1
|
Tahiri A, Youssef A, Inoue R, Moon S, Alsarkhi L, Berroug L, Nguyen XTA, Wang L, Kwon H, Pang ZP, Zhao JY, Shirakawa J, Ulloa L, El Ouaamari A. Vagal sensory neuron-derived FGF3 controls insulin secretion. Dev Cell 2025; 60:51-61.e4. [PMID: 39413782 PMCID: PMC11706709 DOI: 10.1016/j.devcel.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/28/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
Vagal nerve stimulation has emerged as a promising modality for treating a wide range of chronic conditions, including metabolic disorders. However, the cellular and molecular pathways driving these clinical benefits remain largely obscure. Here, we demonstrate that fibroblast growth factor 3 (Fgf3) mRNA is upregulated in the mouse vagal ganglia under acute metabolic stress. Systemic and vagal sensory overexpression of Fgf3 enhanced glucose-stimulated insulin secretion (GSIS), improved glucose excursion, and increased energy expenditure and physical activity. Fgf3-elicited insulinotropic and glucose-lowering responses were recapitulated when overexpression of Fgf3 was restricted to the pancreas-projecting vagal sensory neurons. Genetic ablation of Fgf3 in pancreatic vagal afferents exacerbated high-fat diet-induced glucose intolerance and blunted GSIS. Finally, electrostimulation of the vagal afferents enhanced GSIS and glucose clearance independently of efferent outputs. Collectively, we demonstrate a direct role for the vagal afferent signaling in GSIS and identify Fgf3 as a vagal sensory-derived metabolic factor that controls pancreatic β-cell activity.
Collapse
Affiliation(s)
- Azeddine Tahiri
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Ayman Youssef
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lamyaa Alsarkhi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Laila Berroug
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Xuan Thi Anh Nguyen
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Le Wang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Hyokjoon Kwon
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Zhiping P Pang
- Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC 27710, USA
| | - Abdelfattah El Ouaamari
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA; Department of Pharmacology, New York Medical College, Valhalla, NY 10595, USA.
| |
Collapse
|
2
|
Kałużna M, Budny B, Rabijewski M, Dubiel A, Trofimiuk-Müldner M, Szutkowski K, Piotrowski A, Wrotkowska E, Hubalewska-Dydejczyk A, Ruchała M, Ziemnicka K. Variety of genetic defects in GnRH and hypothalamic-pituitary signaling and development in normosmic patients with IHH. Front Endocrinol (Lausanne) 2024; 15:1396805. [PMID: 39010903 PMCID: PMC11246878 DOI: 10.3389/fendo.2024.1396805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/27/2024] [Indexed: 07/17/2024] Open
Abstract
Introduction Normosmic isolated hypogonadotropic hypogonadism (nIHH) is a clinically and genetically heterogeneous disorder. Deleterious variants in over 50 genes have been implicated in the etiology of IHH, which also indicates a possible role of digenicity and oligogenicity. Both classes of genes controlling GnRH neuron migration/development and hypothalamic/pituitary signaling and development are strongly implicated in nIHH pathogenesis. The study aimed to investigate the genetic background of nIHH and further expand the genotype-phenotype correlation. Methods A total of 67 patients with nIHH were enrolled in the study. NGS technology and a 38-gene panel were applied. Results Causative defects regarded as at least one pathogenic/likely pathogenic (P/LP) variant were found in 23 patients (34%). For another 30 individuals, variants of unknown significance (VUS) or benign (B) were evidenced (45%). The most frequently mutated genes presenting P/LP alterations were GNRHR (n = 5), TACR3 (n = 3), and CHD7, FGFR1, NSMF, BMP4, and NROB1 (n = 2 each). Monogenic variants with solid clinical significance (P/LP) were observed in 15% of subjects, whereas oligogenic defects were detected in 19% of patients. Regarding recurrence, 17 novel pathogenic variants affecting 10 genes were identified for 17 patients. The most recurrent pathogenic change was GNRHR:p.Arg139His, detected in four unrelated subjects. Another interesting observation is that P/LP defects were found more often in genes related to hypothalamic-pituitary pathways than those related to GnRH. Conclusions The growing importance of the neuroendocrine pathway and related genes is drawing increasing attention to nIHH. However, the underestimated potential of VUS variants in IHH etiology, particularly those presenting recurrence, should be further elucidated.
Collapse
Affiliation(s)
- Małgorzata Kałużna
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Bartłomiej Budny
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Rabijewski
- Department of Reproductive Health, Centre for Postgraduate Medical Education, Warsaw, Poland
| | - Agnieszka Dubiel
- Chair and Department of Endocrinology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Kosma Szutkowski
- NanoBioMedical Centre at Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Adam Piotrowski
- Department of Biomedical Physics at Adam Mickiewicz University in Poznan, Poznan, Poland
| | - Elżbieta Wrotkowska
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Ziemnicka
- Department of Endocrinology, Metabolism and Internal Diseases, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
3
|
Mattioni L, Barbieri A, Grigoli A, Balasco L, Bozzi Y, Provenzano G. Alterations of Perineuronal Net Expression and Abnormal Social Behavior and Whisker-dependent Texture Discrimination in Mice Lacking the Autism Candidate Gene Engrailed 2. Neuroscience 2024; 546:63-74. [PMID: 38537894 DOI: 10.1016/j.neuroscience.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/06/2024]
Abstract
GABAergic interneurons and perineuronal nets (PNNs) are important regulators of plasticity throughout life and their dysfunction has been implicated in the pathogenesis of several neuropsychiatric conditions, including autism spectrum disorders (ASD). PNNs are condensed portions of the extracellular matrix (ECM) that are crucial for neural development and proper formation of synaptic connections. We previously showed a reduced expression of GABAergic interneuron markers in the hippocampus and somatosensory cortex of adult mice lacking the Engrailed2 gene (En2-/- mice), a mouse model of ASD. Since alterations in PNNs have been proposed as a possible pathogenic mechanism in ASD, we hypothesized that the PNN dysfunction may contribute to the neural and behavioral abnormalities of En2-/- mice. Here, we show an increase in the PNN fluorescence intensity, evaluated by Wisteria floribunda agglutinin, in brain regions involved in social behavior and somatosensory processing. In addition, we found that En2-/- mice exhibit altered texture discrimination through whiskers and display a marked decrease in the preference for social novelty. Our results raise the possibility that altered expression of PNNs, together with defects of GABAergic interneurons, might contribute to the pathogenesis of social and sensory behavioral abnormalities.
Collapse
Affiliation(s)
- Lorenzo Mattioni
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| | - Anna Barbieri
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Andrea Grigoli
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Luigi Balasco
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Trento, Italy
| | - Yuri Bozzi
- CIMeC - Center for Mind/Brain Sciences, University of Trento, Piazza della Manifattura 1, 38068 Rovereto, Trento, Italy; CNR Neuroscience Institute, via Moruzzi 1, 56124 Pisa, Italy
| | - Giovanni Provenzano
- Department of Cellular, Computational, and Integrative Biology (CIBIO), University of Trento, via Sommarive 9, 38123 Trento, Italy.
| |
Collapse
|
4
|
Moon S, Lee HH, Archer-Hartmann S, Nagai N, Mubasher Z, Parappurath M, Ahmed L, Ramos RL, Kimata K, Azadi P, Cai W, Zhao JY. Knockout of the intellectual disability-linked gene Hs6st2 in mice decreases heparan sulfate 6-O-sulfation, impairs dendritic spines of hippocampal neurons, and affects memory. Glycobiology 2024; 34:cwad095. [PMID: 38015989 PMCID: PMC10969535 DOI: 10.1093/glycob/cwad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide that plays a key role in cellular signaling networks. HS functions are regulated by its 6-O-sulfation, which is catalyzed by three HS 6-O-sulfotransferases (HS6STs). Notably, HS6ST2 is mainly expressed in the brain and HS6ST2 mutations are linked to brain disorders, but the underlying mechanisms remain poorly understood. To determine the role of Hs6st2 in the brain, we carried out a series of molecular and behavioral assessments on Hs6st2 knockout mice. We first carried out strong anion exchange-high performance liquid chromatography and found that knockout of Hs6st2 moderately decreases HS 6-O-sulfation levels in the brain. We then assessed body weights and found that Hs6st2 knockout mice exhibit increased body weight, which is associated with abnormal metabolic pathways. We also performed behavioral tests and found that Hs6st2 knockout mice showed memory deficits, which recapitulate patient clinical symptoms. To determine the molecular mechanisms underlying the memory deficits, we used RNA sequencing to examine transcriptomes in two memory-related brain regions, the hippocampus and cerebral cortex. We found that knockout of Hs6st2 impairs transcriptome in the hippocampus, but only mildly in the cerebral cortex. Furthermore, the transcriptome changes in the hippocampus are enriched in dendrite and synapse pathways. We also found that knockout of Hs6st2 decreases HS levels and impairs dendritic spines in hippocampal CA1 pyramidal neurons. Taken together, our study provides novel molecular and behavioral insights into the role of Hs6st2 in the brain, which facilitates a better understanding of HS6ST2 and HS-linked brain disorders.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Hiu Ham Lee
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Stephanie Archer-Hartmann
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Naoko Nagai
- Institute for Molecular Science of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Zainab Mubasher
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Mahima Parappurath
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Laiba Ahmed
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Raddy L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Koji Kimata
- Multidisciplinary Pain Center, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, 315 Riverbend Road, University of Georgia, Athens, GA 30602, United States
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Northern Boulevard, P.O. Box 8000, Old Westbury, New York 11568, United States
| |
Collapse
|
5
|
He Z, Ouyang Q, Chen Q, Song Y, Hu J, Hu S, He H, Li L, Liu H, Wang J. Molecular mechanisms of hypothalamic-pituitary-ovarian/thyroid axis regulating age at first egg in geese. Poult Sci 2024; 103:103478. [PMID: 38295497 PMCID: PMC10844868 DOI: 10.1016/j.psj.2024.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Age at first egg (AFE) has consistently garnered interest as a crucial reproductive indicator within poultry production. Previous studies have elucidated the involvement of the hypothalamic-pituitary-ovarian (HPO) and hypothalamic-pituitary-thyroid (HPT) axes in regulating poultry sexual maturity. Concurrently, there was evidence suggesting a potential co-regulatory relationship between these 2 axes. However, as of now, no comprehensive exploration of the key pathways and genes responsible for the crosstalk between the HPO and HPT axes in the regulation of AFE has been reported. In this study, we conducted a comparative analysis of morphological differences and performed transcriptomic analysis on the hypothalamus, pituitary, thyroid, and ovarian stroma between normal laying group (NG) and abnormal laying group (AG). Morphological results showed that the thyroid index difference (D-) value (thyroid index D-value=right thyroid index-left thyroid index) was significantly (P < 0.05) lower in the NG than in the AG, while the ovarian index was significantly (P < 0.01) higher in the NG than in the AG. Furthermore, between NG and AG, we identified 99, 415, 167, and 1182 differentially expressed genes (DEGs) in the hypothalamus, pituitary, thyroid, and ovarian stroma, respectively. Gene ontology (GO) analysis highlighted that DEGs from 4 tissues were predominantly enriched in the "biological processes" category. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that 16, 14, 3, and 26 KEGG pathways were significantly enriched (P < 0.05) in the hypothalamus, pituitary, thyroid, and ovarian stroma. The MAPK signaling pathway emerged as the sole enriched pathway across all 4 tissues. Employing an integrated analysis of the protein-protein interaction (PPI) network and correlation analysis, we found GREB1 emerged as a pivotal component within the HPO axis to regulate estrogen-related signaling in the HPT axis, meanwhile, the HPT axis influenced ovarian development by regulating thyroid hormone-related signaling mainly through OPN5. Then, 10 potential candidate genes were identified, namely IGF1, JUN, ERBB4, KDR, PGF, FGFR1, GREB1, OPN5, DIO3, and THRB. These findings establish a foundation for elucidating the physiological and genetic mechanisms by which the HPO and HPT axes co-regulate goose AFE.
Collapse
Affiliation(s)
- Zhiyu He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qingyuan Ouyang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Qingliang Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Yang Song
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hua He
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China
| | - Jiwen Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China; State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
6
|
Moon S, Alsarkhi L, Lin TT, Inoue R, Tahiri A, Colson C, Cai W, Shirakawa J, Qian WJ, Zhao JY, El Ouaamari A. Transcriptome and secretome profiling of sensory neurons reveals sex differences in pathways relevant to insulin sensing and insulin secretion. FASEB J 2023; 37:e23185. [PMID: 37695721 PMCID: PMC10503313 DOI: 10.1096/fj.202300941r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/26/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
Sensory neurons in the dorsal root ganglia (DRG) convey somatosensory and metabolic cues to the central nervous system and release substances from stimulated terminal endings in peripheral organs. Sex-biased variations driven by the sex chromosome complement (XX and XY) have been implicated in the sensory-islet crosstalk. However, the molecular underpinnings of these male-female differences are not known. Here, we aim to characterize the molecular repertoire and the secretome profile of the lower thoracic spinal sensory neurons and to identify molecules with sex-biased insulin sensing- and/or insulin secretion-modulating activity that are encoded independently of circulating gonadal sex hormones. We used transcriptomics and proteomics to uncover differentially expressed genes and secreted molecules in lower thoracic T5-12 DRG sensory neurons derived from sexually immature 3-week-old male and female C57BL/6J mice. Comparative transcriptome and proteome analyses revealed differential gene expression and protein secretion in DRG neurons in males and females. The transcriptome analysis identified, among others, higher insulin signaling/sensing capabilities in female DRG neurons; secretome screening uncovered several sex-specific candidate molecules with potential regulatory functions in pancreatic β cells. Together, these data suggest a putative role of sensory interoception of insulin in the DRG-islet crosstalk with implications in sensory feedback loops in the regulation of β-cell activity in a sex-biased manner. Finally, we provide a valuable resource of molecular and secretory targets that can be leveraged for understanding insulin interoception and insulin secretion and inform the development of novel studies/approaches to fathom the role of the sensory-islet axis in the regulation of energy balance in males and females.
Collapse
Affiliation(s)
- Sohyun Moon
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Lamyaa Alsarkhi
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Tai-Tu Lin
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ryota Inoue
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Azeddine Tahiri
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
| | - Cecilia Colson
- The Child Health Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey. New Brunswick, NJ, 08901, USA
| | - Weikang Cai
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Jun Shirakawa
- Laboratory of Diabetes and Metabolic Disorders, Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jerry Yingtao Zhao
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| | - Abdelfattah El Ouaamari
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 01595, USA
- Department of Pharmacology, New York Medical College, Valhalla, NY 01595, USA
| |
Collapse
|