - Katrin Õunap
- Department of Clinical Genetics, Institute of Clinical MedicineUniversity of TartuTartuEstonia
- Department of Clinical Genetics, Genetic and Personalized Medicine ClinicTartu University HospitalTartuEstonia
| |
Collapse
|
6
|
Hayes LR, Kalab P. Emerging Therapies and Novel Targets for TDP-43 Proteinopathy in ALS/FTD. Neurotherapeutics 2022; 19:1061-1084. [PMID: 35790708 PMCID: PMC9587158 DOI: 10.1007/s13311-022-01260-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 10/17/2022] Open
Abstract
Nuclear clearance and cytoplasmic mislocalization of the essential RNA binding protein, TDP-43, is a pathologic hallmark of amyotrophic lateral sclerosis, frontotemporal dementia, and related neurodegenerative disorders collectively termed "TDP-43 proteinopathies." TDP-43 mislocalization causes neurodegeneration through both loss and gain of function mechanisms. Loss of TDP-43 nuclear RNA processing function destabilizes the transcriptome by multiple mechanisms including disruption of pre-mRNA splicing, the failure of repression of cryptic exons, and retrotransposon activation. The accumulation of cytoplasmic TDP-43, which is prone to aberrant liquid-liquid phase separation and aggregation, traps TDP-43 in the cytoplasm and disrupts a host of downstream processes including the trafficking of RNA granules, local translation within axons, and mitochondrial function. In this review, we will discuss the TDP-43 therapy development pipeline, beginning with therapies in current and upcoming clinical trials, which are primarily focused on accelerating the clearance of TDP-43 aggregates. Then, we will look ahead to emerging strategies from preclinical studies, first from high-throughput genetic and pharmacologic screens, and finally from mechanistic studies focused on the upstream cause(s) of TDP-43 disruption in ALS/FTD. These include modulation of stress granule dynamics, TDP-43 nucleocytoplasmic shuttling, RNA metabolism, and correction of aberrant splicing events.
Collapse
Affiliation(s)
- Lindsey R Hayes
- Johns Hopkins School of Medicine, Dept. of Neurology, Baltimore, MD, USA.
| | - Petr Kalab
- Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|