1
|
Empey PE, Karnes JH, Johnson JA. Pharmacogenetics: Opportunities for the All of Us Research Program and Other Large Data Sets to Advance the Field. Annu Rev Pharmacol Toxicol 2025; 65:111-130. [PMID: 39847465 DOI: 10.1146/annurev-pharmtox-061724-080718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Pharmacogenetic variation is common and an established driver of response for many drugs. There has been tremendous progress in pharmacogenetics knowledge over the last 30 years and in clinical implementation of that knowledge over the last 15 years. But there have also been many examples where translation has stalled because of the lack of available data sets for discovery or validation research. The recent availability of data from very large cohorts with linked genetic, electronic health record, and other data promises new opportunities to advance pharmacogenetics research. This review presents the stages from pharmacogenetics discovery to widespread clinical adoption using prominent gene-drug pairs that have been implemented into clinical practice as examples. We discuss the opportunities that the All of Us Research Program and other large biorepositories with genomic and linked electronic health record data present in advancing and accelerating the translation of pharmacogenetics into clinical practice.
Collapse
Affiliation(s)
- Philip E Empey
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy; and Institute for Precision Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA;
| | - Jason H Karnes
- Department of Pharmacy Practice and Science, R. Ken Coit College of Pharmacy, University of Arizona, Tucson, Arizona, USA
| | - Julie A Johnson
- Clinical and Translational Science Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
2
|
Little A, Zhao N, Mikhaylova A, Zhang A, Ling W, Thibord F, Johnson AD, Raffield LM, Curran JE, Blangero J, O'Connell JR, Xu H, Rotter JI, Rich SS, Rice KM, Chen MH, Reiner A, Kooperberg C, Vu T, Hou L, Fornage M, Loos RJF, Kenny E, Mathias R, Becker L, Smith AV, Boerwinkle E, Yu B, Thornton T, Wu MC. General Kernel Machine Methods for Multi-Omics Integration and Genome-Wide Association Testing With Related Individuals. Genet Epidemiol 2025; 49:e22610. [PMID: 39812506 DOI: 10.1002/gepi.22610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/18/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025]
Abstract
Integrating multi-omics data may help researchers understand the genetic underpinnings of complex traits and diseases. However, the best ways to integrate multi-omics data and use them to address pressing scientific questions remain a challenge. One important and topical problem is how to assess the aggregate effect of multiple genomic data types (e.g. genotypes and gene expression levels) on a phenotype, particularly while accommodating routine issues, such as having related subjects' data in analyses. In this paper, we extend an existing composite kernel machine regression model to integrate two multi-omics data types, while accommodating for general correlation structures amongst outcomes. Due to the kernel machine regression framework, our methods allow for the integration of high-dimensional omics data with small, nonlinear, and interactive effects, and accommodation of general study designs. Here, we focus on scientific questions that aim to assess the association between a functional grouping (such as a gene or a pathway) and a quantitative trait of interest. We use a kernel machine regression to integrate the two multi-omics data types, as they may relate to the trait, and perform a global test of association. We demonstrate the advantage of this approach over single data type association tests via simulation. Finally, we apply this method to a large, multi-ethnic data set to investigate how predicted gene expression and rare genetic variation may be related to two platelet traits.
Collapse
Grants
- U.S. Department of Health and Human Services, National Institute on Minority Health and Health Disparities, National Institutes of Health, National Human Genome Research Institute, National Center for Research Resources, COPD Foundation, National Heart, Lung, and Blood Institute, National Science Foundation, National Institute on Aging, and National Institute of Neurological Disorders and Stroke.
Collapse
Affiliation(s)
- Amarise Little
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anna Mikhaylova
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Angela Zhang
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Wodan Ling
- Department of Population Health Sciences, Division of Biostatistics, Weill Cornell Medicine, New York, New York, USA
| | - Florian Thibord
- National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, Massachusetts, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, Massachusetts, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Joanne E Curran
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | - John Blangero
- Department of Human Genetics, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, Texas, USA
| | | | - Huichun Xu
- Department of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Jerome I Rotter
- Department of Pediatrics, The Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Ming-Huei Chen
- National Heart, Lung, and Blood Institute, Boston University's Framingham Heart Study, Framingham, Massachusetts, USA
- National Heart, Lung and Blood Institute, Population Sciences Branch, Framingham, Massachusetts, USA
| | - Alexander Reiner
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Charles Kooperberg
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Thao Vu
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Myriam Fornage
- Brown Foundation Institute for Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Eimear Kenny
- The Charles Bronfman Institute of Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- The Center for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rasika Mathias
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lewis Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Albert V Smith
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Eric Boerwinkle
- Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Bing Yu
- Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Timothy Thornton
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Michael C Wu
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| |
Collapse
|
3
|
Jiang MZ, Gaynor SM, Li X, Van Buren E, Stilp A, Buth E, Wang FF, Manansala R, Gogarten SM, Li Z, Polfus LM, Salimi S, Bis JC, Pankratz N, Yanek LR, Durda P, Tracy RP, Rich SS, Rotter JI, Mitchell BD, Lewis JP, Psaty BM, Pratte KA, Silverman EK, Kaplan RC, Avery C, North KE, Mathias RA, Faraday N, Lin H, Wang B, Carson AP, Norwood AF, Gibbs RA, Kooperberg C, Lundin J, Peters U, Dupuis J, Hou L, Fornage M, Benjamin EJ, Reiner AP, Bowler RP, Lin X, Auer PL, Raffield LM, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Inflammation Working Group. Whole genome sequencing based analysis of inflammation biomarkers in the Trans-Omics for Precision Medicine (TOPMed) consortium. Hum Mol Genet 2024; 33:1429-1441. [PMID: 38747556 PMCID: PMC11305684 DOI: 10.1093/hmg/ddae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/31/2024] [Accepted: 03/11/2024] [Indexed: 05/28/2024] Open
Abstract
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38 465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program (with varying sample size by trait, where the minimum sample size was n = 737 for MMP-1). We identified 22 distinct single-variant associations across 6 traits-E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin-that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
Collapse
Affiliation(s)
- Min-Zhi Jiang
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| | - Sheila M Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, United States
- Regeneron Genetics Center, 777 Old Saw Mill River Road, Tarrytown, NY 10591, United States
| | - Xihao Li
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
- Department of Biostatistics, 135 Dauer Drive, 4115D McGavran-Greenberg Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, United States
| | - Adrienne Stilp
- Department of Biostatistics, 4333 Brooklyn Ave NE, University of Washington, Seattle, WA 98105, United States
| | - Erin Buth
- Department of Biostatistics, 4333 Brooklyn Ave NE, University of Washington, Seattle, WA 98105, United States
| | - Fei Fei Wang
- Department of Biostatistics, 4333 Brooklyn Ave NE, University of Washington, Seattle, WA 98105, United States
| | - Regina Manansala
- Centre for Health Economics Research & Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO) WHO Collaborating Centre, University of Antwerp, Campus Drie Eiken - Building S; Universiteitsplein 1 2610 Antwerpen, Belgium
| | - Stephanie M Gogarten
- Department of Biostatistics, 4333 Brooklyn Ave NE, University of Washington, Seattle, WA 98105, United States
| | - Zilin Li
- School of Mathematics and Statistics, Northeast Normal University, 5268 Renmin Street, Changchun, JL 130024, China
| | - Linda M Polfus
- Advanced Analytics, Ambry Genetics, 1 Enterprise, Aliso Viejo, CA 92656, United States
| | - Shabnam Salimi
- Department of Epidemiology and Public Health, Division of Gerontology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, United States
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA 98195, United States
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, 420 Delaware Street SE, Minneapolis, MN 55455, United States
| | - Lisa R Yanek
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, 1830 E Monument St Rm 8024, Baltimore, MD 21287, United States
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT 05446, United States
| | - Russell P Tracy
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT 05446, United States
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, 200 Jeanette Lancaster Way, Charlottesville, VA 22903, United States
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA 90502, United States
| | - Braxton D Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD 21201, United States
| | - Joshua P Lewis
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD 21201, United States
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA 98195, United States
- Departments of Epidemiology and Health Systems and Population Health, University of Washington, 4333 Brooklyn Ave NE, Seattle, WA 98101, United States
| | - Katherine A Pratte
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, United States
| | - Edwin K Silverman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, United States
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, United States
| | - Christy Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, 137 East Franklin Street, Chapel Hill, NC 27599, United States
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, 137 East Franklin Street, Chapel Hill, NC 27599, United States
| | - Rasika A Mathias
- Department of Medicine, Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir JHAAC Room 3B53, Baltimore, MD 21287, United States
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD 21287, United States
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA 01655, United States
| | - Biqi Wang
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA 01655, United States
| | - April P Carson
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS 39213, United States
| | - Arnita F Norwood
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS 39213, United States
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States
| | - Jessica Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Avenue N, Seattle, WA 98109, United States
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 2001 McGill College Avenue, Montreal, QC H3A 1G1, Canada
- Department of Biostatistics, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, United States
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, 680 N Lake Shore Drive, Chicago, IL 60611, United States
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, 1825 Pressler Street, Houston, TX 77030, United States
| | - Emelia J Benjamin
- Department of Medicine, Cardiovascular Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, 72 East Newton Street, Boston, MA 02118, United States
- Department of Epidemiology, Boston University School of Public Health, 801 Massachusetts Avenue, Boston, MA 02118, United States
- Boston University and National Heart, Lung, and Blood Institute’s Framingham Heart Study, 73 Mount Wayte Ave #2, Framingham, MA 01702, United States
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, 4333 Brooklyn Ave NE, Seattle, WA 98105, United States
| | - Russell P Bowler
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, United States
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA 02115, United States
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, United States
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC 27599, United States
| | | |
Collapse
|
4
|
Rodriguez-Algarra F, Evans DM, Rakyan VK. Ribosomal DNA copy number variation associates with hematological profiles and renal function in the UK Biobank. CELL GENOMICS 2024; 4:100562. [PMID: 38749448 PMCID: PMC11228893 DOI: 10.1016/j.xgen.2024.100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/19/2023] [Accepted: 04/21/2024] [Indexed: 06/15/2024]
Abstract
The phenotypic impact of genetic variation of repetitive features in the human genome is currently understudied. One such feature is the multi-copy 47S ribosomal DNA (rDNA) that codes for rRNA components of the ribosome. Here, we present an analysis of rDNA copy number (CN) variation in the UK Biobank (UKB). From the first release of UKB whole-genome sequencing (WGS) data, a discovery analysis in White British individuals reveals that rDNA CN associates with altered counts of specific blood cell subtypes, such as neutrophils, and with the estimated glomerular filtration rate, a marker of kidney function. Similar trends are observed in other ancestries. A range of analyses argue against reverse causality or common confounder effects, and all core results replicate in the second UKB WGS release. Our work demonstrates that rDNA CN is a genetic influence on trait variance in humans.
Collapse
Affiliation(s)
| | - David M Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia; Frazer Institute, The University of Queensland, Brisbane, QLD 4102, Australia; MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
| | - Vardhman K Rakyan
- The Blizard Institute, School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
5
|
Sun Q, Yang Y, Rosen JD, Chen J, Li X, Guan W, Jiang MZ, Wen J, Pace RG, Blackman SM, Bamshad MJ, Gibson RL, Cutting GR, O'Neal WK, Knowles MR, Kooperberg C, Reiner AP, Raffield LM, Carson AP, Rich SS, Rotter JI, Loos RJF, Kenny E, Jaeger BC, Min YI, Fuchsberger C, Li Y. MagicalRsq-X: A cross-cohort transferable genotype imputation quality metric. Am J Hum Genet 2024; 111:990-995. [PMID: 38636510 PMCID: PMC11080605 DOI: 10.1016/j.ajhg.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/20/2024] Open
Abstract
Since genotype imputation was introduced, researchers have been relying on the estimated imputation quality from imputation software to perform post-imputation quality control (QC). However, this quality estimate (denoted as Rsq) performs less well for lower-frequency variants. We recently published MagicalRsq, a machine-learning-based imputation quality calibration, which leverages additional typed markers from the same cohort and outperforms Rsq as a QC metric. In this work, we extended the original MagicalRsq to allow cross-cohort model training and named the new model MagicalRsq-X. We removed the cohort-specific estimated minor allele frequency and included linkage disequilibrium scores and recombination rates as additional features. Leveraging whole-genome sequencing data from TOPMed, specifically participants in the BioMe, JHS, WHI, and MESA studies, we performed comprehensive cross-cohort evaluations for predominantly European and African ancestral individuals based on their inferred global ancestry with the 1000 Genomes and Human Genome Diversity Project data as reference. Our results suggest MagicalRsq-X outperforms Rsq in almost every setting, with 7.3%-14.4% improvement in squared Pearson correlation with true R2, corresponding to 85-218 K variant gains. We further developed a metric to quantify the genetic distances of a target cohort relative to a reference cohort and showed that such metric largely explained the performance of MagicalRsq-X models. Finally, we found MagicalRsq-X saved up to 53 known genome-wide significant variants in one of the largest blood cell trait GWASs that would be missed using the original Rsq for QC. In conclusion, MagicalRsq-X shows superiority for post-imputation QC and benefits genetic studies by distinguishing well and poorly imputed lower-frequency variants.
Collapse
Affiliation(s)
- Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yingxi Yang
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| | - Jonathan D Rosen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xihao Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wyliena Guan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Min-Zhi Jiang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jia Wen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rhonda G Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Scott M Blackman
- Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Michael J Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ronald L Gibson
- Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael R Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA 98195, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - April P Carson
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, AL 35249, USA
| | - Stephen S Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Ruth J F Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Eimear Kenny
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York City, NY 10029, USA
| | - Byron C Jaeger
- Wake Forest School of Medicine, Department of Biostatistics and Data Science, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Yuan-I Min
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Christian Fuchsberger
- Institute for Biomedicine, Eurac Research (affiliated with the University of Lübeck), Bolzano, Italy.
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Sun Q, Rowland BT, Chen J, Mikhaylova AV, Avery C, Peters U, Lundin J, Matise T, Buyske S, Tao R, Mathias RA, Reiner AP, Auer PL, Cox NJ, Kooperberg C, Thornton TA, Raffield LM, Li Y. Improving polygenic risk prediction in admixed populations by explicitly modeling ancestral-differential effects via GAUDI. Nat Commun 2024; 15:1016. [PMID: 38310129 PMCID: PMC10838303 DOI: 10.1038/s41467-024-45135-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/16/2024] [Indexed: 02/05/2024] Open
Abstract
Polygenic risk scores (PRS) have shown successes in clinics, but most PRS methods focus only on participants with distinct primary continental ancestry without accommodating recently-admixed individuals with mosaic continental ancestry backgrounds for different segments of their genomes. Here, we develop GAUDI, a novel penalized-regression-based method specifically designed for admixed individuals. GAUDI explicitly models ancestry-differential effects while borrowing information across segments with shared ancestry in admixed genomes. We demonstrate marked advantages of GAUDI over other methods through comprehensive simulation and real data analyses for traits with associated variants exhibiting ancestral-differential effects. Leveraging data from the Women's Health Initiative study, we show that GAUDI improves PRS prediction of white blood cell count and C-reactive protein in African Americans by > 64% compared to alternative methods, and even outperforms PRS-CSx with large European GWAS for some scenarios. We believe GAUDI will be a valuable tool to mitigate disparities in PRS performance in admixed individuals.
Collapse
Affiliation(s)
- Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Bryce T Rowland
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jiawen Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Anna V Mikhaylova
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Christy Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jessica Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Tara Matise
- Department of Genetics, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Steve Buyske
- Department of Statistics, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ran Tao
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Rasika A Mathias
- Department of Medicine, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Alexander P Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98195, USA
| | - Paul L Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Timothy A Thornton
- Department of Biostatistics, University of Washington, Seattle, WA, 98195, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
7
|
Thomas S, Kelliher S, Krishnan A. Heterogeneity of platelets and their responses. Res Pract Thromb Haemost 2024; 8:102356. [PMID: 38666061 PMCID: PMC11043642 DOI: 10.1016/j.rpth.2024.102356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 04/28/2024] Open
Abstract
There has been increasing recognition of heterogeneity in blood platelets and their responses, particularly in recent years, where next-generation technologies and advanced bioinformatic tools that interrogate "big data" have enabled large-scale studies of RNA and protein expression across a growing list of disease states. However, pioneering platelet biologists and clinicians were already hypothesizing upon and investigating heterogeneity in platelet (and megakaryocyte) activity and platelet metabolism and aggregation over half a century ago. Building on their foundational hypotheses, in particular Professor Marian A. Packham's pioneering work and a State of the Art lecture in her memoriam at the 2023 International Society on Thrombosis and Haemostasis Congress by Anandi Krishnan, this review outlines the key features that contribute to the heterogeneity of platelets between and within individuals. Starting with important epidemiologic factors, we move stepwise through successively smaller scales down to heterogeneity revealed by single-cell technologies in health and disease. We hope that this overview will urge future scientific and clinical studies to recognize and account for heterogeneity of platelets and aim to apply methods that capture that heterogeneity. Finally, we summarize other exciting new data presented on this topic at the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Sally Thomas
- Sheffield Teaching Hospitals, National Health Services, Sheffield, UK
| | - Sarah Kelliher
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Anandi Krishnan
- Stanford University School of Medicine, Stanford University, Stanford, California, USA
- Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
8
|
García Á, Aslan JE. Special review series: provocative questions in platelet omics studies. Platelets 2023; 34:2259169. [PMID: 37726881 DOI: 10.1080/09537104.2023.2259169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Affiliation(s)
- Ángel García
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, and Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Joseph E Aslan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
9
|
Jiang MZ, Gaynor SM, Li X, Van Buren E, Stilp A, Buth E, Wang FF, Manansala R, Gogarten SM, Li Z, Polfus LM, Salimi S, Bis JC, Pankratz N, Yanek LR, Durda P, Tracy RP, Rich SS, Rotter JI, Mitchell BD, Lewis JP, Psaty BM, Pratte KA, Silverman EK, Kaplan RC, Avery C, North K, Mathias RA, Faraday N, Lin H, Wang B, Carson AP, Norwood AF, Gibbs RA, Kooperberg C, Lundin J, Peters U, Dupuis J, Hou L, Fornage M, Benjamin EJ, Reiner AP, Bowler RP, Lin X, Auer PL, Raffield LM, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, TOPMed Inflammation Working Group. Whole Genome Sequencing Based Analysis of Inflammation Biomarkers in the Trans-Omics for Precision Medicine (TOPMed) Consortium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.10.555215. [PMID: 37745480 PMCID: PMC10515765 DOI: 10.1101/2023.09.10.555215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38,465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program. We identified 22 distinct single-variant associations across 6 traits - E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin - that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.
Collapse
Affiliation(s)
- Min-Zhi Jiang
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Sheila M. Gaynor
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
- Regeneron Genetics Center, Tarrytown, NY, 10591, USA
| | - Xihao Li
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Eric Van Buren
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Adrienne Stilp
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Erin Buth
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Fei Fei Wang
- Department of Biostatistics, University of Washington, Seattle, WA, 98105, USA
| | - Regina Manansala
- Centre for Health Economics Research & Modelling Infectious Diseases (CHERMID), Vaccine & Infectious Disease Institute (VAXINFECTIO) WHO Collaborating Centre, University of Antwerp, Antwerp, BE
| | | | - Zilin Li
- School of Mathematics and Statistics, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Linda M. Polfus
- Department of Preventive Medicine, Center for Genetic Epidemiology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Shabnam Salimi
- Department of Epidemiology and Public Health, Division of Gerontology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA, 98195, USA
| | - Nathan Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Lisa R. Yanek
- Department of Medicine, General Internal Medicine, Johns Hopkins University School of Medicine, 1830 E Monument St Rm 8024, Baltimore, MD, 21287, USA
| | - Peter Durda
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT, 05446, USA
| | - Russell P. Tracy
- Department of Pathology & Laboratory Medicine, University of Vermont Larner College of Medicine, 360 South Park Drive, Colchester, VT, 05446, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia School of Medicine, 200 Jeanette Lancaster Way, Charlottesville, VA, 22903, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, 1124 W. Carson Street, Torrance, CA, 90502, USA
| | - Braxton D. Mitchell
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Joshua P. Lewis
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, 670 W. Baltimore St., Baltimore, MD, 21201, USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, 4333 Brooklyn Ave NE, Box 359458, Seattle, WA, 98195, USA
- Departments of Epidemiology and Health Systems and Population Health, University of Washington, 4333 Brooklyn Ave NE, Seattle, WA, 98101, USA
| | - Katherine A. Pratte
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Edwin K. Silverman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women’s Hospital, 181 Longwood Avenue, Boston, MA, 02115, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Christy Avery
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Kari North
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rasika A. Mathias
- Department of Medicine, Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Cir JHAAC Room 3B53, Baltimore, MD, 21287, USA
| | - Nauder Faraday
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, 600 N Wolfe St, Baltimore, MD, 21287, USA
| | - Honghuang Lin
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - Biqi Wang
- Department of Medicine, University of Massachusetts Chan Medical School, 55 Lake Ave North, Worcester, MA, 01655, USA
| | - April P. Carson
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS, 39213, USA
| | - Arnita F. Norwood
- Department of Medicine, University of Mississippi Medical Center, 350 W. Woodrow Wilson Avenue, Suite 701, Jackson, MS, 39213, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Jessica Lundin
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Josée Dupuis
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Québec, H3A 1G1, Canada
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Lifang Hou
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Emelia J. Benjamin
- Department of Medicine, Cardiovascular Medicine, Boston Medical Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, 02118, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, 02118, USA
- Boston University and National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, MA, 01702, USA
| | - Alexander P. Reiner
- Department of Epidemiology, University of Washington, Seattle, WA, 98105, USA
| | - Russell P. Bowler
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Xihong Lin
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Boston, MA, 02115, USA
| | - Paul L. Auer
- Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Laura M. Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | | |
Collapse
|
10
|
Wheeler MM, Stilp AM, Rao S, Halldórsson BV, Beyter D, Wen J, Mihkaylova AV, McHugh CP, Lane J, Jiang MZ, Raffield LM, Jun G, Sedlazeck FJ, Metcalf G, Yao Y, Bis JB, Chami N, de Vries PS, Desai P, Floyd JS, Gao Y, Kammers K, Kim W, Moon JY, Ratan A, Yanek LR, Almasy L, Becker LC, Blangero J, Cho MH, Curran JE, Fornage M, Kaplan RC, Lewis JP, Loos RJF, Mitchell BD, Morrison AC, Preuss M, Psaty BM, Rich SS, Rotter JI, Tang H, Tracy RP, Boerwinkle E, Abecasis GR, Blackwell TW, Smith AV, Johnson AD, Mathias RA, Nickerson DA, Conomos MP, Li Y, Þorsteinsdóttir U, Magnússon MK, Stefansson K, Pankratz ND, Bauer DE, Auer PL, Reiner AP. Whole genome sequencing identifies structural variants contributing to hematologic traits in the NHLBI TOPMed program. Nat Commun 2022; 13:7592. [PMID: 36481753 PMCID: PMC9732337 DOI: 10.1038/s41467-022-35354-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies have identified thousands of single nucleotide variants and small indels that contribute to variation in hematologic traits. While structural variants are known to cause rare blood or hematopoietic disorders, the genome-wide contribution of structural variants to quantitative blood cell trait variation is unknown. Here we utilized whole genome sequencing data in ancestrally diverse participants of the NHLBI Trans Omics for Precision Medicine program (N = 50,675) to detect structural variants associated with hematologic traits. Using single variant tests, we assessed the association of common and rare structural variants with red cell-, white cell-, and platelet-related quantitative traits and observed 21 independent signals (12 common and 9 rare) reaching genome-wide significance. The majority of these associations (N = 18) replicated in independent datasets. In genome-editing experiments, we provide evidence that a deletion associated with lower monocyte counts leads to disruption of an S1PR3 monocyte enhancer and decreased S1PR3 expression.
Collapse
Affiliation(s)
- Marsha M. Wheeler
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98105 USA
| | - Adrienne M. Stilp
- grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA 98105 USA
| | - Shuquan Rao
- grid.2515.30000 0004 0378 8438Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, Boston, MA 02138 USA ,grid.66859.340000 0004 0546 1623Broad Institute, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA ,grid.506261.60000 0001 0706 7839State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020 China
| | - Bjarni V. Halldórsson
- grid.421812.c0000 0004 0618 6889deCODE genetics/Amgen Inc., Reykjavik, Iceland ,grid.9580.40000 0004 0643 5232School of Technology, Reykjavik University, Reykjavík, Iceland
| | - Doruk Beyter
- grid.421812.c0000 0004 0618 6889deCODE genetics/Amgen Inc., Reykjavik, Iceland
| | - Jia Wen
- grid.10698.360000000122483208Departments of Biostatistics, Genetics, Computer Science, Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Anna V. Mihkaylova
- grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA 98105 USA
| | - Caitlin P. McHugh
- grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA 98105 USA
| | - John Lane
- grid.17635.360000000419368657Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Min-Zhi Jiang
- grid.10698.360000000122483208Departments of Biostatistics, Genetics, Computer Science, Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Laura M. Raffield
- grid.410711.20000 0001 1034 1720Department of Genetics, University of North Carolina, Chapel Hill, NC 27599 USA
| | - Goo Jun
- grid.267308.80000 0000 9206 2401Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Fritz J. Sedlazeck
- grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Ginger Metcalf
- grid.39382.330000 0001 2160 926XHuman Genome Sequencing Center, Baylor College of Medicine, Houston, TX USA
| | - Yao Yao
- grid.2515.30000 0004 0378 8438Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, Boston, MA 02138 USA ,grid.66859.340000 0004 0546 1623Broad Institute, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Joshua B. Bis
- grid.34477.330000000122986657Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
| | - Nathalie Chami
- grid.59734.3c0000 0001 0670 2351The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Paul S. de Vries
- grid.267308.80000 0000 9206 2401Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA ,grid.267308.80000 0000 9206 2401Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Pinkal Desai
- grid.5386.8000000041936877XDivision of Hematology and Oncology, Weill Cornell Medical College, New York, NY 10065 USA
| | - James S. Floyd
- grid.34477.330000000122986657Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
| | - Yan Gao
- grid.251313.70000 0001 2169 2489Jackson Heart Study, Department of Medicine, University of Mississippi, Jackson, MS 39216 USA
| | - Kai Kammers
- grid.21107.350000 0001 2171 9311GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Wonji Kim
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 2115 USA
| | - Jee-Young Moon
- grid.251993.50000000121791997Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Aakrosh Ratan
- grid.27755.320000 0000 9136 933XCenter for Public Health Genomics, University of Virginia, Charlottesville, VA 22908 USA
| | - Lisa R. Yanek
- grid.21107.350000 0001 2171 9311GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Laura Almasy
- grid.25879.310000 0004 1936 8972Children’s Hospital of Philadelphia and University of Pennsylvania School of Medicine, Philadelphia, PA 19104 USA
| | - Lewis C. Becker
- grid.21107.350000 0001 2171 9311GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - John Blangero
- grid.449717.80000 0004 5374 269XDepartment of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520 USA
| | - Michael H. Cho
- grid.62560.370000 0004 0378 8294Channing Division of Network Medicine, Brigham and Women’s Hospital, Boston, MA 2115 USA
| | - Joanne E. Curran
- grid.449717.80000 0004 5374 269XDepartment of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX 78520 USA
| | - Myriam Fornage
- grid.267308.80000 0000 9206 2401Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Robert C. Kaplan
- grid.251993.50000000121791997Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Joshua P. Lewis
- grid.411024.20000 0001 2175 4264Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ruth J. F. Loos
- grid.59734.3c0000 0001 0670 2351The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ,grid.59734.3c0000 0001 0670 2351Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.59734.3c0000 0001 0670 2351The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY USA ,grid.5254.60000 0001 0674 042XNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Braxton D. Mitchell
- grid.411024.20000 0001 2175 4264Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland School of Medicine, Baltimore, MD USA
| | - Alanna C. Morrison
- grid.267308.80000 0000 9206 2401Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Michael Preuss
- grid.59734.3c0000 0001 0670 2351The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Bruce M. Psaty
- grid.34477.330000000122986657Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
| | - Stephen S. Rich
- grid.27755.320000 0000 9136 933XCenter for Public Health Genomics, University of Virginia, Charlottesville, VA 22908 USA
| | - Jerome I. Rotter
- grid.513199.6The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Hua Tang
- grid.168010.e0000000419368956Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Russell P. Tracy
- grid.59062.380000 0004 1936 7689Departments of Pathology & Laboratory Medicine and Biochemistry, Larner College of Medicine at the University of Vermont, Colchester, VT 5446 USA
| | - Eric Boerwinkle
- grid.267308.80000 0000 9206 2401Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Goncalo R. Abecasis
- grid.214458.e0000000086837370TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109 USA
| | - Thomas W. Blackwell
- grid.214458.e0000000086837370TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109 USA
| | - Albert V. Smith
- grid.214458.e0000000086837370TOPMed Informatics Research Center, University of Michigan, Department of Biostatistics, Ann Arbor, MI 48109 USA
| | - Andrew D. Johnson
- grid.279885.90000 0001 2293 4638Population Sciences Branch, Division of Intramural Research, National Heart, Lung and Blood Institute, Framingham, MA 1702 USA
| | - Rasika A. Mathias
- grid.21107.350000 0001 2171 9311GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Deborah A. Nickerson
- grid.34477.330000000122986657Department of Genome Sciences, University of Washington, Seattle, WA 98105 USA
| | - Matthew P. Conomos
- grid.34477.330000000122986657Department of Biostatistics, University of Washington, Seattle, WA 98105 USA
| | - Yun Li
- grid.10698.360000000122483208Departments of Biostatistics, Genetics, Computer Science, Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Unnur Þorsteinsdóttir
- grid.421812.c0000 0004 0618 6889deCODE genetics/Amgen Inc., Reykjavik, Iceland ,grid.14013.370000 0004 0640 0021Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Magnús K. Magnússon
- grid.421812.c0000 0004 0618 6889deCODE genetics/Amgen Inc., Reykjavik, Iceland ,grid.14013.370000 0004 0640 0021Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Kari Stefansson
- grid.421812.c0000 0004 0618 6889deCODE genetics/Amgen Inc., Reykjavik, Iceland ,grid.14013.370000 0004 0640 0021Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Nathan D. Pankratz
- grid.17635.360000000419368657Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Daniel E. Bauer
- grid.2515.30000 0004 0378 8438Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA 02115 USA ,grid.65499.370000 0001 2106 9910Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115 USA ,grid.511171.2Harvard Stem Cell Institute, Boston, MA 02138 USA ,grid.66859.340000 0004 0546 1623Broad Institute, Cambridge, MA 02142 USA ,grid.38142.3c000000041936754XDepartment of Pediatrics, Harvard Medical School, Boston, MA 02115 USA
| | - Paul L. Auer
- grid.30760.320000 0001 2111 8460Division of Biostatistics, Institute for Health and Equity, and Cancer Center, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Alex P. Reiner
- grid.34477.330000000122986657Department of Epidemiology, University of Washington, Seattle, WA 98105 USA
| |
Collapse
|
11
|
McDonald MLN, Lakshman Kumar P, Srinivasasainagendra V, Nair A, Rocco AP, Wilson AC, Chiles JW, Richman JS, Pinson SA, Dennis RA, Jagadale V, Brown CJ, Pyarajan S, Tiwari HK, Bamman MM, Singh JA. Novel genetic loci associated with osteoarthritis in multi-ancestry analyses in the Million Veteran Program and UK Biobank. Nat Genet 2022; 54:1816-1826. [PMID: 36411363 DOI: 10.1038/s41588-022-01221-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 10/05/2022] [Indexed: 11/22/2022]
Abstract
Osteoarthritis is a common progressive joint disease. As no effective medical interventions are available, osteoarthritis often progresses to the end stage, in which only surgical options such as total joint replacement are available. A more thorough understanding of genetic influences of osteoarthritis is essential to develop targeted personalized approaches to treatment, ideally long before the end stage is reached. To date, there have been no large multiancestry genetic studies of osteoarthritis. Here, we leveraged the unique resources of 484,374 participants in the Million Veteran Program and UK Biobank to address this gap. Analyses included participants of European, African, Asian and Hispanic descent. We discovered osteoarthritis-associated genetic variation at 10 loci and replicated findings from previous osteoarthritis studies. We also present evidence that some osteoarthritis-associated regions are robust to population ancestry. Drug repurposing analyses revealed enrichment of targets of several medication classes and provide potential insight into the etiology of beneficial effects of antiepileptics on osteoarthritis pain.
Collapse
Affiliation(s)
- Merry-Lynn N McDonald
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Preeti Lakshman Kumar
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Vinodh Srinivasasainagendra
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ashwathy Nair
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Alison P Rocco
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Ava C Wilson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joe W Chiles
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Joshua S Richman
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Surgery, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sarah A Pinson
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, School of Medicine, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Richard A Dennis
- Central Arkansas Veterans Healthcare System (CAVHS), Little Rock, AR, USA
| | - Vivek Jagadale
- Central Arkansas Veterans Healthcare System (CAVHS), Little Rock, AR, USA
| | - Cynthia J Brown
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Saiju Pyarajan
- Center for Data and Computational Sciences (C-DACS), Veterans Affairs Boston Healthcare System (VABHS), Boston, MA, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Marcas M Bamman
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Cell, Developmental, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Florida Institute for Human & Machine Cognition, Pensacola, FL, USA
| | - Jasvinder A Singh
- Birmingham Veterans Affairs Health Care System (BVAHCS), Birmingham, AL, USA
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Rheumatology and Clinical Immunology, Department of Medicine at the School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
12
|
Panyard DJ, Yu B, Snyder MP. The metabolomics of human aging: Advances, challenges, and opportunities. SCIENCE ADVANCES 2022; 8:eadd6155. [PMID: 36260671 PMCID: PMC9581477 DOI: 10.1126/sciadv.add6155] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/01/2022] [Indexed: 05/02/2023]
Abstract
As the global population becomes older, understanding the impact of aging on health and disease becomes paramount. Recent advancements in multiomic technology have allowed for the high-throughput molecular characterization of aging at the population level. Metabolomics studies that analyze the small molecules in the body can provide biological information across a diversity of aging processes. Here, we review the growing body of population-scale metabolomics research on aging in humans, identifying the major trends in the field, implicated biological pathways, and how these pathways relate to health and aging. We conclude by assessing the main challenges in the research to date, opportunities for advancing the field, and the outlook for precision health applications.
Collapse
Affiliation(s)
- Daniel J. Panyard
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Flinn B, Adams C, Chowdhury N, Gress T, Santanam N. Profiling of Non-Coding Regulators and Their Targets in Epicardial Fat from Patients with Coronary Artery Disease. Int J Mol Sci 2022; 23:ijms23105297. [PMID: 35628106 PMCID: PMC9141930 DOI: 10.3390/ijms23105297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/24/2022] Open
Abstract
Epicardial fat is a continuously growing target of investigation in cardiovascular diseases due to both its anatomical proximity to the heart and coronary circulation and its unique physiology among adipose depots. Previous reports have demonstrated that epicardial fat plays key roles in coronary artery disease, but the non-coding RNA and transcriptomic alterations of epicardial fat in coronary artery disease have not been investigated thoroughly. Micro- and lncRNA microarrays followed by GO-KEGG functional enrichment analysis demonstrated sex-dependent unique mi/lncRNAs altered in human epicardial fat in comparison to subcutaneous fat in both patients with and without coronary artery disease (IRB approved). Among the 14 differentially expressed microRNAs in epicardial fat between patients with and without coronary artery disease, the hsa-miR-320 family was the most highly represented. IPW lncRNA interacted with three of these differentially expressed miRNAs. Next-generation sequencing and pathway enrichment analysis identified six unique mRNAs–miRNA pairs. Pathway enrichment identified inflammation, adipogenesis, and cardiomyocyte apoptosis as the most represented functions altered by the mi/lncRNAs and atherosclerosis and myocardial infarction among the highest cardiovascular pathologies associated with them. Overall, the epicardial fat in patients with coronary artery disease has a unique mi/lncRNA profile which is sex-dependent and has potential implications for regulating cardiac function.
Collapse
Affiliation(s)
- Brendin Flinn
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Christopher Adams
- Department of Cardiology, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
| | - Nepal Chowdhury
- Department of Cardiovascular and Thoracic Surgery, St. Mary’s Medical Center, Huntington, WV 25702, USA;
| | - Todd Gress
- Research Service, Hershel “Woody” Williams VA Medical Center, Huntington, WV 25704, USA;
| | - Nalini Santanam
- Department of Biomedical Sciences, Joan C Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA;
- Correspondence: ; Tel.: +1-(304)-696-7321
| |
Collapse
|