1
|
Andersen CJ, Fernandez ML. Emerging Biomarkers and Determinants of Lipoprotein Profiles to Predict CVD Risk: Implications for Precision Nutrition. Nutrients 2024; 17:42. [PMID: 39796476 PMCID: PMC11722654 DOI: 10.3390/nu17010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Biomarkers constitute a valuable tool to diagnose both the incidence and the prevalence of chronic diseases and may help to inform the design and effectiveness of precision nutrition interventions. Cardiovascular disease (CVD) continues to be the foremost cause of death all over the world. While the reasons that lead to increased risk for CVD are multifactorial, dyslipidemias, plasma concentrations of specific lipoproteins, and dynamic measures of lipoprotein function are strong biomarkers to predict and document coronary heart disease incidence. The aim of this review is to provide a comprehensive evaluation of the biomarkers and emerging approaches that can be utilized to characterize lipoprotein profiles as predictive tools for assessing CVD risk, including the assessment of traditional clinical lipid panels, measures of lipoprotein efflux capacity and inflammatory and antioxidant activity, and omics-based characterization of lipoprotein composition and regulators of lipoprotein metabolism. In addition, we discuss demographic, genetic, metagenomic, and lifestyle determinants of lipoprotein profiles-such as age, sex, gene variants and single-nucleotide polymorphisms, gut microbiome profiles, dietary patterns, physical inactivity, obesity status, smoking and alcohol intake, and stress-which are likely to be essential factors to explain interindividual responses to precision nutrition recommendations to mitigate CVD risk.
Collapse
Affiliation(s)
- Catherine J. Andersen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
| | - Maria Luz Fernandez
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, USA;
- School of Nutrition and Wellness, University of Arizona, Tucson, AZ 85712, USA
| |
Collapse
|
2
|
Jaber M, Schmidt J, Kalkhof S, Gerstenfeld L, Duda GN, Checa S. OMIBONE: Omics-driven computer model of bone regeneration for personalized treatment. Bone 2024; 190:117288. [PMID: 39426580 DOI: 10.1016/j.bone.2024.117288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Treatment of bone fractures are standardized according to the AO classification, which mainly refers to the mechanical stabilization required in a given situation but neglect individual differences due to patient's healing potential or accompanying diseases. Specially in elderly or immune-compromised patients, the complexity of individual constrains on a biological as well as mechanical level are hard to account for. Here, we introduce a novel framework that allows to predict bone regeneration outcome using combined proteomic and mechanical analyses in a computer model. The framework uses Ingenuity Pathway Analysis (IPA) software to link protein changes to alterations in biological processes and integrates these in an Agent-Based Model (ABM) of bone regeneration. This combined framework allows to predict bone formation and the potential of an individual to heal a given fracture setting. The performance of the framework was evaluated by replicating the experimental setup of a mouse femur fracture stabilized with an intramedullary pin. The model was informed by serum derived proteomics data. The tissue formation patterns were compared against experimental data based on x-ray and histology images. The results indicate the framework potential in predicting an individual's bone formation potential and hold promise as a concept to enable personalized bone healing predictions for a chosen fracture fixation.
Collapse
Affiliation(s)
- Mahdi Jaber
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - Johannes Schmidt
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Stefan Kalkhof
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Louis Gerstenfeld
- Department of Orthopaedic Surgery, Boston University of Medicine, Boston, MA, United States of America
| | - Georg N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany; BIH Center for Regenerative Therapies, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Germany
| | - Sara Checa
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
3
|
Karpov OA, Stotland A, Raedschelders K, Chazarin B, Ai L, Murray CI, Van Eyk JE. Proteomics of the heart. Physiol Rev 2024; 104:931-982. [PMID: 38300522 PMCID: PMC11381016 DOI: 10.1152/physrev.00026.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/25/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Mass spectrometry-based proteomics is a sophisticated identification tool specializing in portraying protein dynamics at a molecular level. Proteomics provides biologists with a snapshot of context-dependent protein and proteoform expression, structural conformations, dynamic turnover, and protein-protein interactions. Cardiac proteomics can offer a broader and deeper understanding of the molecular mechanisms that underscore cardiovascular disease, and it is foundational to the development of future therapeutic interventions. This review encapsulates the evolution, current technologies, and future perspectives of proteomic-based mass spectrometry as it applies to the study of the heart. Key technological advancements have allowed researchers to study proteomes at a single-cell level and employ robot-assisted automation systems for enhanced sample preparation techniques, and the increase in fidelity of the mass spectrometers has allowed for the unambiguous identification of numerous dynamic posttranslational modifications. Animal models of cardiovascular disease, ranging from early animal experiments to current sophisticated models of heart failure with preserved ejection fraction, have provided the tools to study a challenging organ in the laboratory. Further technological development will pave the way for the implementation of proteomics even closer within the clinical setting, allowing not only scientists but also patients to benefit from an understanding of protein interplay as it relates to cardiac disease physiology.
Collapse
Affiliation(s)
- Oleg A Karpov
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Aleksandr Stotland
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Koen Raedschelders
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Blandine Chazarin
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Lizhuo Ai
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Christopher I Murray
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| | - Jennifer E Van Eyk
- Smidt Heart Institute, Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States
| |
Collapse
|
4
|
González-Arostegui LG, Rubio CP, Cerón JJ, Tvarijonaviciute A, Muñoz-Prieto A. Proteomics in dogs: a systematic review. Res Vet Sci 2021; 143:107-114. [PMID: 35007798 DOI: 10.1016/j.rvsc.2021.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Proteomic analysis is having a rapid development as a method for the detection of biomarkers of diseases in dogs. Dogs in addition to their importance as companion animals, serve as important animal models for research. This study aims to systematically review evidence regarding the studies performed in proteomics in dogs, and specifically those made in serum, saliva, urine and/or plasma. Information searched in October 2020, January 2021 and August 2021, for English language publications of the last decade (2010-2020) were obtained from electronic databases. Screening, data extraction and risk of bias assessment were undertaken by two investigators. The risk of bias was evaluated using the Review Manager (RevMan 5) tool. Meta-analysis and case report studies were not included in this review. Through the screening process a total of 557 publications were identified after the removal of duplicates. Out of these, 65 were fully evaluated and 44 of these were included in the review. Most studies evaluated the proteome of disease and compared it with a healthy population, and most of the articles included were made on serum, followed by saliva. The overall risk of bias for all studies was high, due to an absence in the generation of random sequence. Overall proteomic analysis has allowed the discovery of new physiopathological pathways of diseases and potential biomarkers in the dog, which are addressed in this review.
Collapse
Affiliation(s)
- Luis Guillermo González-Arostegui
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Camila Peres Rubio
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain; Department of Animal and Food Science, School of Veterinary Science, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Barcelona, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Campus of Excellence Mare Nostrum, University of Murcia, Campus Espinardo, 30100 Murcia, Spain.
| | - Alberto Muñoz-Prieto
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Teixeira PC, Ducret A, Langen H, Nogoceke E, Santos RHB, Silva Nunes JP, Benvenuti L, Levy D, Bydlowski SP, Bocchi EA, Kuramoto Takara A, Fiorelli AI, Stolf NA, Pomeranzeff P, Chevillard C, Kalil J, Cunha-Neto E. Impairment of Multiple Mitochondrial Energy Metabolism Pathways in the Heart of Chagas Disease Cardiomyopathy Patients. Front Immunol 2021; 12:755782. [PMID: 34867990 PMCID: PMC8633876 DOI: 10.3389/fimmu.2021.755782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
Chagas disease cardiomyopathy (CCC) is an inflammatory dilated cardiomyopathy occurring in 30% of the 6 million infected with the protozoan Trypanosoma cruzi in Latin America. Survival is significantly lower in CCC than ischemic (IC) and idiopathic dilated cardiomyopathy (DCM). Previous studies disclosed a selective decrease in mitochondrial ATP synthase alpha expression and creatine kinase activity in CCC myocardium as compared to IDC and IC, as well as decreased in vivo myocardial ATP production. Aiming to identify additional constraints in energy metabolism specific to CCC, we performed a proteomic study in myocardial tissue samples from CCC, IC and DCM obtained at transplantation, in comparison with control myocardial tissue samples from organ donors. Left ventricle free wall myocardial samples were subject to two-dimensional electrophoresis with fluorescent labeling (2D-DIGE) and protein identification by mass spectrometry. We found altered expression of proteins related to mitochondrial energy metabolism, cardiac remodeling, and oxidative stress in the 3 patient groups. Pathways analysis of proteins differentially expressed in CCC disclosed mitochondrial dysfunction, fatty acid metabolism and transmembrane potential of mitochondria. CCC patients’ myocardium displayed reduced expression of 22 mitochondrial proteins belonging to energy metabolism pathways, as compared to 17 in DCM and 3 in IC. Significantly, 6 beta-oxidation enzymes were reduced in CCC, while only 2 of them were down-regulated in DCM and 1 in IC. We also observed that the cytokine IFN-gamma, previously described with increased levels in CCC, reduces mitochondrial membrane potential in cardiomyocytes. Results suggest a major reduction of mitochondrial energy metabolism and mitochondrial dysfunction in CCC myocardium which may be in part linked to IFN-gamma. This may partially explain the worse prognosis of CCC as compared to DCM or IC.
Collapse
Affiliation(s)
- Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Axel Ducret
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Hanno Langen
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | - Everson Nogoceke
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche, Basel, Switzerland
| | | | - João Paulo Silva Nunes
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Luiz Benvenuti
- Anatomical Pathology Division, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Debora Levy
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Sergio Paulo Bydlowski
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- Heart Failure Team, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Andréia Kuramoto Takara
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Alfredo Inácio Fiorelli
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Noedir Antonio Stolf
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Pablo Pomeranzeff
- Division of Surgery, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Christophe Chevillard
- INSERM, UMR_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute (Incor) Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Division of Clinical Immunology and Allergy, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.,Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| |
Collapse
|
6
|
Abstract
Systems medicine is a holistic approach to deciphering the complexity of human physiology in health and disease. In essence, a living body is constituted of networks of dynamically interacting units (molecules, cells, organs, etc) that underlie its collective functions. Declining resilience because of aging and other chronic environmental exposures drives the system to transition from a health state to a disease state; these transitions, triggered by acute perturbations or chronic disturbance, manifest as qualitative shifts in the interactions and dynamics of the disease-perturbed networks. Understanding health-to-disease transitions poses a high-dimensional nonlinear reconstruction problem that requires deep understanding of biology and innovation in study design, technology, and data analysis. With a focus on the principles of systems medicine, this Review discusses approaches for deciphering this biological complexity from a novel perspective, namely, understanding how disease-perturbed networks function; their study provides insights into fundamental disease mechanisms. The immediate goals for systems medicine are to identify early transitions to cardiovascular (and other chronic) diseases and to accelerate the translation of new preventive, diagnostic, or therapeutic targets into clinical practice, a critical step in the development of personalized, predictive, preventive, and participatory (P4) medicine.
Collapse
Affiliation(s)
- Kalliopi Trachana
- From the Institute for Systems Biology, Seattle, WA (K.T., R.B., G.G., N.D.P., S.H., L.E.H.)
| | - Rhishikesh Bargaje
- From the Institute for Systems Biology, Seattle, WA (K.T., R.B., G.G., N.D.P., S.H., L.E.H.)
| | - Gustavo Glusman
- From the Institute for Systems Biology, Seattle, WA (K.T., R.B., G.G., N.D.P., S.H., L.E.H.)
| | - Nathan D Price
- From the Institute for Systems Biology, Seattle, WA (K.T., R.B., G.G., N.D.P., S.H., L.E.H.)
| | - Sui Huang
- From the Institute for Systems Biology, Seattle, WA (K.T., R.B., G.G., N.D.P., S.H., L.E.H.).,Department of Biological Sciences, University of Calgary, Alberta, Canada (S.H.)
| | - Leroy E Hood
- From the Institute for Systems Biology, Seattle, WA (K.T., R.B., G.G., N.D.P., S.H., L.E.H.)
| |
Collapse
|
7
|
Mokou M, Lygirou V, Vlahou A, Mischak H. Proteomics in cardiovascular disease: recent progress and clinical implication and implementation. Expert Rev Proteomics 2017; 14:117-136. [DOI: 10.1080/14789450.2017.1274653] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marika Mokou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Vasiliki Lygirou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Antonia Vlahou
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Harald Mischak
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Mosaiques Diagnostics, Hannover, Germany
| |
Collapse
|
8
|
Zabel C, Andreew A, Mao L, Hartl D. Protein expression overlap: more important than which proteins change in expression? Expert Rev Proteomics 2014; 5:187-205. [DOI: 10.1586/14789450.5.2.187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Biomarker discovery in transplantation—proteomic adventure or mission impossible? Clin Biochem 2013; 46:497-505. [DOI: 10.1016/j.clinbiochem.2012.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/09/2012] [Accepted: 10/11/2012] [Indexed: 01/10/2023]
|
10
|
Abstract
Different methodologies have been used through years to discover new potential biomarkers related with cardiovascular risk. The conventional proteomic strategy involves a discovery phase that requires the use of mass spectrometry (MS) and a validation phase, usually on an alternative platform such as immunoassays that can be further implemented in clinical practice. This approach is suitable for a single biomarker, but when large panels of biomarkers must be validated, the process becomes inefficient and costly. Therefore, it is essential to find an alternative methodology to perform the biomarker discovery, validation, and -quantification. The skills provided by quantitative MS turn it into an extremely attractive alternative to antibody-based technologies. Although it has been traditionally used for quantification of small molecules in clinical chemistry, MRM is now emerging as an alternative to traditional immunoassays for candidate protein biomarker validation.
Collapse
|
11
|
Birner C, Dietl A, Deutzmann R, Schröder J, Schmid P, Jungbauer C, Resch M, Endemann D, Stark K, Riegger G, Luchner A. Proteomic profiling implies mitochondrial dysfunction in tachycardia-induced heart failure. J Card Fail 2012; 18:660-73. [PMID: 22858083 DOI: 10.1016/j.cardfail.2012.06.418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 05/09/2012] [Accepted: 06/08/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND/OBJECTIVES Molecular mechanisms of congestive heart failure as reflected by alterations of protein expression patterns are still incompletely analyzed. We therefore investigated intraventricular (ie, left ventricular congestive heart failure [LV-CHF] vs. LV-control [CTRL], and right ventricular [RV]-CHF vs. RV-CTRL) and interventricular (ie, LV-CHF vs. RV-CHF, and LV-CTRL vs. RV-CTRL) protein expression differences in an animal model. METHODS The model of rapid ventricular pacing in rabbits was combined with a proteomic approach using 2-dimensional gel electrophoresis. Identification of proteins was done by matrix-assisted laser desorption/ionization-tandem mass spectrometry (MALDI-MS/MS). RESULTS Rapid ventricular pacing-induced heart failure was characterized by LV dilatation, dysfunction, and hypotension as well as by increased BNP gene expression. By comparing LV-CHF vs. LV-CTRL, proteins were found to be underexpressed at 3 crucial points of cellular energy metabolism. In RV-CHF vs. RV-CTRL, proteins belonging to respiratory chain complexes were underexpressed, but additionally a disturbance in the nitric oxide-generating enzymatic apparatus was seen. Regarding the interventricular analyses, a stronger expression of energetic pathways was accompanied by an underexpression of contractile and stress response proteins in failing left vs. right ventricles. Finally, significant protein expression differences were found in LV-CTRL vs. RV-CTRL reflecting a higher expression of contractile, stress response, and respiratory chain proteins in LV tissue. CONCLUSIONS In tachycardia-induced heart failure, significant inter- and intraventricular protein expression patterns were found with a predominance of proteins, which are involved in cellular energy metabolism.
Collapse
Affiliation(s)
- Christoph Birner
- Department of Internal Medicine II, University Regensburg, Regensburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The conventional reductionist approach to cardiovascular research investigates individual candidate factors or linear signalling pathways but ignores more complex interactions in biological systems. The advent of molecular profiling technologies that focus on a global characterization of whole complements allows an exploration of the interconnectivity of pathways during pathophysiologically relevant processes, but has brought about the issue of statistical analysis and data integration. Proteins identified by differential expression as well as those in protein–protein interaction networks identified through experiments and through computational modelling techniques can be used as an initial starting point for functional analyses. In combination with other ‘-omics’ technologies, such as transcriptomics and metabolomics, proteomics explores different aspects of disease, and the different pillars of observations facilitate the data integration in disease-specific networks. Ultimately, a systems biology approach may advance our understanding of cardiovascular disease processes at a ‘biological pathway’ instead of a ‘single molecule’ level and accelerate progress towards disease-modifying interventions.
Collapse
Affiliation(s)
- Sarah R Langley
- King's British Heart Foundation Centre, King's College London, 125 Coldharbour Lane, London SE5 9NU, UK
| | | | | | | | | |
Collapse
|
13
|
Helsens K, Martens L. Enabling computational proteomics by public and local data management systems. ACTA ACUST UNITED AC 2012; 5:266. [PMID: 22511708 DOI: 10.1161/circgenetics.110.957837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kenny Helsens
- Department of Medical Protein Research, VIB, and Department of Biochemistry, Ghent University, Ghent, Belgium
| | | |
Collapse
|
14
|
Haas S, Jahnke HG, Moerbt N, von Bergen M, Aharinejad S, Andrukhova O, Robitzki AA. DIGE proteome analysis reveals suitability of ischemic cardiac in vitro model for studying cellular response to acute ischemia and regeneration. PLoS One 2012; 7:e31669. [PMID: 22384053 PMCID: PMC3285183 DOI: 10.1371/journal.pone.0031669] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 01/11/2012] [Indexed: 11/18/2022] Open
Abstract
Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy.With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research.
Collapse
Affiliation(s)
- Sina Haas
- Division of Molecular Biological-Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Heinz-Georg Jahnke
- Division of Molecular Biological-Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
| | - Nora Moerbt
- Department of Proteomics, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Martin von Bergen
- Department of Proteomics, Helmholtz Centre for Environmental Research, Leipzig, Germany
- Department of Metabolomics, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Seyedhossein Aharinejad
- Department of Cardiac Surgery, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Department for Cardiovascular Research, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Olena Andrukhova
- Department for Cardiovascular Research, Center of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
- Department for Biomedical Sciences, Institute of Pathophysiology, University of Veterinary Medicine, Vienna, Austria
| | - Andrea A. Robitzki
- Division of Molecular Biological-Biochemical Processing Technology, Center for Biotechnology and Biomedicine, Universität Leipzig, Leipzig, Germany
- * E-mail:
| |
Collapse
|
15
|
Zweier JL, Chen CA, Talukder MAH. Cardiac resynchronization therapy and reverse molecular remodeling: importance of mitochondrial redox signaling. Circ Res 2011; 109:716-9. [PMID: 21921269 DOI: 10.1161/circresaha.111.253864] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Polden J, McManus CA, Dos Remedios C, Dunn MJ. A 2-D gel reference map of the basic human heart proteome. Proteomics 2011; 11:3582-6. [DOI: 10.1002/pmic.201000182] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 02/28/2011] [Accepted: 05/02/2011] [Indexed: 11/09/2022]
|
17
|
Mao L, Yang P, Hou S, Li F, Kijlstra A. Label-free proteomics reveals decreased expression of CD18 and AKNA in peripheral CD4+ T cells from patients with Vogt-Koyanagi-Harada syndrome. PLoS One 2011; 6:e14616. [PMID: 21297967 PMCID: PMC3030555 DOI: 10.1371/journal.pone.0014616] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 01/03/2011] [Indexed: 01/29/2023] Open
Abstract
Vogt-Koyanagi-Harada (VKH) syndrome is a systemic autoimmune disease. CD4+ T cells have been shown to be involved in autoimmune diseases including VKH syndrome. To screen aberrantly expressed membrane proteins in CD4+ T cell from patients with active VKH syndrome, blood samples were taken from five patients with active VKH syndrome and five healthy individuals. A label-free quantitative proteomic strategy was used to identify the differently expressed proteins between the two groups. The results revealed that the expression of 102 peptides was significantly altered (p<0.05) between two groups and matched amino acid sequences of proteins deposited in the international protein index (ipi.HUMAN.v3.36.fasta). The identified peptides corresponded to 64 proteins, in which 30 showed more than a 1.5-fold difference between the two groups. The decreased expression of CD18 and AKNA transcription factor (AKNA), both being three-fold lower than controls in expression identified by the label-free method, was further confirmed in an additional group of five active VKH patients and six normal individuals using the Western blot technique. A significantly decreased expression of CD18 and AKNA suggests a role for both proteins in the pathogenesis of this syndrome.
Collapse
Affiliation(s)
- Liming Mao
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Peizeng Yang
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
- * E-mail:
| | - Shengping Hou
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Fuzhen Li
- Laboratory of Ophthalmology, Chongqing Eye Institute, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Aize Kijlstra
- The Department of Ophthalmology, University of Maastricht, Maastricht, The Netherlands
| |
Collapse
|
18
|
González A, López B, Beaumont J, Ravassa S, Arias T, Hermida N, Zudaire A, Díez J. Cardiovascular translational medicine (III). Genomics and proteomics in heart failure research. Rev Esp Cardiol 2010; 62:305-13. [PMID: 19268076 DOI: 10.1016/s1885-5857(09)71561-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Heart failure is a complex syndrome and is one of the main causes of morbidity and mortality in developed countries. Despite considerable research effort in recent years, heart failure prevention and treatment strategies still suffer significant limitations. New theoretical and technical approaches are, therefore, required. It is in this context that the "omic" sciences have a role to play in heart failure. The incorporation of "omic" methodologies into the study of human disease has substantially changed biological approaches to disease and has given an enormous impetus to the search for new disease mechanisms, as well as for novel biomarkers and therapeutic targets. The application of genomics, proteomics and metabonomics to heart failure research could increase our understanding of the origin and development of the different processes contributing to this syndrome, thereby enabling the establishment of specific diagnostic profiles and therapeutic templates that could help improve the poor prognosis associated with heart failure. This brief review contains a short description of the fundamental principles of the "omic" sciences and an evaluation of how these new techniques are currently contributing to research into human heart failure. The focus is mainly on the analysis of gene expression microarrays in the field of genomics and on studies using two-dimensional electrophoresis with mass spectrometry in the area of proteomics.
Collapse
Affiliation(s)
- Arantxa González
- Area de Ciencias Cardiovasculares, Centro de Investigación Médica, Universidad de Navarra, 31008 Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Aksentijević D, Lygate CA, Makinen K, Zervou S, Sebag-Montefiore L, Medway D, Barnes H, Schneider JE, Neubauer S. High-energy phosphotransfer in the failing mouse heart: role of adenylate kinase and glycolytic enzymes. Eur J Heart Fail 2010; 12:1282-9. [PMID: 20940173 DOI: 10.1093/eurjhf/hfq174] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AIMS To measure the activity of the key phosphotransfer enzymes creatine kinase (CK), adenylate kinase (AK), and glycolytic enzymes in two common mouse models of chronic heart failure. METHODS AND RESULTS C57BL/6 mice were subjected to transverse aortic constriction (TAC), myocardial infarction induced by coronary artery ligation (CAL), or sham operation. Activities of phosphotransfer enzymes CK, AK, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK), and pyruvate kinase were assessed spectrophotometrically. Mice were characterized by echocardiography or magnetic resonance imaging 5- to 8-week post-surgery and selected for the presence of congestive heart failure. All mice had severe left ventricular hypertrophy, impaired systolic function and pulmonary congestion compared with sham controls. A significant decrease in myocardial CK and maximal CK reaction velocity was observed in both experimental models of heart failure. However, the activity of AK and its isoforms remained unchanged, despite a reduction in its protein expression. In contrast, the activities of glycolytic phosphotransfer mediators GAPDH and PGK were 19 and 12% higher in TAC, and 31 and 23% higher in CAL models, respectively. CONCLUSION Chronic heart failure in the mouse is characterized by impaired CK function, unaltered AK, and increased activity of glycolytic phosphotransfer enzymes. This pattern of altered phosphotransfer activity was observed independent of the heart failure aetiology.
Collapse
Affiliation(s)
- Dunja Aksentijević
- Department of Cardiovascular Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chugh S, Suen C, Gramolini A. Proteomics and mass spectrometry: what have we learned about the heart? Curr Cardiol Rev 2010; 6:124-33. [PMID: 21532779 PMCID: PMC2892078 DOI: 10.2174/157340310791162631] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Revised: 03/18/2010] [Accepted: 03/19/2010] [Indexed: 01/31/2023] Open
Abstract
The emergence of new platforms for the discovery of innovative therapeutics has provided a means for diagnosing cardiac disease in its early stages. Taking into consideration the global health burden of cardiac disease, clinicians require innovations in medical diagnostics that can be used for risk stratification. Proteomic based studies offer an avenue for the discovery of proteins that are differentially regulated during disease; such proteins could serve as novel biomarkers of the disease state. For instance, in clinical practice, the abundance of such biomarkers in blood could be correlated with the severity of the disease state. As such, early detection of biomarkers would enable an improvement in patient prognosis. In this review, we outline advancements in various proteomic platforms used to study the disease proteome and their applications to the field of clinical medicine. Specifically, we highlight the contributions of proteomic-based profiling experiments to the analysis of cardiovascular diseases.
Collapse
Affiliation(s)
- Shaan Chugh
- Department of Physiology, University of Toronto
| | - Colin Suen
- Department of Physiology, University of Toronto
| | - Anthony Gramolini
- Department of Physiology, University of Toronto
- Heart and Stroke/Richard Lewar Centre of Cardiovascular Excellence
| |
Collapse
|
21
|
Wei YJ, Huang YX, Shen Y, Cui CJ, Zhang XL, Zhang H, Hu SS. Proteomic analysis reveals significant elevation of heat shock protein 70 in patients with chronic heart failure due to arrhythmogenic right ventricular cardiomyopathy. Mol Cell Biochem 2009; 332:103-11. [PMID: 19543852 DOI: 10.1007/s11010-009-0179-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2009] [Accepted: 06/09/2009] [Indexed: 12/28/2022]
Abstract
As proteins are the ultimate biological determinants of phenotype of disease, we screened altered proteins associated with heart failure due to arrhythmogenic right ventricular cardiomyopathy (ARVC) to identify biomarkers potential for rapid diagnosis of heart failure. By 2-dimensional gel electrophoresis and mass spectrometry, we identified five commonly altered proteins with more than 1.5 fold changes in eight ARVC failing hearts using eight non-failing hearts as reference. Noticeably, one of the altered proteins, heat shock protein 70 (HSP70), was increased by 1.64 fold in ARVC failing hearts compared with non-failing hearts. The increase of cardiac HSP70 was further validated by Western blot, immunochemistry, and enzyme-linked immunosorbent assay (ELISA) in failing hearts due to not only ARVC, but also dilated (DCM, n = 18) and ischemic cardiomyopathy (ICM, n = 8). Serum HSP70 was also observed to be significantly increased in heart failure patients derived from the three forms of cardiomyopathies. In addition, we observed hypoxia/serum depletion stimulation induced significantly elevation of intracellular and extracellular HSP70 in cultured neonatal rat cardiomyocytes. For the first time to our knowledge, we revealed and clearly demonstrated significant up-regulation of cardiac and serum HSP70 in ARVC heart failure patients. Our results indicate that elevated HSP70 is the common feature of heart failure due to ARVC, DCM, and ICM, which suggests that HSP70 may be used as a biomarker for the presence of heart failure due to cardiomyopathies of different etiologies and may hold diagnostic/prognostic potential in clinical practice.
Collapse
Affiliation(s)
- Ying-Jie Wei
- Chinese Academy of Medical Sciences, Peking Union Medical College, Fuwai Hospital & Cardiovascular Institute, Key Laboratory of Cardiovascular Regenerative Medicine, Ministry of Health, Beijing, 100037, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
22
|
González A, López B, Beaumont J, Ravassa S, Arias T, Hermida N, Zudaire A, Díez J. La genómica y la proteómica en la investigación de la insuficiencia cardiaca. Rev Esp Cardiol (Engl Ed) 2009. [DOI: 10.1016/s0300-8932(09)70375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Abstract
Proteome--the protein complement of a genome--has become the protein renaissance and a key research tool in the post-genomic era. The basic technology involves the routine usage of gel electrophoresis and spectrometry procedures for deciphering the primary protein sequence/structure as well as knowing certain unique post-translational modifications that a particular protein has undergone to perform a specific function in the cell. However, the recent advancements in protein analysis have ushered this science to provide deeper, bigger and more valuable perspectives regarding performance of subtle protein-protein interactions. Applications of this branch of molecular biology are as vast as the subject is and include clinical diagnostics, pharmaceutical and biotechnological industries. The 21st century hails the use of products, procedures and advancements of this science as finer touches required for the grooming of fast-paced technology.
Collapse
Affiliation(s)
- Anu Kalia
- Department of Microbiology Punjab Agricultural University, Ludhiana, Punjab, India.
| | | |
Collapse
|
24
|
Geraldine J, Mala S, Takeuchi S. Heat Shock Proteins in Cardiovascular Stress. Clin Med Cardiol 2008. [DOI: 10.4137/cmc.s876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- John Geraldine
- Factory of Takeuchi Nenshi, TAKENEN, 85 NE, Takamatsu, Kahoku, Ishikawa-929-1215, Japan
| | - Sandana Mala
- Factory of Takeuchi Nenshi, TAKENEN, 85 NE, Takamatsu, Kahoku, Ishikawa-929-1215, Japan
| | - Satoru Takeuchi
- Factory of Takeuchi Nenshi, TAKENEN, 85 NE, Takamatsu, Kahoku, Ishikawa-929-1215, Japan
| |
Collapse
|
25
|
Mazzola A, Cianti R, Bini L, Armini A, Eberini I, Pompella G, Capecchi PL, Natale M, Abbracchio MP, Laghi-Pasini F. Using peripheral blood mononuclear cells to determine proteome profiles in human cardiac failure. Eur J Heart Fail 2008; 10:749-57. [PMID: 18579441 DOI: 10.1016/j.ejheart.2008.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 04/28/2008] [Accepted: 06/03/2008] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND In chronic heart failure (CHF), peripheral blood mononuclear cells (PBMC) might undergo structural and/or functional alterations as a consequence of the development and progression of the disease. AIMS This study was aimed at: (1) assessing the proteome profile of PBMC from Controls and CHF subjects, (2) identifying differentially-expressed proteins in healthy subjects and patients, and (3) analysing the expression of these proteins in patients after heart transplantation. METHODS AND RESULTS Proteome changes were assessed in PBMC from 8 healthy and 11 end-stage CHF (6 Ischaemic Heart Failure [IHF], 5 Dilated CardioMyopathy [DCM]) subjects by gel electrophoresis, PD-Quest analysis and mass spectrometry. Eighteen proteins were differentially expressed in Controls and CHF patients. However, among CHF patients, these proteins were equally expressed in IHF and DCM subjects. Eleven proteins were found to belong to 4 functional classes (3 cytoskeletal, 4 cell-cycle progression, 2 stress response and DNA repair, 2 energetic metabolism proteins). Changes in three of the differentially-expressed proteins were also confirmed by Western blot and were reversed after heart transplantation. CONCLUSION Results demonstrate an altered protein expression profile in PBMC of CHF patients compared to Controls, thus providing a basis for further diagnostic and prognostic tests for CHF.
Collapse
Affiliation(s)
- Alessia Mazzola
- Department of Pharmacological Sciences, University of Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Proteomik. ZEITSCHRIFT FUR HERZ THORAX UND GEFASSCHIRURGIE 2008. [DOI: 10.1007/s00398-008-0610-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
27
|
Wang XL, Fu A, Spiro C, Lee HC. Clinical application of proteomics approaches in vascular diseases. Proteomics Clin Appl 2008; 2:238-50. [DOI: 10.1002/prca.200780005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Indexed: 01/12/2023]
|
28
|
Gramolini AO, Kislinger T, Alikhani-Koopaei R, Fong V, Thompson NJ, Isserlin R, Sharma P, Oudit GY, Trivieri MG, Fagan A, Kannan A, Higgins DG, Huedig H, Hess G, Arab S, Seidman JG, Seidman CE, Frey B, Perry M, Backx PH, Liu PP, MacLennan DH, Emili A. Comparative proteomics profiling of a phospholamban mutant mouse model of dilated cardiomyopathy reveals progressive intracellular stress responses. Mol Cell Proteomics 2007; 7:519-33. [PMID: 18056057 DOI: 10.1074/mcp.m700245-mcp200] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Defective mobilization of Ca2+ by cardiomyocytes can lead to cardiac insufficiency, but the causative mechanisms leading to congestive heart failure (HF) remain unclear. In the present study we performed exhaustive global proteomics surveys of cardiac ventricle isolated from a mouse model of cardiomyopathy overexpressing a phospholamban mutant, R9C (PLN-R9C), and exhibiting impaired Ca2+ handling and death at 24 weeks and compared them with normal control littermates. The relative expression patterns of 6190 high confidence proteins were monitored by shotgun tandem mass spectrometry at 8, 16, and 24 weeks of disease progression. Significant differential abundance of 593 proteins was detected. These proteins mapped to select biological pathways such as endoplasmic reticulum stress response, cytoskeletal remodeling, and apoptosis and included known biomarkers of HF (e.g. brain natriuretic peptide/atrial natriuretic factor and angiotensin-converting enzyme) and other indicators of presymptomatic functional impairment. These altered proteomic profiles were concordant with cognate mRNA patterns recorded in parallel using high density mRNA microarrays, and top candidates were validated by RT-PCR and Western blotting. Mapping of our highest ranked proteins against a human diseased explant and to available data sets indicated that many of these proteins could serve as markers of disease. Indeed we showed that several of these proteins are detectable in mouse and human plasma and display differential abundance in the plasma of diseased mice and affected patients. These results offer a systems-wide perspective of the dynamic maladaptions associated with impaired Ca2+ homeostasis that perturb myocyte function and ultimately converge to cause HF.
Collapse
Affiliation(s)
- Anthony O Gramolini
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Heart diseases resulting in heart failure are among the leading causes of morbidity and mortality in developed countries. Underlying molecular causes of cardiac dysfunction in most heart diseases are still largely unknown but are expected to result from causal alterations in gene and protein expression. Proteomic technology now allows us to examine global alterations in protein expression in the diseased heart and can provide new insights into cellular mechanisms involved in cardiac dysfunction. The majority of proteomic investigations still use 2D gel electrophoresis (2-DE) with immobilized pH gradients to separate the proteins in a sample and combine this with mass spectrometry (MS) technologies to identify proteins. In spite of the development of novel gel-free technologies, 2-DE remains the only technique that can be routinely applied to parallel quantitative expression profiling of large sets of complex protein mixtures such as whole cell lysates. It can resolve >5000 proteins simultaneously (approximately 2000 proteins routinely) and can detect <1 ng of protein per spot. Furthermore, 2-DE delivers a map of intact proteins, which reflects changes in protein expression level, isoforms, or post-translational modifications. The use of proteomics to investigate heart disease should result in the generation of new diagnostic and therapeutic markers. In this article, we review the current status of proteomic technologies, describing the 2-DE proteomics workflow, with an overview of protein identification by MS and how these technologies are being applied to studies of human heart disease.
Collapse
|
30
|
Faber MJ, Dalinghaus M, Lankhuizen IM, Bezstarosti K, Verhoeven AJM, Duncker DJ, Helbing WA, Lamers JMJ. Time dependent changes in cytoplasmic proteins of the right ventricle during prolonged pressure overload. J Mol Cell Cardiol 2007; 43:197-209. [PMID: 17603072 DOI: 10.1016/j.yjmcc.2007.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 04/21/2007] [Accepted: 05/02/2007] [Indexed: 10/23/2022]
Abstract
In many forms of congenital heart disease, the right ventricle (RV) is subject to abnormal loading conditions resulting in RV hypertrophy and remodeling. We determined the alterations in RV cytoplasmic proteomic phenotype that occur during prolonged periods of RV pressure overload. We performed a differential proteomic profiling study on RV hypertrophy using an animal model of various durations of pulmonary artery banding (PAB) in parallel with hemodynamic characterization. This hemodynamic evaluation showed that after 6, 12 and 20 weeks of PAB, the RV is in a compensated state of hypertrophy. Overall, the majority of protein changes were metabolism related indicating a shift towards the glycolytic pathway at the expense of beta-oxidation in the RV of the PAB animals. The changes in proteins related to the glycolytic pathway, exemplified by enolase and creatine kinase B-chain, tended to precede changes in beta-oxidation. In parallel, increases in stress chaperones, exemplified by several phosphorylated HSP-27 species, are present from the 6 week time point, whereas increases in antioxidant proteins, exemplified by peroxiredoxin 2 and 6, appear to be restricted to the 12 week time point. The p38 MAPK signal transduction pathway appears not to be activated. Observed protein changes are likely part of a protective mechanism against the development of RV failure.
Collapse
Affiliation(s)
- Matthijs J Faber
- Erasmus MC-Sophia, Department of Pediatrics, Division of Pediatric Cardiology, Room Sp-2429, Dr. Molewaterplein 60, 3015 GJ, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
31
|
White MY, Tchen AS, McCarron HCK, Hambly BD, Jeremy RW, Cordwell SJ. Proteomics of ischemia and reperfusion injuries in rabbit myocardium with and without intervention by an oxygen-free radical scavenger. Proteomics 2007; 6:6221-33. [PMID: 17133370 DOI: 10.1002/pmic.200600219] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A brief period of ischemia followed by timely reperfusion may lead to prolonged, yet reversible, contractile dysfunction (myocardial stunning). Damage to the myocardium occurs not only during ischemia, but also during reperfusion, where a massive release of oxygen-free radicals (OFR) occurs. We have previously utilized 2-DE and MS to define 57 protein spot changes during brief ischemia/reperfusion (15 min ischemia, 60 min reperfusion; 15I/60R) injury in a rabbit model (White, M. Y., Cordwell, S. J., McCarron, H. C. K., Prasan, A. M. et al., Proteomics 2005, 5, 1395-1410) and shown that the majority of these occur because of physical and/or chemical PTMs. In this study, we subjected rabbit myocardium to 15I/60R in the presence of the OFR scavenger N-(2-mercaptopropionyl) glycine (MPG). Thirty-seven of 57 protein spots altered during 15I/60R remained at control levels in the presence of MPG (15I/60R + MPG). Changes to contractile proteins, including myosin light chain 2 (MLC-2) and troponin C (TnC), were prevented by the addition of MPG. To further investigate the individual effects of ischemia and reperfusion, we generated 2-DE gels from rabbit myocardium subjected to brief ischemia alone (15I/0R), and observed alterations of 33 protein spots, including 18/20 seen in both 15I/60R-treated and 15I/60R + MPG-treated tissue. The tissue was also subjected to ischemia in the presence of MPG (15I/0R + MPG), and 21 spot changes, representing 14 protein variants, remained altered despite the presence of the OFR scavenger. These ischemia-specific proteins comprised those involved in energy metabolism (lactate dehydrogenase and ATP synthase alpha), redox regulation (NADH ubiquinone oxidoreductase 51 kDa and GST Mu), and stress response (Hsp27 and 70, and deamidated alpha B-crystallin). We conclude that contractile dysfunction associated with myocardial stunning is predominantly caused by OFR damage at the onset of reperfusion, but that OFR-independent damage also occurs during ischemia. These ischemia-specific protein modifications may be indicative of early myocardial injury.
Collapse
Affiliation(s)
- Melanie Y White
- Department of Medicine, The University of Sydney, Sydney, Australia
| | | | | | | | | | | |
Collapse
|
32
|
Mayr M, Madhu B, Xu Q. Proteomics and Metabolomics Combined in Cardiovascular Research. Trends Cardiovasc Med 2007; 17:43-8. [PMID: 17292045 DOI: 10.1016/j.tcm.2006.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 11/28/2006] [Accepted: 11/29/2006] [Indexed: 11/22/2022]
Abstract
Proteomics and metabolomics offer a nonbiased suite of tools to address pathophysiologic mechanisms from various levels by integrating signal transduction, cellular metabolism, and phenotype analysis. To link alterations of cellular proteins to metabolism and function, we have recently combined proteomic and metabolomic techniques. Examples, including genetic manipulation, ischemic preconditioning, atherosclerosis, and stem cell differentiation, are discussed to illustrate how the combination of these updated technologies may advance our understanding of cardiovascular biology.
Collapse
Affiliation(s)
- Manuel Mayr
- Cardiovascular Division, King's College, London SE5 9NU, UK.
| | | | | |
Collapse
|
33
|
Peronnet E, Becquart L, Martinez J, Charrier JP, Jolivet-Reynaud C. Isoelectric point determination of cardiac troponin I forms present in plasma from patients with myocardial infarction. Clin Chim Acta 2007; 377:243-7. [PMID: 17113062 DOI: 10.1016/j.cca.2006.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cardiac troponin I (cTnI) is a specific marker of myocardial injury. In blood of patients with cardiovascular diseases, cTnI is released as a mixture of free, complexed and post-translationally modified forms. METHODS The cTnI forms present in the plasma from 8 patients with acute myocardial infarction (AMI) have been analysed by two-dimensional gel electrophoresis (2-DE) and Western Blot using anti-cTnI mAb 19C7 and anti-phosphorylated cTnI (Serines 22-23) mAb 5E6. RESULTS After immunoextraction of cTnI in plasma samples by 19C7 and 2-DE separation, 4 different forms were detected by 19C7 in 7 out the 8 AMI plasma samples. Two 29 kDa spots corresponding to intact free cTnI forms were detected at pIs 5.2 and 5.4. However, spot with pI 5.4 was also recognized by mAb 5E6, and should be bis-phosphorylated cTnI. Two 55 kDa spots with pIs 6.6 and 6.7 could be IC complexes. CTnI forms with pIs lower than the theoretical pI were also found in free cTnI and phosphorylated cTnI purified materials. CONCLUSIONS 2-DE analysis of AMI plasma showed the presence of acidic cTnI forms, one of them being phosphorylated. The clinical significance of these forms has to be further investigated.
Collapse
Affiliation(s)
- Estelle Peronnet
- Unité Mixte de Recherche UMR 2714 CNRS-bioMérieux, IFR 128 BioSciences Lyon-Gerland, CERVI 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | | | | | | | | |
Collapse
|
34
|
Qualtieri A, Le Pera M, Urso E, Bono F, Valentino P, Scornaienchi MC, Quattrone A. Two-dimensional gel electrophoresis of peripheral nerve proteins: Optimized sample preparation. J Neurosci Methods 2007; 159:125-33. [PMID: 16919754 DOI: 10.1016/j.jneumeth.2006.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2006] [Revised: 07/06/2006] [Accepted: 07/07/2006] [Indexed: 10/24/2022]
Abstract
For proteomic analysis, sample preparation plays a crucial role in two-dimensional gel electrophoresis (2DE), since, very often, each tissue or cell culture requires specific treatments. In the present paper, we report a sample preparation procedure suitable for 2DE that was done on peripheral nerve using bovine sciatic nerves and human sural nerve biopsies. We obtained an appreciable reduction of tissue heterogeneity using protein extracts obtained from nerve-fiber bundles instead of the entire nerve. In addition, we optimized 2DE protein separation using a combination of CHAPS, Triton X-100, and SB3-10 detergents in an isoelectric-focusing (IEF) buffer. The reported experimental procedures appear to be essential for 2DE separation of peripheral nerve proteins for the establishment of a reference map.
Collapse
Affiliation(s)
- Antonio Qualtieri
- Institute of Neurological Sciences, National Research Council (CNR), Contrada Burga, 87050 Mangone, Cosenza, Italy.
| | | | | | | | | | | | | |
Collapse
|
35
|
Yoshihara T, Kadota Y, Yoshimura Y, Tatano Y, Takeuchi N, Okitsu H, Umemoto A, Yamauchi T, Itoh K. Proteomic alteration in gastic adenocarcinomas from Japanese patients. Mol Cancer 2006; 5:75. [PMID: 17187689 PMCID: PMC1774573 DOI: 10.1186/1476-4598-5-75] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Accepted: 12/25/2006] [Indexed: 12/13/2022] Open
Abstract
Background Gastric adenocarcinomas comprise one of the common types of cancers in Asian countries including Japan. Comprehensive protein profiling of paired surgical specimens of primary gastric adenocarcinomas and nontumor mucosae derived from Japanese patients was carried out by means of two-dimensional gel electrophoresis (2D-EP) and liquid chromatography-electrospray ionic tandem mass spectrometry (LC-ESI-MS) to establish gastric cancer-specific proteins as putative clinical biomarkers and molecular targets for chemotherapy. Results Relatively common alterations in protein expression were revealed in the tumor tissues. Increases in manganese dismutase and nonhistone chromosomal protein HMG-1 (HMG-1) were observed, while decreases in carbonic anhydrases I and II, glutatione-S-transferase and foveolin precursor (gastrokine-1) (FOV), an 18-kDa stomach-specific protein with putative tumor suppressor activity, were detected. RT-PCR analysis also revealed significant down-regulation of FOV mRNA expression in tumor tissues. Conclusion A possible pathological role for down-regulation of FOV in gastric carcinogenesis was demonstrated. Evaluation of the specific decreases in gene and protein expression of FOV in patients may be utilized as clinical biomarkers for effective diagnosis and assessment of gastric cancer.
Collapse
Affiliation(s)
- Takahiro Yoshihara
- Department of Medicinal Biotechnology, Institute for Medicinal Resources, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | - Yoshito Kadota
- Department of Medicinal Biotechnology, Institute for Medicinal Resources, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | - Yoshiyuki Yoshimura
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | - Yutaka Tatano
- Department of Medicinal Biotechnology, Institute for Medicinal Resources, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | - Naohiro Takeuchi
- Department of Medicinal Biotechnology, Institute for Medicinal Resources, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | - Hiroshi Okitsu
- Department of Surgery, Graduate School of Medicine, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | - Atsushi Umemoto
- Department of Surgery, Graduate School of Medicine, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | - Takashi Yamauchi
- Department of Biochemistry, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| | - Kohji Itoh
- Department of Medicinal Biotechnology, Institute for Medicinal Resources, Graduate School of Pharmaceutical Sciences, The University of Tokushima, 1-78 Sho-machi, Tokushima 770-8505, Japan
| |
Collapse
|
36
|
Oh-Ishi M, Maeda T. Disease proteomics of high-molecular-mass proteins by two-dimensional gel electrophoresis with agarose gels in the first dimension (Agarose 2-DE). J Chromatogr B Analyt Technol Biomed Life Sci 2006; 849:211-22. [PMID: 17141588 DOI: 10.1016/j.jchromb.2006.10.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 09/30/2006] [Accepted: 10/27/2006] [Indexed: 11/15/2022]
Abstract
Agarose gel is the preferred electrophoretic medium currently used for separating high molecular mass (HMM) proteins (MW>100 kDa). Agarose gels are widely used for both SDS-agarose gel electrophoresis and agarose isoelectric focusing (IEF). A two-dimensional gel electrophoresis method employing agarose gels in the first dimension (agarose 2-DE) that is sufficiently good at separating up to 1.5mg of HMM proteins with molecular masses as large as 500 kDa has been used to separate proteins from various diseased tissues and cells. Although resolution of the agarose 2-DE pattern always depends on the tissue being analyzed, sample preparation procedures including (i) protein extraction with an SDS sample buffer; (ii) ultracentrifugation of a tissue homogenate; and (iii) 1% SDS in both stacking and separation gels of the second-dimension SDS-PAGE gel, are generally effective for HMM protein detection. In a comprehensive prostate cancer proteome study using agarose 2-DE, the HMM region of the gel was rich in proteins of particular gene/protein expression groups (39.1% of the HMM proteins but only 28.4% of the LMM ones were classified as transcription/translation-related proteins). Examples include transcription factors, DNA or RNA binding proteins, and ribosomal proteins. To understand oxidative stress-induced cellular damage at the protein level, a novel proteomic method, in which protein carbonyls were derivatized with biotin hydrazide followed by agarose 2-DE, was useful for detecting HMM protein carbonyls in tissues of both a diabetes model Ostuka Long-Evans Tokushima Fatty (OLETF) rat and a control Long-Evans Tokushima Otsuka (LETO) rat. In this paper, we review the use of agarose gels for separation of HMM proteins and disease proteomics of HMM proteins in general, with particular attention paid to our proteome analyzes based on the use of agarose 2-DE for protein separation followed by the use of mass spectrometry for protein identification.
Collapse
Affiliation(s)
- Masamichi Oh-Ishi
- Laboratory of Biomolecular Dynamics, Department of Physics, Kitasato University School of Science, 1-15-1 Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
| | | |
Collapse
|
37
|
Dohke T, Wada A, Isono T, Fujii M, Yamamoto T, Tsutamoto T, Horie M. Proteomic analysis reveals significant alternations of cardiac small heat shock protein expression in congestive heart failure. J Card Fail 2006; 12:77-84. [PMID: 16500585 DOI: 10.1016/j.cardfail.2005.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 07/05/2005] [Accepted: 07/20/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Because congestive heart failure (CHF) is a complex syndrome with many different underlying mechanisms of worsening of heart function, it is important to recognize the global alternations in protein expression associated with the processes of CHF. METHODS AND RESULTS The purpose of our study was to use a proteomic approach to investigate global alternations in protein expression in tachycardia induced CHF dogs. We compared the 2-dimensional electrophoresis protein patterns of left ventricular samples from the normal with those from failing myocardium. Differentially expressed cardiac proteins showed approximately 500 cardiac protein spots. A total of 20 spots (14 increased, 6 decreased) was altered in CHF, whereas the more distinguishably increased spots in CHF were identified by using mass spectrometry as alpha B crystallin, heat shock protein (HSP) 27, and HSP20, which maintain both the morphologic and functional integrity of the cardiomyocytes and increase tolerance against various types of stress. Because phosphorylation is one of the most important posttranslational modifications, we evaluated whether or not the overexpressed small HSPs were phosphorylated in CHF. Phosphoprotein staining and Western blotting demonstrated that the phosphorylation of alpha B crystallin at serine (Ser)-59 site and of HSP27 at both Ser-78 and Ser-82 sites increased in CHF. CONCLUSION Proteomics studies can provide new insights into molecular mechanisms in CHF and phosphorylated small HSPs may be involved in preventing cardiac dysfunction.
Collapse
Affiliation(s)
- Tomohiro Dohke
- Department of Cardiovascular and Respiratory Medicine, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- Ramachandran S Vasan
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Department of Preventive Medicine and Epidemiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
39
|
Hou Y, Le Bihan MC, Vega-Avelaira D, Coulton GR. Proteomic changes in hearts of kyphoscoliosis (ky) mutant mice in the absence of structural pathology: Implication for the analysis of early human heart disease. Proteomics 2006; 6:3096-108. [PMID: 16622832 DOI: 10.1002/pmic.200500475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complex molecular changes associated with early stage human heart disease are poorly understood and prevent the development of effective treatments of human cardiac disease. Relatively minor structural changes in early disease may accompany some conditions such as arrhythmias. Our objective was to determine if significant proteomic changes occur in heart tissues in the absence of structural pathology. We used a proteomic "pipeline" based on Ciphergen SELDI-TOF/MS, gel electrophoresis and MALDI-TOF/MS. The kyphoscoliosis (ky) mouse carries a mutation in a putative transglutaminase causing a primary skeletal muscle disease. The ky protein is expressed usually in skeletal and cardiac muscle but its absence from the ky heart causes no structural pathology making it a good model of "occult" heart disease. We discovered 20 statistically validated biomarkers discriminating ky from normal hearts, one cardiac troponin-I was reduced by 40% in ky hearts. A 17% deficit was confirmed subsequently by Western blot. Thus, the proteome of ky hearts was abnormal, giving support to our contention that this SELDI-based analytical approach is capable of making a significant contribution to the analysis of complex proteomic changes in early stage human heart disease.
Collapse
Affiliation(s)
- Yanwen Hou
- Division Cardiac & Vascular Sciences and Division Basic Medical Sciences, St. George's, University of London, Cranmer Terrace, London, UK
| | | | | | | |
Collapse
|
40
|
Kalenka A, Maurer MH, Feldmann RE, Kuschinsky W, Waschke KF. Volatile anesthetics evoke prolonged changes in the proteome of the left ventricule myocardium: defining a molecular basis of cardioprotection? Acta Anaesthesiol Scand 2006; 50:414-27. [PMID: 16548853 DOI: 10.1111/j.1399-6576.2006.00984.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Volatile anesthetics can alter cardiac gene and protein expression. Of those underlying molecular changes in gene and protein expression in the myocardium after exposure to volatile anesthetics that have been identified, some of them have been related to cardioprotection. METHODS We used two-dimensional gel electrophoresis and mass spectrometry to identify changes in the protein expression of the left ventricle myocardium of anesthesized rats. We maintained anesthesia for 3 h using isoflurane, sevoflurane or desflurane, respectively, at 1.0 minimum alveolar concentration (MAC) and dissected the left ventricular myocardium either immediately or 72 h after the end of anesthesia. RESULTS We found changes of at least twofold in 106 proteins of the more than 1.600 protein spots discriminated in each gel. These differentially expressed proteins are associated with functions in glycolysis, mitochondrial respiration and stress response. No obvious difference could be observed between the patterns of differential expression of the three volatile anesthetics. CONCLUSION We provide the first study of post-anesthetic protein expression profiles associated with three common volatile anesthetics. These volatile anesthetics promote a distinct change in the myocardial protein expression profile, whereby changes in the expression pattern still exist 72 h after anesthesia. These proteome changes are closely related to cardioprotection and ischemic preconditioning, indicating a common functional signaling of volatile anesthestics.
Collapse
Affiliation(s)
- A Kalenka
- Department of Anesthesiology and Critical Care Medicine, Faculty of Clinical Medicine Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | | | | | |
Collapse
|
41
|
Gallego-Delgado J, Lazaro A, Osende JI, Barderas MG, Blanco-Colio LM, Duran MC, Martin-Ventura JL, Vivanco F, Egido J. Proteomic approach in the search of new cardiovascular biomarkers. Kidney Int 2006:S103-7. [PMID: 16336560 DOI: 10.1111/j.1523-1755.2005.09919.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
With the increasing incidence of cardiovascular diseases worldwide, specifically atherosclerosis and heart failure, the search for novel biomarkers remains a priority. As opposed to complex diagnostic techniques that may not be suitable to be applied to the wider population, biomarkers are useful for population screening. The search for novel biomarkers is based on knowledge of the molecular and cellular processes that take place in the development of a specific disease. Atherosclerosis and heart failure are characterized by a long period of silent disease progression, allowing early diagnosis and the potential of early therapeutic intervention. The use of the so-called proteomic techniques allows not only protein identification but partial characterization, which includes expression and also post-translational modification of these proteins. This allows for the discovery of previously unknown proteins involved in cardiovascular diseases, including some that may be suitable to be used as biomarkers. However, to approach this issue, we have to overcome difficulties such as tissue heterogeneity (vessel wall or myocardium) and the lack of fresh human samples. We discuss the proteomic study of human plaques, secreted proteins by pathologic and normal vessel wall, and left ventricular hypertrophy as potential sources of new biologic markers of cardiovascular disease.
Collapse
Affiliation(s)
- Julio Gallego-Delgado
- Renal and Vascular Pathology Laboratory, Fundación Jiménez Díaz-Universidad Autónoma, and Cardiology Service, Hospital Universitario Gregorio Maranon, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Thalmann I. Inner ear proteomics: a fad or hear to stay. Brain Res 2006; 1091:103-12. [PMID: 16540098 DOI: 10.1016/j.brainres.2006.01.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 01/26/2006] [Accepted: 01/26/2006] [Indexed: 11/17/2022]
Abstract
Proteomics, the large-scale analysis of the structure and function of proteins, as well as of protein-protein interactions, has evolved into a major component of 'systems analysis'. This requires the integration of information from different sources and at multiple levels, and involves two distinct parameters, (1) high-throughput protein separation, identification, and characterization, and (2) the extension of the obtained analytical data for the determination of the physiological function. The inner ear poses exceptional challenges to the study of proteomics because of its minute size, poor accessibility, association with complex fluid spaces, and diversity of cell types. Various approaches to the study of proteomics of the inner ear are presented, and success stories, noteworthy failures and what lies ahead, will be discussed.
Collapse
Affiliation(s)
- Isolde Thalmann
- Department of Otolaryngology, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8115, St. Louis, MO 63110, USA.
| |
Collapse
|
43
|
Banfi C, Brioschi M, Wait R, Begum S, Gianazza E, Fratto P, Polvani G, Vitali E, Parolari A, Mussoni L, Tremoli E. Proteomic analysis of membrane microdomains derived from both failing and non-failing human hearts. Proteomics 2006; 6:1976-88. [PMID: 16475230 DOI: 10.1002/pmic.200500278] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Eukaryotic cells plasma membranes are organized into microdomains of specialized function such as lipid rafts and caveolae, with a specific lipid composition highly enriched in cholesterol and glycosphingolipids. In addition to their role in regulating signal transduction, multiple functions have been proposed, such as anchorage of receptors, trafficking of cholesterol, and regulation of permeability. However, an extensive understanding of their protein composition in human heart, both in failing and non-failing conditions, is not yet available. Membrane microdomains were isolated from left ventricular tissue of both failing (n = 15) and non-failing (n = 15) human hearts. Protein composition and differential protein expression was explored by comparing series of 2-D maps and subsequent identification by LC-MS/MS analysis. Data indicated that heart membrane microdomains are enriched in chaperones, cytoskeletal-associated proteins, enzymes and protein involved in signal transduction pathway. In addition, differential protein expression profile revealed that 30 proteins were specifically up- or down-regulated in human heart failure membrane microdomains. This study resulted in the identification of human heart membrane microdomain protein composition, which was not previously available. Moreover, it allowed the identification of multiple proteins whose expression is altered in heart failure, thus opening new perspectives to determine which role they may play in this disease.
Collapse
Affiliation(s)
- Cristina Banfi
- Department of Pharmacological Sciences, University of Milan, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Jin X, Xia L, Wang LS, Shi JZ, Zheng Y, Chen WL, Zhang L, Liu ZG, Chen GQ, Fang NY. Differential protein expression in hypertrophic heart with and without hypertension in spontaneously hypertensive rats. Proteomics 2006; 6:1948-56. [PMID: 16485256 DOI: 10.1002/pmic.200500337] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although cardiac hypertrophy in hypertension has been well recognized, the molecular mechanisms for the development of hypertrophy are still largely unknown. In this study, the protein expression profiles of left ventricular myocardia in spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY) rats at different ages were analyzed using 2-DE in combination with MALDI-TOF/TOF MS/MS. The results showed that 20 proteins were modulated in the hypertrophic myocardium. Out of these modulated proteins, 13 proteins presented significant changes in SHR at an early stage prior to the development of sustained hypertension, while the changes of the other 7 protein expressions occurred only at a late stage in SHR when the blood pressure was significantly elevated, and were largely reversible by treatment with rennin-angiotensin-aldosterone system inhibitors losartan or enalapril. These data demonstrate that the changes in energy metabolism in the hypertrophied heart favor an increase in glycolysis and a decrease in oxidation of fatty acid and glucose, which occur at an early stage in SHR without hypertension. Our results also provide evidence to support the hypothesis that oxidative stress plays an important role in the development of hypertensive cardiac hypertrophy.
Collapse
Affiliation(s)
- Xian Jin
- Department of Geriatrics, Ren-Ji Hospital, Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education [corrected] Shanghai Jiao-Tong University Medical School, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li ZB, Flint PW, Boluyt MO. Evaluation of several two-dimensional gel electrophoresis techniques in cardiac proteomics. Electrophoresis 2005; 26:3572-85. [PMID: 16100742 DOI: 10.1002/elps.200500104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Two-dimensional gel electrophoresis (2-DE) is currently the best method for separating complex mixtures of proteins, and its use is gradually becoming more common in cardiac proteome analysis. A number of variations in basic 2-DE have emerged, but their usefulness in analyzing cardiac tissue has not been evaluated. The purpose of the present study was to systematically evaluate the capabilities and limitations of several 2-DE techniques for separating proteins from rat heart tissue. Immobilized pH gradient strips of various pH ranges, parameters of protein loading and staining, subcellular fractionation, and detection of phosphorylated proteins were studied. The results provide guidance for proteome analysis of cardiac and other tissues in terms of selection of the isoelectric point separating window for cardiac proteins, accurate quantitation of cardiac protein abundance, stabilization of technical variation, reduction of sample complexity, enrichment of low-abundant proteins, and detection of phosphorylated proteins.
Collapse
Affiliation(s)
- Zhao Bo Li
- Laboratory of Molecular Kinesiology, Division of Kinesiology, Center for Exercise Research, The University of Michigan, Ann Arbor, MI 48109-2214, USA
| | | | | |
Collapse
|
46
|
Faber MJ, Dalinghaus M, Lankhuizen IM, Bezstarosti K, Dekkers DHW, Duncker DJ, Helbing WA, Lamers JMJ. Proteomic changes in the pressure overloaded right ventricle after 6 weeks in young rats: Correlations with the degree of hypertrophy. Proteomics 2005; 5:2519-30. [PMID: 15912512 DOI: 10.1002/pmic.200401313] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Right ventricular (RV) hypertrophy is an important problem in congenital heart disease. We determined the alterations in phenotype that occur in the initial phase of RV hypertrophy and their possible correlations with the degree of hypertrophy. Therefore, we performed a differential proteomic profiling study on RV hypertrophy using an animal model of pulmonary artery banding (PAB) in parallel with hemodynamic characterization. The RV homogenates were subfractionated in myofilament and cytoplasmic proteins, which subsequently were separated by two-dimensional gel electrophoresis (2-DE), excised, and analyzed by mass spectrometry (MS). The cytoplasmic fraction showed expression changes in metabolic proteins, indicative of a shift from fatty acid to glucose as a substrate for energy supply. Up-regulation of three HSP-27s (1.9-, 1.7-, and 3.5-fold) indicated an altered stress response in RV hypertrophy. Detailed analysis by immunoblotting and MS showed that two of these HSP-27s were at least phosphorylated on Ser15. The myofilament fraction showed up-regulation of desmin and alpha-B-crystallin (1.4-and 1.3-fold, respectively). This alteration in desmin was confirmed by 1-DE immunoblots. Certain differentially expressed proteins, such as HSP-27, showed a significant correlation with the RV weight to the body weight ratio in the PAB rats, suggesting an association with the degree of hypertrophy.
Collapse
Affiliation(s)
- Matthijs J Faber
- Department of Pediatrics, Division of Pediatric Cardiology, Erasmus MC-Sophia Children's Hospital, Cardiovascular Research School COEUR, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Casey TM, Arthur PG, Bogoyevitch MA. Proteomic Analysis Reveals Different Protein Changes during Endothelin-1- or Leukemic Inhibitory Factor-induced Hypertrophy of Cardiomyocytes in Vitro. Mol Cell Proteomics 2005; 4:651-61. [PMID: 15708983 DOI: 10.1074/mcp.m400155-mcp200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteomic analyses are being increasingly used to identify protein changes accompanying changes in cellular function. An advantage of this approach is that it is largely unbiased by prior assumptions on the importance of each protein in the process under investigation. Here we have evaluated the protein changes that accompany the enlargement, or hypertrophy, of cardiomyocytes in culture. We have taken the additional step of comparing the changes that accompany a concentric hypertrophic phenotype stimulated by endothelin-1 exposure and an eccentric hypertrophic phenotype stimulated by leukemic inhibitory factor exposure. Following separation of the protein extracts by two-dimensional gel electrophoresis and staining with colloidal Coomassie Brilliant Blue, we identified 15 protein spots representing 12 proteins that changed in response to endothelin-1. In comparison, 17 protein spots representing 17 proteins changed in response to leukemic inhibitory factor, and 35 protein spots representing 28 proteins did not change under these conditions. Importantly the well established marker of cardiac pathology, atrial natriuretic factor, was identified as a protein up-regulated by both endothelin-1 and leukemic inhibitory factor (2.4+/-0.8- and 2.2+/-0.3-fold, respectively). However, nine of the observed protein changes occurred for only endothelin-1, whereas 11 of the changes occurred only with leukemic inhibitory factor exposure. These two different stimuli are therefore able to elicit unique changes in the protein expression profile of cardiac myocytes. This is consistent with the differences in morphologies noted as well as the different signaling pathways utilized by these different stimuli.
Collapse
Affiliation(s)
- Tammy M Casey
- Department of Biochemistry and Molecular Biology, School of Biomedical and Chemical Sciences, University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | | |
Collapse
|
48
|
De Celle T, Vanrobaeys F, Lijnen P, Blankesteijn WM, Heeneman S, Van Beeumen J, Devreese B, Smits JFM, Janssen BJA. Alterations in mouse cardiac proteome after in vivo myocardial infarction: permanent ischaemia versus ischaemia-reperfusion. Exp Physiol 2005; 90:593-606. [PMID: 15833752 DOI: 10.1113/expphysiol.2005.030296] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mice are increasingly used to study the early molecular mechanisms inducing injury to the heart following myocardial infarction. To date, two-dimensional gel electrophoresis combined with mass spectrometry has not been applied to identify changes in protein expression in myocardial tissue of mice subjected in vivo to permanent ischaemia (PI) or ischaemia-reperfusion (IR). In the PI group, ischaemia was induced for 210 min by ligation of the left anterior descending coronary artery while in the IR group, ischaemia was maintained for 30 min and reperfusion was allowed for 180 min. In both groups, the area of the left ventricle at risk was processed for 2-dimensional gel electrophoresis. By comparing protein density changes in cytosolic as well as membrane fractions, we found a total of 32 protein spots that were differentially expressed. Twenty spots changed in expression level after PI alone, four spots after IR alone, and eight spots changed in both models. Identified proteins with MALDI TOF-TOF and LC-MS/MS can be classified into functional groups of anticoagulant proteins, structural proteins, inflammatory-related proteins, transcription- and translation-related proteins, heat shock proteins (HSPs), metabolism-related proteins and miscellaneous. A remarkable finding was the IR-specific translocation of annexins (A3 and A5) from the cytosolic to the membrane compartment, a phenomenon that was verified by Western blotting. Four proteins were changed in expression level at multiple spot locations, characterized by a difference in isoelectric point. In the case of cardiac troponin T and HSP-20, these changes were also dependent on the model. In addition, one spot for the proteins adenylate kinase 1, cardiac troponin T and HSP-20 was uniquely present in the IR and/or PI groups and not in the respective sham groups. The specific alterations in protein expression that took place after PI and IR may stimulate the search for new tools to diagnoze myocardial infarction and to characterize specific pathology-related changes in protein expression.
Collapse
MESH Headings
- Animals
- Annexins/metabolism
- Anticoagulants/metabolism
- Blotting, Western
- Chromatography, High Pressure Liquid
- Cytosol/metabolism
- Electrophoresis, Gel, Two-Dimensional
- Gene Expression Regulation/physiology
- Heart/physiopathology
- Heat-Shock Proteins/metabolism
- Image Processing, Computer-Assisted
- Male
- Mice
- Muscle Proteins/biosynthesis
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Ischemia/metabolism
- Myocardial Reperfusion Injury/metabolism
- Myocardium/metabolism
- Protein Processing, Post-Translational
- Protein Transport
- Proteome/physiology
- Spectrometry, Mass, Electrospray Ionization
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Tijl De Celle
- Department of Pharmacology & Toxicology, Universiteit Maastricht, PO Box 616, Maastricht, 6200 MD, the Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
White MY, Cordwell SJ, McCarron HCK, Prasan AM, Craft G, Hambly BD, Jeremy RW. Proteomics of ischemia/reperfusion injury in rabbit myocardium reveals alterations to proteins of essential functional systems. Proteomics 2005; 5:1395-410. [DOI: 10.1002/pmic.200400995] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
Mayr M, Mayr U, Chung YL, Yin X, Griffiths JR, Xu Q. Vascular proteomics: Linking proteomic and metabolomic changes. Proteomics 2004; 4:3751-61. [PMID: 15540213 DOI: 10.1002/pmic.200400947] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases constitute the largest of death in the Western world. Various stressors, including elevated blood pressure, smoking, diabetes, and hypercholesterolemia directly or indirectly damage the vessel wall, eventually inducing arterial stiffness (arteriosclerosis) and lipid accumulation (atherosclerosis). However, the molecular mechanisms of atheroma formation are not yet fully clarified. While many investigators have used proteomic techniques to study cardiac diseases, vascular proteomics is still in its infancy. The present review highlights studies, in which proteomics has been successfully applied to study protein alterations in the vasculature. Furthermore, we will summarize our recent progress in combining proteomic and metabolomic techniques to reveal protein and metabolite alterations in the cardiovascular system: two-dimensional (2-D) gel electrophoresis proved to be highly complementary to nuclear magnetic resonance (NMR) spectroscopy, in that post-translational modifications of the most abundant enzymes were displayed on 2-D gels while NMR spectroscopy revealed changes in the corresponding metabolites. Importantly, the simultaneous assessment of protein and metabolite changes translated purely descriptive proteomic and metabolomic profiles into a functional context and provided important insights into pathophysiological mechanisms that would not have been obtained by other techniques.
Collapse
Affiliation(s)
- Manuel Mayr
- Department of Cardiac and Vascular Sciences, St George's Hospital Medical School, London, UK.
| | | | | | | | | | | |
Collapse
|