1
|
Wang K, Zhan F, Yang X, Jiao M, Wang P, Zhang H, Shang W, Deng J, Wang L. KMT2D: A key emerging epigenetic regulator in head and neck diseases and tumors. Life Sci 2025; 369:123523. [PMID: 40044030 DOI: 10.1016/j.lfs.2025.123523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/12/2025]
Abstract
Histone modifications are critical determinants of chromatin accessibility and gene expression, both of which are intrinsically linked to human development and disease. Lysine methyltransferase 2D (KMT2D), a prominent member of the H3K4 methyltransferase family, is ubiquitously expressed across human tissues. Recent studies have found that it can regulate gene expression and signal pathway opening and closing in more than one way, playing an important role in cell proliferation and cell cycle homeostasis. Although previous studies have identified KMT2D as a potentially pivotal factor in the development and pathology of head and neck tissues, the regulatory networks associated with KMT2D in various complex head and neck diseases remain incompletely elucidated. This review seeks to consolidate recent findings on KMT2D's involvement in head and neck diseases, thereby laying the groundwork for future research into its mechanistic role in disease progression. A deeper understanding of KMT2D's functions and regulatory mechanisms is essential for advancing our comprehension of histone modifications and for the development of diagnostic tools and targeted therapeutic strategies for head and neck diseases.
Collapse
Affiliation(s)
- Kexin Wang
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Fang Zhan
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xiaochen Yang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Mengyu Jiao
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Peiyan Wang
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Hui Zhang
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Wei Shang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China
| | - Jing Deng
- Department of Oral Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China; Dental Digital Medicine & 3D Printing Engineering Laboratory of Qingdao, Qingdao 266003, Shandong, China
| | - Lin Wang
- Department of Oral and Maxillofacial Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China; School of Stomatology, Qingdao University, Qingdao 266023, China.
| |
Collapse
|
2
|
Shangguan H, Huang X, Lin J, Chen R. Knockdown of Kmt2d leads to growth impairment by activating the Akt/β-catenin signaling pathway. G3 (BETHESDA, MD.) 2024; 14:jkad298. [PMID: 38263533 PMCID: PMC10917512 DOI: 10.1093/g3journal/jkad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
The KMT2D variant-caused Kabuki syndrome (KS) is characterized by short stature as a prominent clinical characteristic. The initiation and progression of body growth are fundamentally influenced by chondrocyte proliferation. Uncertainty persists regarding the possibility that KMT2D deficiency affects growth by impairing chondrocyte proliferation. In this study, we used the CRISPR/Cas13d technique to knockdown kmt2d in zebrafish embryos and lentivirus to create a stable Kmt2d gene knockdown cell line in chondrocytes (ATDC5 cells). We also used CCK8 and flow cytometric studies, respectively, to determine proliferation and cell cycle state. The relative concentrations of phosphorylated Akt (ser473), phosphorylated β-catenin (ser552), and cyclin D1 proteins in chondrocytes and zebrafish embryos were determined by using western blots. In addition, Akt inhibition was used to rescue the phenotypes caused by kmt2d deficiency in chondrocytes, as well as a zebrafish model that was generated. The results showed that a knockdown of kmt2d significantly decreased body length and resulted in aberrant cartilage development in zebrafish embryos. Furthermore, the knockdown of Kmt2d in ATDC5 cells markedly increased proliferation and accelerated the G1/S transition. In addition, the knockdown of Kmt2d resulted in the activation of the Akt/β-catenin signaling pathway in ATDC5 cells. Finally, Akt inhibition could partly rescue body length and chondrocyte development in the zebrafish model. Our study demonstrated that KMT2D modulates bone growth conceivably via regulation of the Akt/β-catenin pathway.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Xiaozhen Huang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Jinduan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| |
Collapse
|