1
|
Signore IA, Donoso G, Bocchieri P, Tobar-Calfucoy EA, Yáñez CE, Carvajal-Silva L, Silva AX, Otth C, Cappelli C, Valenzuela Jorquera H, Zapata-Contreras D, Espinosa-Parrilla Y, Zúñiga-Pacheco P, Fuentes-Guajardo M, Monardes-Ramírez VA, Kochifas Velasquez P, Muñoz CA, Dorador C, García-Araya J, Campillay-Véliz CP, Echeverria C, Santander RA, Cerpa LC, Martínez MF, Quiñones LA, Lamoza Galleguillos ER, Saez Hidalgo J, Nova-Lamperti E, Sanhueza S, Giacaman A, Acosta-Jamett G, Verdugo C, Plaza A, Verdugo C, Selman C, Verdugo RA, Colombo A. The Chilean COVID-19 Genomics Network Biorepository: A Resource for Multi-Omics Studies of COVID-19 and Long COVID in a Latin American Population. Genes (Basel) 2024; 15:1352. [PMID: 39596552 PMCID: PMC11593408 DOI: 10.3390/genes15111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 11/28/2024] Open
Abstract
Although a lack of diversity in genetic studies is an acknowledged obstacle for personalized medicine and precision public health, Latin American populations remain particularly understudied despite their heterogeneity and mixed ancestry. This gap extends to COVID-19 despite its variability in susceptibility and clinical course, where ethnic background appears to influence disease severity, with non-Europeans facing higher hospitalization rates. In addition, access to high-quality samples and data is a critical issue for personalized and precision medicine, and it has become clear that the solution lies in biobanks. The creation of the Chilean COVID-19 Biorepository reported here addresses these gaps, representing the first nationwide multicentric Chilean initiative. It operates under rigorous biobanking standards and serves as one of South America's largest COVID cohorts. A centralized harmonization strategy was chosen and included unified standard operating procedures, a sampling coding system, and biobanking staff training. Adults with confirmed SARS-CoV-2 infection provided broad informed consent. Samples were collected to preserve blood, plasma, buffy coat, and DNA. Quality controls included adherence to the standard preanalytical code, incident reporting, and DNA concentration and absorbance ratio 260/280 assessments. Detailed sociodemographic, health, medication, and preexisting condition data were gathered. In five months, 2262 participants were enrolled, pseudonymized, and sorted by disease severity. The average Amerindian ancestry considering all participant was 44.0% [SD 15.5%], and this value increased to 61.2% [SD 19.5%] among those who self-identified as Native South Americans. Notably, 279 participants self-identified with one of 12 ethnic groups. High compliance (>90%) in all assessed quality controls was achieved. Looking ahead, our team founded the COVID-19 Genomics Network (C19-GenoNet) focused on identifying genetic factors influencing SARS-CoV-2 outcomes. In conclusion, this bottom-up collaborative effort aims to promote the integration of Latin American populations into global genetic research and welcomes collaborations supporting this endeavor. Interested parties are invited to explore collaboration opportunities through our catalog, accessible online.
Collapse
Affiliation(s)
- Iskra A. Signore
- Department of Anatomic Pathology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (I.A.S.)
| | - Gerardo Donoso
- Service of Anatomic Pathology, University of Chile Clinical Hospital (HCUCH), Santiago 8380453, Chile
| | - Pamela Bocchieri
- Department of Anatomic Pathology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (I.A.S.)
| | - Eduardo A. Tobar-Calfucoy
- Human Genetics Program, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Cristian E. Yáñez
- Human Genetics Program, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Laura Carvajal-Silva
- Human Genetics Program, Institute of Biomedical Science (ICBM), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Andrea X. Silva
- AUSTRAL-Omics, Vice Rector’s Office for Research, Development and Artistic Creation, Austral University of Chile, Valdivia 5090000, Chile
- Institute of Environmental and Evolutionary Sciences, Faculty of Sciences, Austral University of Chile, Valdivia 5090000, Chile
| | - Carola Otth
- Institute of Clinical Microbiology, Faculty of Medicine, Austral University of Chile, Valdivia 5090000, Chile
| | - Claudio Cappelli
- AUSTRAL-Omics, Vice Rector’s Office for Research, Development and Artistic Creation, Austral University of Chile, Valdivia 5090000, Chile
| | - Héctor Valenzuela Jorquera
- AUSTRAL-Omics, Vice Rector’s Office for Research, Development and Artistic Creation, Austral University of Chile, Valdivia 5090000, Chile
| | - Daniela Zapata-Contreras
- School of Medicine, Magallanes University, Punta Arenas 6210005, Chile
- Evolutionary and Medical Genomics of Magallanes (GEMMa), Center for Education, Healthcare and Investigation (CADI-UMAG), Magallanes University, Punta Arenas 6210005, Chile
| | - Yolanda Espinosa-Parrilla
- School of Medicine, Magallanes University, Punta Arenas 6210005, Chile
- Evolutionary and Medical Genomics of Magallanes (GEMMa), Center for Education, Healthcare and Investigation (CADI-UMAG), Magallanes University, Punta Arenas 6210005, Chile
- Interuniversity Center for Healthy Aging, Punta Arena 6210005, Chile
| | - Paula Zúñiga-Pacheco
- School of Medicine, Magallanes University, Punta Arenas 6210005, Chile
- Evolutionary and Medical Genomics of Magallanes (GEMMa), Center for Education, Healthcare and Investigation (CADI-UMAG), Magallanes University, Punta Arenas 6210005, Chile
| | - Macarena Fuentes-Guajardo
- Department of Medical Technology, Faculty of Health Sciences, University of Tarapacá, Arica 1010197, Chile
| | | | - Pia Kochifas Velasquez
- Clinical Laboratory of the Technical Area of Molecular Biology, Salvador Hospital, Santiago 7500922, Chile
| | - Christian A. Muñoz
- Department of Medical Technology, Faculty of Health Sciences, University of Antofagasta, Antofagasta 1240000, Chile
| | - Cristina Dorador
- Laboratory of Microbial Complexity and Functional Ecology, Antofagasta Institute & Biotechnology Department, University of Antofagasta, Antofagasta 1240000, Chile
| | - Jonathan García-Araya
- Laboratory of Microbial Complexity and Functional Ecology, Antofagasta Institute & Biotechnology Department, University of Antofagasta, Antofagasta 1240000, Chile
| | - Claudia P. Campillay-Véliz
- Laboratory of Molecular Virology, Faculty of Marine Sciences and Biological Resources, University of Antofagasta, Antofagasta 1240000, Chile
| | - Cesar Echeverria
- Laboratory of Molecular Biology, Nanomedicine and Genomics, Faculty of Medicine, University of Atacama, Copiapó 1533601, Chile
| | - Rodolfo Alejandro Santander
- Emergency Public Assistance Hospital, Santiago 8330145, Chile
- Emergency Medical Assistance Service (SAMU), Punta Arenas 6200000, Chile
| | - Leslie C. Cerpa
- Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain
| | - Matías F. Martínez
- Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain
- Department of Pharmaceutical Sciences and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Luis Abel Quiñones
- Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Latin American Network for Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015 Madrid, Spain
- Department of Pharmaceutical Sciences and Technology, School of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile
| | - Eduardo Roberto Lamoza Galleguillos
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Department of Basic-Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
| | - Juan Saez Hidalgo
- Department of Computer Science, Faculty of Physical and Mathematical Sciences, University of Chile, Santiago 8370458, Chile
| | - Estefanía Nova-Lamperti
- Clinical Biochemistry and Immunology Department, Faculty of Pharmacy, University of Concepción, Concepción 4070383, Chile
| | - Sergio Sanhueza
- Center of Excellence in Translational Medicine, Faculty of Medicine, University of The Frontier, Temuco 4781176, Chile
| | - Annesi Giacaman
- Institute of Veterinary Preventive Medicine, Faculty of Veterinary Sciences, Austral University of Chile, Valdivia 5090000, Chile
| | - Gerardo Acosta-Jamett
- Institute of Veterinary Preventive Medicine, Faculty of Veterinary Sciences, Austral University of Chile, Valdivia 5090000, Chile
- Center for Surveillance and Evolution of Infectious Diseases, Austral University of Chile, Valdivia 5090000, Chile
| | - Cristóbal Verdugo
- Institute of Veterinary Preventive Medicine, Faculty of Veterinary Sciences, Austral University of Chile, Valdivia 5090000, Chile
- Center for Surveillance and Evolution of Infectious Diseases, Austral University of Chile, Valdivia 5090000, Chile
| | - Anita Plaza
- Institute of Animal Pathology, Faculty of Veterinary Sciences, Austral University of Chile, Valdivia 5090000, Chile
| | - Claudio Verdugo
- Center for Surveillance and Evolution of Infectious Diseases, Austral University of Chile, Valdivia 5090000, Chile
- Institute of Animal Pathology, Faculty of Veterinary Sciences, Austral University of Chile, Valdivia 5090000, Chile
| | | | - Ricardo Alejandro Verdugo
- Department of Basic and Clinical Oncology (DOBC), Faculty of Medicine, University of Chile, Santiago 8380453, Chile
- Institute of Interdisciplinary Research, University of Talca, Talca 3460000, Chile
- School of Medicine, University of Talca, Talca 3460000, Chile
| | - Alicia Colombo
- Department of Anatomic Pathology, Faculty of Medicine, University of Chile, Santiago 8380453, Chile; (I.A.S.)
- Service of Anatomic Pathology, University of Chile Clinical Hospital (HCUCH), Santiago 8380453, Chile
| |
Collapse
|
2
|
Diz-de Almeida S, Cruz R, Luchessi AD, Lorenzo-Salazar JM, de Heredia ML, Quintela I, González-Montelongo R, Nogueira Silbiger V, Porras MS, Tenorio Castaño JA, Nevado J, Aguado JM, Aguilar C, Aguilera-Albesa S, Almadana V, Almoguera B, Alvarez N, Andreu-Bernabeu Á, Arana-Arri E, Arango C, Arranz MJ, Artiga MJ, Baptista-Rosas RC, Barreda-Sánchez M, Belhassen-Garcia M, Bezerra JF, Bezerra MAC, Boix-Palop L, Brion M, Brugada R, Bustos M, Calderón EJ, Carbonell C, Castano L, Castelao JE, Conde-Vicente R, Cordero-Lorenzana ML, Cortes-Sanchez JL, Corton M, Darnaude MT, De Martino-Rodríguez A, Del Campo-Pérez V, de Bustamante AD, Domínguez-Garrido E, Eirós R, Fariñas MC, Fernandez-Nestosa MJ, Fernández-Robelo U, Fernández-Rodríguez A, Fernández-Villa T, Gago-Dominguez M, Gil-Fournier B, Gómez-Arrue J, Álvarez BG, Bernaldo de Quirós FG, González-Neira A, González-Peñas J, Gutiérrez-Bautista JF, Herrero MJ, Herrero-Gonzalez A, Jimenez-Sousa MA, Lattig MC, Borja AL, Lopez-Rodriguez R, Mancebo E, Martín-López C, Martín V, Martinez-Nieto O, Martinez-Lopez I, Martinez-Resendez MF, Martinez-Perez A, Mazzeu JF, Macías EM, Minguez P, Cuerda VM, Oliveira SF, Ortega-Paino E, Parellada M, Paz-Artal E, Santos NPC, Pérez-Matute P, Perez P, Pérez-Tomás ME, Perucho T, Pinsach-Abuin M, Pita G, Pompa-Mera EN, Porras-Hurtado GL, Pujol A, León SR, Resino S, Fernandes MR, Rodríguez-Ruiz E, Rodriguez-Artalejo F, Rodriguez-Garcia JA, Ruiz-Cabello F, Ruiz-Hornillos J, Ryan P, Soria JM, Souto JC, et alDiz-de Almeida S, Cruz R, Luchessi AD, Lorenzo-Salazar JM, de Heredia ML, Quintela I, González-Montelongo R, Nogueira Silbiger V, Porras MS, Tenorio Castaño JA, Nevado J, Aguado JM, Aguilar C, Aguilera-Albesa S, Almadana V, Almoguera B, Alvarez N, Andreu-Bernabeu Á, Arana-Arri E, Arango C, Arranz MJ, Artiga MJ, Baptista-Rosas RC, Barreda-Sánchez M, Belhassen-Garcia M, Bezerra JF, Bezerra MAC, Boix-Palop L, Brion M, Brugada R, Bustos M, Calderón EJ, Carbonell C, Castano L, Castelao JE, Conde-Vicente R, Cordero-Lorenzana ML, Cortes-Sanchez JL, Corton M, Darnaude MT, De Martino-Rodríguez A, Del Campo-Pérez V, de Bustamante AD, Domínguez-Garrido E, Eirós R, Fariñas MC, Fernandez-Nestosa MJ, Fernández-Robelo U, Fernández-Rodríguez A, Fernández-Villa T, Gago-Dominguez M, Gil-Fournier B, Gómez-Arrue J, Álvarez BG, Bernaldo de Quirós FG, González-Neira A, González-Peñas J, Gutiérrez-Bautista JF, Herrero MJ, Herrero-Gonzalez A, Jimenez-Sousa MA, Lattig MC, Borja AL, Lopez-Rodriguez R, Mancebo E, Martín-López C, Martín V, Martinez-Nieto O, Martinez-Lopez I, Martinez-Resendez MF, Martinez-Perez A, Mazzeu JF, Macías EM, Minguez P, Cuerda VM, Oliveira SF, Ortega-Paino E, Parellada M, Paz-Artal E, Santos NPC, Pérez-Matute P, Perez P, Pérez-Tomás ME, Perucho T, Pinsach-Abuin M, Pita G, Pompa-Mera EN, Porras-Hurtado GL, Pujol A, León SR, Resino S, Fernandes MR, Rodríguez-Ruiz E, Rodriguez-Artalejo F, Rodriguez-Garcia JA, Ruiz-Cabello F, Ruiz-Hornillos J, Ryan P, Soria JM, Souto JC, Tamayo E, Tamayo-Velasco A, Taracido-Fernandez JC, Teper A, Torres-Tobar L, Urioste M, Valencia-Ramos J, Yáñez Z, Zarate R, de Rojas I, Ruiz A, Sánchez P, Real LM, Guillen-Navarro E, Ayuso C, Parra E, Riancho JA, Rojas-Martinez A, Flores C, Lapunzina P, Carracedo Á. Novel risk loci for COVID-19 hospitalization among admixed American populations. eLife 2024; 13:RP93666. [PMID: 39361370 PMCID: PMC11449485 DOI: 10.7554/elife.93666] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Abstract
The genetic basis of severe COVID-19 has been thoroughly studied, and many genetic risk factors shared between populations have been identified. However, reduced sample sizes from non-European groups have limited the discovery of population-specific common risk loci. In this second study nested in the SCOURGE consortium, we conducted a genome-wide association study (GWAS) for COVID-19 hospitalization in admixed Americans, comprising a total of 4702 hospitalized cases recruited by SCOURGE and seven other participating studies in the COVID-19 Host Genetic Initiative. We identified four genome-wide significant associations, two of which constitute novel loci and were first discovered in Latin American populations (BAZ2B and DDIAS). A trans-ethnic meta-analysis revealed another novel cross-population risk locus in CREBBP. Finally, we assessed the performance of a cross-ancestry polygenic risk score in the SCOURGE admixed American cohort. This study constitutes the largest GWAS for COVID-19 hospitalization in admixed Latin Americans conducted to date. This allowed to reveal novel risk loci and emphasize the need of considering the diversity of populations in genomic research.
Collapse
Affiliation(s)
- Silvia Diz-de Almeida
- ERN-ITHACA-European Reference Network, Soria, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Raquel Cruz
- ERN-ITHACA-European Reference Network, Soria, Spain
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andre D Luchessi
- Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicas e Toxicologicas, Natal, Brazil
| | - José M Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | | | - Inés Quintela
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | | | - Vivian Nogueira Silbiger
- Universidade Federal do Rio Grande do Norte, Departamento de Analises Clinicas e Toxicologicas, Natal, Brazil
| | - Marta Sevilla Porras
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Jair Antonio Tenorio Castaño
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Julian Nevado
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Jose María Aguado
- Unit of Infectious Diseases, Hospital Universitario 12 de Octubre, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD16/0016/0002), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII, Madrid, Spain
| | | | - Sergio Aguilera-Albesa
- Pediatric Neurology Unit, Department of Pediatrics, Navarra Health Service Hospital, Pamplona, Spain
- Navarra Health Service, NavarraBioMed Research Group, Pamplona, Spain
| | | | - Berta Almoguera
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Nuria Alvarez
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
| | - Eunate Arana-Arri
- Biocruces Bizkai HRI, Bizkaia, Spain
- Cruces University Hospital, Osakidetza, Bizkaia, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - María J Arranz
- Fundació Docència I Recerca Mutua Terrassa, Barcelona, Spain
| | | | - Raúl C Baptista-Rosas
- Hospital General de Occidente, Zapopan Jalisco, Mexico
- Centro Universitario de Tonalá, Universidad de Guadalajara, Tonalá Jalisco, Mexico
- Centro de Investigación Multidisciplinario en Salud, Universidad de Guadalajara, Tonalá Jalisco, Mexico
| | - María Barreda-Sánchez
- Universidad Católica San Antonio de Murcia (UCAM), Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | - Moncef Belhassen-Garcia
- Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna-Unidad de Enfermedades Infecciosas, Salamanca, Spain
| | - Joao F Bezerra
- Escola Tecnica de Saúde, Laboratorio de Vigilancia Molecular Aplicada, Brasilia, Brazil
| | - Marcos A C Bezerra
- Federal University of Pernambuco, Genetics Postgraduate Program, Recife, Brazil
| | | | - María Brion
- Instituto de Investigación Sanitaria de Santiago (IDIS), Xenética Cardiovascular, Santiago de Compostela, Spain
- CIBERCV, ISCIII, Madrid, Spain
| | - Ramón Brugada
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), Girona, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Hospital Josep Trueta, Cardiology Service, Girona, Spain
| | - Matilde Bustos
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)- University of Seville- Virgen del Rocio University Hospital, Seville, Spain
| | - Enrique J Calderón
- Institute of Biomedicine of Seville (IBiS), Consejo Superior de Investigaciones Científicas (CSIC)- University of Seville- Virgen del Rocio University Hospital, Seville, Spain
- Departamento de Medicina, Hospital Universitario Virgen del Rocío, Universidad de Sevilla, Seville, Spain
- CIBERESP, ISCIII, Madrid, Spain
| | - Cristina Carbonell
- Hospital Universitario de Salamanca-IBSAL, Servicio de Medicina Interna, Salamanca, Spain
- Universidad de Salamanca, Salamanca, Spain
| | - Luis Castano
- CIBERER, ISCIII, Madrid, Spain
- Biocruces Bizkai HRI, Bizkaia, Spain
- Osakidetza, Cruces University Hospital, Bizkaia, Spain
- Centre for Biomedical Network Research on Diabetes and Metabolic Associated Diseases (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
- University of Pais Vasco, UPV/EHU, Bizkaia, Spain
| | - Jose E Castelao
- Oncology and Genetics Unit, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galego de Saúde, Vigo, Spain
| | | | - M Lourdes Cordero-Lorenzana
- Servicio de Medicina intensiva, Complejo Hospitalario Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain
| | - Jose L Cortes-Sanchez
- Tecnológico de Monterrey, Monterrey, Mexico
- Department of Microgravity and Translational Regenerative Medicine, Otto von Guericke University, Magdeburg, Germany
| | - Marta Corton
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | | | - Alba De Martino-Rodríguez
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | - Victor Del Campo-Pérez
- Preventive Medicine Department, Instituto de Investigacion Sanitaria Galicia Sur, Xerencia de Xestion Integrada de Vigo-Servizo Galego de Saúde, Vigo, Spain
| | | | | | - Rocío Eirós
- Hospital Universitario de Salamanca-IBSAL, Servicio de Cardiología, Salamanca, Spain
| | - María Carmen Fariñas
- IDIVAL, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
| | | | - Uxía Fernández-Robelo
- Urgencias Hospitalarias, Complejo Hospitalario Universitario de A Coruña (CHUAC), Sistema Galego de Saúde (SERGAS), A Coruña, Spain
| | - Amanda Fernández-Rodríguez
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Tania Fernández-Villa
- CIBERESP, ISCIII, Madrid, Spain
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS) - Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Manuela Gago-Dominguez
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- IDIS, Seongnam, Republic of Korea
| | | | - Javier Gómez-Arrue
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | - Beatriz González Álvarez
- Instituto Aragonés de Ciencias de la Salud (IACS), Zaragoza, Spain
- Instituto Investigación Sanitaria Aragón (IIS-Aragon), Zaragoza, Spain
| | | | - Anna González-Neira
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Javier González-Peñas
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan F Gutiérrez-Bautista
- Hospital Universitario Virgen de las Nieves, Servicio de Análisis Clínicos e Inmunología, Granada, Spain
| | - María José Herrero
- IIS La Fe, Plataforma de Farmacogenética, Valencia, Spain
- Universidad de Valencia, Departamento de Farmacología, Valencia, Spain
| | - Antonio Herrero-Gonzalez
- Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - María A Jimenez-Sousa
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Claudia Lattig
- Universidad de los Andes, Facultad de Ciencias, Bogotá, Colombia
- SIGEN Alianza Universidad de los Andes - Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Rosario Lopez-Rodriguez
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Boadilla del Monte, Spain
| | - Esther Mancebo
- Hospital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Transplant Immunology and Immunodeficiencies Group, Madrid, Spain
| | | | - Vicente Martín
- CIBERESP, ISCIII, Madrid, Spain
- Grupo de Investigación en Interacciones Gen-Ambiente y Salud (GIIGAS) - Instituto de Biomedicina (IBIOMED), Universidad de León, León, Spain
| | - Oscar Martinez-Nieto
- SIGEN Alianza Universidad de los Andes - Fundación Santa Fe de Bogotá, Bogotá, Colombia
- Fundación Santa Fe de Bogota, Departamento Patologia y Laboratorios, Bogotá, Colombia
| | - Iciar Martinez-Lopez
- Unidad de Genética y Genómica Islas Baleares, Islas Baleares, Spain
- Hospital Universitario Son Espases, Unidad de Diagnóstico Molecular y Genética Clínica, Islas Baleares, Spain
| | | | - Angel Martinez-Perez
- Genomics of Complex Diseases Unit, Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Juliana F Mazzeu
- Universidade de Brasília, Faculdade de Medicina, Brasília, Brazil
- Programa de Pós-Graduação em Ciências Médicas (UnB), Brasília, Brazil
- Programa de Pós-Graduação em Ciencias da Saude (UnB), Brazila, Brazil
| | | | - Pablo Minguez
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Victor Moreno Cuerda
- Hospital Universitario Mostoles, Medicina Interna, Madrid, Spai, Spain
- Universidad Francisco de Vitoria, Madrid, Spain
| | - Silviene F Oliveira
- Programa de Pós-Graduação em Ciencias da Saude (UnB), Brazila, Brazil
- Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
- Programa de Pós-Graduação em Biologia Animal (UnB), Brasília, Brazil
- Programa de Pós-Graduação Profissional em Ensino de Biologia (UnB), Brasília, Brazil
| | - Eva Ortega-Paino
- Spanish National Cancer Research Centre, CNIO Biobank, Madrid, Spain
| | - Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón (IiSGM), Madrid, Spain
- School of Medicine, Universidad Complutense, Madrid, Spain
- Centre for Biomedical Network Research on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Paz-Artal
- Hospital Universitario 12 de Octubre, Department of Immunology, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Transplant Immunology and Immunodeficiencies Group, Madrid, Spain
- Universidad Complutense de Madrid, Department of Immunology, Ophthalmology and ENT, Madrid, Spain
| | - Ney P C Santos
- Universidade Federal do Pará, Núcleo de Pesquisas em Oncologia, Belém, Brazil
| | - Patricia Pérez-Matute
- Infectious Diseases, Microbiota and Metabolism Unit, CSIC Associated Unit, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | | | - M Elena Pérez-Tomás
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
| | | | - Mellina Pinsach-Abuin
- CIBERCV, ISCIII, Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica Girona (IDIBGI), Girona, Spain
| | - Guillermo Pita
- Spanish National Cancer Research Centre, Human Genotyping-CEGEN Unit, Madrid, Spain
| | - Ericka N Pompa-Mera
- Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI, Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Mexico City, Mexico
- Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional La Raza, Hospital de Infectología, Mexico City, Mexico
| | | | - Aurora Pujol
- CIBERER, ISCIII, Madrid, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), Neurometabolic Diseases Laboratory, L'Hospitalet de Llobregat, Barcelona, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Spain
| | | | - Salvador Resino
- CIBERINFEC, ISCIII, Madrid, Spain
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología (CNM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marianne R Fernandes
- Universidade Federal do Pará, Núcleo de Pesquisas em Oncologia, Belém, Brazil
- Hospital Ophir Loyola, Departamento de Ensino e Pesquisa, Belém, Brazil
| | - Emilio Rodríguez-Ruiz
- IDIS, Seongnam, Republic of Korea
- Unidad de Cuidados Intensivos, Hospital Clínico Universitario de Santiago (CHUS), Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Fernando Rodriguez-Artalejo
- CIBERESP, ISCIII, Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC, Madrid, Spain
| | | | - Francisco Ruiz-Cabello
- IDIS, Seongnam, Republic of Korea
- Instituto de Investigación Biosanitaria de Granada (ibs GRANADA), Granada, Spain
- Universidad de Granada, Departamento Bioquímica, Biología Molecular e Inmunología III, Granada, Spain
| | - Javier Ruiz-Hornillos
- Hospital Infanta Elena, Allergy Unit, Valdemoro, Madrid, Spain
- Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Faculty of Medicine, Universidad Francisco de Vitoria, Madrid, Spain
| | - Pablo Ryan
- CIBERINFEC, ISCIII, Madrid, Spain
- Hospital Universitario Infanta Leonor, Madrid, Spain
- Complutense University of Madrid, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - José Manuel Soria
- Genomics of Complex Diseases Unit, Research Institute of Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Juan Carlos Souto
- Haemostasis and Thrombosis Unit, Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain
| | - Eduardo Tamayo
- Hospital Clinico Universitario de Valladolid, Servicio de Anestesiologia y Reanimación, Valladolid, Spain
- Universidad de Valladolid, Departamento de Cirugía, Valladolid, Spain
| | - Alvaro Tamayo-Velasco
- Hospital Clinico Universitario de Valladolid, Servicio de Hematologia y Hemoterapia, Valladolid, Spain
| | - Juan Carlos Taracido-Fernandez
- Data Analysis Department, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Alejandro Teper
- Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | | | - Miguel Urioste
- Spanish National Cancer Research Centre, Familial Cancer Clinical Unit, Madrid, Spain
| | | | - Zuleima Yáñez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Ruth Zarate
- Centro para el Desarrollo de la Investigación Científica, Asunción, Paraguay
| | - Itziar de Rojas
- Centre for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Agustín Ruiz
- Centre for Biomedical Network Research on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Research Center and Memory clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pascual Sánchez
- CIEN Foundation/Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Luis Miguel Real
- Hospital Universitario de Valme, Unidad Clínica de Enfermedades Infecciosas y Microbiología, Sevilla, Spain
| | - Encarna Guillen-Navarro
- Instituto Murciano de Investigación Biosanitaria (IMIB-Arrixaca), Murcia, Spain
- Sección Genética Médica - Servicio de Pediatría, Hospital Clínico Universitario Virgen de la Arrixaca, Servicio Murciano de Salud, Murcia, Spain
- Departamento Cirugía, Pediatría, Obstetricia y Ginecología, Facultad de Medicina, Universidad de Murcia (UMU), Murcia, Spain
- Grupo Clínico Vinculado, Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- CIBERER, ISCIII, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Esteban Parra
- Department of Anthropology, University of Toronto at Mississauga, Mississauga, Canada
| | - José A Riancho
- CIBERER, ISCIII, Madrid, Spain
- IDIVAL, Cantabria, Spain
- Hospital U M Valdecilla, Cantabria, Spain
- Universidad de Cantabria, Cantabria, Spain
| | | | - Carlos Flores
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias, Santa Cruz de Tenerife, Spain
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Centre for Biomedical Network Research on Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Lapunzina
- ERN-ITHACA-European Reference Network, Soria, Spain
- CIBERER, ISCIII, Madrid, Spain
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz IDIPAZ, Madrid, Spain
| | - Ángel Carracedo
- CIBERER, ISCIII, Madrid, Spain
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Sistema Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- IDIS, Seongnam, Republic of Korea
| |
Collapse
|
3
|
Fam BSDO, Feira MF, Cadore NA, Sbruzzi R, Hünemeier T, Abel L, Zhang Q, Casanova JL, Vianna FSL. Human genetic determinants of COVID-19 in Brazil: challenges and future plans. Genet Mol Biol 2024; 46:e20230128. [PMID: 38226654 PMCID: PMC10792479 DOI: 10.1590/1678-4685-gmb-2023-0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
COVID-19 pandemic represented a worldwide major challenge in different areas, and efforts undertaken by the scientific community led to the understanding of some of the genetic determinants that influence the different COVID-19 outcomes. In this paper, we review the studies about the role of human genetics in COVID-19 severity and how Brazilian studies also contributed to those findings. Rare variants in genes related to Inborn Errors of Immunity (IEI) in the type I interferons pathway, and its phenocopies, have been described as being causative of severe outcomes. IEI and its phenocopies are present in Brazil, not only in COVID-19 patients, but also in autoimmune conditions and severe reactions to yellow fever vaccine. In addition, studies focusing on common variants and GWAS studies encompassing worldwide patients have found several loci associated with COVID-19 severity. A GWAS study including only Brazilian COVID-19 patients identified a new locus 1q32.1 associated with COVID-19 severity. Thus, more comprehensive studies considering the Brazilian genomic diversity should be performed, since they can help to reveal not only what are the genetic determinants that contribute to the different outcomes for COVID-19 in the Brazilian population, but in the understanding of human genetics in different health conditions.
Collapse
Affiliation(s)
- Bibiana S. de Oliveira Fam
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Marilea Furtado Feira
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Nathan Araujo Cadore
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Renan Sbruzzi
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| | - Tábita Hünemeier
- Universidade de São Paulo, Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, São Paulo, SP, Brazil
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas/Universitat Pompeu Fabra), Barcelona, Spain
| | - Laurent Abel
- The Rockefeller University, Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
| | - Qian Zhang
- The Rockefeller University, Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
| | - Jean-Laurent Casanova
- The Rockefeller University, Rockefeller Branch, St. Giles Laboratory of Human Genetics of Infectious Diseases, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Imagine Institute, Paris, France
- University Paris Cité, Imagine Institute, Paris, France
- Necker Hospital for Sick Children, Department of Pediatrics, Paris, France
| | - Fernanda Sales Luiz Vianna
- Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Instituto de Biociências, Departamento de Genética, Laboratório de Imunogenética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Instituto Nacional de Genética Médica Populacional (INaGeMP), Porto Alegre, RS, Brazil
| |
Collapse
|
4
|
Jones RP, Ponomarenko A. COVID-19-Related Age Profiles for SARS-CoV-2 Variants in England and Wales and States of the USA (2020 to 2022): Impact on All-Cause Mortality. Infect Dis Rep 2023; 15:600-634. [PMID: 37888139 PMCID: PMC10606787 DOI: 10.3390/idr15050058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 10/28/2023] Open
Abstract
Since 2020, COVID-19 has caused serious mortality around the world. Given the ambiguity in establishing COVID-19 as the direct cause of death, we first investigate the effects of age and sex on all-cause mortality during 2020 and 2021 in England and Wales. Since infectious agents have their own unique age profile for death, we use a 9-year time series and several different methods to adjust single-year-of-age deaths in England and Wales during 2019 (the pre-COVID-19 base year) to a pathogen-neutral single-year-of-age baseline. This adjusted base year is then used to confirm the widely reported higher deaths in males for most ages above 43 in both 2020 and 2021. During 2020 (+COVID-19 but no vaccination), both male and female population-adjusted deaths significantly increased above age 35. A significant reduction in all-cause mortality among both males and females aged 75+ could be demonstrated in 2021 during the widespread COVID-19 vaccination period; however, deaths below age 75 progressively increased. This finding arises from a mix of vaccination coverage and year-of-age profiles of deaths for the different SARS-CoV-2 variants. In addition, specific effects of age around puberty were demonstrated, where females had higher deaths than males. There is evidence that year-of-birth cohorts may also be involved, indicating that immune priming to specific pathogen outbreaks in the past may have led to lower deaths for some birth cohorts. To specifically identify the age profile for the COVID-19 variants from 2020 to 2023, we employ the proportion of total deaths at each age that are potentially due to or 'with' COVID-19. The original Wuhan strain and the Alpha variant show somewhat limited divergence in the age profile, with the Alpha variant shifting to a moderately higher proportion of deaths below age 84. The Delta variant specifically targeted individuals below age 65. The Omicron variants showed a significantly lower proportion of overall mortality, with a markedly higher relative proportion of deaths above age 65, steeply increasing with age to a maximum around 100 years of age. A similar age profile for the variants can be seen in the age-banded deaths in US states, although they are slightly obscured by using age bands rather than single years of age. However, the US data shows that higher male deaths are greatly dependent on age and the COVID variant. Deaths assessed to be 'due to' COVID-19 (as opposed to 'involving' COVID-19) in England and Wales were especially overestimated in 2021 relative to the change in all-cause mortality. This arose as a by-product of an increase in COVID-19 testing capacity in late 2020. Potential structure-function mechanisms for the age-specificity of SARS-CoV-2 variants are discussed, along with potential roles for small noncoding RNAs (miRNAs). Using data from England, it is possible to show that the unvaccinated do indeed have a unique age profile for death from each variant and that vaccination alters the shape of the age profile in a manner dependent on age, sex, and the variant. The question is posed as to whether vaccines based on different variants carry a specific age profile.
Collapse
Affiliation(s)
| | - Andrey Ponomarenko
- Department of Biophysics, Informatics and Medical Instrumentation, Odessa National Medical University, Valikhovsky Lane 2, 65082 Odessa, Ukraine
| |
Collapse
|
5
|
Wang Z, Zhou H, Zhang S, Wang F, Huang H. The causal relationship between COVID-19 and seventeen common digestive diseases: a two-sample, multivariable Mendelian randomization study. Hum Genomics 2023; 17:87. [PMID: 37752570 PMCID: PMC10523605 DOI: 10.1186/s40246-023-00536-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023] Open
Abstract
OBJECTIVES In clinical practice, digestive symptoms such as nausea, vomiting are frequently observed in COVID-19 patients. However, the causal relationship between COVID-19 and digestive diseases remains unclear. METHODS We extracted single nucleotide polymorphisms associated with the severity of COVID-19 from summary data of genome-wide association studies. Summary statistics of common digestive diseases were primarily obtained from the UK Biobank study and the FinnGen study. Two-sample Mendelian randomization analyses were then conducted using the inverse variance-weighted (IVW), Mendelian randomization-Egger regression (MR Egger), weighted median estimation, weighted mode, and simple mode methods. IVW served as the primary analysis method, and Multivariable Mendelian randomization analysis was employed to explore the mediating effect of body mass index (BMI) and type 2 diabetes. RESULTS MR analysis showed that a causal association between SARS-CoV-2 infection (OR = 1.09, 95% CI 1.01-1.18, P = 0.03), severe COVID-19 (OR = 1.02, 95% CI 1.00-1.04, P = 0.02), and COVID-19 hospitalization (OR = 1.04, 95% CI 1.01-1.06, P = 0.01) with gastroesophageal reflux disease (GERD). Mediation analysis indicated that body mass index (BMI) served as the primary mediating variable in the causal relationship between SARS-CoV-2 infection and GERD, with BMI mediating 36% (95% CI 20-53%) of the effect. CONCLUSIONS We found a causal relationship between SARS-CoV-2 infection and gastroesophageal reflux disease. Furthermore, we found that the causal relationship between SARS-CoV-2 infection and GERD is mainly mediated by BMI.
Collapse
Affiliation(s)
- Zhiqi Wang
- Jiangnan University Affiliated Wuxi Fifth People's Hospital, Wuxi, 214000, Jiangsu, China
| | - Huanyu Zhou
- Jiangnan University Affiliated Wuxi Second People's Hospital, Wuxi, 214000, Jiangsu, China
| | - Shurui Zhang
- The Shangyou People's Hospital, Ganzhou, 341000, Jiangxi, China
| | - Fei Wang
- Jiangnan University Affiliated Wuxi Fifth People's Hospital, Wuxi, 214000, Jiangsu, China
| | - Haishan Huang
- The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian, 223800, Jiangsu, China.
| |
Collapse
|
6
|
Eshetie S, Jullian P, Benyamin B, Lee SH. Host genetic determinants of COVID-19 susceptibility and severity: A systematic review and meta-analysis. Rev Med Virol 2023; 33:e2466. [PMID: 37303119 DOI: 10.1002/rmv.2466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/29/2023] [Accepted: 06/01/2023] [Indexed: 06/13/2023]
Abstract
Genome-wide association studies (GWASs) have identified single nucleotide polymorphisms (SNPs) associated with susceptibility and severity of coronavirus disease 2019 (COVID-19). However, identified SNPs are inconsistent across studies, and there is no compelling consensus that COVID-19 status is determined by genetic factors. Here, we conducted a systematic review and meta-analysis to determine the effect of genetic factors on COVID-19. A random-effect meta-analysis was performed to estimate pooled odds ratios (ORs) of SNP effects, and SNP-based heritability (SNP-h2 ) of COVID-19. The analyses were performed using meta-R package, and Stata version 17. The meta-analysis included a total of 96,817 COVID-19 cases and 6,414,916 negative controls. The meta-analysis showed that a cluster of highly correlated 9 SNPs (R2 > 0.9) at 3p21.31 gene locus covering LZTFL1 and SLC6A20 genes was significantly associated with COVID-19 severity, with a pooled OR of 1.8 [1.5-2.0]. Meanwhile, another 3 SNPs (rs2531743-G, rs2271616-T, and rs73062389-A) within the locus was associated with COVID-19 susceptibility, with pooled estimates of 0.95 [0.93-0.96], 1.23 [1.19-1.27] and 1.15 [1.13-1.17], respectively. Interestingly, SNPs associated with susceptibility and SNPs associated with severity in this locus are in linkage equilibrium (R2 < 0.026). The SNP-h2 on the liability scale for severity and susceptibility was estimated at 7.6% (Se = 3.2%) and 4.6% (Se = 1.5%), respectively. Genetic factors contribute to COVID-19 susceptibility and severity. In the 3p21.31 locus, SNPs that are associated with susceptibility are not in linkage disequilibrium (LD) with SNPs that are associated with severity, indicating within-locus heterogeneity.
Collapse
Affiliation(s)
- Setegn Eshetie
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- Department of Medical Microbiology, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| | - Pastor Jullian
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| | - Beben Benyamin
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| | - S Hong Lee
- Australian Centre for Precision Health and UniSA Allied Health & Human Performance, University of South Australia, Adelaide, South Australia, Australia
- South Australian Health and Medical Research Institute (SAHMRI), University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Suarez-Pajes E, Tosco-Herrera E, Ramirez-Falcon M, Gonzalez-Barbuzano S, Hernandez-Beeftink T, Guillen-Guio B, Villar J, Flores C. Genetic Determinants of the Acute Respiratory Distress Syndrome. J Clin Med 2023; 12:3713. [PMID: 37297908 PMCID: PMC10253474 DOI: 10.3390/jcm12113713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung condition that arises from multiple causes, including sepsis, pneumonia, trauma, and severe coronavirus disease 2019 (COVID-19). Given the heterogeneity of causes and the lack of specific therapeutic options, it is crucial to understand the genetic and molecular mechanisms that underlie this condition. The identification of genetic risks and pharmacogenetic loci, which are involved in determining drug responses, could help enhance early patient diagnosis, assist in risk stratification of patients, and reveal novel targets for pharmacological interventions, including possibilities for drug repositioning. Here, we highlight the basis and importance of the most common genetic approaches to understanding the pathogenesis of ARDS and its critical triggers. We summarize the findings of screening common genetic variation via genome-wide association studies and analyses based on other approaches, such as polygenic risk scores, multi-trait analyses, or Mendelian randomization studies. We also provide an overview of results from rare genetic variation studies using Next-Generation Sequencing techniques and their links with inborn errors of immunity. Lastly, we discuss the genetic overlap between severe COVID-19 and ARDS by other causes.
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Eva Tosco-Herrera
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Silvia Gonzalez-Barbuzano
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
| | - Tamara Hernandez-Beeftink
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Beatriz Guillen-Guio
- Department of Population Health Sciences, University of Leicester, Leicester LE1 7RH, UK
- NIHR Leicester Biomedical Research Centre, University of Leicester, Leicester LE1 7RH, UK
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, 35019 Las Palmas de Gran Canaria, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, 38010 Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), 38600 Santa Cruz de Tenerife, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, 35450 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
8
|
Cappadona C, Rimoldi V, Paraboschi EM, Asselta R. Genetic susceptibility to severe COVID-19. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 110:105426. [PMID: 36934789 PMCID: PMC10022467 DOI: 10.1016/j.meegid.2023.105426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the coronavirus disease 2019 (COVID-19) pandemic. Clinical manifestations of the disease range from an asymptomatic condition to life-threatening events and death, with more severe courses being associated with age, male sex, and comorbidities. Besides these risk factors, intrinsic characteristics of the virus as well as genetic factors of the host are expected to account for COVID-19 clinical heterogeneity. Genetic studies have long been recognized as fundamental to identify biological mechanisms underlying congenital diseases, to pinpoint genes/proteins responsible for the susceptibility to different inherited conditions, to highlight targets of therapeutic relevance, to suggest drug repurposing, and even to clarify causal relationships that make modifiable some environmental risk factors. Though these studies usually take long time to be concluded and, above all, to translate their discoveries to patients' bedside, the scientific community moved really fast to deliver genetic signals underlying different COVID-19 phenotypes. In this Review, besides a concise description of COVID-19 symptomatology and of SARS-CoV-2 mechanism of infection, we aimed to recapitulate the current literature in terms of host genetic factors that specifically associate with an increased severity of the disease.
Collapse
Affiliation(s)
- Claudio Cappadona
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy
| | - Valeria Rimoldi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Elvezia Maria Paraboschi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele - Milan 20090, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, Milan 20089, Italy.
| |
Collapse
|
9
|
Wuni R, Ventura EF, Curi-Quinto K, Murray C, Nunes R, Lovegrove JA, Penny M, Favara M, Sanchez A, Vimaleswaran KS. Interactions between genetic and lifestyle factors on cardiometabolic disease-related outcomes in Latin American and Caribbean populations: A systematic review. Front Nutr 2023; 10:1067033. [PMID: 36776603 PMCID: PMC9909204 DOI: 10.3389/fnut.2023.1067033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/09/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction The prevalence of cardiometabolic diseases has increased in Latin American and the Caribbean populations (LACP). To identify gene-lifestyle interactions that modify the risk of cardiometabolic diseases in LACP, a systematic search using 11 search engines was conducted up to May 2022. Methods Eligible studies were observational and interventional studies in either English, Spanish, or Portuguese. A total of 26,171 publications were screened for title and abstract; of these, 101 potential studies were evaluated for eligibility, and 74 articles were included in this study following full-text screening and risk of bias assessment. The Appraisal tool for Cross-Sectional Studies (AXIS) and the Risk Of Bias In Non-Randomized Studies-of Interventions (ROBINS-I) assessment tool were used to assess the methodological quality and risk of bias of the included studies. Results We identified 122 significant interactions between genetic and lifestyle factors on cardiometabolic traits and the vast majority of studies come from Brazil (29), Mexico (15) and Costa Rica (12) with FTO, APOE, and TCF7L2 being the most studied genes. The results of the gene-lifestyle interactions suggest effects which are population-, gender-, and ethnic-specific. Most of the gene-lifestyle interactions were conducted once, necessitating replication to reinforce these results. Discussion The findings of this review indicate that 27 out of 33 LACP have not conducted gene-lifestyle interaction studies and only five studies have been undertaken in low-socioeconomic settings. Most of the studies were cross-sectional, indicating a need for longitudinal/prospective studies. Future gene-lifestyle interaction studies will need to replicate primary research of already studied genetic variants to enable comparison, and to explore the interactions between genetic and other lifestyle factors such as those conditioned by socioeconomic factors and the built environment. The protocol has been registered on PROSPERO, number CRD42022308488. Systematic review registration https://clinicaltrials.gov, identifier CRD420223 08488.
Collapse
Affiliation(s)
- Ramatu Wuni
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | - Eduard F. Ventura
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | | | - Claudia Murray
- Department of Real Estate and Planning, University of Reading, Reading, United Kingdom
| | - Richard Nunes
- Department of Real Estate and Planning, University of Reading, Reading, United Kingdom
| | - Julie A. Lovegrove
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
| | - Mary Penny
- Instituto de Investigación Nutricional, Lima, Peru
| | - Marta Favara
- Oxford Department of International Development, University of Oxford, Oxford, United Kingdom
| | - Alan Sanchez
- Grupo de Análisis para el Desarrollo (GRADE), Lima, Peru
| | - Karani Santhanakrishnan Vimaleswaran
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences and Institute for Cardiovascular and Metabolic Research (ICMR), University of Reading, Reading, United Kingdom
- Institute for Food, Nutrition and Health (IFNH), University of Reading, Reading, United Kingdom
| |
Collapse
|
10
|
Ferreira LC, Gomes CE, Rodrigues-Neto JF, Jeronimo SM. Genome-wide association studies of COVID-19: Connecting the dots. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 106:105379. [PMID: 36280088 PMCID: PMC9584840 DOI: 10.1016/j.meegid.2022.105379] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/01/2022] [Accepted: 10/19/2022] [Indexed: 11/13/2022]
Abstract
Genome-wide association studies (GWASs) are a research approach used to identify genetic variants associated with common diseases, like COVID-19. The lead genetic variants (n = 41) reported by the eleven largest COVID-19 GWASs are mapped to 22 different chromosomal regions. The loci 3q21.31 (LZTFL1 and chemokine receptor genes) and 9q34.2 (ABO), associated with disease severity and susceptibility to infection, respectively, were the most replicated findings across studies. Genes involved with mucociliary clearance (CEP97, FOXP4), viral-entry (ACE2, SLC6A20) and mucosal immunity (MIR6891) are associated with the risk of SARS-CoV-2 infection while genes of antiviral immune response (IFNAR2, OAS1), leukocyte trafficking (CCR9, CXCR6) and lung injury (DPP9, NOTCH4) are associated with severe disease. The biological processes underlying the risk of infection occur prominently, but not exclusively, in the upper airways whereas the severe COVID-19-associated processes in alveolar-capillary interface. The COVID-19 GWASs has unraveled key genetic mechanisms of SARS-CoV-2 pathogenesis, although the genetic basis of other COVID-19 related phenotypes (long COVID and neurological impairment) remains to be elucidated.
Collapse
Affiliation(s)
- Leonardo C. Ferreira
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil,Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil,Corresponding author at: Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil
| | - Carlos E.M. Gomes
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil
| | - João F. Rodrigues-Neto
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil,Multicampi School of Medical Sciences, Federal University of Rio Grande do Norte, Caicó, RN 59078-900, Brazil
| | - Selma M.B. Jeronimo
- Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil,Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, RN 59078-900, Brazil,Institute of Science and Technology of Tropical Diseases, Natal, RN, Brazil
| |
Collapse
|
11
|
Upadhyai P, Shenoy PU, Banjan B, Albeshr MF, Mahboob S, Manzoor I, Das R. Exome-Wide Association Study Reveals Host Genetic Variants Likely Associated with the Severity of COVID-19 in Patients of European Ancestry. Life (Basel) 2022; 12:1300. [PMID: 36143338 PMCID: PMC9504138 DOI: 10.3390/life12091300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Host genetic variability plays a pivotal role in modulating COVID-19 clinical outcomes. Despite the functional relevance of protein-coding regions, rare variants located here are less likely to completely explain the considerable numbers of acutely affected COVID-19 patients worldwide. Using an exome-wide association approach, with individuals of European descent, we sought to identify common coding variants linked with variation in COVID-19 severity. Herein, cohort 1 compared non-hospitalized (controls) and hospitalized (cases) individuals, and in cohort 2, hospitalized subjects requiring respiratory support (cases) were compared to those not requiring it (controls). 229 and 111 variants differed significantly between cases and controls in cohorts 1 and 2, respectively. This included FBXO34, CNTN2, and TMCC2 previously linked with COVID-19 severity using association studies. Overall, we report SNPs in 26 known and 12 novel candidate genes with strong molecular evidence implicating them in the pathophysiology of life-threatening COVID-19 and post-recovery sequelae. Of these few notable known genes include, HLA-DQB1, AHSG, ALOX5AP, MUC5AC, SMPD1, SPG7, SPEG,GAS6, and SERPINA12. These results enhance our understanding of the pathomechanisms underlying the COVID-19 clinical spectrum and may be exploited to prioritize biomarkers for predicting disease severity, as well as to improve treatment strategies in individuals of European ancestry.
Collapse
Affiliation(s)
- Priyanka Upadhyai
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, India
| | - Pooja U. Shenoy
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Bhavya Banjan
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Mohammed F. Albeshr
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Irfan Manzoor
- Department of Biology, The College of Arts and Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Ranajit Das
- Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| |
Collapse
|
12
|
Pietzner M, Chua RL, Wheeler E, Jechow K, Willett JDS, Radbruch H, Trump S, Heidecker B, Zeberg H, Heppner FL, Eils R, Mall MA, Richards JB, Sander LE, Lehmann I, Lukassen S, Wareham NJ, Conrad C, Langenberg C. ELF5 is a potential respiratory epithelial cell-specific risk gene for severe COVID-19. Nat Commun 2022; 13:4484. [PMID: 35970849 PMCID: PMC9378714 DOI: 10.1038/s41467-022-31999-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022] Open
Abstract
Despite two years of intense global research activity, host genetic factors that predispose to a poorer prognosis of COVID-19 infection remain poorly understood. Here, we prioritise eight robust (e.g., ELF5) or suggestive but unreported (e.g., RAB2A) candidate protein mediators of COVID-19 outcomes by integrating results from the COVID-19 Host Genetics Initiative with population-based plasma proteomics using statistical colocalisation. The transcription factor ELF5 (ELF5) shows robust and directionally consistent associations across different outcome definitions, including a >4-fold higher risk (odds ratio: 4.88; 95%-CI: 2.47-9.63; p-value < 5.0 × 10-6) for severe COVID-19 per 1 s.d. higher genetically predicted plasma ELF5. We show that ELF5 is specifically expressed in epithelial cells of the respiratory system, such as secretory and alveolar type 2 cells, using single-cell RNA sequencing and immunohistochemistry. These cells are also likely targets of SARS-CoV-2 by colocalisation with key host factors, including ACE2 and TMPRSS2. In summary, large-scale human genetic studies together with gene expression at single-cell resolution highlight ELF5 as a risk gene for severe COVID-19, supporting a role of epithelial cells of the respiratory system in the adverse host response to SARS-CoV-2.
Collapse
Affiliation(s)
- Maik Pietzner
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Eleanor Wheeler
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Katharina Jechow
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Julian D S Willett
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
| | - Helena Radbruch
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Saskia Trump
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hugo Zeberg
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Frank L Heppner
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany
- Cluster of Excellence, NeuroCure, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Health Data Science Unit, Heidelberg University Hospital and BioQuant, Heidelberg, Germany
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Marcus A Mall
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - J Brent Richards
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- Lady Davis Institute, Jewish General Hospital, Montréal, QC, Canada
- Departments of Medicine, Human Genetics, Epidemiology, Biostatistics and Occupational Health, McGill University, Montréal, QC, Canada
- Department of Twin Research, King's College London, London, United Kingdom
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Irina Lehmann
- Molecular Epidemiology Unit, Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), associated partner site, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Sören Lukassen
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Claudia Langenberg
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany.
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|