1
|
Deslandes B, Wu X, Lee MA, Goudswaard LJ, Jones GW, Gsur A, Lindblom A, Ogino S, Vymetalkova V, Wolk A, Wu AH, Huyghe JR, Peters U, Phipps AI, Thomas CE, Pai RK, Grant RC, Buchanan DD, Yarmolinsky J, Gunter MJ, Zheng J, Hazelwood E, Vincent EE. Transcriptome-wide Mendelian randomisation exploring dynamic CD4+ T cell gene expression in colorectal cancer development. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.15.25325863. [PMID: 40321251 PMCID: PMC12047913 DOI: 10.1101/2025.04.15.25325863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Background Recent research has identified a potential protective effect of higher numbers of circulating lymphocytes on colorectal cancer (CRC) development. However, the importance of different lymphocyte subtypes and activation states in CRC development and the biological pathways driving this relationship remain poorly understood and warrant further investigation. Specifically, CD4+ T cells - a highly dynamic lymphocyte subtype - undergo remodelling upon activation to induce the expression of genes critical for their effector function. Previous studies investigating their role in CRC risk have used bulk tissue, limiting our current understanding of the role of these cells to static, non-dynamic relationships only. Methods Here, we combined two genetic epidemiological methods - Mendelian randomisation (MR) and genetic colocalisation - to evaluate evidence for causal relationships of gene expression on CRC risk across multiple CD4+ T cell subtypes and activation stage. Genetic proxies were obtained from single-cell transcriptomic data, allowing us to investigate the causal effect of expression of 1,805 genes across five CD4+ T cell activation states on CRC risk (78,473 cases; 107,143 controls). We repeated analyses stratified by CRC anatomical subsites and sex, and performed a sensitivity analysis to evaluate whether the observed effect estimates were likely to be CD4+ T cell-specific. Results We identified six genes with evidence (FDR-P<0.05 in MR analyses and H4>0.8 in genetic colocalisation analyses) for a causal role of CD4+ T cell expression in CRC development - FADS2, FHL3, HLA-DRB1, HLA-DRB5, RPL28, and TMEM258. We observed differences in causal estimates of gene expression on CRC risk across different CD4+ T cell subtypes and activation timepoints, as well as CRC anatomical subsites and sex. However, our sensitivity analysis revealed that the genetic proxies used to instrument gene expression in CD4+ T cells also act as eQTLs in other tissues, highlighting the challenges of using genetic proxies to instrument tissue-specific expression changes. Conclusions Our study demonstrates the importance of capturing the dynamic nature of CD4+ T cells in understanding disease risk, and prioritises genes for further investigation in cancer prevention research.
Collapse
Affiliation(s)
- Benedita Deslandes
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Xueyan Wu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Matthew A. Lee
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, WHO, Lyon, France
| | - Lucy J. Goudswaard
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Gareth W. Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Shuji Ogino
- Program in MPE Molecular Pathological Epidemiology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna H. Wu
- University of Southern California, Department of Population and Public Health Sciences, Los Angeles, California, USA
| | - Jeroen R. Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Amanda I. Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Claire E. Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Rish K. Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Robert C Grant
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Toronto, Canada
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC 3010, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC 3010, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, Melbourne, VIC 3000, Australia
| | - James Yarmolinsky
- Cancer Epidemiology and Prevention Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Marc J. Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, WHO, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Jie Zheng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Emma Hazelwood
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emma E. Vincent
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
2
|
Jia G, Chen Z, Ping J, Cai Q, Tao R, Li C, Bauer JA, Xie Y, Ambs S, Barnard ME, Chen Y, Choi JY, Gao YT, Garcia-Closas M, Gu J, Hu JJ, Iwasaki M, John EM, Kweon SS, Li CI, Matsuda K, Matsuo K, Nathanson KL, Nemesure B, Olopade OI, Pal T, Park SK, Park B, Press MF, Sanderson M, Sandler DP, Shen CY, Troester MA, Yao S, Zheng Y, Ahearn T, Brewster AM, Falusi A, Hennis AJM, Ito H, Kubo M, Lee ES, Makumbi T, Ndom P, Noh DY, O'Brien KM, Ojengbede O, Olshan AF, Park MH, Reid S, Yamaji T, Zirpoli G, Butler EN, Huang M, Low SK, Obafunwa J, Weinberg CR, Zhang H, Zhao H, Cote ML, Ambrosone CB, Huo D, Li B, Kang D, Palmer JR, Shu XO, Haiman CA, Guo X, Long J, Zheng W. Refining breast cancer genetic risk and biology through multi-ancestry fine-mapping analyses of 192 risk regions. Nat Genet 2025; 57:80-87. [PMID: 39753771 PMCID: PMC12184877 DOI: 10.1038/s41588-024-02031-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/11/2024] [Indexed: 01/16/2025]
Abstract
Genome-wide association studies have identified approximately 200 genetic risk loci for breast cancer, but the causal variants and target genes are mostly unknown. We sought to fine-map all known breast cancer risk loci using genome-wide association study data from 172,737 female breast cancer cases and 242,009 controls of African, Asian and European ancestry. We identified 332 independent association signals for breast cancer risk, including 131 signals not reported previously, and for 50 of them, we narrowed the credible causal variants down to a single variant. Analyses integrating functional genomics data identified 195 putative susceptibility genes, enriched in PI3K/AKT, TNF/NF-κB, p53 and Wnt/β-catenin pathways. Single-cell RNA sequencing or in vitro experiment data provided additional functional evidence for 105 genes. Our study uncovered large numbers of association signals and candidate susceptibility genes for breast cancer, uncovered breast cancer genetics and biology, and supported the value of including multi-ancestry data in fine-mapping analyses.
Collapse
Affiliation(s)
- Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chao Li
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua A Bauer
- Department of Biochemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yuhan Xie
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Yu Chen
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Ji-Yeob Choi
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Jian Gu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, University of Miami School of Medicine, Miami, FL, USA
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Esther M John
- Department of Epidemiology and Population Health and Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Hwasun, South Korea
- Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Christopher I Li
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katherine L Nathanson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Basser Center for BRCA, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Nemesure
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Olufunmilayo I Olopade
- Center for Clinical Cancer Genetics and Global Health, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Tuya Pal
- Division of Genetic Medicine, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sue K Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Integrated Major in Innovative Medical Science, Seoul National University College of Medicine, Seoul, South Korea
- Cancer Research Institute, Seoul National University, Seoul, South Korea
| | - Boyoung Park
- Department of Preventive Medicine, Hanyang University College of Medicine, Seoul, South Korea
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Maureen Sanderson
- Department of Family and Community Medicine, Meharry Medical College, Nashville, TN, USA
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Chen-Yang Shen
- College of Public Health, China Medical University, Taichong, Taiwan
- Taiwan Biobank, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Melissa A Troester
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Ying Zheng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Thomas Ahearn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Abenaa M Brewster
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adeyinka Falusi
- Genetic and Bioethics Research Unit, Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anselm J M Hennis
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- George Alleyne Chronic Disease Research Centre, University of the West Indies, Bridgetown, Barbados
| | - Hidemi Ito
- Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eun-Sook Lee
- National Cancer Center Graduate School of Cancer Science and Policy, Goyang, South Korea
- Hospital, National Cancer Center, Goyang, South Korea
| | | | - Paul Ndom
- Yaounde General Hospital, Yaounde, Cameroon
| | - Dong-Young Noh
- College of Medicine, Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Katie M O'Brien
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Oladosu Ojengbede
- Center for Population and Reproductive Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Andrew F Olshan
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Min-Ho Park
- Department of Surgery, Chonnam National University Medical School, Gwangju, South Korea
| | - Sonya Reid
- Division of Hematology and Oncology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, Tokyo, Japan
| | - Gary Zirpoli
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Ebonee N Butler
- Department of Epidemiology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siew-Kee Low
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - John Obafunwa
- Department of Pathology and Forensic Medicine, Lagos State University Teaching Hospital, Lagos, Nigeria
| | - Clarice R Weinberg
- Biostatistics and Computational Biology Branch, National Institutes of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Haoyu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Michelle L Cote
- Fairbanks School of Public Health, Indiana University, Indianapolis, IN, USA
- Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Dezheng Huo
- Department of Public Health Sciences, The University of Chicago, Chicago, IL, USA
| | - Bingshan Li
- Department of Molecular Physiology & Biophysics, Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Daehee Kang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, South Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Julie R Palmer
- Slone Epidemiology Center, Boston University, Boston, MA, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Li Q, Geng S, Luo H, Wang W, Mo YQ, Luo Q, Wang L, Song GB, Sheng JP, Xu B. Signaling pathways involved in colorectal cancer: pathogenesis and targeted therapy. Signal Transduct Target Ther 2024; 9:266. [PMID: 39370455 PMCID: PMC11456611 DOI: 10.1038/s41392-024-01953-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/25/2024] [Accepted: 08/16/2024] [Indexed: 10/08/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. Its complexity is influenced by various signal transduction networks that govern cellular proliferation, survival, differentiation, and apoptosis. The pathogenesis of CRC is a testament to the dysregulation of these signaling cascades, which culminates in the malignant transformation of colonic epithelium. This review aims to dissect the foundational signaling mechanisms implicated in CRC, to elucidate the generalized principles underpinning neoplastic evolution and progression. We discuss the molecular hallmarks of CRC, including the genomic, epigenomic and microbial features of CRC to highlight the role of signal transduction in the orchestration of the tumorigenic process. Concurrently, we review the advent of targeted and immune therapies in CRC, assessing their impact on the current clinical landscape. The development of these therapies has been informed by a deepening understanding of oncogenic signaling, leading to the identification of key nodes within these networks that can be exploited pharmacologically. Furthermore, we explore the potential of integrating AI to enhance the precision of therapeutic targeting and patient stratification, emphasizing their role in personalized medicine. In summary, our review captures the dynamic interplay between aberrant signaling in CRC pathogenesis and the concerted efforts to counteract these changes through targeted therapeutic strategies, ultimately aiming to pave the way for improved prognosis and personalized treatment modalities in colorectal cancer.
Collapse
Affiliation(s)
- Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, China
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Shan Geng
- Central Laboratory, The Affiliated Dazu Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Wang
- Chongqing Municipal Health and Health Committee, Chongqing, China
| | - Ya-Qi Mo
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Qing Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Lu Wang
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China
| | - Guan-Bin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Jian-Peng Sheng
- College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing, China.
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Chongqing University Cancer Hospital and School of Medicine, Chongqing University, Chongqing, China.
| |
Collapse
|
4
|
Guo X, Ping J, Yang Y, Su X, Shu XO, Wen W, Chen Z, Zhang Y, Tao R, Jia G, He J, Cai Q, Zhang Q, Giles GG, Pearlman R, Rennert G, Vodicka P, Phipps A, Gruber SB, Casey G, Peters U, Long J, Lin W, Zheng W. Large-Scale Alternative Polyadenylation-Wide Association Studies to Identify Putative Cancer Susceptibility Genes. Cancer Res 2024; 84:2707-2719. [PMID: 38759092 PMCID: PMC11326986 DOI: 10.1158/0008-5472.can-24-0521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/26/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Alternative polyadenylation (APA) modulates mRNA processing in the 3'-untranslated regions (3' UTR), affecting mRNA stability and translation efficiency. Research into genetically regulated APA has the potential to provide insights into cancer risk. In this study, we conducted large APA-wide association studies to investigate associations between APA levels and cancer risk. Genetic models were built to predict APA levels in multiple tissues using genotype and RNA sequencing data from 1,337 samples from the Genotype-Tissue Expression project. Associations of genetically predicted APA levels with cancer risk were assessed by applying the prediction models to data from large genome-wide association studies of six common cancers among European ancestry populations: breast, ovarian, prostate, colorectal, lung, and pancreatic cancers. A total of 58 risk genes (corresponding to 76 APA sites) were associated with at least one type of cancer, including 25 genes previously not linked to cancer susceptibility. Of the identified risk APAs, 97.4% and 26.3% were supported by 3'-UTR APA quantitative trait loci and colocalization analyses, respectively. Luciferase reporter assays for four selected putative regulatory 3'-UTR variants demonstrated that the risk alleles of 3'-UTR variants, rs324015 (STAT6), rs2280503 (DIP2B), rs1128450 (FBXO38), and rs145220637 (LDHA), significantly increased the posttranscriptional activities of their target genes compared with reference alleles. Furthermore, knockdown of the target genes confirmed their ability to promote proliferation and migration. Overall, this study provides insights into the role of APA in the genetic susceptibility to common cancers. Significance: Systematic evaluation of associations of alternative polyadenylation with cancer risk reveals 58 putative susceptibility genes, highlighting the contribution of genetically regulated alternative polyadenylation of 3'UTRs to genetic susceptibility to cancer.
Collapse
Affiliation(s)
- Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Yaohua Yang
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
- Department of Public Health Sciences, UVA Comprehensive Cancer Center, School of Medicine, University of Virginia
| | - Xinwan Su
- International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Xiao-ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Yunjing Zhang
- International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Ran Tao
- Department of Biostatistics, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Jingni He
- Department of Biochemistry and Molecular Biology & Medical Genetics, University of Calgary, Calgary, Canada
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Qingrun Zhang
- Department of Mathematics and Statistics, Alberta Children’s Hospital Research Institute, Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
| | - Graham G Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, USA
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic; Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic; and Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Amanda Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Stephen B Gruber
- Department of Preventive Medicine & USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| | - Weiqiang Lin
- International Institutes of Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, Zhejiang University, Yiwu, Zhejiang, China
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville 37203, TN, USA
| |
Collapse
|
5
|
Zhang J, Song Q, Hu W. A functional variant rs10409772 in FUT6 promoter regulates colorectal cancer progression through PKA/CREB signaling. Transl Oncol 2024; 46:102011. [PMID: 38823257 PMCID: PMC11176829 DOI: 10.1016/j.tranon.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/18/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024] Open
Abstract
Fucosyltransferase 6 (FUT6) is overexpressed in colorectal cancer tissue according to TCGA samples and immunohistochemistry results of a tissue microarray. FUT6 effects cell migration, tumor formation and proliferation of colorectal cancer cells in different essays. FUT6 promotes cancer cell proliferation in vitro and colorectal tumorigenesis in vivo by upregulating PKA/CREB pathway activation. Moreover, FUT6 expression is regulated by rs10409772 shown in the luciferase essays, a single nucleotide polymorphism in the promoter of FUT6. Our study suggests that elevated expression of FUT6 promotes PKA/CREB signaling, which in turn augments colorectal carcinogenesis, indicating a potential therapeutic target for colorectal cancer patients with increased FUT6 expression.
Collapse
Affiliation(s)
- Jie Zhang
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China.
| | - Weiguo Hu
- Cancer Center, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, China.
| |
Collapse
|
6
|
Wu CY, Liu Z, Luo WM, Huang H, Jiang N, Du ZP, Wang FM, Han X, Ye GC, Guo Q, Chen JL. Downregulation of DIP2B as a prognostic marker inhibited cancer proliferation and migration and was associated with immune infiltration in lung adenocarcinoma via CCND1 and MMP2. Heliyon 2024; 10:e32025. [PMID: 38952374 PMCID: PMC11215276 DOI: 10.1016/j.heliyon.2024.e32025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/22/2024] [Accepted: 05/27/2024] [Indexed: 07/03/2024] Open
Abstract
Background DIP2B is related to cancer progression. This study investigated the roles and pathways of DIP2B in lung adenocarcinoma (LUAD). Methods DIP2B expression and the relationship between survival time of cancer patients and DIP2B expression were analyzed. The relationship between DIP2B expression and survival time in LUAD patients was evaluated by a meta-analysis. Cox and survival analyses were used to evaluate the prognostic factors and construct a prognostic nomogram. The mechanisms and effects of DIP2B and the relationship between DIP2B expression and the immune microenvironment were investigated using bioinformatics, CCK-8, western blotting, and transwell experiments. Results DIP2B was overexpressed in LUAD tissues. DIP2B overexpression was associated with shorter prognosis and was an unfavorable risk factor for prognosis in LUAD patients. DIP2B co-expressed genes were involved in cell division, DNA repair, cell cycle, and others. Inhibition of DIP2B expression could downregulate the proliferation, migration, and invasion of LUAD A549 and H1299 cells, which was related to the decrease in CCND1 and MMP2 protein expression. BRCA1 overexpression was associated with short prognosis, and the nomogram formed by DIP2B and BRCA1 was associated with a poor prognosis in LUAD patients. DIP2B expression correlated with immune cells (such as CD8 T cells, Tcm, and iDCs) and cell markers. Conclusion DIP2B is a potential biomarker of poor prognosis and the immune microenvironment in LUAD. Inhibition of DIP2B expression downregulated cancer cell proliferation, migration, and invasion, which might be related to the decrease in CCND1 and MMP2 protein expression. DIP2B-related nomograms might be useful tools for predicting the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei-Min Luo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Huan Huang
- Department of Thoracic Surgery, People's Hospital of Dongxihu, Wuhan, China
| | - Ni Jiang
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Peng Du
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang-Ming Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xu Han
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guan-Chao Ye
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Guo
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Jiu-Ling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Xu Z, Li W, Dong X, Chen Y, Zhang D, Wang J, Zhou L, He G. Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence. Clin Chim Acta 2024; 559:119686. [PMID: 38663471 DOI: 10.1016/j.cca.2024.119686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Colorectal cancer (CRC) is a leading cause of cancer-related deaths. Recent advancements in genomic technologies and analytical approaches have revolutionized CRC research, enabling precision medicine. This review highlights the integration of multi-omics, spatial omics, and artificial intelligence (AI) in advancing precision medicine for CRC. Multi-omics approaches have uncovered molecular mechanisms driving CRC progression, while spatial omics have provided insights into the spatial heterogeneity of gene expression in CRC tissues. AI techniques have been utilized to analyze complex datasets, identify new treatment targets, and enhance diagnosis and prognosis. Despite the tumor's heterogeneity and genetic and epigenetic complexity, the fusion of multi-omics, spatial omics, and AI shows the potential to overcome these challenges and advance precision medicine in CRC. The future lies in integrating these technologies to provide deeper insights and enable personalized therapies for CRC patients.
Collapse
Affiliation(s)
- Zishan Xu
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Wei Li
- School of Forensic Medicine, Xinxiang Medical University, Xinxiang 453000, China
| | - Xiangyang Dong
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Yingying Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453000, China
| | - Dan Zhang
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China
| | - Jingnan Wang
- Xinxiang Medical University SanQuan Medical College, Xinxiang 453003, China
| | - Lin Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Guoyang He
- Department of Pathology, Xinxiang Medical University, Xinxiang 453000, China.
| |
Collapse
|
8
|
Hoseini SH, Enayati P, Nazari M, Babakhanzadeh E, Rastgoo M, Sohrabi NB. Biomarker Profile of Colorectal Cancer: Current Findings and Future Perspective. J Gastrointest Cancer 2024; 55:497-510. [PMID: 38168859 DOI: 10.1007/s12029-023-00990-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Breakthroughs in omics technology have led to a deeper understanding of the fundamental molecular changes that play a critical role in the development and progression of cancer. This review delves into the hidden molecular drivers of colorectal cancer (CRC), offering potential for clinical translation through novel biomarkers and personalized therapies. METHODS We summarizes recent studies utilizing various omics approaches, including genomics, transcriptomics, proteomics, epigenomics, metabolomics and data integration with computational algorithms, to investigate CRC. RESULTS Integrating multi-omics data in colorectal cancer research unlocks hidden biological insights, revealing new pathways and mechanisms. This powerful approach not only identifies potential biomarkers for personalized prognosis, diagnosis, and treatment, but also predicts patient response to specific therapies, while computational tools illuminate the landscape by deciphering complex datasets. CONCLUSIONS Future research should prioritize validating promising biomarkers and seamlessly translating them into clinical practice, ultimately propelling personalized CRC management to new heights.
Collapse
Affiliation(s)
| | - Parisa Enayati
- Biological Sciences Department, Northern Illinois University, DeKalb, IL, USA
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- , P.O. Box, Tehran, 64155-65117, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rastgoo
- Department of Microbiology, Shiraz Islamic Azad University, Shiraz, Iran
| | | |
Collapse
|
9
|
Li Q, Song Q, Chen Z, Choi J, Moreno V, Ping J, Wen W, Li C, Shu X, Yan J, Shu XO, Cai Q, Long J, Huyghe JR, Pai R, Gruber SB, Casey G, Wang X, Toriola AT, Li L, Singh B, Lau KS, Zhou L, Wu C, Peters U, Zheng W, Long Q, Yin Z, Guo X. Large-scale integration of omics and electronic health records to identify potential risk protein biomarkers and therapeutic drugs for cancer prevention and intervention. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.29.24308170. [PMID: 38853880 PMCID: PMC11160851 DOI: 10.1101/2024.05.29.24308170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Identifying risk protein targets and their therapeutic drugs is crucial for effective cancer prevention. Here, we conduct integrative and fine-mapping analyses of large genome-wide association studies data for breast, colorectal, lung, ovarian, pancreatic, and prostate cancers, and characterize 710 lead variants independently associated with cancer risk. Through mapping protein quantitative trait loci (pQTL) for these variants using plasma proteomics data from over 75,000 participants, we identify 365 proteins associated with cancer risk. Subsequent colocalization analysis identifies 101 proteins, including 74 not reported in previous studies. We further characterize 36 potential druggable proteins for cancers or other disease indications. Analyzing >3.5 million electronic health records, we uncover five drugs (Haloperidol, Trazodone, Tranexamic Acid, Haloperidol, and Captopril) associated with increased cancer risk and two drugs (Caffeine and Acetazolamide) linked to reduced colorectal cancer risk. This study offers novel insights into therapeutic drugs targeting risk proteins for cancer prevention and intervention.
Collapse
|
10
|
Chen Z, Guo X, Tao R, Huyghe JR, Law PJ, Fernandez-Rozadilla C, Ping J, Jia G, Long J, Li C, Shen Q, Xie Y, Timofeeva MN, Thomas M, Schmit SL, Díez-Obrero V, Devall M, Moratalla-Navarro F, Fernandez-Tajes J, Palles C, Sherwood K, Briggs SEW, Svinti V, Donnelly K, Farrington SM, Blackmur J, Vaughan-Shaw PG, Shu XO, Lu Y, Broderick P, Studd J, Harrison TA, Conti DV, Schumacher FR, Melas M, Rennert G, Obón-Santacana M, Martín-Sánchez V, Oh JH, Kim J, Jee SH, Jung KJ, Kweon SS, Shin MH, Shin A, Ahn YO, Kim DH, Oze I, Wen W, Matsuo K, Matsuda K, Tanikawa C, Ren Z, Gao YT, Jia WH, Hopper JL, Jenkins MA, Win AK, Pai RK, Figueiredo JC, Haile RW, Gallinger S, Woods MO, Newcomb PA, Duggan D, Cheadle JP, Kaplan R, Kerr R, Kerr D, Kirac I, Böhm J, Mecklin JP, Jousilahti P, Knekt P, Aaltonen LA, Rissanen H, Pukkala E, Eriksson JG, Cajuso T, Hänninen U, Kondelin J, Palin K, Tanskanen T, Renkonen-Sinisalo L, Männistö S, Albanes D, Weinstein SJ, Ruiz-Narvaez E, Palmer JR, Buchanan DD, Platz EA, Visvanathan K, Ulrich CM, Siegel E, Brezina S, Gsur A, Campbell PT, Chang-Claude J, Hoffmeister M, Brenner H, et alChen Z, Guo X, Tao R, Huyghe JR, Law PJ, Fernandez-Rozadilla C, Ping J, Jia G, Long J, Li C, Shen Q, Xie Y, Timofeeva MN, Thomas M, Schmit SL, Díez-Obrero V, Devall M, Moratalla-Navarro F, Fernandez-Tajes J, Palles C, Sherwood K, Briggs SEW, Svinti V, Donnelly K, Farrington SM, Blackmur J, Vaughan-Shaw PG, Shu XO, Lu Y, Broderick P, Studd J, Harrison TA, Conti DV, Schumacher FR, Melas M, Rennert G, Obón-Santacana M, Martín-Sánchez V, Oh JH, Kim J, Jee SH, Jung KJ, Kweon SS, Shin MH, Shin A, Ahn YO, Kim DH, Oze I, Wen W, Matsuo K, Matsuda K, Tanikawa C, Ren Z, Gao YT, Jia WH, Hopper JL, Jenkins MA, Win AK, Pai RK, Figueiredo JC, Haile RW, Gallinger S, Woods MO, Newcomb PA, Duggan D, Cheadle JP, Kaplan R, Kerr R, Kerr D, Kirac I, Böhm J, Mecklin JP, Jousilahti P, Knekt P, Aaltonen LA, Rissanen H, Pukkala E, Eriksson JG, Cajuso T, Hänninen U, Kondelin J, Palin K, Tanskanen T, Renkonen-Sinisalo L, Männistö S, Albanes D, Weinstein SJ, Ruiz-Narvaez E, Palmer JR, Buchanan DD, Platz EA, Visvanathan K, Ulrich CM, Siegel E, Brezina S, Gsur A, Campbell PT, Chang-Claude J, Hoffmeister M, Brenner H, Slattery ML, Potter JD, Tsilidis KK, Schulze MB, Gunter MJ, Murphy N, Castells A, Castellví-Bel S, Moreira L, Arndt V, Shcherbina A, Bishop DT, Giles GG, Southey MC, Idos GE, McDonnell KJ, Abu-Ful Z, Greenson JK, Shulman K, Lejbkowicz F, Offit K, Su YR, Steinfelder R, Keku TO, van Guelpen B, Hudson TJ, Hampel H, Pearlman R, Berndt SI, Hayes RB, Martinez ME, Thomas SS, Pharoah PDP, Larsson SC, Yen Y, Lenz HJ, White E, Li L, Doheny KF, Pugh E, Shelford T, Chan AT, Cruz-Correa M, Lindblom A, Hunter DJ, Joshi AD, Schafmayer C, Scacheri PC, Kundaje A, Schoen RE, Hampe J, Stadler ZK, Vodicka P, Vodickova L, Vymetalkova V, Edlund CK, Gauderman WJ, Shibata D, Toland A, Markowitz S, Kim A, Chanock SJ, van Duijnhoven F, Feskens EJM, Sakoda LC, Gago-Dominguez M, Wolk A, Pardini B, FitzGerald LM, Lee SC, Ogino S, Bien SA, Kooperberg C, Li CI, Lin Y, Prentice R, Qu C, Bézieau S, Yamaji T, Sawada N, Iwasaki M, Le Marchand L, Wu AH, Qu C, McNeil CE, Coetzee G, Hayward C, Deary IJ, Harris SE, Theodoratou E, Reid S, Walker M, Ooi LY, Lau KS, Zhao H, Hsu L, Cai Q, Dunlop MG, Gruber SB, Houlston RS, Moreno V, Casey G, Peters U, Tomlinson I, Zheng W. Fine-mapping analysis including over 254,000 East Asian and European descendants identifies 136 putative colorectal cancer susceptibility genes. Nat Commun 2024; 15:3557. [PMID: 38670944 PMCID: PMC11053150 DOI: 10.1038/s41467-024-47399-x] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Genome-wide association studies (GWAS) have identified more than 200 common genetic variants independently associated with colorectal cancer (CRC) risk, but the causal variants and target genes are mostly unknown. We sought to fine-map all known CRC risk loci using GWAS data from 100,204 cases and 154,587 controls of East Asian and European ancestry. Our stepwise conditional analyses revealed 238 independent association signals of CRC risk, each with a set of credible causal variants (CCVs), of which 28 signals had a single CCV. Our cis-eQTL/mQTL and colocalization analyses using colorectal tissue-specific transcriptome and methylome data separately from 1299 and 321 individuals, along with functional genomic investigation, uncovered 136 putative CRC susceptibility genes, including 56 genes not previously reported. Analyses of single-cell RNA-seq data from colorectal tissues revealed 17 putative CRC susceptibility genes with distinct expression patterns in specific cell types. Analyses of whole exome sequencing data provided additional support for several target genes identified in this study as CRC susceptibility genes. Enrichment analyses of the 136 genes uncover pathways not previously linked to CRC risk. Our study substantially expanded association signals for CRC and provided additional insight into the biological mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ran Tao
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, 37232, TN, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Philip J Law
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Ceres Fernandez-Rozadilla
- Edinburgh Cancer Research Centre, Institute of Genomics and Cancer, University of Edinburgh, Edinburgh, UK
- Genomic Medicine Group, Instituto de Investigacion Sanitaria de Santiago, Santiago de Compostela, Spain
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Guochong Jia
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Chao Li
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Quanhu Shen
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuhan Xie
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Maria N Timofeeva
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Danish Institute for Advanced Study, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stephanie L Schmit
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
- Population and Cancer Prevention Program, Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Virginia Díez-Obrero
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Matthew Devall
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Ferran Moratalla-Navarro
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Juan Fernandez-Tajes
- Edinburgh Cancer Research Centre, Institute of Genomics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Claire Palles
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Kitty Sherwood
- Edinburgh Cancer Research Centre, Institute of Genomics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Sarah E W Briggs
- Department of Public Health, Richard Doll Building, University of Oxford, Oxford, UK
| | - Victoria Svinti
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Kevin Donnelly
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Susan M Farrington
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James Blackmur
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Peter G Vaughan-Shaw
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Peter Broderick
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - James Studd
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Tabitha A Harrison
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David V Conti
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fredrick R Schumacher
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Marilena Melas
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | - Gad Rennert
- Clalit National Cancer Control Center, Haifa, Israel
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mireia Obón-Santacana
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Vicente Martín-Sánchez
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Biomedicine Institute, University of León, León, Spain
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Gyeonggi-do, South Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, South Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Aesun Shin
- Cancer Research Institute, Seoul National University, Seoul, South Korea
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, South Korea
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keitaro Matsuo
- Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Zefang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogenes and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Department of Epidemiology, School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Aung Ko Win
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Rish K Pai
- Department of Laboratory Medicine and Pathology, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Jane C Figueiredo
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Robert W Haile
- Division of Oncology, Department of Medicine, Cedars-Sinai Cancer Research Center for Health Equity, Los Angeles, CA, USA
| | - Steven Gallinger
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Michael O Woods
- Division of Biomedical Sciences, Memorial University of Newfoundland, St. John, ON, Canada
| | - Polly A Newcomb
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- School of Public Health, University of Washington, Seattle, WA, USA
| | - David Duggan
- City of Hope National Medical Center, Translational Genomics Research Institute, Phoenix, AZ, USA
| | | | - Richard Kaplan
- MRC Clinical Trials Unit, Medical Research Council, Cardiff, UK
| | - Rachel Kerr
- Department of Oncology, University of Oxford, Oxford, UK
| | - David Kerr
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Iva Kirac
- Department of Surgical Oncology, University Hospital for Tumors, Sestre milosrdnice University Hospital Center, Zagreb, Croatia
| | - Jan Böhm
- Department of Pathology, Central Finland Health Care District, Jyväskylä, Finland
| | | | - Pekka Jousilahti
- Department of Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Paul Knekt
- Department of Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Harri Rissanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Eero Pukkala
- Faculty of Social Sciences, Tampere University, Tampere, Finland
- Finnish Cancer Registry, Institute for Statistical and Epidemiological Cancer Research, Helsinki, Finland
| | - Johan G Eriksson
- Folkhälsan Research Centre, University of Helsinki, Helsinki, Finland
- Human Potential Translational Research Programme, National University of Singapore, Singapore, Singapore
- Unit of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tatiana Cajuso
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Ulrika Hänninen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Johanna Kondelin
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Tomas Tanskanen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Satu Männistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Edward Ruiz-Narvaez
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Julie R Palmer
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Slone Epidemiology Center at Boston University, Boston, MA, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, University of Melbourne, Parkville, VIC, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
| | - Elizabeth A Platz
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Cornelia M Ulrich
- Huntsman Cancer Institute and Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
| | - Erin Siegel
- Cancer Epidemiology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Stefanie Brezina
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Andrea Gsur
- Institute of Cancer Research, Department of Medicine I, Medical University Vienna, Vienna, Austria
| | - Peter T Campbell
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, New York, NY, USA
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg, Germany
- University Medical Centre Hamburg-Eppendorf, University Cancer Centre Hamburg, Hamburg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center and National Center for Tumor Diseases, Heidelberg, Germany
- German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - John D Potter
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Research Centre for Hauora and Health, Massey University, Wellington, New Zealand
| | - Kostas K Tsilidis
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Neil Murphy
- Nutrition and Metabolism Branch, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Sergi Castellví-Bel
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Leticia Moreira
- Gastroenterology Department, Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, University of Barcelona, Barcelona, Spain
| | - Volker Arndt
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center, Heidelberg, Germany
| | - Anna Shcherbina
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - D Timothy Bishop
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Graham G Giles
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Melissa C Southey
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
- Department of Clinical Pathology, University of Melbourne, Melbourne, VIC, Australia
| | - Gregory E Idos
- Department of Medical Oncology and Center For Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Kevin J McDonnell
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Medical Oncology and Center For Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Zomoroda Abu-Ful
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Joel K Greenson
- Clalit National Cancer Control Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Katerina Shulman
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Flavio Lejbkowicz
- Clalit National Cancer Control Center, Haifa, Israel
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Clalit Health Services, Personalized Genomic Service, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Kenneth Offit
- Clinical Genetics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Yu-Ru Su
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Robert Steinfelder
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Temitope O Keku
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Bethany van Guelpen
- Department of Radiation Sciences, Oncology Unit, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | | - Heather Hampel
- Division of Human Genetics, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Rachel Pearlman
- Division of Human Genetics, Department of Internal Medicine, Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Richard B Hayes
- Division of Epidemiology, Department of Population Health, New York University School of Medicine, New York, NY, USA
| | - Marie Elena Martinez
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, CA, USA
- Population Sciences, Disparities and Community Engagement, University of California San Diego Moores Cancer Center, La Jolla, CA, USA
| | | | - Paul D P Pharoah
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Susanna C Larsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Yun Yen
- Taipei Medical University, Taipei, Taiwan
| | - Heinz-Josef Lenz
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Emily White
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
| | - Li Li
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Kimberly F Doheny
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Pugh
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tameka Shelford
- Center for Inherited Disease Research, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew T Chan
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marcia Cruz-Correa
- Comprehensive Cancer Center, University of Puerto Rico, San Juan, Puerto Rico
| | - Annika Lindblom
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - David J Hunter
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Clemens Schafmayer
- Department of General Surgery, University Hospital Rostock, Rostock, Germany
| | - Peter C Scacheri
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Robert E Schoen
- Department of Medicine and Epidemiology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jochen Hampe
- Department of Medicine I, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Zsofia K Stadler
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Christopher K Edlund
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - W James Gauderman
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David Shibata
- Department of Surgery, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amanda Toland
- Departments of Cancer Biology and Genetics and Internal Medicine, Comprehensive Cancer Center, Ohio State University, Columbus, OH, USA
| | - Sanford Markowitz
- Departments of Medicine and Genetics, Case Comprehensive Cancer Center, Case Western Reserve University and University Hospitals of Cleveland, Cleveland, OH, USA
| | - Andre Kim
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Franzel van Duijnhoven
- Division of Human Nutrition and Health, Wageningen University and Research, Wageningen, The Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition, Wageningen University and Research, Wageningen, The Netherlands
| | - Lori C Sakoda
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Public Foundation of Genomic Medicine, Servicio Galego de Saude, Santiago de Compostela, Spain
- Instituto de Investigación Sanitaria de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Pardini
- Candiolo Cancer Institute FPO-IRCCS, Candiolo, (TO), Italy
- Italian Institute for Genomic Medicine, Candiolo Cancer Institute FPO-IRCCS, Candiolo, (TO), Italy
| | - Liesel M FitzGerald
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Soo Chin Lee
- National University Cancer Institute, Singapore, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Shuji Ogino
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cancer Immunology Program, Dana-Farber Harvard Cancer Center, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stephanie A Bien
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Christopher I Li
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yi Lin
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Ross Prentice
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Conghui Qu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Stéphane Bézieau
- Service de Génétique Médicale, Centre Hospitalier Universitaire Nantes, Nantes, France
| | - Taiki Yamaji
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | - Motoki Iwasaki
- Division of Epidemiology, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
- Division of Cohort Research, National Cancer Center Institute for Cancer Control, National Cancer Center, Tokyo, Japan
| | | | - Anna H Wu
- Preventative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chenxu Qu
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caroline E McNeil
- USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genomics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Ian J Deary
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Sarah E Harris
- Lothian Birth Cohorts group, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Evropi Theodoratou
- Centre for Global Health, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Stuart Reid
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Marion Walker
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Li Yin Ooi
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Biostatistics, School of Public Health, University of Washington, Seattle, WA, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Malcolm G Dunlop
- Colon Cancer Genetics Group, Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Stephen B Gruber
- Department of Medical Oncology and Center For Precision Medicine, City of Hope National Medical Center, Duarte, CA, USA
| | - Richard S Houlston
- Division of Genetics and Epidemiology, Institute of Cancer Research, London, UK
| | - Victor Moreno
- Colorectal Cancer Group, ONCOBELL Program, Bellvitge Biomedical Research Institute, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health, Madrid, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Oncology Data Analytics Program, Catalan Institute of Oncology, Barcelona, Spain
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Ulrike Peters
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Ian Tomlinson
- Edinburgh Cancer Research Centre, Institute of Genomics and Cancer, University of Edinburgh, Edinburgh, UK
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Chen Z, Lin W, Cai Q, Kweon SS, Shu XO, Tanikawa C, Jia WH, Wang Y, Su X, Yuan Y, Wen W, Kim J, Shin A, Jee SH, Matsuo K, Kim DH, Wang N, Ping J, Shin MH, Ren Z, Oh JH, Oze I, Ahn YO, Jung KJ, Gao YT, Pan ZZ, Kamatani Y, Han W, Long J, Matsuda K, Zheng W, Guo X. A large-scale microRNA transcriptome-wide association study identifies two susceptibility microRNAs, miR-1307-5p and miR-192-3p, for colorectal cancer risk. Hum Mol Genet 2024; 33:333-341. [PMID: 37903058 PMCID: PMC10840382 DOI: 10.1093/hmg/ddad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 07/20/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
Transcriptome-wide association studies (TWAS) have identified many putative susceptibility genes for colorectal cancer (CRC) risk. However, susceptibility miRNAs, critical dysregulators of gene expression, remain unexplored. We genotyped DNA samples from 313 CRC East Asian patients and performed small RNA sequencing in their normal colon tissues distant from tumors to build genetic models for predicting miRNA expression. We applied these models and data from genome-wide association studies (GWAS) including 23 942 cases and 217 267 controls of East Asian ancestry to investigate associations of predicted miRNA expression with CRC risk. Perturbation experiments separately by promoting and inhibiting miRNAs expressions and further in vitro assays in both SW480 and HCT116 cells were conducted. At a Bonferroni-corrected threshold of P < 4.5 × 10-4, we identified two putative susceptibility miRNAs, miR-1307-5p and miR-192-3p, located in regions more than 500 kb away from any GWAS-identified risk variants in CRC. We observed that a high predicted expression of miR-1307-5p was associated with increased CRC risk, while a low predicted expression of miR-192-3p was associated with increased CRC risk. Our experimental results further provide strong evidence of their susceptible roles by showing that miR-1307-5p and miR-192-3p play a regulatory role, respectively, in promoting and inhibiting CRC cell proliferation, migration, and invasion, which was consistently observed in both SW480 and HCT116 cells. Our study provides additional insights into the biological mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, United States
| | - Weiqiang Lin
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, 322000 China
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, United States
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju 61469, South Korea
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, United States
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, 4 Chome-6-1 Shirokanedai, Minato City, Tokyo 108-8639, Japan
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, No. 651 Dongfeng Road East, Guangzhou 510060, China
| | - Ying Wang
- International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, No. N1, Shangcheng Avenue, Yiwu, 322000 China
| | - Xinwan Su
- The Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003 China
| | - Yuan Yuan
- The Kidney Disease Center, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003 China
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, United States
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, 323 Ilsan-ro, Ilsandong-gu, Goyang-si, 10408, Gyeonggi-do, South Korea
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, 03 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku Nagoya 464-8681, Japan
- Department of Epidemiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Chuncheon, 200-702 South Korea
| | - Nan Wang
- Department of General Surgery, Tangdu Hospital, the Air Force Medical University, 569 Xinsi Road, Xi'an, Shaanxi, 710038 China
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, United States
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, 160, Baekseo-ro, Dong-gu, Gwangju 61469, South Korea
| | - Zefang Ren
- School of Public Health, Sun Yat-sen University, No. 74 Zhongshan Road 2, Yuexiu, Guangzhou, Guangdong 510080 China
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, 323, Ilsan-ro, Ilsandong-gu, Goyang-si, Gyeonggi-do,10408, South Korea
| | - Isao Oze
- Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, 1-1 Kanokoden, Chikusa-ku Nagoya 464-8681, Japan
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, 03 Daehak-ro, Jongno-gu, 03080, Seoul, Korea
| | - Keum Ji Jung
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, 50-1, Yonsei-Ro, Seodaemun-gu, Seoul 03722, South Korea
| | - Yu-Tang Gao
- State Key Laboratory of Oncogene and Related Genes & Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, No. 651 Dongfeng Road East, Guangzhou 510060, China
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
- Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University College of Medicine, Xiasha Road, Hangzhou, 310018 China
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, United States
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba-ken 277-8562, Japan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, United States
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, United States
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, 2525 West End Ave, Nashville, TN 37203, United States
| |
Collapse
|
12
|
Chen Z, Song W, Shu XO, Wen W, Devall M, Dampier C, Moratalla-Navarro F, Cai Q, Long J, Van Kaer L, Wu L, Huyghe JR, Thomas M, Hsu L, Woods MO, Albanes D, Buchanan DD, Gsur A, Hoffmeister M, Vodicka P, Wolk A, Marchand LL, Wu AH, Phipps AI, Moreno V, Ulrike P, Zheng W, Casey G, Guo X. Novel insights into genetic susceptibility for colorectal cancer from transcriptome-wide association and functional investigation. J Natl Cancer Inst 2024; 116:127-137. [PMID: 37632791 PMCID: PMC10777674 DOI: 10.1093/jnci/djad178] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/10/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023] Open
Abstract
BACKGROUND Transcriptome-wide association studies have been successful in identifying candidate susceptibility genes for colorectal cancer (CRC). To strengthen susceptibility gene discovery, we conducted a large transcriptome-wide association study and an alternative splicing transcriptome-wide association study in CRC using improved genetic prediction models and performed in-depth functional investigations. METHODS We analyzed RNA-sequencing data from normal colon tissues and genotype data from 423 European descendants to build genetic prediction models of gene expression and alternative splicing and evaluated model performance using independent RNA-sequencing data from normal colon tissues of the Genotype-Tissue Expression Project. We applied the verified models to genome-wide association studies (GWAS) summary statistics among 58 131 CRC cases and 67 347 controls of European ancestry to evaluate associations of genetically predicted gene expression and alternative splicing with CRC risk. We performed in vitro functional assays for 3 selected genes in multiple CRC cell lines. RESULTS We identified 57 putative CRC susceptibility genes, which included the 48 genes from transcriptome-wide association studies and 15 genes from splicing transcriptome-wide association studies, at a Bonferroni-corrected P value less than .05. Of these, 16 genes were not previously implicated in CRC susceptibility, including a gene PDE7B (6q23.3) at locus previously not reported by CRC GWAS. Gene knockdown experiments confirmed the oncogenic roles for 2 unreported genes, TRPS1 and METRNL, and a recently reported gene, C14orf166. CONCLUSION This study discovered new putative susceptibility genes of CRC and provided novel insights into the biological mechanisms underlying CRC development.
Collapse
Affiliation(s)
- Zhishan Chen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wenqiang Song
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Matthew Devall
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Christopher Dampier
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Ferran Moratalla-Navarro
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeroen R Huyghe
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Minta Thomas
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Li Hsu
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Michael O Woods
- Memorial University of Newfoundland, Discipline of Genetics, St. John’s, ON, Canada
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Daniel D Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, Parkville, VIC, Australia
- Genetic Medicine and Family Cancer Clinic, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Andrea Gsur
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alicja Wolk
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Anna H Wu
- Preventative Medicine, University of Southern California, Los Angeles, CA, USA
| | - Amanda I Phipps
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Victor Moreno
- Oncology Data Analytics Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, Barcelona, Spain
- Colorectal Cancer Group, ONCOBELL Program, Institut de Recerca Biomedica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine and Health Sciences and Universitat de Barcelona Institute of Complex Systems (UBICS), University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Peters Ulrike
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Graham Casey
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
13
|
Zhang M, Wang X, Yang N, Zhu X, Lu Z, Cai Y, Li B, Zhu Y, Li X, Wei Y, Zhang S, Tian J, Miao X. Prioritization of risk genes in colorectal cancer by integrative analysis of multi-omics data and gene networks. SCIENCE CHINA. LIFE SCIENCES 2024; 67:132-148. [PMID: 37747674 DOI: 10.1007/s11427-023-2439-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/26/2023] [Indexed: 09/26/2023]
Abstract
Genome-wide association studies (GWASs) have identified over 140 colorectal cancer (CRC)-associated loci; however, target genes at the majority of loci and underlying molecular mechanisms are poorly understood. Here, we utilized a Bayesian approach, integrative risk gene selector (iRIGS), to prioritize risk genes at CRC GWAS loci by integrating multi-omics data. As a result, a total of 105 high-confidence risk genes (HRGs) were identified, which exhibited strong gene dependencies for CRC and enrichment in the biological processes implicated in CRC. Among the 105 HRGs, CEBPB, located at the 20q13.13 locus, acted as a transcription factor playing critical roles in cancer. Our subsequent assays indicated the tumor promoter function of CEBPB that facilitated CRC cell proliferation by regulating multiple oncogenic pathways such as MAPK, PI3K-Akt, and Ras signaling. Next, by integrating a fine-mapping analysis and three independent case-control studies in Chinese populations consisting of 8,039 cases and 12,775 controls, we elucidated that rs1810503, a putative functional variant regulating CEBPB, was associated with CRC risk (OR=0.90, 95%CI=0.86-0.93, P=1.07×10-7). The association between rs1810503 and CRC risk was further validated in three additional multi-ancestry populations consisting of 24,254 cases and 58,741 controls. Mechanistically, the rs1810503 A to T allele change weakened the enhancer activity in an allele-specific manner to decrease CEBPB expression via long-range promoter-enhancer interactions, mediated by the transcription factor, REST, and thus decreased CRC risk. In summary, our study provides a genetic resource and a generalizable strategy for CRC etiology investigation, and highlights the biological implications of CEBPB in CRC tumorigenesis, shedding new light on the etiology of CRC.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, 450008, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiangpan Li
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, 430062, China
| | - Shaokai Zhang
- Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Henan Engineering Research Center of Cancer Prevention and Control, Henan International Joint Laboratory of Cancer Prevention, Zhengzhou, 450008, China.
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan, 430071, China.
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430071, China.
- Research Center of Public Health, Renmin hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430073, China.
- Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Jiang Y, Zhang Y, Ju C, Zhang R, Li H, Chen F, Zhu Y, Shen S, Wei Y. A cross-disorder study to identify causal relationships, shared genetic variants, and genes across 21 digestive disorders. iScience 2023; 26:108238. [PMID: 37965154 PMCID: PMC10641500 DOI: 10.1016/j.isci.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/26/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Digestive disorders are a significant contributor to the global burden of disease and seriously affect human quality of life. Research has already confirmed the presence of pleiotropic genetic loci among digestive disorders, and studies have explored shared genetic factors among pan-cancers, including various malignant digestive disorders. However, most cross-phenotype studies within the digestive tract system have been limited to a few traits, with no systematic coverage of common benign and malignant digestive disorders. Here, we analyzed data from the UK Biobank to investigate 21 digestive disorders, exploring the genetic correlations and causal relationships between diseases, as well as the common genetic factors and potential biological pathways driving these relationships. Our findings confirmed the extensive genetic correlation and causal relationship between digestive disorders, providing important insights into the genetic etiology, causality, disease prevention, and clinical treatment of diseases.
Collapse
Affiliation(s)
- Yue Jiang
- Clinical Stem Cell Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yihong Zhang
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Can Ju
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruyang Zhang
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Hui Li
- Department of Gastroenterology, The Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Feng Chen
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yefei Zhu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Sipeng Shen
- Department of Biostatistics, School of Public Health, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Yongyue Wei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
| |
Collapse
|
15
|
Guo X, Ping J, Yang Y, Su X, Shu XO, Wen W, Chen Z, Zhang Y, Tao R, Jia G, He J, Cai Q, Zhang Q, Giles GG, Pearlman R, Rennert G, Vodicka P, Phipps A, Gruber SB, Casey G, Peters U, Long J, Lin W, Zheng W. Large-scale alternative polyadenylation (APA)-wide association studies to identify putative susceptibility genes in human common cancers. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.05.23298125. [PMID: 37986797 PMCID: PMC10659493 DOI: 10.1101/2023.11.05.23298125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Alternative polyadenylation (APA) modulates mRNA processing in the 3' untranslated regions (3'UTR), which affect mRNA stability and translation efficiency. Here, we build genetic models to predict APA levels in multiple tissues using sequencing data of 1,337 samples from the Genotype-Tissue Expression, and apply these models to assess associations between genetically predicted APA levels and cancer risk with data from large genome-wide association studies of six common cancers, including breast, ovary, prostate, colorectum, lung, and pancreas among European-ancestry populations. At a Bonferroni-corrected P □<□0.05, we identify 58 risk genes, including seven in newly identified loci. Using luciferase reporter assays, we demonstrate that risk alleles of 3'UTR variants, rs324015 ( STAT6 ), rs2280503 ( DIP2B ), rs1128450 ( FBXO38 ) and rs145220637 ( LDAH ), could significantly increase post-transcriptional activities of their target genes compared to reference alleles. Further gene knockdown experiments confirm their oncogenic roles. Our study provides additional insight into the genetic susceptibility of these common cancers.
Collapse
|
16
|
Shao Y, Wang Z, Wu J, Lu Y, Chen Y, Zhang H, Huang C, Shen H, Xu L, Fu Z. Unveiling immunogenic cell death-related genes in colorectal cancer: an integrated study incorporating transcriptome and Mendelian randomization analyses. Funct Integr Genomics 2023; 23:316. [PMID: 37789099 DOI: 10.1007/s10142-023-01238-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/05/2023]
Abstract
Immunogenic cell death (ICD), a type of cell death that activates the tumor-specific immune response and thus exerts anti-tumor effects, is an emerging target in tumor therapy, but research on ICD-related genes (ICDGs) in colorectal cancer (CRC) remains limited. This study aimed to identify the CRC-specific ICDGs and explore their potential roles. Through RNA sequencing for tissue samples from CRC patients and integration with The Cancer Genome Atlas (TCGA) data, we identified 33 differentially expressed ICDGs in CRC. We defined the ICD score based on these genes in single-cell data, where a high score indicated an immune-active microenvironment. Additionally, molecular subtypes identified in bulk RNA data showed distinct immune landscapes. The ICD-related signature constructed with machine learning effectively distinguished patients' prognosis. The summary data-based Mendelian randomization (SMR) and colocalization analysis prioritized CFLAR for its positive association with CRC risk. Molecular docking revealed its stable binding with chemotherapeutic drugs like irinotecan. Furthermore, experimental validation confirmed CFLAR overexpression in CRC samples, and its knockdown inhibited tumor cell proliferation. Overall, this study expands the understanding of the potential roles and mechanisms of ICDGs in CRC and highlights CFLAR as a promising target for CRC.
Collapse
Affiliation(s)
- Yu Shao
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhenling Wang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jingyu Wu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunfei Lu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Chen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongqiang Zhang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changzhi Huang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hengyang Shen
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Xu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zan Fu
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Yuan J, Li G, Zhong F, Liao J, Zeng Z, Ouyang S, Xie H, Deng Z, Tang H, Ou X. SALL1 promotes proliferation and metastasis and activates phosphorylation of p65 and JUN in colorectal cancer cells. Pathol Res Pract 2023; 250:154827. [PMID: 37741137 DOI: 10.1016/j.prp.2023.154827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most usual malignant tumors, and its incidence continues to rise. Our purpose was to explore the function and potential regulatory mechanisms of SALL1, a differentially methylated gene in CRC, in vivo and in vitro. METHODS Firstly, methylation differential gene SALL1 in CRC was screened and validated. SALL1 overexpression plasmids or SALL1 siRNAs were transfected in HT-29 and SW480 cells. Moreover, 10 μM T-5224 was added in SALL1-overexpressed CRC cells. CCK-8, flow cytometry and transwell assays were utilized to assess cell proliferation, cycle, migration, and invasion, respectively. Then CRC organoids were cultured. Next, HT-29 and SW480 cells transfected with SALL1 overexpression lentivirus were analyzed by transcriptome sequencing. Finally, in vivo tumorigenesis was used to analyze the effect of SALL1 overexpression on subcutaneous tumorigenesis in nude mice. RESULTS The methylation level of CpG island in SALL1 promoter was increased in CRC tissues and could distinguish tumor tissues. Overexpression of SALL1 accelerated proliferation, migration and invasion of HT-29 and SW480 cells, and silencing of SALL1 attenuated proliferation, migration and invasion of HT-29 and SW480 cells. Through analysis and validation, we found that overexpression of SALL1 also could upregulate p-p65 and p-JUN expressions. Besides, c-Fos/activator protein (AP)- 1 inhibitor (T-5224) could reverse the induction of CRC progression by SALL1 overexpression. In vivo, we also proved that overexpression of SALL1 significantly increased tumor volume, tumor weight, and p-JUN expression. CONCLUSIONS SALL1 could promote the proliferation, migration, and invasion of CRC cells and activate phosphorylation of p65 and JUN.
Collapse
Affiliation(s)
- Jie Yuan
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan 528000, China; Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China.
| | - Guiying Li
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Fei Zhong
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan 528000, China
| | - Jiannan Liao
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Zhiqiang Zeng
- Department of General Surgery, Foshan Clinical Medical School, Guangzhou University of Chinese Medicine, Foshan 528000, China; Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Shaoyong Ouyang
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Hong Xie
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Zhiliang Deng
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China
| | - Hongmei Tang
- Pharmaceutical Department, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510504, China
| | - Xiaowei Ou
- Department of General Surgery, Foshan Fosun Chancheng Hospital, Foshan 528000, China.
| |
Collapse
|
18
|
Oncotherapeutic Strategies in Early Onset Colorectal Cancer. Cancers (Basel) 2023; 15:cancers15020552. [PMID: 36672501 PMCID: PMC9856676 DOI: 10.3390/cancers15020552] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Early onset colorectal cancer (EOCRC), defined as colorectal cancers in patients aged less than 50 years, is becoming an increasingly common issue, globally. Since 1994, the incidence of this condition has been rising by 2% annually. Approximately one in five patients under 50 years of age diagnosed with colorectal cancer have an underlying genetic predisposition syndrome. The detection of cancer among the other 80% of patients poses a considerable task, as there is no family history to advocate for commencing early screening in this group. Patients with EOCRC have distinct social, spiritual, fertility, and financial needs from their older counterparts that need to be addressed. This review discusses the risk factors associated with the development of EOCRC and current best practice for the management of this disease.
Collapse
|
19
|
Xu C, Liu Z, Yan C, Xiao J. Application of apoptosis-related genes in a multiomics-related prognostic model study of gastric cancer. Front Genet 2022; 13:901200. [PMID: 35991578 PMCID: PMC9389051 DOI: 10.3389/fgene.2022.901200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common tumors in the world, and apoptosis is closely associated with GC. A number of therapeutic methods have been implemented to increase the survival in GC patients, but the outcomes remain unsatisfactory. Apoptosis is a highly conserved form of cell death, but aberrant regulation of the process also leads to a variety of major human diseases. As variations of apoptotic genes may increase susceptibility to gastric cancer. Thus, it is critical to identify novel and potent tools to predict the overall survival (OS) and treatment efficacy of GC. The expression profiles and clinical characteristics of TCGA-STAD and GSE15459 cohorts were downloaded from TCGA and GEO. Apoptotic genes were extracted from the GeneCards database. Apoptosis risk scores were constructed by combining Cox regression and LASSO regression. The GSE15459 and TCGA internal validation sets were used for external validation. Moreover, we explored the relationship between the apoptosis risk score and clinical characteristics, drug sensitivity, tumor microenvironment (TME) and tumor mutational burden (TMB). Finally, we used GSVA to further explore the signaling pathways associated with apoptosis risk. By performing TCGA-STAD differential analysis, we obtained 839 differentially expressed genes, which were then analyzed by Cox regressions and LASSO regression to establish 23 genes associated with apoptosis risk scores. We used the test validation cohort from TCGA-STAD and the GSE15459 dataset for external validation. The AUC values of the ROC curve for 2-, 3-, and 5-years survival were 0.7, 0.71, and 0.71 in the internal validation cohort from TCGA-STAD and 0.77, 0.74, and 0.75 in the GSE15459 dataset, respectively. We constructed a nomogram by combining the apoptosis risk signature and some clinical characteristics from TCGA-STAD. Analysis of apoptosis risk scores and clinical characteristics demonstrated notable differences in apoptosis risk scores between survival status, sex, grade, stage, and T stage. Finally, the apoptosis risk score was correlated with TME characteristics, drug sensitivity, TMB, and TIDE scores.
Collapse
Affiliation(s)
- Chengfei Xu
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Zilin Liu
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Chuanjing Yan
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Chuanjing Yan, ; Jiangwei Xiao,
| | - Jiangwei Xiao
- Chengdu Medical College, Chengdu, China
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
- *Correspondence: Chuanjing Yan, ; Jiangwei Xiao,
| |
Collapse
|