1
|
Pizzini L, Valle F, Osella M, Caselle M. Topic modeling analysis of the Allen Human Brain Atlas. Sci Rep 2025; 15:6928. [PMID: 40011617 PMCID: PMC11865453 DOI: 10.1038/s41598-025-91079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
The human brain is a complex interconnected structure controlling all elementary and high-level cognitive tasks. It is composed of many regions that exhibit specific distributions of cell types and distinct patterns of functional connections. This complexity is rooted in differential transcription. The constituent cell types of different brain regions express distinctive combinations of genes as they develop and mature, ultimately shaping their functional state in adulthood. How precisely the genetic information of anatomical structures is connected to their underlying biological functions remains an open question in modern neuroscience. A major challenge is the identification of "universal patterns", which do not depend on the particular individual, but are instead basic structural properties shared by all brains. Despite the vast amount of gene expression data available at both the bulk and single-cell levels, this task remains challenging, mainly due to the lack of suitable data mining tools. In this paper, we propose an approach to address this issue based on a hierarchical version of Stochastic Block Modeling. Thanks to its specific choice of priors, the method is particularly effective in identifying these universal features. We use as a laboratory to test our algorithm a dataset obtained from six independent human brains from the Allen Human Brain Atlas. We show that the proposed method is indeed able to identify universal patterns much better than more traditional algorithms such as Latent Dirichlet Allocation or Weighted Correlation Network Analysis. The probabilistic association between genes and samples that we find well represents the known anatomical and functional brain organization. Moreover, leveraging the peculiar "fuzzy" structure of the gene sets obtained with our method, we identify examples of transcriptional and post-transcriptional pathways associated with specific brain regions, highlighting the potential of our approach.
Collapse
Affiliation(s)
- Letizia Pizzini
- Department of Physics and INFN, University of Turin, via P.Giuria 1, 10125, Turin, Italy.
| | - Filippo Valle
- Department of Physics and INFN, University of Turin, via P.Giuria 1, 10125, Turin, Italy
| | - Matteo Osella
- Department of Physics and INFN, University of Turin, via P.Giuria 1, 10125, Turin, Italy
| | - Michele Caselle
- Department of Physics and INFN, University of Turin, via P.Giuria 1, 10125, Turin, Italy
| |
Collapse
|
2
|
Yousefian-Jazi A, Kim S, Chu J, Choi SH, Nguyen PTT, Park U, Kim MG, Hwang H, Lee K, Kim Y, Hyeon SJ, Rhim H, Ryu HL, Lim G, Stein TD, Lim K, Ryu H, Lee J. Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice. Mol Neurodegener 2025; 20:16. [PMID: 39920775 PMCID: PMC11806887 DOI: 10.1186/s13024-024-00792-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/20/2024] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the loss of both upper and lower motor neurons, leading to progressive paralysis. Both genetic alterations and epigenetic modifications contribute to neuronal dysfunction in the pathogenesis of ALS. However, the mechanism behind genetic mutations in the non-coding region of genes that affect epigenetic modifications remains unclear. METHODS Convolutional neural network was used to identify an ALS-associated SNP located in the intronic region of MEF2C (rs304152), residing in a putative enhancer element. To examine the alteration of MEF2C transcription by the SNP, we generated HEK293T cells carrying the major or minor allele by CRISPR-Cas9. To verify the role of MEF2C-knockdown (MEF2C-KD) in mice, we developed AAV expressing shRNA for MEF2C based on AAV-U6 promoter vector. Neuropathological alterations of MEF2C-KD mice with mitochondrial dysfunction and motor neuronal damage were observed by confocal microscopy and transmission electron microscope (TEM). Behavioral changes of mice were examined through longitudinal study by tail suspension, inverted grid test and automated gait analysis. RESULTS Here, we show that enhancer mutation of MEF2C reduces own gene expression and consequently impairs mitochondrial function in motor neurons. MEF2C localizes and binds to the mitochondria DNA, and directly modulates mitochondria-encoded gene expression. CRISPR/Cas-9-induced mutation of the MEF2C enhancer decreases expression of mitochondria-encoded genes. Moreover, MEF2C mutant cells show reduction of mitochondrial membrane potential, ATP level but elevation of oxidative stress. MEF2C deficiency in the upper and lower motor neurons of mice impairs mitochondria-encoded genes, and leads to mitochondrial metabolic disruption and progressive motor behavioral deficits. CONCLUSIONS Together, MEF2C dysregulation by the enhancer mutation leads to mitochondrial dysfunction and oxidative stress, which are prevalent features in motor neuronal damage and ALS pathogenesis. This genetic and epigenetic crosstalk mechanism provides insights for advancing our understanding of motor neuron disease and developing effective treatments.
Collapse
Affiliation(s)
- Ali Yousefian-Jazi
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Suhyun Kim
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jiyeon Chu
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Seung-Hye Choi
- Severance Biomedical Science Institute, Graduate School of Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Phuong Thi Thanh Nguyen
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
| | - Uiyeol Park
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Biochemistry & Molecular Biology, College of Medicine, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Gyeong Kim
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hongik Hwang
- Department of Life Science, University of Seoul, Seoul, 02504, Republic of Korea
| | - Kyungeun Lee
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yeyun Kim
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Integrated Biomedical and Life Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Seung Jae Hyeon
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyewhon Rhim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hannah L Ryu
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Grewo Lim
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- VA Boston Healthcare System, Boston, MA, 02130, USA
| | - Kayeong Lim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hoon Ryu
- Laboratory for Brain Gene Regulation and Epigenetics, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KIST School, Division of Bio-Medical Science & Technology, University of Science and Technology (UST), Seoul, 02792, Republic of Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Junghee Lee
- Boston University Alzheimer's Disease Research Center and Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
- VA Boston Healthcare System, Boston, MA, 02130, USA.
| |
Collapse
|
3
|
Li K, Qian L, Zhang C, Zhang J, Xue C, Zhang Y, Deng W. The entorhinal cortex and cognitive impairment in schizophrenia: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111218. [PMID: 39672531 DOI: 10.1016/j.pnpbp.2024.111218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/19/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
Schizophrenia, a severe mental illness characterized by cognitive impairment and olfactory dysfunction, remains an enigma with its pathological mechanism yet to be fully elucidated. The entorhinal cortex, a pivotal structure involved in numerous neural loop circuits related to olfaction, cognition, and emotion, has garnered significant attention due to its structural and functional abnormalities, which have been implicated in the pathogenesis of schizophrenia. This review focuses on the abnormal structural and functional changes in the entorhinal cortex in schizophrenia patients, as evidenced by neuroimaging, cellular biology, and genetic studies. These changes are posited to play a crucial role in the pathogenesis of cognitive impairment in schizophrenia. Furthermore, this review explores the various intervention strategies targeting the entorhinal cortex in current treatment modalities and proposes potential directions for future research endeavors, thereby providing a novel perspective on unraveling the complexity of neural mechanisms underlying schizophrenia and developing innovative therapeutic approaches for schizophrenia.
Collapse
Affiliation(s)
- Kun Li
- Shandong Daizhuang Hospital, Jining, Shandong Province 272075, China; Jining Key Laboratory of Neuromodulation, Jining, Shandong Province 272075, China.
| | - Liju Qian
- Shandong Daizhuang Hospital, Jining, Shandong Province 272075, China
| | - Chenchen Zhang
- Shandong Daizhuang Hospital, Jining, Shandong Province 272075, China
| | - Jiajia Zhang
- Department of Psychology, Xinxiang Medical University, Henan 453003, China
| | - Chuang Xue
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310063, China
| | - Yuebing Zhang
- Shandong Daizhuang Hospital, Jining, Shandong Province 272075, China
| | - Wei Deng
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310063, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.
| |
Collapse
|
4
|
Ward C, Nasrallah K, Tran D, Sabri E, Vazquez A, Sjulson L, Castillo PE, Batista-Brito R. Developmental Disruption of Mef2c in Medial Ganglionic Eminence-Derived Cortical Inhibitory Interneurons Impairs Cellular and Circuit Function. Biol Psychiatry 2024; 96:804-814. [PMID: 38848814 PMCID: PMC11486581 DOI: 10.1016/j.biopsych.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND MEF2C is strongly linked to various neurodevelopmental disorders including autism, intellectual disability, schizophrenia, and attention-deficit/hyperactivity disorder. Mice that constitutively lack 1 copy of Mef2c or selectively lack both copies of Mef2c in cortical excitatory neurons display a variety of behavioral phenotypes associated with neurodevelopmental disorders. The MEF2C protein is a transcription factor necessary for cellular development and synaptic modulation of excitatory neurons. MEF2C is also expressed in a subset of cortical GABAergic (gamma-aminobutyric acidergic) inhibitory neurons, but its function in those cell types remains largely unknown. METHODS Using conditional deletions of the Mef2c gene in mice, we investigated the role of MEF2C in parvalbumin-expressing interneurons (PV-INs), the largest subpopulation of cortical GABAergic cells, at 2 developmental time points. We performed slice electrophysiology, in vivo recordings, and behavior assays to test how embryonic and late postnatal loss of MEF2C from GABAergic INs impacts their survival and maturation and alters brain function and behavior. RESULTS Loss of MEF2C from PV-INs during embryonic, but not late postnatal, development resulted in reduced PV-IN number and failure of PV-INs to molecularly and synaptically mature. In association with these deficits, early loss of MEF2C in GABAergic INs led to abnormal cortical network activity, hyperactive and stereotypic behavior, and impaired cognitive and social behavior. CONCLUSIONS MEF2C expression is critical for the development of cortical GABAergic INs, particularly PV-INs. Embryonic loss of function of MEF2C mediates dysfunction of GABAergic INs, leading to altered in vivo patterns of cortical activity and behavioral phenotypes associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Claire Ward
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Kaoutsar Nasrallah
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Biological Sciences, Fordham University, Bronx, New York
| | - Duy Tran
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Ehsan Sabri
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Arenski Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Lucas Sjulson
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York
| | - Renata Batista-Brito
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
5
|
Hong Y, Hu J, Zhang S, Liu J, Yan F, Yang H, Hu H. Integrative analysis identifies region- and sex-specific gene networks and Mef2c as a mediator of anxiety-like behavior. Cell Rep 2024; 43:114455. [PMID: 38990717 DOI: 10.1016/j.celrep.2024.114455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/20/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
The molecular mechanisms underlying multi-brain region origins and sexual dimorphism of anxiety remain unclear. Here, we leverage large-scale transcriptomics from seven brain regions in mouse models of anxiety and extensive experiments to dissect brain-region- and sex-specific gene networks. We identify 4,840 genes with sex-specific expression alterations across seven brain regions, organized into ten network modules with sex-biased expression patterns. Modular analysis prioritizes 86 sex-specific mediators of anxiety susceptibility, including myocyte-specific enhancer factor 2c (Mef2c) in the CA3 region of male mice. Mef2c expression is decreased in the pyramidal neurons (PyNs) of susceptible male mice. Up-regulating Mef2c in CA3 PyNs significantly alleviates anxiety-like behavior, whereas down-regulating Mef2c induces anxiety-like behavior in male mice. The anxiolytic effect of Mef2c up-regulation is associated with enhanced neuronal excitability and synaptic transmission. In summary, this study uncovers brain-region- and sex-specific networks and identifies Mef2c in CA3 PyNs as a critical mediator of anxiety in male mice.
Collapse
Affiliation(s)
- Yizhou Hong
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Jiameng Hu
- School of Life Science and Technology, Chongqing Innovation Institute of China Pharmaceutical University, China Pharmaceutical University, Nanjing, China
| | - Shiya Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jiaxin Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China; College of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Fangrong Yan
- Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hua Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Haiyang Hu
- School of Life Science and Technology, Chongqing Innovation Institute of China Pharmaceutical University, China Pharmaceutical University, Nanjing, China; Central Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Ward C, Nasrallah K, Tran D, Sabri E, Vazquez A, Sjulson L, Castillo PE, Batista-Brito R. Developmental disruption of Mef2c in Medial Ganglionic Eminence-derived cortical inhibitory interneurons impairs cellular and circuit function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592084. [PMID: 38746148 PMCID: PMC11092645 DOI: 10.1101/2024.05.01.592084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
MEF2C is strongly linked to various neurodevelopmental disorders (NDDs) including autism, intellectual disability, schizophrenia, and attention-deficit/hyperactivity. Mice constitutively lacking one copy of Mef2c , or selectively lacking both copies of Mef2c in cortical excitatory neurons, display a variety of behavioral phenotypes associated with NDDs. The MEF2C protein is a transcription factor necessary for cellular development and synaptic modulation of excitatory neurons. MEF2C is also expressed in a subset of cortical GABAergic inhibitory neurons, but its function in those cell types remains largely unknown. Using conditional deletions of the Mef2c gene in mice, we investigated the role of MEF2C in Parvalbumin-expressing Interneurons (PV-INs), the largest subpopulation of cortical GABAergic cells, at two developmental timepoints. We performed slice electrophysiology, in vivo recordings, and behavior assays to test how embryonic and late postnatal loss of MEF2C from GABAergic interneurons impacts their survival and maturation, and alters brain function and behavior. We found that loss of MEF2C from PV-INs during embryonic, but not late postnatal, development resulted in reduced PV-IN number and failure of PV-INs to molecularly and synaptically mature. In association with these deficits, early loss of MEF2C in GABAergic interneurons lead to abnormal cortical network activity, hyperactive and stereotypic behavior, and impaired cognitive and social behavior. Our findings indicate that MEF2C expression is critical for the development of cortical GABAergic interneurons, particularly PV-INs. Embryonic loss of function of MEF2C mediates dysfunction of GABAergic interneurons, leading to altered in vivo patterns of cortical activity and behavioral phenotypes associated with neurodevelopmental disorders.
Collapse
|
7
|
Dinevska M, Widodo SS, Cook L, Stylli SS, Ramsay RG, Mantamadiotis T. CREB: A multifaceted transcriptional regulator of neural and immune function in CNS tumors. Brain Behav Immun 2024; 116:140-149. [PMID: 38070619 DOI: 10.1016/j.bbi.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 01/21/2024] Open
Abstract
Cancers of the central nervous system (CNS) are unique with respect to their tumor microenvironment. Such a status is due to immune-privilege and the cellular behaviors within a highly networked, neural-rich milieu. During tumor development in the CNS, neural, immune and cancer cells establish complex cell-to-cell communication networks which mimic physiological functions, including paracrine signaling and synapse-like formations. This crosstalk regulates diverse pathological functions contributing to tumor progression. In the CNS, regulation of physiological and pathological functions relies on various cell signaling and transcription programs. At the core of these events lies the cyclic adenosine monophosphate (cAMP) response element binding protein (CREB), a master transcriptional regulator in the CNS. CREB is a kinase inducible transcription factor which regulates many CNS functions, including neurogenesis, neuronal survival, neuronal activation and long-term memory. Here, we discuss how CREB-regulated mechanisms operating in diverse cell types, which control development and function of the CNS, are co-opted in CNS tumors.
Collapse
Affiliation(s)
- Marija Dinevska
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Samuel S Widodo
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Laura Cook
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Stanley S Stylli
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Neurosurgery, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Robert G Ramsay
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology and the Department of Clinical Pathology, The University of Melbourne, Melbourne, Australia
| | - Theo Mantamadiotis
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia; Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia; Centre for Stem Cell Systems, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Basu S, Ro EJ, Liu Z, Kim H, Bennett A, Kang S, Suh H. The Mef2c Gene Dose-Dependently Controls Hippocampal Neurogenesis and the Expression of Autism-Like Behaviors. J Neurosci 2024; 44:e1058232023. [PMID: 38123360 PMCID: PMC10860657 DOI: 10.1523/jneurosci.1058-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Mutations in the activity-dependent transcription factor MEF2C have been associated with several neuropsychiatric disorders. Among these, autism spectrum disorder (ASD)-related behavioral deficits are manifested. Multiple animal models that harbor mutations in Mef2c have provided compelling evidence that Mef2c is indeed an ASD gene. However, studies in mice with germline or global brain knock-out of Mef2c are limited in their ability to identify the precise neural substrates and cell types that are required for the expression of Mef2c-mediated ASD behaviors. Given the role of hippocampal neurogenesis in cognitive and social behaviors, in this study we aimed to investigate the role of Mef2c in the structure and function of newly generated dentate granule cells (DGCs) in the postnatal hippocampus and to determine whether disrupted Mef2c function is responsible for manifesting ASD behaviors. Overexpression of Mef2c (Mef2cOE ) arrested the transition of neurogenesis at progenitor stages, as indicated by sustained expression of Sox2+ in Mef2cOE DGCs. Conditional knock-out of Mef2c (Mef2ccko ) allowed neuronal commitment of Mef2ccko cells; however, Mef2ccko impaired not only dendritic arborization and spine formation but also synaptic transmission onto Mef2ccko DGCs. Moreover, the abnormal structure and function of Mef2ccko DGCs led to deficits in social interaction and social novelty recognition, which are key characteristics of ASD behaviors. Thus, our study revealed a dose-dependent requirement of Mef2c in the control of distinct steps of neurogenesis, as well as a critical cell-autonomous function of Mef2c in newborn DGCs in the expression of proper social behavior in both sexes.
Collapse
Affiliation(s)
- Sreetama Basu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland 44109, Ohio
| | - Eun Jeoung Ro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland 44109, Ohio
| | - Zhi Liu
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland 44109, Ohio
| | - Hyunjung Kim
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta 30912, Georgia
| | - Aubrey Bennett
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta 30912, Georgia
| | - Seungwoo Kang
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta University, Augusta 30912, Georgia
| | - Hoonkyo Suh
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland 44109, Ohio
| |
Collapse
|
9
|
Fahey L, Ali D, Donohoe G, Ó Broin P, Morris DW. Genes positively regulated by Mef2c in cortical neurons are enriched for common genetic variation associated with IQ and educational attainment. Hum Mol Genet 2023; 32:3194-3203. [PMID: 37672226 PMCID: PMC10630234 DOI: 10.1093/hmg/ddad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 09/07/2023] Open
Abstract
The myocyte enhancer factor 2 C (MEF2C) gene encodes a transcription factor important for neurogenesis and synapse development and contains common variants associated with intelligence (IQ) and educational attainment (EA). Here, we took gene expression data from the mouse cortex of a Mef2c mouse model with a heterozygous DNA binding-deficient mutation of Mef2c (Mef2c-het) and combined these data with MEF2C ChIP-seq data from cortical neurons and single-cell data from the mouse brain. This enabled us to create a set of genes that were differentially regulated in Mef2c-het mice, represented direct target genes of MEF2C and had elevated in expression in cortical neurons. We found this gene-set to be enriched for genes containing common genetic variation associated with IQ and EA. Genes within this gene-set that were down-regulated, i.e. have reduced expression in Mef2c-het mice versus controls, were specifically significantly enriched for both EA and IQ associated genes. These down-regulated genes were enriched for functionality in the adenylyl cyclase signalling system, which is known to positively regulate synaptic transmission and has been linked to learning and memory. Within the adenylyl cyclase signalling system, three genes regulated by MEF2C, CRHR1, RGS6, and GABRG3, are associated at genome-wide significant levels with IQ and/or EA. Our results indicate that genetic variation in MEF2C and its direct target genes within cortical neurons contribute to variance in cognition within the general population, and the molecular mechanisms involved include the adenylyl cyclase signalling system's role in synaptic function.
Collapse
Affiliation(s)
- Laura Fahey
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
- Discipline of Bioinformatics, School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Deema Ali
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Gary Donohoe
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Pilib Ó Broin
- Discipline of Bioinformatics, School of Mathematical and Statistical Sciences, University of Galway, University Road, Galway, H91 CF50, Ireland
| | - Derek W Morris
- Centre for Neuroimaging, Cognition and Genomics (NICOG), School of Biological and Chemical Sciences and School of Psychology, University of Galway, University Road, Galway, H91 CF50, Ireland
| |
Collapse
|
10
|
Whitlock JH, Soelter TM, Howton TC, Wilk EJ, Oza VH, Lasseigne BN. Cell-type-specific gene expression and regulation in the cerebral cortex and kidney of atypical Setbp1 S858R Schinzel Giedion Syndrome mice. J Cell Mol Med 2023; 27:3565-3577. [PMID: 37872881 PMCID: PMC10660642 DOI: 10.1111/jcmm.18001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/25/2023] Open
Abstract
Schinzel Giedion Syndrome (SGS) is an ultra-rare autosomal dominant Mendelian disease presenting with abnormalities spanning multiple organ systems. The most notable phenotypes involve severe developmental delay, progressive brain atrophy, and drug-resistant seizures. SGS is caused by spontaneous variants in SETBP1, which encodes for the epigenetic hub SETBP1 transcription factor (TF). SETBP1 variants causing classical SGS cluster at the degron, disrupting SETBP1 protein degradation and resulting in toxic accumulation, while those located outside cause milder atypical SGS. Due to the multisystem phenotype, we evaluated gene expression and regulatory programs altered in atypical SGS by snRNA-seq of the cerebral cortex and kidney of Setbp1S858R heterozygous mice (corresponds to the human likely pathogenic SETBP1S867R variant) compared to matched wild-type mice by constructing cell-type-specific regulatory networks. Setbp1 was differentially expressed in excitatory neurons, but known SETBP1 targets were differentially expressed and regulated in many cell types. Our findings suggest molecular drivers underlying neurodevelopmental phenotypes in classical SGS also drive atypical SGS, persist after birth, and are present in the kidney. Our results indicate SETBP1's role as an epigenetic hub leads to cell-type-specific differences in TF activity, gene targeting, and regulatory rewiring. This research provides a framework for investigating cell-type-specific variant impact on gene expression and regulation.
Collapse
Affiliation(s)
- Jordan H. Whitlock
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Elizabeth J. Wilk
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of MedicineThe University of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
11
|
The Role of MEF2 Transcription Factor Family in Neuronal Survival and Degeneration. Int J Mol Sci 2023; 24:ijms24043120. [PMID: 36834528 PMCID: PMC9963821 DOI: 10.3390/ijms24043120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The family of myocyte enhancer factor 2 (MEF2) transcription factors comprises four highly conserved members that play an important role in the nervous system. They appear in precisely defined time frames in the developing brain to turn on and turn off genes affecting growth, pruning and survival of neurons. MEF2s are known to dictate neuronal development, synaptic plasticity and restrict the number of synapses in the hippocampus, thus affecting learning and memory formation. In primary neurons, negative regulation of MEF2 activity by external stimuli or stress conditions is known to induce apoptosis, albeit the pro or antiapoptotic action of MEF2 depends on the neuronal maturation stage. By contrast, enhancement of MEF2 transcriptional activity protects neurons from apoptotic death both in vitro and in preclinical models of neurodegenerative diseases. A growing body of evidence places this transcription factor in the center of many neuropathologies associated with age-dependent neuronal dysfunctions or gradual but irreversible neuron loss. In this work, we discuss how the altered function of MEF2s during development and in adulthood affecting neuronal survival may be linked to neuropsychiatric disorders.
Collapse
|
12
|
Jeyananthan P. Role of different types of RNA molecules in the severity prediction of SARS-CoV-2 patients. Pathol Res Pract 2023; 242:154311. [PMID: 36657221 PMCID: PMC9840815 DOI: 10.1016/j.prp.2023.154311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/16/2023]
Abstract
SARS-CoV-2 pandemic is the current threat of the world with enormous number of deceases. As most of the countries have constraints on resources, particularly for intensive care and oxygen, severity prediction with high accuracy is crucial. This prediction will help the medical society in the selection of patients with the need for these constrained resources. Literature shows that using clinical data in this study is the common trend and molecular data is rarely utilized in this prediction. As molecular data carry more disease related information, in this study, three different types of RNA molecules ( lncRNA, miRNA and mRNA) of SARS-COV-2 patients are used to predict the severity stage and treatment stage of those patients. Using seven different machine learning algorithms along with several feature selection techniques shows that in both phenotypes, feature importance selected features provides the best accuracy along with random forest classifier. Further to this, it shows that in the severity stage prediction miRNA and lncRNA give the best performance, and lncRNA data gives the best in treatment stage prediction. As most of the studies related to molecular data uses mRNA data, this is an interesting finding.
Collapse
|
13
|
MOBT Alleviates Pulmonary Fibrosis through an lncITPF-hnRNP-l-Complex-Mediated Signaling Pathway. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165336. [PMID: 36014574 PMCID: PMC9414852 DOI: 10.3390/molecules27165336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022]
Abstract
Pulmonary fibrosis is characterized by the destruction of alveolar architecture and the irreversible scarring of lung parenchyma, with few therapeutic options and effective therapeutic drugs. Here, we demonstrate the anti-pulmonary fibrosis of 3-(4-methoxyphenyl)-4-oxo-4H-1-benzopyran-7-yl(αS)-α,3,4-trihydroxybenzenepropanoate (MOBT) in mice and a cell model induced by bleomycin and transforming growth factor-β1. The anti-pulmonary fibrosis of MOBT was evaluated using a MicroCT imaging system for small animals, lung function analysis and H&E and Masson staining. The results of RNA fluorescence in situ hybridization, chromatin immunoprecipitation (ChIP)-PCR, RNA immunoprecipitation, ChIP-seq, RNA-seq, and half-life experiments demonstrated the anti-pulmonary fibrotic mechanism. Mechanistic dissection showed that MOBT inhibited lncITPF transcription by preventing p-Smad2/3 translocation from the cytoplasm to the nucleus, resulting in a reduction in the amount of the lncITPF–hnRNP L complex. The decreased lncITPF–hnRNP L complex reduced MEF2c expression by blocking its alternative splicing, which in turn inhibited the expression of MEF2c target genes, such as TAGLN2 and FMN1. Briefly, MOBT alleviated pulmonary fibrosis through the lncITPF–hnRNP-l-complex-targeted MEF2c signaling pathway. We hope that this study will provide not only a new drug candidate but also a novel therapeutic drug target, which will bring new treatment strategies for pulmonary fibrosis.
Collapse
|
14
|
Loers G, Kleene R, Girbes Minguez M, Schachner M. The Cell Adhesion Molecule L1 Interacts with Methyl CpG Binding Protein 2 via Its Intracellular Domain. Int J Mol Sci 2022; 23:ijms23073554. [PMID: 35408913 PMCID: PMC8998178 DOI: 10.3390/ijms23073554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cell adhesion molecule L1 regulates multiple cell functions, and L1 deficiency is linked to several neural diseases. Recently, we have identified methyl CpG binding protein 2 (MeCP2) as a potential binding partner of the intracellular L1 domain. By ELISA we show here that L1's intracellular domain binds directly to MeCP2 via the sequence motif KDET. Proximity ligation assay with cultured cerebellar and cortical neurons suggests a close association between L1 and MeCP2 in nuclei of neurons. Immunoprecipitation using MeCP2 antibodies and nuclear mouse brain extracts indicates that MeCP2 interacts with an L1 fragment of ~55 kDa (L1-55). Proximity ligation assay indicates that metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1) and ɣ-secretase, are involved in the generation of L1-55. Reduction in MeCP2 expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons as well as the migration of L1-expressing HEK293 cells. Moreover, L1 siRNA, MeCP2 siRNA, or a cell-penetrating KDET-containing L1 peptide leads to reduced levels of myocyte enhancer factor 2C (Mef2c) mRNA and protein in cortical neurons, suggesting that the MeCP2/L1 interaction regulates Mef2c expression. Altogether, the present findings indicate that the interaction of the novel fragment L1-55 with MeCP2 affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-1780
| |
Collapse
|
15
|
Rao S, Tian L, Cao H, Baranova A, Zhang F. Involvement of the long intergenic non-coding RNA LINC00461 in schizophrenia. BMC Psychiatry 2022; 22:59. [PMID: 35081922 PMCID: PMC8790831 DOI: 10.1186/s12888-022-03718-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/18/2022] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE LINC00461 is a highly conserved intergenic non-protein coding RNA that was implicated in schizophrenia at the genome-wide level. We aim to explore potential mechanisms underlying the involvement of LINC00461 in schizophrenia. METHODS We performed a meta-analysis to investigate the association of LINC00461 rs410216 with schizophrenia, and evaluate the effects of the rs410216 on hippocampal volume and function using the functional magnetic resonance imaging (fMRI) analysis. We utilized the GTEx dataset to profile the expression distribution of LINC00461 across different brain regions, and to investigate the potential impact of the risk SNPs on the expression of LINC00461 and other nearby genes. We compared blood expression levels of LINC00461 between schizophrenia patients and controls. RESULTS Here we show that single-nucleotide polymorphisms (SNPs) located in regulatory elements spanning the LINC00461 region are significantly associated with schizophrenia (index SNP rs410216, Pmeta = 1.43E-05); subjects carrying the risk allele of rs410216 showed decreased hippocampal volume. However, no significant association of the rs410216 variant with hippocampal activation was observed. Moreover, the expression level of LINC00461 mRNA was significantly lower in first-onset schizophrenia patients, and the risk allele also predicts a lower transcriptional level of LINC00461 in the hippocampus. CONCLUSION Together, these convergent lines of evidence implicate inadequate LINC00461 expression in the hippocampus in the development of schizophrenia, providing novel insight into the genetic architecture and biological etiology of schizophrenia.
Collapse
Affiliation(s)
- Shuquan Rao
- grid.461843.cState Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Lin Tian
- grid.89957.3a0000 0000 9255 8984Department of Psychiatry, Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Hongbao Cao
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA
| | - Ancha Baranova
- grid.22448.380000 0004 1936 8032School of Systems Biology, George Mason University (GMU), Fairfax, VA USA ,grid.415876.9Research Centre for Medical Genetics, Moscow, 115478 Russia
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
16
|
The non-coding genome in genetic brain disorders: new targets for therapy? Essays Biochem 2021; 65:671-683. [PMID: 34414418 PMCID: PMC8564736 DOI: 10.1042/ebc20200121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/12/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
The non-coding genome, consisting of more than 98% of all genetic information in humans and once judged as ‘Junk DNA’, is increasingly moving into the spotlight in the field of human genetics. Non-coding regulatory elements (NCREs) are crucial to ensure correct spatio-temporal gene expression. Technological advancements have allowed to identify NCREs on a large scale, and mechanistic studies have helped to understand the biological mechanisms underlying their function. It is increasingly becoming clear that genetic alterations of NCREs can cause genetic disorders, including brain diseases. In this review, we concisely discuss mechanisms of gene regulation and how to investigate them, and give examples of non-coding alterations of NCREs that give rise to human brain disorders. The cross-talk between basic and clinical studies enhances the understanding of normal and pathological function of NCREs, allowing better interpretation of already existing and novel data. Improved functional annotation of NCREs will not only benefit diagnostics for patients, but might also lead to novel areas of investigations for targeted therapies, applicable to a wide panel of genetic disorders. The intrinsic complexity and precision of the gene regulation process can be turned to the advantage of highly specific treatments. We further discuss this exciting new field of ‘enhancer therapy’ based on recent examples.
Collapse
|
17
|
Allaway KC, Gabitto MI, Wapinski O, Saldi G, Wang CY, Bandler RC, Wu SJ, Bonneau R, Fishell G. Genetic and epigenetic coordination of cortical interneuron development. Nature 2021; 597:693-697. [PMID: 34552240 DOI: 10.1038/s41586-021-03933-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
Abstract
One of the hallmarks of the cerebral cortex is the extreme diversity of interneurons1-3. The two largest subtypes of cortical interneurons, parvalbumin- and somatostatin-positive cells, are morphologically and functionally distinct in adulthood but arise from common lineages within the medial ganglionic eminence4-11. This makes them an attractive model for studying the generation of cell diversity. Here we examine how developmental changes in transcription and chromatin structure enable these cells to acquire distinct identities in the mouse cortex. Generic interneuron features are first detected upon cell cycle exit through the opening of chromatin at distal elements. By constructing cell-type-specific gene regulatory networks, we observed that parvalbumin- and somatostatin-positive cells initiate distinct programs upon settling within the cortex. We used these networks to model the differential transcriptional requirement of a shared regulator, Mef2c, and confirmed the accuracy of our predictions through experimental loss-of-function experiments. We therefore reveal how a common molecular program diverges to enable these neuronal subtypes to acquire highly specialized properties by adulthood. Our methods provide a framework for examining the emergence of cellular diversity, as well as for quantifying and predicting the effect of candidate genes on cell-type-specific development.
Collapse
Affiliation(s)
- Kathryn C Allaway
- Neuroscience Institute, New York University, New York, NY, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Mariano I Gabitto
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Orly Wapinski
- Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Giuseppe Saldi
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA.,Department of Biology, New York University, New York, NY, USA
| | - Chen-Yu Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Rachel C Bandler
- Neuroscience Institute, New York University, New York, NY, USA.,Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Sherry Jingjing Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
| | - Richard Bonneau
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, USA. .,Department of Biology, New York University, New York, NY, USA. .,Center for Data Science, New York University, New York, NY, USA.
| | - Gord Fishell
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA. .,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
18
|
Robeck TR, Fei Z, Lu AT, Haghani A, Jourdain E, Zoller JA, Li CZ, Steinman KJ, DiRocco S, Schmitt T, Osborn S, Van Bonn B, Katsumata E, Mergl J, Almunia J, Rodriguez M, Haulena M, Dold C, Horvath S. Multi-species and multi-tissue methylation clocks for age estimation in toothed whales and dolphins. Commun Biol 2021; 4:642. [PMID: 34059764 PMCID: PMC8167141 DOI: 10.1038/s42003-021-02179-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
The development of a precise blood or skin tissue DNA Epigenetic Aging Clock for Odontocete (OEAC) would solve current age estimation inaccuracies for wild odontocetes. Therefore, we determined genome-wide DNA methylation profiles using a custom array (HorvathMammalMethyl40) across skin and blood samples (n = 446) from known age animals representing nine odontocete species within 4 phylogenetic families to identify age associated CG dinucleotides (CpGs). The top CpGs were used to create a cross-validated OEAC clock which was highly correlated for individuals (r = 0.94) and for unique species (median r = 0.93). Finally, we applied the OEAC for estimating the age and sex of 22 wild Norwegian killer whales. DNA methylation patterns of age associated CpGs are highly conserved across odontocetes. These similarities allowed us to develop an odontocete epigenetic aging clock (OEAC) which can be used for species conservation efforts by provide a mechanism for estimating the age of free ranging odontocetes from either blood or skin samples.
Collapse
Affiliation(s)
- Todd R Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA.
| | - Zhe Fei
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Caesar Z Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karen J Steinman
- Species Preservation Laboratory, SeaWorld San Diego, San Diego, CA, USA
| | | | | | | | | | | | - June Mergl
- Marineland of Canada, Niagara Falls, ON, Canada
| | - Javier Almunia
- Loro Parque Fundación, SA, Avenida Loro Parque, Puerto de la Cruz, Santa Cruz de Tenerife, Spain
| | | | | | - Christopher Dold
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - Steve Horvath
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Chaudhary R, Agarwal V, Kaushik AS, Rehman M. Involvement of myocyte enhancer factor 2c in the pathogenesis of autism spectrum disorder. Heliyon 2021; 7:e06854. [PMID: 33981903 PMCID: PMC8082549 DOI: 10.1016/j.heliyon.2021.e06854] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/09/2020] [Accepted: 04/15/2021] [Indexed: 12/29/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2), a family of transcription factor of MADS (minichromosome maintenance 1, agamous, deficiens and serum response factor)-box family needed in the growth and differentiation of a variety of human cells, such as neural, immune, endothelial, and muscles. As per existing literature, MEF2 transcription factors have also been associated with synaptic plasticity, the developmental mechanisms governing memory and learning, and several neurologic conditions, like autism spectrum disorders (ASDs). Recent genomic findings have ascertained a link between MEF2 defects, particularly in the MEF2C isoform and the ASD. In this review, we summarized a concise overview of the general regulation, structure and functional roles of the MEF2C transcription factor. We further outlined the potential role of MEF2C as a risk factor for various neurodevelopmental disorders, such as ASD, MEF2C Haploinsufficiency Syndrome and Fragile X syndrome.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vipul Agarwal
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Arjun Singh Kaushik
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Mujeeba Rehman
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
20
|
Urresti J, Zhang P, Moran-Losada P, Yu NK, Negraes PD, Trujillo CA, Antaki D, Amar M, Chau K, Pramod AB, Diedrich J, Tejwani L, Romero S, Sebat J, Yates III JR, Muotri AR, Iakoucheva LM. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol Psychiatry 2021; 26:7560-7580. [PMID: 34433918 PMCID: PMC8873019 DOI: 10.1038/s41380-021-01243-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 11/09/2022]
Abstract
Reciprocal deletion and duplication of the 16p11.2 region is the most common copy number variation (CNV) associated with autism spectrum disorders. We generated cortical organoids from skin fibroblasts of patients with 16p11.2 CNV to investigate impacted neurodevelopmental processes. We show that organoid size recapitulates macrocephaly and microcephaly phenotypes observed in the patients with 16p11.2 deletions and duplications. The CNV dosage affects neuronal maturation, proliferation, and synapse number, in addition to its effect on organoid size. We demonstrate that 16p11.2 CNV alters the ratio of neurons to neural progenitors in organoids during early neurogenesis, with a significant excess of neurons and depletion of neural progenitors observed in deletions. Transcriptomic and proteomic profiling revealed multiple pathways dysregulated by the 16p11.2 CNV, including neuron migration, actin cytoskeleton, ion channel activity, synaptic-related functions, and Wnt signaling. The level of the active form of small GTPase RhoA was increased in both, deletions and duplications. Inhibition of RhoA activity rescued migration deficits, but not neurite outgrowth. This study provides insights into potential neurobiological mechanisms behind the 16p11.2 CNV during neocortical development.
Collapse
Affiliation(s)
- Jorge Urresti
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Pan Zhang
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Patricia Moran-Losada
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Nam-Kyung Yu
- grid.214007.00000000122199231Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Priscilla D. Negraes
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA USA
| | - Cleber A. Trujillo
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA USA
| | - Danny Antaki
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA
| | - Megha Amar
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Kevin Chau
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Akula Bala Pramod
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| | - Jolene Diedrich
- grid.214007.00000000122199231Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Leon Tejwani
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA USA
| | - Sarah Romero
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA USA
| | - Jonathan Sebat
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242University of California San Diego, Beyster Center for Psychiatric Genomics, La Jolla, CA USA
| | - John R. Yates III
- grid.214007.00000000122199231Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | - Alysson R. Muotri
- grid.266100.30000 0001 2107 4242Department of Cellular & Molecular Medicine, University of California San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242Department of Pediatrics/Rady Children’s Hospital San Diego, University of California, San Diego, La Jolla, CA USA ,grid.266100.30000 0001 2107 4242University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, CA USA ,Center for Academic Research and Training in Anthropogeny (CARTA), La Jolla, CA USA
| | - Lilia M. Iakoucheva
- grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California San Diego, La Jolla, CA USA
| |
Collapse
|