1
|
O'Leary EM, Bonthuis PJ. Mom genes and dad genes: genomic imprinting in the regulation of social behaviors. Epigenomics 2025:1-19. [PMID: 40249667 DOI: 10.1080/17501911.2025.2491294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Abstract
Genomic imprinting is an epigenetic phenomenon in mammals that affects brain development and behavior. Imprinting involves the regulation of allelic expression for some genes in offspring that depends on whether alleles are inherited from mothers compared to fathers, and is thought to provide parental control over offspring social behavior phenotypes. Imprinted gene expression is prevalent in the mammalian brain, and human imprinted gene mutations are associated with neurodevelopmental disorders and neurodivergent social behavior in Prader-Willi Syndrome, Angelman Syndrome, and autism. Here, we provide a review of the evidence that imprinted genes influence social behaviors across major neurodevelopmental stages in humans and mouse animal models that include parent-infant interactions, juvenile sociability, and adult aggression, dominance, and sexual behavior.
Collapse
Affiliation(s)
- Erin M O'Leary
- Neuroscience Program, University of Illinois, Urbana, IL, USA
| | - Paul J Bonthuis
- Neuroscience Program, University of Illinois, Urbana, IL, USA
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Gene Networks in Neural & Development Plasticity Theme at Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
2
|
Fujioka Y, Shiura H, Ishii M, Ono R, Endo T, Kiyonari H, Hirate Y, Ito H, Kanai-Azuma M, Kohda T, Kaneko-Ishino T, Ishino F. Targeting of retrovirus-derived Rtl8a/ 8b causes late-onset obesity, reduced social response and increased apathy-like behaviour. Open Biol 2025; 15:240279. [PMID: 39875098 PMCID: PMC11774587 DOI: 10.1098/rsob.240279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 01/30/2025] Open
Abstract
Retrotransposon Gag-like (RTL) 8A, 8B and 8C are eutherian-specific genes derived from a certain retrovirus. They cluster as a triplet of genes on the X chromosome, but their function remains unknown. Here, we demonstrate that Rtl8a and Rtl8b play important roles in the brain: their double knockout (DKO) mice not only exhibit reduced social responses and increased apathy-like behaviour, but also become obese from young adulthood, similar to patients with late Prader-Willi syndrome (PWS), a neurodevelopmental genomic imprinting disorder. Mouse RTL8A/8B proteins are expressed in the prefrontal cortex and hypothalamus and localize to both the nucleus and cytoplasm of neurons, presumably due to the N-terminal nuclear localization signal-like sequence at the N-terminus. An RNAseq study in the cerebral cortex revealed reduced expression of several GABA type A receptor subunit genes in DKO, in particular Gabrb2, which encodes its β2 subunit. We confirmed the reduction of GABRB2 protein in the DKO cerebral cortex by western blotting. As GABRB2 has been implicated in the aetiology of several neurodevelopmental and neuropsychiatric disorders, it is likely that the reduction of GABRB2 is one of the major causes of the neuropsychiatric defects in the DKO mice.
Collapse
Affiliation(s)
- Yoshifumi Fujioka
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
| | - Hirosuke Shiura
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kohfu,Yamanashi 400-8510, Japan
| | - Masayuki Ishii
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
| | - Ryuichi Ono
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences (NIHS), Kawasaki, Kanagawa210-9501, Japan
| | - Tsutomu Endo
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
| | - Hiroshi Kiyonari
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo650-0047, Japan
| | | | - Hikaru Ito
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
- Research Facility Center for Science and Technology, Kagawa University, Takamatsu,Kagawa 761-0793, Japan
| | | | - Takashi Kohda
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kohfu,Yamanashi 400-8510, Japan
| | - Tomoko Kaneko-Ishino
- Faculty of Nursing, Tokai University School of Medicine, Isehara, Kanagawa259-1193, Japan
| | - Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo113-8510, Japan
- Center for Experimental Animals, TMDU, Tokyo113-8510, Japan
| |
Collapse
|
3
|
Ishino F, Itoh J, Matsuzawa A, Irie M, Suzuki T, Hiraoka Y, Yoshikawa M, Kaneko-Ishino T. RTL4, a Retrovirus-Derived Gene Implicated in Autism Spectrum Disorder, Is a Microglial Gene That Responds to Noradrenaline in the Postnatal Brain. Int J Mol Sci 2024; 25:13738. [PMID: 39769499 PMCID: PMC11678650 DOI: 10.3390/ijms252413738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Retrotransposon Gag-like 4 (RTL4), a gene acquired from a retrovirus, is a causative gene in autism spectrum disorder. Its knockout mice exhibit increased impulsivity, impaired short-term spatial memory, failure to adapt to novel environments, and delayed noradrenaline (NA) recovery in the frontal cortex. However, due to its very low expression in the brain, it remains unknown which brain cells express RTL4 and its dynamics in relation to NA. We addressed these issues using knock-in mice carrying endogenous Rtl4 fused to Venus, which encodes a fluorescent protein. The RTL4-Venus fusion protein was detected as a secreted protein in the midbrain, hypothalamus, hippocampus and amygdala in the postnatal brain. Its signal intensity was high during critical periods of neonatal adaptation to novel environments. It was upregulated by various stimuli, including isoproterenol administration, whereas it was decreased by anesthesia but was maintained by milnacipran administration, suggesting its highly sensitive response to stressors, possible dependence on the arousal state and involvement in the NA reuptake process. In vitro mixed glial culture experiments demonstrated that Rtl4 is a microglial gene and suggested that RTL4 secretion responds rapidly to isoproterenol. Microglial RTL4 plays an important role in the NA response and possibly in the development of the NAergic neuronal network in the brain.
Collapse
Affiliation(s)
- Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (A.M.); (M.I.)
| | - Johbu Itoh
- Department of Neurology, School of Medicine, Tokai University School of Medicine, Isehara 259-1193, Japan;
| | - Ayumi Matsuzawa
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (A.M.); (M.I.)
| | - Masahito Irie
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (A.M.); (M.I.)
- Faculty of Nursing, Tokai University School of Medicine, Isehara 259-1193, Japan
| | - Toru Suzuki
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (T.S.); (Y.H.)
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (T.S.); (Y.H.)
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Masanobu Yoshikawa
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara 259-1193, Japan;
| | - Tomoko Kaneko-Ishino
- Faculty of Nursing, Tokai University School of Medicine, Isehara 259-1193, Japan
| |
Collapse
|
4
|
Mustafin RN. A hypothesis about interrelations of epigenetic factors and transposable elements in memory formation. Vavilovskii Zhurnal Genet Selektsii 2024; 28:476-486. [PMID: 39280851 PMCID: PMC11393658 DOI: 10.18699/vjgb-24-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 09/18/2024] Open
Abstract
The review describes the hypothesis that the drivers of epigenetic regulation in memory formation are transposable elements that influence the expression of specific genes in the brain. The hypothesis is confirmed by research into transposon activation in neuronal stem cells during neuronal differentiation. These changes occur in the hippocampus dentate gyrus, where a pronounced activity of transposons and their insertion near neuron-specific genes have been detected. In experiments on changing the activity of histone acetyltransferase and inhibition of DNA methyltransferase and reverse transcriptase, the involvement of epigenetic factors and retroelements in the mechanisms of memory formation has been shown. Also, a number of studies on different animals have revealed the preservation of long-term memory without the participation of synaptic plasticity. The data obtained suggest that transposons, which are genome sensors highly sensitive to various environmental and internal influences, form memory at the nuclear coding level. Therefore, long-term memory is preserved after elimination of synaptic connections. This is confirmed by the fact that the proteins involved in memory formation, including the transfer of genetic information through synapses between neurons (Arc protein), originate from transposons. Long non-coding RNAs and microRNAs also originate from transposons; their role in memory consolidation has been described. Pathological activation of transposable elements is a likely cause of neurodegenerative diseases with memory impairment. Analysis of the scientific literature allowed us to identify changes in the expression of 40 microRNAs derived from transposons in Alzheimer's disease. For 24 of these microRNAs, the mechanisms of regulation of genes involved in the functioning of the brain have been described. It has been suggested that the microRNAs we identified could become potential tools for regulating transposon activity in the brain in order to improve memory.
Collapse
|
5
|
Schuff M, Strong AD, Welborn LK, Ziermann-Canabarro JM. Imprinting as Basis for Complex Evolutionary Novelties in Eutherians. BIOLOGY 2024; 13:682. [PMID: 39336109 PMCID: PMC11428813 DOI: 10.3390/biology13090682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024]
Abstract
The epigenetic phenomenon of genomic imprinting is puzzling. While epigenetic modifications in general are widely known in most species, genomic imprinting in the animal kingdom is restricted to autosomes of therian mammals, mainly eutherians, and to a lesser extent in marsupials. Imprinting causes monoallelic gene expression. It represents functional haploidy of certain alleles while bearing the evolutionary cost of diploidization, which is the need of a complex cellular architecture and the danger of producing aneuploid cells by mitotic and meiotic errors. The parent-of-origin gene expression has stressed many theories. Most prominent theories, such as the kinship (parental conflict) hypothesis for maternally versus paternally derived alleles, explain only partial aspects of imprinting. The implementation of single-cell transcriptome analyses and epigenetic research allowed detailed study of monoallelic expression in a spatial and temporal manner and demonstrated a broader but much more complex and differentiated picture of imprinting. In this review, we summarize all these aspects but argue that imprinting is a functional haploidy that not only allows a better gene dosage control of critical genes but also increased cellular diversity and plasticity. Furthermore, we propose that only the occurrence of allele-specific gene regulation mechanisms allows the appearance of evolutionary novelties such as the placenta and the evolutionary expansion of the eutherian brain.
Collapse
Affiliation(s)
- Maximillian Schuff
- Next Fertility St. Gallen, Kürsteinerstrasse 2, 9015 St. Gallen, Switzerland
| | - Amanda D Strong
- Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | - Lyvia K Welborn
- Department of Anatomy, Howard University College of Medicine, 520 W St. NW, Washington, DC 20059, USA
| | | |
Collapse
|
6
|
Henriques WS, Young JM, Nemudryi A, Nemudraia A, Wiedenheft B, Malik HS. The Diverse Evolutionary Histories of Domesticated Metaviral Capsid Genes in Mammals. Mol Biol Evol 2024; 41:msae061. [PMID: 38507667 PMCID: PMC11011659 DOI: 10.1093/molbev/msae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
Selfish genetic elements comprise significant fractions of mammalian genomes. In rare instances, host genomes domesticate segments of these elements for function. Using a complete human genome assembly and 25 additional vertebrate genomes, we re-analyzed the evolutionary trajectories and functional potential of capsid (CA) genes domesticated from Metaviridae, a lineage of retrovirus-like retrotransposons. Our study expands on previous analyses to unearth several new insights about the evolutionary histories of these ancient genes. We find that at least five independent domestication events occurred from diverse Metaviridae, giving rise to three universally retained single-copy genes evolving under purifying selection and two gene families unique to placental mammals, with multiple members showing evidence of rapid evolution. In the SIRH/RTL family, we find diverse amino-terminal domains, widespread loss of protein-coding capacity in RTL10 despite its retention in several mammalian lineages, and differential utilization of an ancient programmed ribosomal frameshift in RTL3 between the domesticated CA and protease domains. Our analyses also reveal that most members of the PNMA family in mammalian genomes encode a conserved putative amino-terminal RNA-binding domain (RBD) both adjoining and independent from domesticated CA domains. Our analyses lead to a significant correction of previous annotations of the essential CCDC8 gene. We show that this putative RBD is also present in several extant Metaviridae, revealing a novel protein domain configuration in retrotransposons. Collectively, our study reveals the divergent outcomes of multiple domestication events from diverse Metaviridae in the common ancestor of placental mammals.
Collapse
Affiliation(s)
- William S Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Janet M Young
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Harmit S Malik
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Lee J, Wang ZM, Messi ML, Milligan C, Furdui CM, Delbono O. Sex differences in single neuron function and proteomics profiles examined by patch-clamp and mass spectrometry in the locus coeruleus of the adult mouse. Acta Physiol (Oxf) 2024; 240:e14123. [PMID: 38459766 PMCID: PMC11021178 DOI: 10.1111/apha.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 03/10/2024]
Abstract
AIMS This study aimed to characterize the properties of locus coeruleus (LC) noradrenergic neurons in male and female mice. We also sought to investigate sex-specific differences in membrane properties, action potential generation, and protein expression profiles to understand the mechanisms underlying neuronal excitability variations. METHODS Utilizing a genetic mouse model by crossing Dbhcre knock-in mice with tdTomato Ai14 transgenic mice, LC neurons were identified using fluorescence microscopy. Neuronal functional properties were assessed using patch-clamp recordings. Proteomic analyses of individual LC neuron soma was conducted using mass spectrometry to discern protein expression profiles. Data are available via ProteomeXchange with identifier PXD045844. RESULTS Female LC noradrenergic neurons displayed greater membrane capacitance than those in male mice. Male LC neurons demonstrated greater spontaneous and evoked action potential generation compared to females. Male LC neurons exhibited a lower rheobase and achieved higher peak frequencies with similar current injections. Proteomic analysis revealed differences in protein expression profiles between sexes, with male mice displaying a notably larger unique protein set compared to females. Notably, pathways pertinent to protein synthesis, degradation, and recycling, such as EIF2 and glucocorticoid receptor signaling, showed reduced expression in females. CONCLUSIONS Male LC noradrenergic neurons exhibit higher intrinsic excitability compared to those from females. The discernible sex-based differences in excitability could be ascribed to varying protein expression profiles, especially within pathways that regulate protein synthesis and degradation. This study lays the groundwork for future studies focusing on the interplay between proteomics and neuronal function examined in individual cells.
Collapse
Affiliation(s)
- Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Zhong-Min Wang
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - María Laura Messi
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Carol Milligan
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| | - Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
8
|
Kitazawa M. Evolution of the nervous system by acquisition of retrovirus-derived genes in mammals. Genes Genet Syst 2024; 98:321-336. [PMID: 38220159 DOI: 10.1266/ggs.23-00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
In the course of evolution, the most highly developed organ is likely the brain, which has become more complex over time and acquired diverse forms and functions in different species. In particular, mammals have developed complex and high-functioning brains, and it has been reported that several genes derived from retroviruses were involved in mammalian brain evolution, that is, generating the complexity of the nervous system. Especially, the sushi-ichi-related retrotransposon homolog (SIRH)/retrotransposon gag-like (RTL) genes have been suggested to play a role in the evolutionary processes shaping brain morphology and function in mammals. Genetic mutation and altered expression of genes are linked to neurological disorders, highlighting how the acquisition of virus-derived genes in mammals has both driven brain evolution and imposed a susceptibility to diseases. This review provides an overview of the functions, diversity, evolution and diseases associated with SIRH/RTL genes in the nervous system. The contribution of retroviruses to brain evolution is an important research topic in evolutionary biology and neuroscience, and further insights are expected to be gained through future studies.
Collapse
Affiliation(s)
- Moe Kitazawa
- School of BioSciences, Faculty of Science, The University of Melbourne
| |
Collapse
|
9
|
Tang L, Zhao HQ, Yang H, Hu C, Ma SJ, Xiao WZ, Qing YH, Yang L, Zhou RR, Liu J, Zhang SH. Spectrum-effect relationship combined with bioactivity evaluation to discover the main anxiolytic active components of Baihe Dihuang decoction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117090. [PMID: 37640258 DOI: 10.1016/j.jep.2023.117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/06/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Anxiety disorders leads to a decline in quality of life and increased risk of morbidity and mortality. The Baihe Dihuang decoction (BDD) is a classic Chinese medical formula that has been widely used to treat anxiety disorders for thousands of years in China. However, the pharmacodynamic material that is responsible for the antianxiety of BDD remains unclear. AIM OF THE STUDY To screen the main ingredients of anti-anxiety in BDD based on the establishment of spectrum-effect relationship and verified experiment. METHODS The UPLC-Q-TOF/MS technique was utilized to establish fingerprints of various fractions of BDD and identify the main compounds. The anti-anxiety effects of BDD were comprehensively evaluated through multiple assessments, including the open field test, elevated plus maze test, and neurotransmitters tests. Then, the spectrum-effect relationship was established through Pearson correlation analysis, gray correlation analysis, orthogonal partial least squares regression analysis. The spectrum-effect relationship results were confirmed through various measures on an anxiety condition cell model, induced by a corticosterone and lipopolysaccharide intervention. These measures included assessing neuronal cell viability, morphology, apoptosis, synaptic damage, and the expression of neurotransmitters and inflammatory factors. RESULTS In the UPLC-Q-TOF-MS fingerprint, 46 common peaks were identified. The pharmacological results indicated that different fractions of BDD have strong effects on improving anxiety-like behavior and regulating neurotransmitters. Among them, butanol fraction has the highest comprehensive evaluation score of anti-anxiety efficacy, which is main active fraction of BDD for anti-anxiety. The analysis of the spectrum-effect relationship revealed that the 46 peaks exhibited varying degrees of correlation with the anti-anxiety efficacy indicators of BDD. Among them, 14 components have a high correlation with the anti-anxiety efficacy indicators, which may be the potential anti-anxiety efficacy components of BDD. The in vitro activity verification of active components verified our prediction, regaloside A, B, C, D, H, acteoside, and isoacteoside improved neuronal cell viability, cell morphology, apoptosis, and synaptic damage. Additionally, regaloside A, B, C, D, H and acteoside regulated the neurotransmitter levels, while regaloside A, B, C, D, acteoside and isoacteoside inhibited the levels of inflammatory cytokines. CONCLUSION The butanol fraction was found to be the main active fraction of BDD, and 14 compounds were the major anxiolytic active components. The results of verifying the major active components were consistent with the predicted results of the spectrum-effect analysis. The developed spectrum-effect analysis in this study demonstrates high accuracy and reliability for screening active components in TCMs.
Collapse
Affiliation(s)
- Lin Tang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hong-Qing Zhao
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hui Yang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Chao Hu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Si-Jing Ma
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China
| | - Wang-Zhong Xiao
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yu-Hui Qing
- Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Lei Yang
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Rong-Rong Zhou
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| | - Jian Liu
- The First Hospital, Hunan University of Chinese Medicine, Changsha, Hunan Province, China.
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Changsha, Hunan Province, China.
| |
Collapse
|
10
|
Ishino F, Itoh J, Irie M, Matsuzawa A, Naruse M, Suzuki T, Hiraoka Y, Kaneko-Ishino T. Retrovirus-Derived RTL9 Plays an Important Role in Innate Antifungal Immunity in the Eutherian Brain. Int J Mol Sci 2023; 24:14884. [PMID: 37834332 PMCID: PMC10573853 DOI: 10.3390/ijms241914884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Retrotransposon Gag-like (RTL) genes play a variety of essential and important roles in the eutherian placenta and brain. It has recently been demonstrated that RTL5 and RTL6 (also known as sushi-ichi retrotransposon homolog 8 (SIRH8) and SIRH3) are microglial genes that play important roles in the brain's innate immunity against viruses and bacteria through their removal of double-stranded RNA and lipopolysaccharide, respectively. In this work, we addressed the function of RTL9 (also known as SIRH10). Using knock-in mice that produce RTL9-mCherry fusion protein, we examined RTL9 expression in the brain and its reaction to fungal zymosan. Here, we demonstrate that RTL9 plays an important role, degrading zymosan in the brain. The RTL9 protein is localized in the microglial lysosomes where incorporated zymosan is digested. Furthermore, in Rtl9 knockout mice expressing RTL9ΔC protein lacking the C-terminus retroviral GAG-like region, the zymosan degrading activity was lost. Thus, RTL9 is essentially engaged in this reaction, presumably via its GAG-like region. Together with our previous study, this result highlights the importance of three retrovirus-derived microglial RTL genes as eutherian-specific constituents of the current brain innate immune system: RTL9, RTL5 and RTL6, responding to fungi, viruses and bacteria, respectively.
Collapse
Affiliation(s)
- Fumitoshi Ishino
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
| | - Johbu Itoh
- Department of Pathology, School of Medicine, Tokai University, Isehara 259-1193, Japan;
| | - Masahito Irie
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
- Faculty of Nursing, School of Medicine, Tokai University, Isehara 259-1193, Japan
| | - Ayumi Matsuzawa
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
- Department of Genomic Function and Diversity, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Mie Naruse
- Department of Epigenetics, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (M.I.); (A.M.); (M.N.)
| | - Toru Suzuki
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (T.S.); (Y.H.)
| | - Yuichi Hiraoka
- Laboratory of Genome Editing for Biomedical Research, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan; (T.S.); (Y.H.)
- Laboratory of Molecular Neuroscience, Medical Research Institute (MRI), Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Tomoko Kaneko-Ishino
- Faculty of Nursing, School of Medicine, Tokai University, Isehara 259-1193, Japan
| |
Collapse
|
11
|
Hou KC, Tsai MH, Akbarian S, Huang HS. Mir125b-1 is Not Imprinted in Human Brain and Shows Developmental Expression Changes in Mouse Brain. Neuroscience 2023; 529:99-106. [PMID: 37598835 DOI: 10.1016/j.neuroscience.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
Genomic imprinting is a predominantly brain and placenta-specific epigenetic process that contributes to parent-of-origin-specific gene expression. While microRNAs are highly expressed in the brain, their imprinting status in this tissue remains poorly studied. Previous research demonstrated that Mir125b-2 is imprinted in the human brain and regulates hippocampal circuits and functions in mice. However, the imprinting status of another isoform of miR125b, Mir125b-1, in the human brain, as well as its spatiotemporal expression patterns in mice, have not been elucidated. Here, we show MIR125B1 is not imprinted in the human brain. Moreover, miR-125b-1 was highly expressed in the brains of mice. Furthermore, miR-125b-1 was down-regulated during brain development in mice. Specifically, miR-125b-1 displayed preferential expression in the olfactory bulb, thalamus, and hypothalamus of the mouse brain. Notably, miR-125b-1 was enriched in GABAergic neurons, particularly somatostatin-expressing GABAergic neurons, compared with glutamatergic neurons. Taken together, our findings provide the imprinting status and comprehensive spatiotemporal expression profiling of Mir125b-1 in the brain.
Collapse
Affiliation(s)
- Kuan-Chu Hou
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Meng-Han Tsai
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Hsien-Sung Huang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 10051, Taiwan.
| |
Collapse
|
12
|
Shiura H, Kitazawa M, Ishino F, Kaneko-Ishino T. Roles of retrovirus-derived PEG10 and PEG11/RTL1 in mammalian development and evolution and their involvement in human disease. Front Cell Dev Biol 2023; 11:1273638. [PMID: 37842090 PMCID: PMC10570562 DOI: 10.3389/fcell.2023.1273638] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/17/2023] Open
Abstract
PEG10 and PEG11/RTL1 are paternally expressed, imprinted genes that play essential roles in the current eutherian developmental system and are therefore associated with developmental abnormalities caused by aberrant genomic imprinting. They are also presumed to be retrovirus-derived genes with homology to the sushi-ichi retrotransposon GAG and POL, further expanding our comprehension of mammalian evolution via the domestication (exaptation) of retrovirus-derived acquired genes. In this manuscript, we review the importance of PEG10 and PEG11/RTL1 in genomic imprinting research via their functional roles in development and human disease, including neurodevelopmental disorders of genomic imprinting, Angelman, Kagami-Ogata and Temple syndromes, and the impact of newly inserted DNA on the emergence of newly imprinted regions. We also discuss their possible roles as ancestors of other retrovirus-derived RTL/SIRH genes that likewise play important roles in the current mammalian developmental system, such as in the placenta, brain and innate immune system.
Collapse
Affiliation(s)
- Hirosuke Shiura
- Faculty of Life and Environmental Sciences, University of Yamanashi, Yamanashi, Japan
| | - Moe Kitazawa
- School of BioSciences, Faculty of Science, The University of Melbourne, Melbourne, VIC, Australia
| | - Fumitoshi Ishino
- Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tomoko Kaneko-Ishino
- Faculty of Nursing, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| |
Collapse
|
13
|
Kaneko-Ishino T, Ishino F. Retrovirus-Derived RTL/SIRH: Their Diverse Roles in the Current Eutherian Developmental System and Contribution to Eutherian Evolution. Biomolecules 2023; 13:1436. [PMID: 37892118 PMCID: PMC10604271 DOI: 10.3390/biom13101436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Eutherians have 11 retrotransposon Gag-like (RTL)/sushi-ichi retrotransposon homolog (SIRH) genes presumably derived from a certain retrovirus. Accumulating evidence indicates that the RTL/SIRH genes play a variety of roles in the current mammalian developmental system, such as in the placenta, brain, and innate immune system, in a eutherian-specific manner. It has been shown that the functional role of Paternally Expressed 10 (PEG10) in placental formation is unique to the therian mammals, as are the eutherian-specific roles of PEG10 and PEG11/RTL1 in maintaining the fetal capillary network and the endocrine regulation of RTL7/SIRH7 (aka Leucine Zipper Down-Regulated in Cancer 1 (LDOCK1)) in the placenta. In the brain, PEG11/RTL1 is expressed in the corticospinal tract and hippocampal commissure, mammalian-specific structures, and in the corpus callosum, a eutherian-specific structure. Unexpectedly, at least three RTL/SIRH genes, RTL5/SIRH8, RTL6/SIRH3, and RTL9/SIRH10, play important roles in combating a variety of pathogens, namely viruses, bacteria, and fungi, respectively, suggesting that the innate immunity system of the brain in eutherians has been enhanced by the emergence of these new components. In this review, we will summarize the function of 10 out of the 11 RTL/SIRH genes and discuss their roles in eutherian development and evolution.
Collapse
Affiliation(s)
- Tomoko Kaneko-Ishino
- Faculty of Nursing, School of Medicine, Tokai University, Kanagawa 259-1193, Japan
| | - Fumitoshi Ishino
- Center for Experimental Animals, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
14
|
Henriques WS, Young JM, Nemudryi A, Nemudraia A, Wiedenheft B, Malik HS. The diverse evolutionary histories of domesticated metaviral capsid genes in mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.558119. [PMID: 37745568 PMCID: PMC10516033 DOI: 10.1101/2023.09.17.558119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Selfish genetic elements and their remnants comprise at least half of the human genome. Active transposons duplicate by inserting copies at new sites in a host genome. Following insertion, transposons can acquire mutations that render them inactive; the accrual of additional mutations can render them unrecognizable over time. However, in rare instances, segments of transposons become useful for the host, in a process called gene domestication. Using the first complete human genome assembly and 25 additional vertebrate genomes, we analyzed the evolutionary trajectories and functional potential of genes domesticated from the capsid genes of Metaviridae, a retroviral-like retrotransposon family. Our analysis reveals four families of domesticated capsid genes in placental mammals with varied evolutionary outcomes, ranging from universal retention to lineage-specific duplications or losses and from purifying selection to lineage-specific rapid evolution. The four families of domesticated capsid genes have divergent amino-terminal domains, inherited from four distinct ancestral metaviruses. Structural predictions reveal that many domesticated genes encode a previously unrecognized RNA-binding domain retained in multiple paralogs in mammalian genomes both adjacent to and independent from the capsid domain. Collectively, our study reveals diverse outcomes of domestication of diverse metaviruses, which led to structurally and evolutionarily diverse genes that encode important, but still largely-unknown functions in placental mammals. (207).
Collapse
Affiliation(s)
- William S. Henriques
- Department of Microbiology and Cell Biology, Montana State University, Bozeman MT 59717
| | - Janet M. Young
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| | - Artem Nemudryi
- Department of Microbiology and Cell Biology, Montana State University, Bozeman MT 59717
| | - Anna Nemudraia
- Department of Microbiology and Cell Biology, Montana State University, Bozeman MT 59717
| | - Blake Wiedenheft
- Department of Microbiology and Cell Biology, Montana State University, Bozeman MT 59717
| | - Harmit S. Malik
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109
| |
Collapse
|
15
|
Raus AM, Fuller TD, Nelson NE, Valientes DA, Bayat A, Ivy AS. Early-life exercise primes the murine neural epigenome to facilitate gene expression and hippocampal memory consolidation. Commun Biol 2023; 6:18. [PMID: 36611093 PMCID: PMC9825372 DOI: 10.1038/s42003-022-04393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
Aerobic exercise is well known to promote neuroplasticity and hippocampal memory. In the developing brain, early-life exercise (ELE) can lead to persistent improvements in hippocampal function, yet molecular mechanisms underlying this phenomenon have not been fully explored. In this study, transgenic mice harboring the "NuTRAP" (Nuclear tagging and Translating Ribosome Affinity Purification) cassette in Emx1 expressing neurons ("Emx1-NuTRAP" mice) undergo ELE during adolescence. We then simultaneously isolate and sequence translating mRNA and nuclear chromatin from single hippocampal homogenates containing Emx1-expressing neurons. This approach allowed us to couple translatomic with epigenomic sequencing data to evaluate the influence of histone modifications H4K8ac and H3K27me3 on translating mRNA after ELE. A subset of ELE mice underwent a hippocampal learning task to determine the gene expression and epigenetic underpinnings of ELE's contribution to improved hippocampal memory performance. From this experiment, we discover gene expression - histone modification relationships that may play a critical role in facilitated memory after ELE. Our data reveal candidate gene-histone modification interactions and implicate gene regulatory pathways involved in ELE's impact on hippocampal memory.
Collapse
Affiliation(s)
- Anthony M Raus
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Tyson D Fuller
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Nellie E Nelson
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - David A Valientes
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Anita Bayat
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA
| | - Autumn S Ivy
- Physiology/Biophysics, Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Pediatrics, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Neurobiology/Behavior, University of California- Irvine School of Biological Sciences, Irvine, CA, USA.
- Anatomy/Neurobiology, University of California- Irvine School of Medicine, Irvine, CA, USA.
- Division of Neurology, Children's Hospital Orange County, Orange, CA, USA.
| |
Collapse
|