1
|
Plavelil N, Appu AP, Gopal KC, Mondal A, Perkins N, Mukherjee AB. Defective anterograde protein-trafficking contributes to endoplasmic reticulum-stress in a CLN1 disease model. Neurobiol Dis 2025; 209:106890. [PMID: 40158736 PMCID: PMC12018121 DOI: 10.1016/j.nbd.2025.106890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025] Open
Abstract
Lysosomal storage disorders (LSDs) represent 70 inherited metabolic diseases, in most of which neurodegeneration is a devastating manifestation. The CLN1 disease is a fatal neurodegenerative LSD, caused by inactivating mutations in the CLN1 gene encoding palmitoyl-protein thioesterase-1 (PPT1). S-palmitoylation, a reversable posttranslational modification by saturated fatty acids (generally palmitate) facilitates endosomal trafficking of many proteins, especially in the brain. While palmitoyl-acyltransferases (called ZDHHCs) catalyze S-palmitoylation, depalmitoylation is mediated by palmitoyl-protein thioesterases (PPTs). We previously reported that in Cln1-/- mice, which mimic human CLN1-disease, endoplasmic reticulum (ER)-stress leads to unfolded protein response (UPR) contributing to neurodegeneration. However, the mechanism underlying ER-stress has remained elusive. The anterograde (ER to Golgi) protein-trafficking is mediated via COPII (coat protein complex II) vesicles, whereas the retrograde transport (Golgi to ER) is mediated by COPI vesicles. We hypothesized that dysregulated anterograde protein-trafficking causing stagnation of proteins in the ER leads to ER-stress in Cln1-/- mice. We found that the levels of five COPII vesicle-associated proteins (i.e. Sar1, Sec23, Sec24, Sec13 and Sec31) are significantly higher in the ER-fractions of cortical tissues from Cln1-/- mice compared with those from their WT littermates. Remarkably, all COPII proteins, except Sec13, undergo S-palmitoylation. Moreover, CLN8, a Batten disease-protein, requires dynamic S-palmitoylation (palmitoylation-depalmitoylation) for ER-Golgi trafficking. Intriguingly, Ppt1-deficiency in Cln1-/- mice impairs ER-Golgi trafficking of Cln8-protein along with several other COPII-associated proteins. We propose that impaired anterograde trafficking causes excessive accumulation of proteins in the ER causing ER-stress and UPR contributing to neurodegeneration in CLN1 disease.
Collapse
Affiliation(s)
- Nisha Plavelil
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1830, United States of America.
| | - Abhilash P Appu
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1830, United States of America
| | - K C Gopal
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1830, United States of America
| | - Avisek Mondal
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1830, United States of America
| | - Neil Perkins
- Biostatistics and Bioinformatics Branch (HNT72), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, United States of America
| | - Anil B Mukherjee
- Section on Developmental Genetics, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1830, United States of America.
| |
Collapse
|
2
|
Ma R, Xue M, Ge F, Jueraitetibaike K, Zhao S, Qian Z, He Z, Zhang H, Tang T, Cao C, Li C, Zheng L, Xue T, Dong J, Jing J, Zhong J, Ma J, Yang Y, Huang Y, Ge X, Yao B, Chen L. Melatonin protects aged oocytes from depalmitoylation-mediated quality reduction by promoting PPT1 degradation and antioxidation. Redox Biol 2025; 80:103510. [PMID: 39862447 PMCID: PMC11803875 DOI: 10.1016/j.redox.2025.103510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
Oocyte aging is closely related to a decline in female fertility, accompanied by increased reactive oxygen species levels and changes in protein posttranslational modifications. However, the role of protein palmitoylation in oocyte aging has not been investigated. In the present study, a new association between redox and palmitoylation in aging oocytes was found. We found that the protein level of palmitoyl-protein thioesterase 1 (PPT1), a depalmitoylation enzyme, was increased in maternally aged mice oocytes and follicular fluid of aged (age >35 years) patients with decreased ovarian reserve (DOR). Elevated PPT1 led to decreased S-palmitoylation levels in oocytes, which impaired oocyte maturation and spindle formation. Tubulin was identified as a critical palmitoylated protein regulated by PPT1, whose palmitoylation was also decreased by advanced age, accompanied by abnormalities in membrane localization and microtubule polymerization. Melatonin was found to down-regulate excessive PPT1 and rescue PPT1-induced damage in mouse oocytes, not only by regulating oxidative stress, but also by binding with PPT1 to regulate its lysosomal degradation. In summary, our data demonstrate that PPT1 participates in oocyte aging by regulating tubulin palmitoylation, providing evidence that oxidative stress regulates protein palmitoylation and revealing a novel mechanism of oocyte aging.
Collapse
Affiliation(s)
- Rujun Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Mengqi Xue
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Feiyan Ge
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Kadiliya Jueraitetibaike
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Shanmeizi Zhao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Zhang Qian
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Zhaowanyue He
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Hong Zhang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Ting Tang
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Chun Cao
- Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China
| | - Chuwei Li
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Lu Zheng
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Tongmin Xue
- Reproductive Medical Center, Clinical Medical College (Northern Jiangsu People's Hospital), Yangzhou University, Yangzhou, Jiangsu, 225001, China
| | - Jie Dong
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Jun Jing
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jian Zhong
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210004, China
| | - Jinzhao Ma
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yang Yang
- Clinical Laboratory, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China
| | - Yadong Huang
- Department of Cell Biology, Jinan University, Guangzhou, 510632, China; Guangdong Province Key Laboratory of Bioengineering Medicine, Guangzhou, 510632, China.
| | - Xie Ge
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
| | - Bing Yao
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
| | - Li Chen
- Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China.
| |
Collapse
|
3
|
Wang S, Xing X, Ma J, Zheng S, Song Q, Zhang P. Deacylases-structure, function, and relationship to diseases. FEBS Lett 2024; 598:959-977. [PMID: 38644468 DOI: 10.1002/1873-3468.14885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/28/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024]
Abstract
Reversible S-acylation plays a pivotal role in various biological processes, modulating protein functions such as subcellular localization, protein stability/activity, and protein-protein interactions. These modifications are mediated by acyltransferases and deacylases, among which the most abundant modification is S-palmitoylation. Growing evidence has shown that this rivalrous pair of modifications, occurring in a reversible cycle, is essential for various biological functions. Aberrations in this process have been associated with various diseases, including cancer, neurological disorders, and immune diseases. This underscores the importance of studying enzymes involved in acylation and deacylation to gain further insights into disease pathogenesis and provide novel strategies for disease treatment. In this Review, we summarize our current understanding of the structure and physiological function of deacylases, highlighting their pivotal roles in pathology. Our aim is to provide insights for further clinical applications.
Collapse
Affiliation(s)
- Shuxian Wang
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Xiaoke Xing
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Jialin Ma
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, China
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, China
| |
Collapse
|
4
|
Chen Y, Li Y, Wu L. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment. Front Immunol 2024; 15:1337478. [PMID: 38415253 PMCID: PMC10896991 DOI: 10.3389/fimmu.2024.1337478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that involves the addition of a 16-carbon palmitoyl group to a protein cysteine residue via a thioester linkage. This modification plays a crucial role in the regulation protein localization, accumulation, secretion, stability, and function. Dysregulation of protein S-palmitoylation can disrupt cellular pathways and contribute to the development of various diseases, particularly cancers. Aberrant S-palmitoylation has been extensively studied and proven to be involved in tumor initiation and growth, metastasis, and apoptosis. In addition, emerging evidence suggests that protein S-palmitoylation may also have a potential role in immune modulation. Therefore, a comprehensive understanding of the regulatory mechanisms of S-palmitoylation in tumor cells and the tumor immune microenvironment is essential to improve our understanding of this process. In this review, we summarize the recent progress of S-palmitoylation in tumors and the tumor immune microenvironment, focusing on the S-palmitoylation modification of various proteins. Furthermore, we propose new ideas for immunotherapeutic strategies through S-palmitoylation intervention.
Collapse
Affiliation(s)
- Yijiao Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
5
|
Shen ZC, Liu JM, Zheng JY, Li MD, Tian D, Pan Y, Tao WC, Gao SQ, Xia ZX. Regulation of anxiety-like behaviors by S-palmitoylation and S-nitrosylation in basolateral amygdala. Biomed Pharmacother 2023; 169:115859. [PMID: 37948993 DOI: 10.1016/j.biopha.2023.115859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Protein posttranslational modification regulates synaptic protein stability, sorting and trafficking, and is involved in emotional disorders. Yet the molecular mechanisms regulating emotional disorders remain unelucidated. Here we report unknown roles of protein palmitoylation/nitrosylation crosstalk in regulating anxiety-like behaviors in rats. According to the percentages of open arm duration in the elevated plus maze test, the rats were divided into high-, intermediate- and low-anxiety groups. The palmitoylation and nitrosylation levels were detected by acyl-biotin exchange assay, and we found low palmitoylation and high nitrosylation levels in the basolateral amygdala (BLA) of high-anxiety rats. Furthermore, we observed that 2-bromopalmitate (2-BP), a palmitoylation inhibitor, induced anxiety-like behaviors, accompanied with decreased amplitude and frequency of mEPSCs and mIPSCs in the BLA. Additionally, we also found that inhibiting nNOS activity with 7-nitroindazole (7-NI) in the BLA caused anxiolytic effects and reduced the synaptic transmission. Interestingly, diazepam (DZP) rapidly elevated the protein palmitoylation level and attenuated the protein nitrosylation level in the BLA. Specifically, similar to DZP, the voluntary wheel running exerted DZP-like anxiolytic action, and induced high palmitoylation and low nitrosylation levels in the BLA. Lastly, blocking the protein palmitoylation with 2-BP induced an increase in protein nitrosylation level, and attenuating the nNOS activity by 7-NI elevated the protein palmitoylation level. Collectively, these results show a critical role of protein palmitoylation/nitrosylation crosstalk in orchestrating anxiety behavior in rats, and it may serve as a potential target for anxiolytic intervention.
Collapse
Affiliation(s)
- Zu-Cheng Shen
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China; Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China.
| | - Jian-Min Liu
- Department of Pharmacy, Wuhan No. 1 Hospital, Wuhan 430000, China
| | - Jie-Yan Zheng
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Meng-Die Li
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Dan Tian
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Yue Pan
- Department of Pharmacology, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Wu-Cheng Tao
- Key Laboratory of Brain Aging and Neurodegenerative Diseases, Fujian Medical University, Fuzhou 350122, China
| | - Shuang-Qi Gao
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhi-Xuan Xia
- Department of Pharmacology, School of Basic Medicine and Life Science, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
6
|
Ramzan F, Abrar F, Mishra GG, Liao LMQ, Martin DDO. Lost in traffic: consequences of altered palmitoylation in neurodegeneration. Front Physiol 2023; 14:1166125. [PMID: 37324388 PMCID: PMC10268010 DOI: 10.3389/fphys.2023.1166125] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
One of the first molecular events in neurodegenerative diseases, regardless of etiology, is protein mislocalization. Protein mislocalization in neurons is often linked to proteostasis deficiencies leading to the build-up of misfolded proteins and/or organelles that contributes to cellular toxicity and cell death. By understanding how proteins mislocalize in neurons, we can develop novel therapeutics that target the earliest stages of neurodegeneration. A critical mechanism regulating protein localization and proteostasis in neurons is the protein-lipid modification S-acylation, the reversible addition of fatty acids to cysteine residues. S-acylation is more commonly referred to as S-palmitoylation or simply palmitoylation, which is the addition of the 16-carbon fatty acid palmitate to proteins. Like phosphorylation, palmitoylation is highly dynamic and tightly regulated by writers (i.e., palmitoyl acyltransferases) and erasers (i.e., depalmitoylating enzymes). The hydrophobic fatty acid anchors proteins to membranes; thus, the reversibility allows proteins to be re-directed to and from membranes based on local signaling factors. This is particularly important in the nervous system, where axons (output projections) can be meters long. Any disturbance in protein trafficking can have dire consequences. Indeed, many proteins involved in neurodegenerative diseases are palmitoylated, and many more have been identified in palmitoyl-proteomic studies. It follows that palmitoyl acyl transferase enzymes have also been implicated in numerous diseases. In addition, palmitoylation can work in concert with cellular mechanisms, like autophagy, to affect cell health and protein modifications, such as acetylation, nitrosylation, and ubiquitination, to affect protein function and turnover. Limited studies have further revealed a sexually dimorphic pattern of protein palmitoylation. Therefore, palmitoylation can have wide-reaching consequences in neurodegenerative diseases.
Collapse
|
7
|
Nittari G, Tomassoni D, Roy P, Martinelli I, Tayebati SK, Amenta F. Batten disease through different in vivo and in vitro models: A review. J Neurosci Res 2023; 101:298-315. [PMID: 36434776 DOI: 10.1002/jnr.25147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Batten disease consists of a family of primarily autosomal recessive, progressive neuropediatric disorders, also known as neuronal ceroid lipofuscinoses (NCLs). These pathologies are characterized by seizures and visual, cognitive and motor decline, and premature death. The pathophysiology of this rare disease is still unclear despite the years of trials and financial aids. This paper has reviewed advantages and limits of in vivo and in vitro models of Batten disease from murine and larger animal models to primitive unicellular models, until the most recently developed patient-derived induced pluripotent stem cells. For each model advantages, limits and applications were analyzed. The first prototypes investigated were murine models that due to their limits were replaced by larger animals. In vitro models gradually replaced animal models for practical, cost, and ethical reasons. Using induced pluripotent stem cells to study neurodegeneration is a new way of studying the disease, since they can be distinguished into differentiating elements like neurons, which are susceptible to neurodegeneration. In vivo and in vitro models have contributed to clarifying to some extent the pathophysiology of the disease. The collection and sharing of suitable human bio samples likely through biobanks can contribute to a better understanding, prevention, and to identify possible treatment strategies of Batten disease.
Collapse
Affiliation(s)
- Giulio Nittari
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Ilenia Martinelli
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| |
Collapse
|
8
|
Del Grosso A, Parlanti G, Mezzena R, Cecchini M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114464. [PMID: 35878795 DOI: 10.1016/j.addr.2022.114464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Lysosomal storage disorders (LSDs) are a vast group of more than 50 clinically identified metabolic diseases. They are singly rare, but they affect collectively 1 on 5,000 live births. They result in most of the cases from an enzymatic defect within lysosomes, which causes the subsequent augmentation of unwanted substrates. This accumulation process leads to plenty of clinical signs, determined by the specific substrate and accumulation area. The majority of LSDs present a broad organ and tissue engagement. Brain, connective tissues, viscera and bones are usually afflicted. Among them, brain disease is markedly frequent (two-thirds of LSDs). The most clinically employed approach to treat LSDs is enzyme replacement therapy (ERT), which is practiced by administering systemically the missed or defective enzyme. It represents a healthful strategy for 11 LSDs at the moment, but it solves the pathology only in the case of Gaucher disease. This approach, in fact, is not efficacious in the case of LSDs that have an effect on the central nervous system (CNS) due to the existence of the blood-brain barrier (BBB). Additionally, ERT suffers from several other weak points, such as low penetration of the exogenously administered enzyme to poorly vascularized areas, the development of immunogenicity and infusion-associated reactions (IARs), and, last but not least, the very high cost and lifelong needed. To ameliorate these weaknesses lot of efforts have been recently spent around the development of innovative nanotechnology-driven ERT strategies. They may boost the power of ERT and minimize adverse reactions by loading enzymes into biodegradable nanomaterials. Enzyme encapsulation into biocompatible liposomes, micelles, and polymeric nanoparticles, for example, can protect enzymatic activity, eliminating immunologic reactions and premature enzyme degradation. It can also permit a controlled release of the payload, ameliorating pharmacokinetics and pharmacodynamics of the drug. Additionally, the potential to functionalize the surface of the nanocarrier with targeting agents (antibodies or peptides), could promote the passage through biological barriers. In this review we examined the clinically applied ERTs, highlighting limitations that do not allow to completely cure the specific LSD. Later, we critically consider the nanotechnology-based ERT strategies that have beenin-vitroand/orin-vivotested to improve ERT efficacy.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberta Mezzena
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
9
|
Hossain MA, Hasegawa-Ogawa M, Manome Y, Igarashi M, Wu C, Suzuki K, Igarashi J, Iwamoto T, Okano HJ, Eto Y. Generation and characterization of motor neuron progenitors and motor neurons using metachromatic leukodystrophy-induced pluripotent stem cells. Mol Genet Metab Rep 2022; 31:100852. [PMID: 35782608 PMCID: PMC9248224 DOI: 10.1016/j.ymgmr.2022.100852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 10/29/2022] Open
|
10
|
Mondal A, Appu AP, Sadhukhan T, Bagh MB, Previde RM, Sadhukhan S, Stojilkovic S, Liu A, Mukherjee AB. Ppt1-deficiency dysregulates lysosomal Ca ++ homeostasis contributing to pathogenesis in a mouse model of CLN1 disease. J Inherit Metab Dis 2022; 45:635-656. [PMID: 35150145 PMCID: PMC9090967 DOI: 10.1002/jimd.12485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Inactivating mutations in the PPT1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) underlie the CLN1 disease, a devastating neurodegenerative lysosomal storage disorder. The mechanism of pathogenesis underlying CLN1 disease has remained elusive. PPT1 is a lysosomal enzyme, which catalyzes the removal of palmitate from S-palmitoylated proteins (constituents of ceroid lipofuscin) facilitating their degradation and clearance by lysosomal hydrolases. Thus, it has been proposed that Ppt1-deficiency leads to lysosomal accumulation of ceroid lipofuscin leading to CLN1 disease. While S-palmitoylation is catalyzed by palmitoyl acyltransferases (called ZDHHCs), palmitoyl-protein thioesterases (PPTs) depalmitoylate these proteins. We sought to determine the mechanism by which Ppt1-deficiency may impair lysosomal degradative function leading to infantile neuronal ceroid lipofuscinosis pathogenesis. Here, we report that in Ppt1-/- mice, which mimic CLN1 disease, low level of inositol 3-phosphate receptor-1 (IP3R1) that mediates Ca++ transport from the endoplasmic reticulum to the lysosome dysregulated lysosomal Ca++ homeostasis. Intriguingly, the transcription factor nuclear factor of activated T-cells, cytoplasmic 4 (NFATC4), which regulates IP3R1-expression, required S-palmitoylation for trafficking from the cytoplasm to the nucleus. We identified two palmitoyl acyltransferases, ZDHHC4 and ZDHHC8, which catalyzed S-palmitoylation of NFATC4. Notably, in Ppt1-/- mice, reduced ZDHHC4 and ZDHHC8 levels markedly lowered S-palmitoylated NFATC4 (active) in the nucleus, which inhibited IP3R1-expression, thereby dysregulating lysosomal Ca++ homeostasis. Consequently, Ca++ -dependent lysosomal enzyme activities were markedly suppressed. Impaired lysosomal degradative function impaired autophagy, which caused lysosomal storage of undigested cargo. Importantly, IP3R1-overexpression in Ppt1-/- mouse fibroblasts ameliorated this defect. Our results reveal a previously unrecognized role of Ppt1 in regulating lysosomal Ca++ homeostasis and suggest that this defect contributes to pathogenesis of CLN1 disease.
Collapse
Affiliation(s)
- Avisek Mondal
- Section on Developmental Genetics, Division of Translational Medicine
| | - Abhilash P. Appu
- Section on Developmental Genetics, Division of Translational Medicine
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Division of Translational Medicine
| | - Maria B. Bagh
- Section on Developmental Genetics, Division of Translational Medicine
| | - Rafael M. Previde
- Section on Cellular Signaling, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | | | - Stanko Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch, Division of Intramural Population Health Research, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830
| | - Anil B Mukherjee
- Section on Developmental Genetics, Division of Translational Medicine
- Correspondence to AM () or ABM ()
| |
Collapse
|
11
|
Simonati A, Williams RE. Neuronal Ceroid Lipofuscinosis: The Multifaceted Approach to the Clinical Issues, an Overview. Front Neurol 2022; 13:811686. [PMID: 35359645 PMCID: PMC8961688 DOI: 10.3389/fneur.2022.811686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
The main aim of this review is to summarize the current state-of-art in the field of childhood Neuronal Ceroid Lipofuscinosis (NCL), a group of rare neurodegenerative disorders. These are genetic diseases associated with the formation of toxic endo-lysosomal storage. Following a brief historical review of the evolution of NCL definition, a clinically-oriented approach is used describing how the early symptoms and signs affecting motor, visual, cognitive domains, and including seizures, may lead clinicians to a rapid molecular diagnosis, avoiding the long diagnostic odyssey commonly observed. We go on to focus on recent advances in NCL research and summarize contributions to knowledge of the pathogenic mechanisms underlying NCL. We describe the large variety of experimental models which have aided this research, as well as the most recent technological developments which have shed light on the main mechanisms involved in the cellular pathology, such as apoptosis and autophagy. The search for innovative therapies is described. Translation of experimental data into therapeutic approaches is being established for several of the NCLs, and one drug is now commercially available. Lastly, we show the importance of palliative care and symptomatic treatments which are still the main therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Simonati
- Departments of Surgery, Dentistry, Paediatrics, and Gynaecology, School of Medicine, University of Verona, Verona, Italy
- Department of Clinical Neuroscience, AOUI-VR, Verona, Italy
- *Correspondence: Alessandro Simonati
| | - Ruth E. Williams
- Department of Children's Neuroscience, Evelina London Children's Hospital, London, United Kingdom
- Ruth E. Williams
| |
Collapse
|
12
|
Gu X, Ke S, Wang Q, Zhuang T, Xia C, Xu Y, Yang L, Zhou M. Energy metabolism in major depressive disorder: Recent advances from omics technologies and imaging. Biomed Pharmacother 2021; 141:111869. [PMID: 34225015 DOI: 10.1016/j.biopha.2021.111869] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/06/2021] [Accepted: 06/28/2021] [Indexed: 02/08/2023] Open
Abstract
Major depressive disorder (MDD) is a serious psychiatric disorder that associated with high rate of disability and increasing suicide rate, and the pathogenesis is still unclear. Many researches showed that the energy metabolism of patients with depression is impaired, which may be the direction of depression treatment. In this review, we focus on the "omics" technologies such as genomics, proteomics, transcriptomics and metabolomics, as well as imaging, and the progress on energy metabolism of MDD. These findings indicate that abnormal energy metabolism is one of the important mechanisms for the occurrence and development of depression. Although the research on various mechanisms of depression is still ongoing, the rapid development of new technologies and the joint use of various technologies will help to clarify the pathogenesis of depression and explore efficient diagnosis and treatment methods.
Collapse
Affiliation(s)
- Xinyi Gu
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuang Ke
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tongxi Zhuang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Chenyi Xia
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
13
|
Gupta R, Sahu M, Srivastava D, Tiwari S, Ambasta RK, Kumar P. Post-translational modifications: Regulators of neurodegenerative proteinopathies. Ageing Res Rev 2021; 68:101336. [PMID: 33775891 DOI: 10.1016/j.arr.2021.101336] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/10/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
One of the hallmark features in the neurodegenerative disorders (NDDs) is the accumulation of aggregated and/or non-functional protein in the cellular milieu. Post-translational modifications (PTMs) are an essential regulator of non-functional protein aggregation in the pathogenesis of NDDs. Any alteration in the post-translational mechanism and the protein quality control system, for instance, molecular chaperone, ubiquitin-proteasome system, autophagy-lysosomal degradation pathway, enhances the accumulation of misfolded protein, which causes neuronal dysfunction. Post-translational modification plays many roles in protein turnover rate, accumulation of aggregate and can also help in the degradation of disease-causing toxic metabolites. PTMs such as acetylation, glycosylation, phosphorylation, ubiquitination, palmitoylation, SUMOylation, nitration, oxidation, and many others regulate protein homeostasis, which includes protein structure, functions and aggregation propensity. Different studies demonstrated the involvement of PTMs in the regulation of signaling cascades such as PI3K/Akt/GSK3β, MAPK cascade, AMPK pathway, and Wnt signaling pathway in the pathogenesis of NDDs. Further, mounting evidence suggests that targeting different PTMs with small chemical molecules, which acts as an inhibitor or activator, reverse misfolded protein accumulation and thus enhances the neuroprotection. Herein, we briefly discuss the protein aggregation and various domain structures of different proteins involved in the NDDs, indicating critical amino acid residues where PTMs occur. We also describe the implementation and involvement of various PTMs on signaling cascade and cellular processes in NDDs. Lastly, we implement our current understanding of the therapeutic importance of PTMs in neurodegeneration, along with emerging techniques targeting various PTMs.
Collapse
|
14
|
GFAP hyperpalmitoylation exacerbates astrogliosis and neurodegenerative pathology in PPT1-deficient mice. Proc Natl Acad Sci U S A 2021; 118:2022261118. [PMID: 33753498 PMCID: PMC8020761 DOI: 10.1073/pnas.2022261118] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study reports that the intermediate filament protein GFAP is modified with protein palmitoylation. Increased GFAP expression and palmitoylation is involved in astrocyte proliferation and astrogliosis. We demonstrate that GFAP palmitoylation is regulated by PPT1, a palmitoylprotein thioesterase linked to a childhood neurodegenerative disorder, infantile neuronal ceroid lipofuscinosis. A palmitoylation-defective mutant of GFAP attenuates astrogliosis and the concurrent pathology in a loss-of-function PPT1 mouse. We conclude that accumulation of palmitoylated GFAP contributes to the pathogenesis of astrogliosis and neurodegeneration, suggesting that targeting the modified cysteine in GFAP may be a potential therapeutic strategy for the treatment of infantile neuronal ceroid lipofuscinosis and other neurodegenerative disorders. The homeostasis of protein palmitoylation and depalmitoylation is essential for proper physiological functions in various tissues, in particular the central nervous system (CNS). The dysfunction of PPT1 (PPT1-KI, infantile neuronal ceroid lipofuscinosis [INCL] mouse model), which catalyze the depalmitoylation process, results in serious neurodegeneration accompanied by severe astrogliosis in the brain. Endeavoring to determine critical factors that might account for the pathogenesis in CNS by palm-proteomics, glial fibrillary acidic protein (GFAP) was spotted, indicating that GFAP is probably palmitoylated. Questions concerning if GFAP is indeed palmitoylated in vivo and how palmitoylation of GFAP might participate in neural pathology remain unexplored and are waiting to be investigated. Here we show that GFAP is readily palmitoylated in vitro and in vivo; specifically, cysteine-291 is the unique palmitoylated residue in GFAP. Interestingly, it was found that palmitoylated GFAP promotes astrocyte proliferation in vitro. Furthermore, we showed that PPT1 depalmitoylates GFAP, and the level of palmitoylated GFAP is overwhelmingly up-regulated in PPT1-knockin mice, which lead us to speculate that the elevated level of palmitoylated GFAP might accelerate astrocyte proliferation in vivo and ultimately led to astrogliosis in INCL. Indeed, blocking palmitoylation by mutating cysteine-291 into alanine in GFAP attenuate astrogliosis, and remarkably, the concurrent neurodegenerative pathology in PPT1-knockin mice. Together, these findings demonstrate that hyperpalmitoylated GFAP plays critical roles in regulating the pathogenesis of astrogliosis and neurodegeneration in the CNS, and most importantly, pinpointing that cysteine-291 in GFAP might be a valuable pharmaceutical target for treating INCL and other potential neurodegenerative diseases.
Collapse
|
15
|
Balouch B, Nagorsky H, Pham T, LaGraff JT, Chu-LaGraff Q. Human INCL fibroblasts display abnormal mitochondrial and lysosomal networks and heightened susceptibility to ROS-induced cell death. PLoS One 2021; 16:e0239689. [PMID: 33561134 PMCID: PMC7872282 DOI: 10.1371/journal.pone.0239689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/09/2021] [Indexed: 01/31/2023] Open
Abstract
Infantile Neuronal Ceroid Lipofuscinosis (INCL) is a pediatric neurodegenerative disorder characterized by progressive retinal and central nervous system deterioration during infancy. This lysosomal storage disorder results from a deficiency in the Palmitoyl Protein Thioesterase 1 (PPT1) enzyme—a lysosomal hydrolase which cleaves fatty acid chains such as palmitate from lipid-modified proteins. In the absence of PPT1 activity, these proteins fail to be degraded, leading to the accumulation of autofluorescence storage material in the lysosome. The underlying molecular mechanisms leading to INCL pathology remain poorly understood. A role for oxidative stress has been postulated, yet little evidence has been reported to support this possibility. Here we present a comprehensive cellular characterization of human PPT1-deficient fibroblast cells harboring Met1Ile and Tyr247His compound heterozygous mutations. We detected autofluorescence storage material and observed distinct organellar abnormalities of the lysosomal and mitochondrial structures, which supported previous postulations about the role of ER, mitochondria and oxidative stress in INCL. An increase in the number of lysosomal structures was found in INCL patient fibroblasts, which suggested an upregulation of lysosomal biogenesis, and an association with endoplasmic reticulum stress response. The mitochondrial network also displayed abnormal spherical punctate morphology instead of normal elongated tubules with extensive branching, supporting the involvement of mitochondrial and oxidative stress in INCL cell death. Autofluorescence accumulation and lysosomal pathologies can be mitigated in the presence of conditioned wild type media suggesting that a partial restoration via passive introduction of the enzyme into the cellular environment may be possible. We also demonstrated, for the first time, that human INCL fibroblasts have a heightened susceptibility to exogenous reactive oxygen species (ROS)-induced cell death, which suggested an elevated basal level of endogenous ROS in the mutant cell. Collectively, these findings support the role of intracellular organellar networks in INCL pathology, possibly due to oxidative stress.
Collapse
Affiliation(s)
- Bailey Balouch
- Neuroscience Program, Union College, Schenectady, New York, United States of America
| | - Halle Nagorsky
- Neuroscience Program, Union College, Schenectady, New York, United States of America
| | - Truc Pham
- Department of Biology, Union College, Schenectady, New York, United States of America
| | - James Thai LaGraff
- Department of Biology, Union College, Schenectady, New York, United States of America
| | - Quynh Chu-LaGraff
- Neuroscience Program, Union College, Schenectady, New York, United States of America
- Department of Biology, Union College, Schenectady, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Jin J, Zhi X, Wang X, Meng D. Protein palmitoylation and its pathophysiological relevance. J Cell Physiol 2020; 236:3220-3233. [PMID: 33094504 DOI: 10.1002/jcp.30122] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/25/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022]
Abstract
Protein palmitoylation, in which C16 fatty acid chains are attached to cysteine residues via a reversible thioester linkage, is one of the most common lipid modifications and plays important roles in regulating protein stability, subcellular localization, membrane trafficking, interactions with effector proteins, enzymatic activity, and a variety of other cellular processes. Moreover, the unique reversibility of palmitoylation allows proteins to be rapidly shuttled between biological membranes and cytoplasmic substrates in a process usually controlled by a member of the DHHC family of protein palmitoyl transferases (PATs). Notably, mutations in PATs are closely related to a variety of human diseases, such as cancer, neurological disorders, and immune deficiency conditions. In addition to PATs, intracellular palmitoylation dynamics are also regulated by the interplay between distinct posttranslational modifications, including ubiquitination and phosphorylation. Understanding the specific mechanisms of palmitoylation may reveal novel potential therapeutic targets for many human diseases.
Collapse
Affiliation(s)
- Jiayu Jin
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| | - Xiuling Zhi
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| | - Xinhong Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| | - Dan Meng
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Physiology and Pathophysiology, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Kauss V, Dambrova M, Medina DL. Pharmacological approaches to tackle NCLs. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165553. [PMID: 31521819 DOI: 10.1016/j.bbadis.2019.165553] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 01/06/2023]
Abstract
Neuronal ceroid lipofuscinoses, also collectively known as Batten disease, are a group of rare monogenic disorders caused by mutations in at least 13 different genes. They are characterized by the accumulation of lysosomal storage material and progressive neurological deterioration with dementia, epilepsy, retinopathy, motor disturbances, and early death [1]. Although the identification of disease-causing genes provides an important step for understanding the molecular mechanisms underlying neuronal ceroid lipofuscinoses, compared to other diseases, obstacles to the development of therapies for these rare diseases include less extensive physiopathology knowledge, limited number of patients to test treatments, and poor commercial interest from the industry. Current therapeutic strategies include enzyme replacement therapies, gene therapies targeting the brain and the eye, cell therapies, and pharmacological drugs that could modulate defective molecular pathways. In this review, we will focus in the emerging therapies based in the identification of small-molecules. Recent advances in high- throughput and high-content screening (HTS and HCS) using relevant cell-based assays and applying automation and imaging analysis algorithms, will allow the screening of a large number of compounds in lesser time. These approaches are particularly useful for drug repurposing for Batten disease, that takes the advantage to search for compounds that have already been tested in humans, thereby reducing significantly the resources needed for translation to clinics.
Collapse
Affiliation(s)
- Valerjans Kauss
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga LV-1007, Latvia
| | - Maija Dambrova
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia; Riga Stradins University, Dzirciema 16, Riga LV-1007, Latvia
| | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Naples, Italy; Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
| |
Collapse
|
18
|
Appu AP, Bagh MB, Sadhukhan T, Mondal A, Casey S, Mukherjee AB. Cln3-mutations underlying juvenile neuronal ceroid lipofuscinosis cause significantly reduced levels of Palmitoyl-protein thioesterases-1 (Ppt1)-protein and Ppt1-enzyme activity in the lysosome. J Inherit Metab Dis 2019; 42:944-954. [PMID: 31025705 PMCID: PMC6739123 DOI: 10.1002/jimd.12106] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/13/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022]
Abstract
Mutations in at least 13 different genes (called CLNs) underlie various forms of neuronal ceroid lipofuscinoses (NCLs), a group of the most common neurodegenerative lysosomal storage diseases. While inactivating mutations in the CLN1 gene, encoding palmitoyl-protein thioesterases-1 (PPT1), cause infantile NCL (INCL), those in the CLN3 gene, encoding a protein of unknown function, underlie juvenile NCL (JNCL). PPT1 depalmitoylates S-palmitoylated proteins (constituents of ceroid) required for their degradation by lysosomal hydrolases and PPT1-deficiency causes lysosomal accumulation of autofluorescent ceroid leading to INCL. Because intracellular accumulation of ceroid is a characteristic of all NCLs, a common pathogenic link for these diseases has been suggested. It has been reported that CLN3-mutations suppress the exit of cation-independent mannose 6-phosphate receptor (CI-M6PR) from the trans Golgi network (TGN). Because CI-M6PR transports soluble proteins such as PPT1 from the TGN to the lysosome, we hypothesized that CLN3-mutations may cause lysosomal PPT1-insufficiency contributing to JNCL pathogenesis. Here, we report that the lysosomes in Cln3-mutant mice, which mimic JNCL, and those in cultured cells from JNCL patients, contain significantly reduced levels of Ppt1-protein and Ppt1-enzyme activity and progressively accumulate autofluorescent ceroid. Furthermore, in JNCL fibroblasts the V0a1 subunit of v-ATPase, which regulates lysosomal acidification, is mislocalized to the plasma membrane instead of its normal location on lysosomal membrane. This defect dysregulates lysosomal acidification, as we previously reported in Cln1 -/- mice, which mimic INCL. Our findings uncover a previously unrecognized role of CLN3 in lysosomal homeostasis and suggest that CLN3-mutations causing lysosomal Ppt1-insuffiiciency may at least in part contribute to JNCL pathogenesis.
Collapse
|
19
|
Wu Y, Zhang Q, Qi Y, Gao J, Li W, Lv L, Chen G, Zhang Z, Yue X, Peng S. Enzymatic activity of palmitoyl-protein thioesterase-1 in serum from schizophrenia significantly associates with schizophrenia diagnosis scales. J Cell Mol Med 2019; 23:6512-6518. [PMID: 31270934 PMCID: PMC6714227 DOI: 10.1111/jcmm.14496] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/21/2019] [Accepted: 05/26/2019] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association studies have confirmed that schizophrenia is an inheritable multiple-gene mental disorder. Longitudinal studies about depression, first episode psychosis (FEP) and acute psychotic relapse have mostly searched for brain imaging biomarkers and inflammatory markers from the blood. However, to the best of our knowledge, the association between enzymatic activities with diagnosis or prediction of treatment response in people with schizophrenia has barely been validated. Under the Longitudinal Study of National Mental Health Work Plan (2015-2020), we have studied a subsample of approximately 36 individuals from the cohort with data on palmitoyl-protein thioesterase-1 enzymatic activity from FEP and performed a bivariate correlation analysis with psychiatric assessment scores. After adjusting for sex, age, body mass index (BMI) and total serum protein, our data demonstrated that PPT1 enzymatic activity is significantly associated with schizophrenia and its Positive and Negative Syndrome Scale (PANSS) scores. This longitudinal study compared the PPT1 enzymatic activity in FEP schizophrenia patients and healthy volunteers, and the former exhibited a significant 1.5-fold increase in PPT1 enzymatic levels (1.79 mmol/L/h/mL, and 1.18 mmol/L/h/mL; P < 0.05; 95% CI, 2.3-2.9 and 1.4-1.8). The higher PPT1 enzymatic levels in FEP schizophrenia patients were positively associated with larger PANSS scaling scores (r = 0.32, P = 0.0079 for positive scaling; r = 0.41, P = 0.0006 for negative scaling; r = 0.45, P = 0.0001 for general scaling; and r = 0.34, P = 0.0048 for PNASS-S scaling). Higher enzymatic PPT1 in FEP schizophrenia patients is significantly associated with increased PANSS scaling values, indicating more serious rates of developing psychosis. Enzymatic activity of PPT1 may provide an important new view for schizophrenia disorders.
Collapse
Affiliation(s)
- Yaoyao Wu
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| | - Qianqian Zhang
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| | - Yawei Qi
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| | - Jingjing Gao
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| | - Wenqiang Li
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Henan Mental Hospital, Xinxiang, China
| | - Luxiang Lv
- Henan Key Lab of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Henan Mental Hospital, Xinxiang, China
| | - Guanjie Chen
- National Human Genome Research Institute (NHGRI), NIH, Bethesda, Maryland
| | - Zhongjian Zhang
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China.,Section on Developmental Genetics, PDEGEN, NICHD, NIH, Bethesda, Maryland
| | - Xuyi Yue
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| | - Shiyong Peng
- Section on Molecular Imaging and Signal Transmission (MIST), Institute of Psychiatry and Neuroscience (IPN), XXMU, Xinxiang, China
| |
Collapse
|
20
|
Koster KP, Francesconi W, Berton F, Alahmadi S, Srinivas R, Yoshii A. Developmental NMDA receptor dysregulation in the infantile neuronal ceroid lipofuscinosis mouse model. eLife 2019; 8:40316. [PMID: 30946007 PMCID: PMC6464704 DOI: 10.7554/elife.40316] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 03/31/2019] [Indexed: 12/20/2022] Open
Abstract
Protein palmitoylation and depalmitoylation alter protein function. This post-translational modification is critical for synaptic transmission and plasticity. Mutation of the depalmitoylating enzyme palmitoyl-protein thioesterase 1 (PPT1) causes infantile neuronal ceroid lipofuscinosis (CLN1), a pediatric neurodegenerative disease. However, the role of protein depalmitoylation in synaptic maturation is unknown. Therefore, we studied synapse development in Ppt1-/- mouse visual cortex. We demonstrate that the developmental N-methyl-D-aspartate receptor (NMDAR) subunit switch from GluN2B to GluN2A is stagnated in Ppt1-/- mice. Correspondingly, Ppt1-/- neurons exhibit immature evoked NMDAR currents and dendritic spine morphology in vivo. Further, dissociated Ppt1-/- cultured neurons show extrasynaptic, diffuse calcium influxes and enhanced vulnerability to NMDA-induced excitotoxicity, reflecting the predominance of GluN2B-containing receptors. Remarkably, Ppt1-/- neurons demonstrate hyperpalmitoylation of GluN2B as well as Fyn kinase, which regulates surface retention of GluN2B. Thus, PPT1 plays a critical role in postsynapse maturation by facilitating the GluN2 subunit switch and proteostasis of palmitoylated proteins.
Collapse
Affiliation(s)
- Kevin P Koster
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Walter Francesconi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Fulvia Berton
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Sami Alahmadi
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Roshan Srinivas
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, United States
| | - Akira Yoshii
- Department of Pediatrics, University of Illinois at Chicago, Chicago, United States.,Department of Neurology, University of Illinois at Chicago, Chicago, United States
| |
Collapse
|
21
|
Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, Zhang Z, Bagh MB. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. Mol Neurodegener 2019; 14:4. [PMID: 30651094 PMCID: PMC6335712 DOI: 10.1186/s13024-018-0300-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/04/2022] Open
Abstract
Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.
Collapse
Affiliation(s)
- Anil B. Mukherjee
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Abhilash P. Appu
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Sydney Casey
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Avisek Mondal
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Zhongjian Zhang
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
- Present address: Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Maria B. Bagh
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| |
Collapse
|
22
|
Rudd AK, Brea RJ, Devaraj NK. Amphiphile-Mediated Depalmitoylation of Proteins in Living Cells. J Am Chem Soc 2018; 140:17374-17378. [PMID: 30516377 DOI: 10.1021/jacs.8b10806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Post-translational S-palmitoylation plays a central role in protein localization, trafficking, stability, aggregation, and cell signaling. Dysregulation of palmitoylation pathways in cells can alter protein function and is the cause of several diseases. Considering the biological and clinical importance of S-palmitoylation, tools for direct, in vivo modulation of this lipid modification would be extremely valuable. Here, we describe a method for the cleavage of native S-palmitoyl groups from proteins in living cells. Using a cell permeable, cysteine-functionalized amphiphile, we demonstrate the direct depalmitoylation of cellular proteins. We show that amphiphile-mediated depalmitoylation (AMD) can effectively cleave S-palmitoyl groups from the native GTPase HRas and successfully depalmitoylate mislocalized proteins in an infantile neuronal ceroid lipofuscinosis (INCL) disease model. AMD enables direct and facile depalmitoylation of proteins in live cells and has potential therapeutic applications for diseases such as INCL, where native protein thioesterase activity is deficient.
Collapse
Affiliation(s)
- Andrew K Rudd
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Roberto J Brea
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
23
|
Zhang CL, Mao K, Zhou LJ, Wang GL, Zhang YL, Li YY, Hao YJ. Genome-wide identification and characterization of apple long-chain Acyl-CoA synthetases and expression analysis under different stresses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 132:320-332. [PMID: 30248518 DOI: 10.1016/j.plaphy.2018.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/12/2018] [Accepted: 09/04/2018] [Indexed: 05/04/2023]
Abstract
Long-chain acyl-CoA synthetases (LACSs) are members of the acyl-activating enzyme superfamily that have important roles in lipid synthesis and storage, fatty acid catabolism, vectorial acylation, and synthesis of cutin and wax. Here, 11 apple MdLACS genes were identified based on the Malus × domestica reference genome, clustered into six groups and mapped to ten chromosomes. Multiple sequence alignment and conserved motifs analyses showed that the sequences of the AtLACS and MdLACS proteins were highly conserved. A cis-element analysis in the promoter regions of the MdLACS genes revealed various elements related to stress responsiveness and plant hormones. Subsequently, expression analysis demonstrated that the MdLACS genes had different expression profiles in different tissues in response to various abiotic stresses. To further study the function of MdLACS genes in apple, MdLACS1 was isolated to identify its basic function, which the function of MdLACS1 in response to apple abiotic stress resistance was determined by the transgenic method. The results showed the MdLACS1 enhanced tolerance to polyethylene glycol, salt, and abscisic acid in the apple callus, suggesting that MdLACS1 is an important regulator in response to abiotic stresses. Finally, the functional interoperability network among the MdLACS proteins was predicted and analyzed, which could the understanding of the possible interactions among proteins and genes regulatory networks concerned with wax biosynthesis and regulatory mechanisms in response to abiotic stresses in apple.
Collapse
Affiliation(s)
- Chun-Ling Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Li-Jie Zhou
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
24
|
Irahara-Miyana K, Otomo T, Kondo H, Hossain MA, Ozono K, Sakai N. Unfolded protein response is activated in Krabbe disease in a manner dependent on the mutation type. J Hum Genet 2018; 63:699-706. [PMID: 29615819 DOI: 10.1038/s10038-018-0445-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/23/2018] [Accepted: 02/27/2018] [Indexed: 02/08/2023]
Abstract
Krabbe disease, one of the autosomal-recessive lysosomal storage disorders (LSDs), is caused by a deficiency of galactocerebrosidase (GALC) activity, resulting in the intracellular accumulation of psychosine, which is cytotoxic for neuronal cells. Genetically pathogenic mutations result in conformational changes in GALC and disrupt the lysosmal trafficking of cargos, which subsequently accumulate in the endoplasmic reticulum (ER). Recently, ER stress together with the activation of the unfolded protein response (UPR) has been suggested to play a key role in the pathogenesis of LSDs. In this study, we hence investigated whether the UPR is activated in Krabbe disease using COS-7 cells expressing pathogenic GALC mutants and skin fibroblasts (SFs) from Krabbe disease patients with various phenotypes, using a combination of semiquantitative and quantitative real-time polymerase chain reactions. We found that UPR activation in Krabbe disease depends on the mutations and cell types, and there is the possibility that multiple pathways, involving ER chaperones, inositol-requiring kinase 1, and protein kinase regulated by RNA-like ER kinase are activated by mutations associated with the infantile form. These results indicate that in Krabbe disease, each misfolded/unfolded protein evokes different UPR activation depending on the mutation, and that the activated pathways affect the phenotypes.
Collapse
Affiliation(s)
- Kaori Irahara-Miyana
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takanobu Otomo
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan.,Department of Pathophysiology and Metabolism, Kawasaki Medical School, Okayama, Japan
| | - Hidehito Kondo
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mohammad Arif Hossain
- Advanced Clinical Research Center, Institute of Neurological Disorders, Shin-Yurigaoka General Hospital, Kanagawa, Japan.,Department of Gene Therapy, Institute for DNA Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norio Sakai
- Department of Health Science, Child Healthcare and Genetic Science, Osaka University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
25
|
Nelvagal HR, Cooper JD. Translating preclinical models of neuronal ceroid lipofuscinosis: progress and prospects. Expert Opin Orphan Drugs 2017. [DOI: 10.1080/21678707.2017.1360182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Hemanth R. Nelvagal
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Division of Medical Genetics, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, David Geffen School of Medicine, UCLA, Torrance, CA, USA
| |
Collapse
|
26
|
Uusi-Rauva K, Blom T, von Schantz-Fant C, Blom T, Jalanko A, Kyttälä A. Induced Pluripotent Stem Cells Derived from a CLN5 Patient Manifest Phenotypic Characteristics of Neuronal Ceroid Lipofuscinoses. Int J Mol Sci 2017; 18:E955. [PMID: 28468312 PMCID: PMC5454868 DOI: 10.3390/ijms18050955] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/12/2017] [Accepted: 04/26/2017] [Indexed: 01/19/2023] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) are autosomal recessive progressive encephalopathies caused by mutations in at least 14 different genes. Despite extensive studies performed in different NCL animal models, the molecular mechanisms underlying neurodegeneration in NCLs remain poorly understood. To model NCL in human cells, we generated induced pluripotent stem cells (iPSCs) by reprogramming skin fibroblasts from a patient with CLN5 (ceroid lipofuscinosis, neuronal, 5) disease, the late infantile variant form of NCL. These CLN5 patient-derived iPSCs (CLN5Y392X iPSCs) harbouring the most common CLN5 mutation, c.1175_1176delAT (p.Tyr392X), were further differentiated into neural lineage cells, the most affected cell type in NCLs. The CLN5Y392X iPSC-derived neural lineage cells showed accumulation of autofluorescent storage material and subunit C of the mitochondrial ATP synthase, both representing the hallmarks of many forms of NCLs, including CLN5 disease. In addition, we detected abnormalities in the intracellular organelles and aberrations in neuronal sphingolipid transportation, verifying the previous findings obtained from Cln5-deficient mouse macrophages. Therefore, patient-derived iPSCs provide a suitable model to study the mechanisms of NCL diseases.
Collapse
Affiliation(s)
- Kristiina Uusi-Rauva
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 104, 00251 Helsinki, Finland.
- Folkhälsan Institute of Genetics, P.O. Box 63, University of Helsinki, 00014 Helsinki, Finland.
| | - Tea Blom
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 104, 00251 Helsinki, Finland.
| | | | - Tomas Blom
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Anu Jalanko
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 104, 00251 Helsinki, Finland.
| | - Aija Kyttälä
- National Institute for Health and Welfare, Genomics and Biomarkers Unit, P.O. Box 104, 00251 Helsinki, Finland.
| |
Collapse
|
27
|
Liu YY, Zhou XY, Yang LN, Wang HY, Zhang YQ, Pu JC, Liu LX, Gui SW, Zeng L, Chen JJ, Zhou CJ, Xie P. Social defeat stress causes depression-like behavior with metabolite changes in the prefrontal cortex of rats. PLoS One 2017; 12:e0176725. [PMID: 28453574 PMCID: PMC5409051 DOI: 10.1371/journal.pone.0176725] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 04/15/2017] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder is a serious mental disorder with high morbidity and mortality. The role of social stress in the development of depression remains unclear. Here, we used the social defeat stress paradigm to induce depression-like behavior in rats, then evaluated the behavior of the rats and measured metabolic changes in the prefrontal cortex using gas chromatography-mass spectrometry. Within the first week after the social defeat procedure, the sucrose preference test (SPT), open field test (OFT), elevated plus maze (EPM) and forced swim test (FST) were conducted to examine the depressive-like and anxiety-like behaviors. For our metabolite analysis, multivariate statistics were applied to observe the distribution of all samples and to differentiate the socially defeated group from the control group. Ingenuity pathway analysis was used to find the potential relationships among the differential metabolites. In the OFT and EPM, there were no significant differences between the two experimental groups. In the SPT and FST, socially defeated rats showed less sucrose intake and longer immobility time compared with control rats. Metabolic profiling identified 25 significant variables with good predictability. Ingenuity pathways analysis revealed that “Hereditary Disorder, Neurological Disease, Lipid Metabolism” was the most significantly altered network. Stress-induced alterations of low molecular weight metabolites were observed in the prefrontal cortex of rats. Particularly, lipid metabolism, amino acid metabolism, and energy metabolism were significantly perturbed. The results of this study suggest that repeated social defeat can lead to metabolic changes and depression-like behavior in rats.
Collapse
Affiliation(s)
- Yi-Yun Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Xin-Yu Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Li-Ning Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Hai-Yang Wang
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yu-Qing Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Jun-Cai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Lan-Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Si-Wen Gui
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Li Zeng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Jian-Jun Chen
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Chan-Juan Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China
- Institute of Neuroscience and the Collaborative Innovation Center for Brain Science, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
28
|
Marotta D, Tinelli E, Mole SE. NCLs and ER: A stressful relationship. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1273-1281. [PMID: 28390949 PMCID: PMC5479446 DOI: 10.1016/j.bbadis.2017.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/02/2017] [Accepted: 04/04/2017] [Indexed: 12/26/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCLs, Batten disease) are a group of inherited neurodegenerative disorders with variable age of onset, characterized by the lysosomal accumulation of autofluorescent ceroid lipopigments. The endoplasmic reticulum (ER) is a critical organelle for normal cell function. Alteration of ER homeostasis leads to accumulation of misfolded protein in the ER and to activation of the unfolded protein response. ER stress and the UPR have recently been linked to the NCLs. In this review, we will discuss the evidence for UPR activation in the NCLs, and address its connection to disease pathogenesis. Further understanding of ER-stress response involvement in the NCLs may encourage development of novel therapeutical agents targeting these pathogenic pathways. ER-stress activation has been linked to various neurodegenerative diseases. ER-stress is a common patho-mechanism in four forms of NCL. Pharmacological modulation of UPR could provide new treatment for NCL.
Collapse
Affiliation(s)
- Davide Marotta
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Elisa Tinelli
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | - Sara E Mole
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT; UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom
| |
Collapse
|
29
|
RAGE Expression and ROS Generation in Neurons: Differentiation versus Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9348651. [PMID: 27313835 PMCID: PMC4897723 DOI: 10.1155/2016/9348651] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/03/2016] [Indexed: 12/27/2022]
Abstract
RAGE is a multiligand receptor able to bind advanced glycation end-products (AGEs), amphoterin, calgranulins, and amyloid-beta peptides, identified in many tissues and cells, including neurons. RAGE stimulation induces the generation of reactive oxygen species (ROS) mainly through the activity of NADPH oxidases. In neuronal cells, RAGE-induced ROS generation is able to favor cell survival and differentiation or to induce death through the imbalance of redox state. The dual nature of RAGE signaling in neurons depends not only on the intensity of RAGE activation but also on the ability of RAGE-bearing cells to adapt to ROS generation. In this review we highlight these aspects of RAGE signaling regulation in neuronal cells.
Collapse
|
30
|
Segal-Salto M, Sapir T, Reiner O. Reversible Cysteine Acylation Regulates the Activity of Human Palmitoyl-Protein Thioesterase 1 (PPT1). PLoS One 2016; 11:e0146466. [PMID: 26731412 PMCID: PMC4701722 DOI: 10.1371/journal.pone.0146466] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/17/2015] [Indexed: 01/24/2023] Open
Abstract
Mutations in the depalmitoylating enzyme gene, PPT1, cause the infantile form of Neuronal Ceroid Lipofuscinosis (NCL), an early onset neurodegenerative disease. During recent years there have been different therapeutic attempts including enzyme replacement. Here we show that PPT1 is palmitoylated in vivo and is a substrate for two palmitoylating enzymes, DHHC3 and DHHC7. The palmitoylated protein is detected in both cell lysates and medium. The presence of PPT1 with palmitoylated signal peptide in the cell medium suggests that a subset of the protein is secreted by a nonconventional mechanism. Using a mutant form of PPT1, C6S, which was not palmitoylated, we further demonstrate that palmitoylation does not affect intracellular localization but rather that the unpalmitoylated form enhanced the depalmitoylation activity of the protein. The calculated Vmax of the enzyme was significantly affected by the palmitoylation, suggesting that the addition of a palmitate group is reminiscent of adding a noncompetitive inhibitor. Thus, we reveal the existence of a positive feedback loop, where palmitoylation of PPT1 results in decreased activity and subsequent elevation in the amount of palmitoylated proteins. This positive feedback loop is likely to initiate a vicious cycle, which will enhance disease progression. The understanding of this process may facilitate enzyme replacement strategies.
Collapse
Affiliation(s)
- Michal Segal-Salto
- The Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Tamar Sapir
- The Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Orly Reiner
- The Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel
- * E-mail:
| |
Collapse
|
31
|
Tikka S, Monogioudi E, Gotsopoulos A, Soliymani R, Pezzini F, Scifo E, Uusi-Rauva K, Tyynelä J, Baumann M, Jalanko A, Simonati A, Lalowski M. Proteomic Profiling in the Brain of CLN1 Disease Model Reveals Affected Functional Modules. Neuromolecular Med 2015; 18:109-33. [PMID: 26707855 DOI: 10.1007/s12017-015-8382-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are the most commonly inherited progressive encephalopathies of childhood. Pathologically, they are characterized by endolysosomal storage with different ultrastructural features and biochemical compositions. The molecular mechanisms causing progressive neurodegeneration and common molecular pathways linking expression of different NCL genes are largely unknown. We analyzed proteome alterations in the brains of a mouse model of human infantile CLN1 disease-palmitoyl-protein thioesterase 1 (Ppt1) gene knockout and its wild-type age-matched counterpart at different stages: pre-symptomatic, symptomatic and advanced. For this purpose, we utilized a combination of laser capture microdissection-based quantitative liquid chromatography tandem mass spectrometry (MS) and matrix-assisted laser desorption/ionization time-of-flight MS imaging to quantify/visualize the changes in protein expression in disease-affected brain thalamus and cerebral cortex tissue slices, respectively. Proteomic profiling of the pre-symptomatic stage thalamus revealed alterations mostly in metabolic processes and inhibition of various neuronal functions, i.e., neuritogenesis. Down-regulation in dynamics associated with growth of plasma projections and cellular protrusions was further corroborated by findings from RNA sequencing of CLN1 patients' fibroblasts. Changes detected at the symptomatic stage included: mitochondrial functions, synaptic vesicle transport, myelin proteome and signaling cascades, such as RhoA signaling. Considerable dysregulation of processes related to mitochondrial cell death, RhoA/Huntington's disease signaling and myelin sheath breakdown were observed at the advanced stage of the disease. The identified changes in protein levels were further substantiated by bioinformatics and network approaches, immunohistochemistry on brain tissues and literature knowledge, thus identifying various functional modules affected in the CLN1 childhood encephalopathy.
Collapse
Affiliation(s)
- Saara Tikka
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland.,Folkhälsan Institute of Genetics, 00014, Helsinki, Finland
| | - Evanthia Monogioudi
- Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.,Joint Research Centre, Directorate D-Institute for Reference Materials and Measurements, Standards for Innovation and Sustainable Development, Geel, Belgium
| | - Athanasios Gotsopoulos
- Brain and Mind Laboratory, Department of Biomedical Engineering and Computational Science (BECS), Aalto University School of Science, 02150, Espoo, Finland
| | - Rabah Soliymani
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland
| | - Francesco Pezzini
- Department of Neurological and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Enzo Scifo
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland.,Doctoral Program Brain & Mind, University of Helsinki, Helsinki, Finland.,Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Toronto, Canada
| | - Kristiina Uusi-Rauva
- Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.,Genomics and Biomarkers, National Institute for Health and Welfare (THL), P.O. Box 30, 00271, Helsinki, Finland
| | - Jaana Tyynelä
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland
| | - Marc Baumann
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland
| | - Anu Jalanko
- Institute for Molecular Medicine (FIMM), University of Helsinki, 00014, Helsinki, Finland.,Genomics and Biomarkers, National Institute for Health and Welfare (THL), P.O. Box 30, 00271, Helsinki, Finland
| | - Alessandro Simonati
- Department of Neurological and Movement Sciences, University of Verona, 37134, Verona, Italy
| | - Maciej Lalowski
- Medicum, Biochemistry/Developmental Biology, Meilahti Clinical Proteomics Core Facility, University of Helsinki, P.O. Box 63 (Haartmaninkatu 8), Room C214a, 00014, Helsinki, Finland. .,Folkhälsan Institute of Genetics, 00014, Helsinki, Finland.
| |
Collapse
|
32
|
Chandra G, Bagh MB, Peng S, Saha A, Sarkar C, Moralle M, Zhang Z, Mukherjee AB. Cln1 gene disruption in mice reveals a common pathogenic link between two of the most lethal childhood neurodegenerative lysosomal storage disorders. Hum Mol Genet 2015; 24:5416-32. [PMID: 26160911 DOI: 10.1093/hmg/ddv266] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 07/06/2015] [Indexed: 11/13/2022] Open
Abstract
Neurodegeneration is a devastating manifestation in the majority of >50 lysosomal storage disorders (LSDs). Neuronal ceroid lipofuscinoses (NCLs) are the most common childhood neurodegenerative LSDs. Mutations in 13 different genes (called CLNs) underlie various types of NCLs, of which the infantile NCL (INCL) and congenital NCL (CNCL) are the most lethal. Although inactivating mutations in the CLN1 gene encoding palmitoyl-protein thioesterase-1 (PPT1) cause INCL, those in the CLN10 gene encoding cathepsin D (CD) underlie CNCL. PPT1 is a lysosomal thioesterase that cleaves the thioester linkage in S-acylated proteins required for their degradation by lysosomal hydrolases like CD. Thus, PPT1 deficiency causes lysosomal accumulation of these lipidated proteins (major constituents of ceroid) leading to INCL. We sought to determine whether there is a common pathogenic link between INCL and CNCL. Using biochemical, histological and confocal microscopic analyses of brain tissues and cells from Cln1(-/-) mice that mimic INCL, we uncovered that Cln10/CD is overexpressed. Although synthesized in the endoplasmic reticulum, the CD-precursor protein (pro-CD) is transported through endosome to the lysosome where it is proteolytically processed to enzymatically active-CD. We found that despite Cln10 overexpression, the maturation of pro-CD to enzymatically active-CD in lysosome was disrupted. This defect impaired lysosomal degradative function causing accumulation of undegraded cargo in lysosome leading to INCL. Notably, treatment of intact Cln1(-/-) mice as well as cultured brain cells derived from these animals with a thioesterase-mimetic small molecule, N-tert-butyl-hydroxylamine, ameliorated the CD-processing defect. Our findings are significant in that they define a pathway in which Cln1 mutations disrupt the maturation of a major degradative enzyme in lysosome contributing to neuropathology in INCL and suggest that lysosomal CD deficiency is a common pathogenic link between INCL and CNCL.
Collapse
Affiliation(s)
- Goutam Chandra
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Maria B Bagh
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Shiyong Peng
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Arjun Saha
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Chinmoy Sarkar
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Matthew Moralle
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Zhongjian Zhang
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| | - Anil B Mukherjee
- Section on Developmental Genetics, Program on Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1830, USA
| |
Collapse
|
33
|
Scifo E, Szwajda A, Soliymani R, Pezzini F, Bianchi M, Dapkunas A, Dębski J, Uusi-Rauva K, Dadlez M, Gingras AC, Tyynelä J, Simonati A, Jalanko A, Baumann MH, Lalowski M. Proteomic analysis of the palmitoyl protein thioesterase 1 interactome in SH-SY5Y human neuroblastoma cells. J Proteomics 2015; 123:42-53. [PMID: 25865307 DOI: 10.1016/j.jprot.2015.03.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 03/12/2015] [Accepted: 03/31/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Neuronal ceroid lipofuscinoses (NCL) are a group of inherited progressive childhood disorders, characterized by early accumulation of autofluorescent storage material in lysosomes of neurons or other cells. Clinical symptoms of NCL include: progressive loss of vision, mental and motor deterioration, epileptic seizures and premature death. CLN1 disease (MIM#256730) is caused by mutations in the CLN1 gene, which encodes palmitoyl protein thioesterase 1 (PPT1). In this study, we utilised single step affinity purification coupled to mass spectrometry (AP-MS) to unravel the in vivo substrates of human PPT1 in the brain neuronal cells. Protein complexes were isolated from human PPT1 expressing SH-SY5Y stable cells, subjected to filter-aided sample preparation (FASP) and analysed on a Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer. A total of 23 PPT1 interacting partners (IP) were identified from label free quantitation of the MS data by SAINT platform. Three of the identified PPT1 IP, namely CRMP1, DBH, and MAP1B are predicted to be palmitoylated. Our proteomic analysis confirmed previously suggested roles of PPT1 in axon guidance and lipid metabolism, yet implicates the enzyme in novel roles including: involvement in neuronal migration and dopamine receptor mediated signalling pathway. BIOLOGICAL SIGNIFICANCE The significance of this work lies in the unravelling of putative in vivo substrates of human CLN1 or PPT1 in brain neuronal cells. Moreover, the PPT1 IP implicate the enzyme in novel roles including: involvement in neuronal migration and dopamine receptor mediated signalling pathway.
Collapse
Affiliation(s)
- Enzo Scifo
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland; Doctoral Program Brain & Mind, University of Helsinki, Helsinki, Finland.
| | - Agnieszka Szwajda
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Francesco Pezzini
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Marzia Bianchi
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy; Unit for Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arvydas Dapkunas
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Janusz Dębski
- Mass Spectrometry Laboratory, Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kristiina Uusi-Rauva
- Folkhälsan Institute of Genetics, Helsinki, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
| | - Michał Dadlez
- Mass Spectrometry Laboratory, Department of Biophysics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anne-Claude Gingras
- Centre for Systems Biology, Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Canada; Department of Molecular Genetics, University of Toronto, Ontario, Canada
| | - Jaana Tyynelä
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Alessandro Simonati
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | - Anu Jalanko
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland; National Institute for Health and Welfare, Public Health Genomics Unit, Helsinki, Finland
| | - Marc H Baumann
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Maciej Lalowski
- Meilahti Clinical Proteomics Core Facility, Institute of Biomedicine/Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland; Folkhälsan Institute of Genetics, Helsinki, Finland.
| |
Collapse
|
34
|
Hornemann T. Palmitoylation and depalmitoylation defects. J Inherit Metab Dis 2015; 38:179-86. [PMID: 25091425 DOI: 10.1007/s10545-014-9753-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/11/2014] [Accepted: 07/17/2014] [Indexed: 11/29/2022]
Abstract
Palmitoylation describes the enzymatic attachment of a 16-carbon atom fatty acid to a target protein. Such lipidation events occur in all eukaryotes and can be of reversible (S-palmitoylation) or irreversible (N-palmitoylation) nature. In particular S-palmitoylation is dynamically regulated by two opposing types of enzymes which add (palmitoyl acyltransferases - PAT) or remove (acyl protein thioesterases) palmitate from proteins. Protein palmitoylation is an important process that dynamically regulates the assembly and compartmentalization of many neuronal proteins at specific subcellular sites. Enzymes that regulate protein palmitoylation are critical for several biological processes. To date, eight palmitoylation related genes have been reported to be associated with human disease. This review intends to give an overview on the pathological changes which are associated with defects in the palmitoylation/depalmitoylation process.
Collapse
Affiliation(s)
- Thorsten Hornemann
- Institute for Clinical Chemistry, University Hospital Zurich, Raemistrasse 100, CH-8091, Zurich, Switzerland,
| |
Collapse
|
35
|
Bouchelion A, Zhang Z, Li Y, Qian H, Mukherjee AB. Mice homozygous for c.451C>T mutation in Cln1 gene recapitulate INCL phenotype. Ann Clin Transl Neurol 2014; 1:1006-23. [PMID: 25574475 PMCID: PMC4284126 DOI: 10.1002/acn3.144] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 10/16/2014] [Indexed: 11/21/2022] Open
Abstract
Objective Nonsense mutations account for 5–70% of all genetic disorders. In the United States, nonsense mutations in the CLN1/PPT1 gene underlie >40% of the patients with infantile neuronal ceroid lipofuscinosis (INCL), a devastating neurodegenerative lysosomal storage disease. We sought to generate a reliable mouse model of INCL carrying the most common Ppt1 nonsense mutation (c.451C>T) found in the United States patient population to provide a platform for evaluating nonsense suppressors in vivo. Methods We knocked-in c.451C>T nonsense mutation in the Ppt1 gene in C57 embryonic stem (ES) cells using a targeting vector in which LoxP flanked the Neo cassette, which was removed from targeted ES cells by electroporating Cre. Two independently targeted ES clones were injected into blastocysts to generate syngenic C57 knock-in mice, obviating the necessity for extensive backcrossing. Results Generation of Ppt1-KI mice was confirmed by DNA sequencing, which showed the presence of c.451C>T mutation in the Ppt1 gene. These mice are viable and fertile, although they developed spasticity (a “clasping” phenotype) at a median age of 6 months. Autofluorescent storage materials accumulated throughout the brain regions and in visceral organs. Electron microscopic analysis of the brain and the spleen showed granular osmiophilic deposits. Increased neuronal apoptosis was particularly evident in cerebral cortex and abnormal histopathological and electroretinographic (ERG) analyses attested striking retinal degeneration. Progressive deterioration of motor coordination and behavioral parameters continued until eventual death. Interpretation Our findings show that Ppt1-KI mice reliably recapitulate INCL phenotype providing a platform for testing the efficacy of existing and novel nonsense suppressors in vivo.
Collapse
Affiliation(s)
- Ashleigh Bouchelion
- Program on Developmental Endocrinology and Genetics, Section on Developmental Genetics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development Bethesda, Maryland
| | - Zhongjian Zhang
- Program on Developmental Endocrinology and Genetics, Section on Developmental Genetics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development Bethesda, Maryland
| | - Yichao Li
- Visual Function Core (HNW2-L), National Eye Institute, National Institutes of Health Bethesda, Maryland, 20892-1830
| | - Haohua Qian
- Visual Function Core (HNW2-L), National Eye Institute, National Institutes of Health Bethesda, Maryland, 20892-1830
| | - Anil B Mukherjee
- Program on Developmental Endocrinology and Genetics, Section on Developmental Genetics, Eunice Kennedy-Shriver National Institute of Child Health and Human Development Bethesda, Maryland
| |
Collapse
|
36
|
Wu D, Liu J, Wu B, Tu B, Zhu W, Luo J. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin. Biochem Biophys Res Commun 2014; 447:115-20. [PMID: 24699413 DOI: 10.1016/j.bbrc.2014.03.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
Abstract
Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.
Collapse
Affiliation(s)
- Dan Wu
- Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191, China.
| | - Jing Liu
- Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191, China
| | - Baiyan Wu
- Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191, China
| | - Bo Tu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191, China
| | - Weiguo Zhu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Peking University Health Science Center, No 38 Xueyuan Road, Haidian district, Beijing 100191, China; Department of Medical and Research Technology, School of Medicine, University of Maryland, Baltimore 21201, USA.
| |
Collapse
|
37
|
Hetz C, Mollereau B. Disturbance of endoplasmic reticulum proteostasis in neurodegenerative diseases. Nat Rev Neurosci 2014; 15:233-49. [PMID: 24619348 DOI: 10.1038/nrn3689] [Citation(s) in RCA: 531] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The unfolded protein response (UPR) is a homeostatic mechanism by which cells regulate levels of misfolded proteins in the endoplasmic reticulum (ER). Although it is well characterized in non-neuronal cells, a proliferation of papers over the past few years has revealed a key role for the UPR in normal neuronal function and as an important driver of neurodegenerative diseases. A complex scenario is emerging in which distinct UPR signalling modules have specific and even opposite effects on neurodegeneration depending on the disease context. Here, we provide an overview of the most recent findings addressing the biological relevance of ER stress in the nervous system.
Collapse
Affiliation(s)
- Claudio Hetz
- 1] Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. [2] Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, University of Chile, Santiago, Chile. [3] Neurounion Biomedical Foundation, Santiago, Chile. [4] Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, CNRS UMR5239, Ecole Normale Supérieure de Lyon, UMS3444 Biosciences Lyon Gerland, University of Lyon, Lyon 69364, France
| |
Collapse
|
38
|
NCL disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1882-93. [DOI: 10.1016/j.bbadis.2013.05.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/13/2023]
|
39
|
Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. Nat Neurosci 2013; 16:1608-17. [PMID: 24056696 PMCID: PMC3812271 DOI: 10.1038/nn.3526] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/23/2013] [Indexed: 01/16/2023]
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating childhood neurodegenerative lysosomal storage disease (LSD) that has no effective treatment. It is caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. PPT1-deficiency impairs the cleavage of thioester linkage in palmitoylated proteins (constituents of ceroid), preventing degradation by lysosomal hydrolases. Consequently, accumulation of lysosomal ceroid leads to INCL. Thioester linkage is cleaved by nucleophilic attack. Hydroxylamine, a potent nucleophilic cellular metabolite, may have therapeutic potential for INCL but its toxicity precludes clinical application. Here we report that a hydroxylamine-derivative, N-(tert-Butyl) hydroxylamine (NtBuHA), is non-toxic, cleaves thioester linkage in palmitoylated proteins and mediates lysosomal ceroid depletion in cultured cells from INCL patients. Importantly, in Ppt1−/− mice, which mimic INCL, NtBuHA crossed the blood-brain-barrier, depleted lysosomal ceroid, suppressed neuronal apoptosis, slowed neurological deterioration and extended lifespan. Our findings provide the proof of concept that thioesterase-mimetic and antioxidant small molecules like NtBuHA are potential drug-targets for thioesterase deficiency diseases like INCL.
Collapse
|
40
|
Moylan S, Maes M, Wray NR, Berk M. The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Mol Psychiatry 2013; 18:595-606. [PMID: 22525486 DOI: 10.1038/mp.2012.33] [Citation(s) in RCA: 353] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In some patients with major depressive disorder (MDD), individual illness characteristics appear consistent with those of a neuroprogressive illness. Features of neuroprogression include poorer symptomatic, treatment and functional outcomes in patients with earlier disease onset and increased number and length of depressive episodes. In such patients, longer and more frequent depressive episodes appear to increase vulnerability for further episodes, precipitating an accelerating and progressive illness course leading to functional decline. Evidence from clinical, biochemical and neuroimaging studies appear to support this model and are informing novel therapeutic approaches. This paper reviews current knowledge of the neuroprogressive processes that may occur in MDD, including structural brain consequences and potential molecular mechanisms including the role of neurotransmitter systems, inflammatory, oxidative and nitrosative stress pathways, neurotrophins and regulation of neurogenesis, cortisol and the hypothalamic-pituitary-adrenal axis modulation, mitochondrial dysfunction and epigenetic and dietary influences. Evidence-based novel treatments informed by this knowledge are discussed.
Collapse
Affiliation(s)
- S Moylan
- School of Medicine, Deakin University, Geelong, VIC, Australia.
| | | | | | | |
Collapse
|
41
|
Groh J, Kühl TG, Ip CW, Nelvagal HR, Sri S, Duckett S, Mirza M, Langmann T, Cooper JD, Martini R. Immune cells perturb axons and impair neuronal survival in a mouse model of infantile neuronal ceroid lipofuscinosis. Brain 2013; 136:1083-101. [DOI: 10.1093/brain/awt020] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
42
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Use of model organisms for the study of neuronal ceroid lipofuscinosis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1842-65. [PMID: 23338040 DOI: 10.1016/j.bbadis.2013.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/07/2013] [Accepted: 01/08/2013] [Indexed: 12/26/2022]
Abstract
Neuronal ceroid lipofuscinoses are a group of fatal progressive neurodegenerative diseases predominantly affecting children. Identification of mutations that cause neuronal ceroid lipofuscinosis, and subsequent functional and pathological studies of the affected genes, underpins efforts to investigate disease mechanisms and identify and test potential therapeutic strategies. These functional studies and pre-clinical trials necessitate the use of model organisms in addition to cell and tissue culture models as they enable the study of protein function within a complex organ such as the brain and the testing of therapies on a whole organism. To this end, a large number of disease models and genetic tools have been identified or created in a variety of model organisms. In this review, we will discuss the ethical issues associated with experiments using model organisms, the factors underlying the choice of model organism, the disease models and genetic tools available, and the contributions of those disease models and tools to neuronal ceroid lipofuscinosis research. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
44
|
Maes M, Mihaylova I, Kubera M, Leunis JC, Twisk FNM, Geffard M. IgM-mediated autoimmune responses directed against anchorage epitopes are greater in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) than in major depression. Metab Brain Dis 2012; 27:415-23. [PMID: 22614823 DOI: 10.1007/s11011-012-9316-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/08/2012] [Indexed: 12/17/2022]
Abstract
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and depression are considered to be neuro-immune disorders (Maes and Twisk, BMC Medicine 8:35, 2010). There is also evidence that depression and ME/CFS are accompanied by oxidative and nitrosative stress (O&NS) and by increased autoantibodies to a number of self-epitopes some of which have become immunogenic due to damage by O&NS. The aim of this study is to examine IgM-mediated autoimmune responses to different self-epitopes in ME/CFS versus depression. We examined serum IgM antibodies to three anchorage molecules (palmitic and myristic acid and S-farnesyl-L-cysteine); acetylcholine; and conjugated NO-modified adducts in 26 patients with major depression; 16 patients with ME/CFS, 15 with chronic fatigue; and 17 normal controls. Severity of fatigue and physio-somatic (F&S) symptoms was measured with the Fibromyalgia and Chronic Fatigue Syndrome Rating Scale. Serum IgM antibodies to the three anchorage molecules and NO-phenylalanine were significantly higher in ME/CFS than in depression. The autoimmune responses to oxidatively, but not nitrosatively, modified self-epitopes were significantly higher in ME/CFS than in depression and were associated with F&S symptoms. The autoimmune activity directed against conjugated acetylcholine did not differ significantly between ME/CFS and depression, but was greater in the patients than controls. Partially overlapping pathways, i.e. increased IgM antibodies to a multitude of neo-epitopes, underpin both ME/CFS and depression, while greater autoimmune responses directed against anchorage molecules and oxidatively modified neo-epitopes discriminate patients with ME/CFS from those with depression. These autoimmune responses directed against neoantigenic determinants may play a role in the dysregulation of key cellular functions in both disorders, e.g. intracellular signal transduction, cellular differentiation and apoptosis, but their impact may be more important in ME/CFS than in depression.
Collapse
Affiliation(s)
- Michael Maes
- Maes Clinics @ TRIA, Piyavate Hospital, 998 Rimklongsamsen Road, Bangkok, 10310, Thailand.
| | | | | | | | | | | |
Collapse
|
45
|
In a model of Batten disease, palmitoyl protein thioesterase-1 deficiency is associated with brown adipose tissue and thermoregulation abnormalities. PLoS One 2012; 7:e48733. [PMID: 23139814 PMCID: PMC3490854 DOI: 10.1371/journal.pone.0048733] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2012] [Accepted: 09/28/2012] [Indexed: 11/19/2022] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL) is a fatal neurodegenerative disorder caused by a deficiency of palmitoyl-protein thioesterase-1 (PPT1). We have previously shown that children with INCL have increased risk of hypothermia during anesthesia and that PPT1-deficiency in mice is associated with disruption of adaptive energy metabolism, downregulation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), and mitochondrial dysfunction. Here we hypothesized that Ppt1-knockout mice, a well-studied model of INCL that shows many of the neurologic manifestations of the disease, would recapitulate the thermoregulation impairment observed in children with INCL. We also hypothesized that when exposed to cold, Ppt1-knockout mice would be unable to maintain body temperature as in mice thermogenesis requires upregulation of Pgc-1α and uncoupling protein 1 (Ucp-1) in brown adipose tissue. We found that the Ppt1-KO mice had lower basal body temperature as they aged and developed hypothermia during cold exposure. Surprisingly, this inability to maintain body temperature during cold exposure in Ppt1-KO mice was associated with an adequate upregulation of Pgc-1α and Ucp-1 but with lower levels of sympathetic neurotransmitters in brown adipose tissue. In addition, during baseline conditions, brown adipose tissue of Ppt1-KO mice had less vacuolization (lipid droplets) compared to wild-type animals. After cold stress, wild-type animals had significant decreases whereas Ppt1-KO had insignificant changes in lipid droplets compared with baseline measurements, thus suggesting that Ppt1-KO had less lipolysis in response to cold stress. These results uncover a previously unknown phenotype associated with PPT1 deficiency, that of altered thermoregulation, which is associated with impaired lipolysis and neurotransmitter release to brown adipose tissue during cold exposure. These findings suggest that INCL should be added to the list of neurodegenerative diseases that are linked to alterations in peripheral metabolic processes. In addition, extrapolating these findings clinically, impaired thermoregulation and hypothermia are potential risks in patients with INCL.
Collapse
|
46
|
Young FB, Butland SL, Sanders SS, Sutton LM, Hayden MR. Putting proteins in their place: Palmitoylation in Huntington disease and other neuropsychiatric diseases. Prog Neurobiol 2012; 97:220-38. [DOI: 10.1016/j.pneurobio.2011.11.002] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Revised: 11/01/2011] [Accepted: 11/08/2011] [Indexed: 01/02/2023]
|
47
|
Villani GRD, Chierchia A, Di Napoli D, Di Natale P. Unfolded protein response is not activated in the mucopolysaccharidoses but protein disulfide isomerase 5 is deregulated. J Inherit Metab Dis 2012; 35:479-93. [PMID: 22002444 DOI: 10.1007/s10545-011-9403-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 01/03/2023]
Abstract
Mucopolysaccharidoses (MPSs) are lysosomal storage diseases (LSDs) caused by defects in lysosomal enzymes involved in the catabolism of glycosaminoglycans. The pathogenesis of these disorders is still not completely known, although inflammation and oxidative stress appear to be common mechanisms, as in all LSDs. Recently, it was hypothesized that endoplasmic reticulum (ER) stress followed by an unfolded protein response (UPR) could be another common pathogenetic mechanism in LSDs. The aim of the present study was to verify if the UPR was elicited in the mucopolysaccharidoses and if the mechanism was MPS type- and mutation-dependent. To this end, we analyzed the UPR in vitro, in fibroblasts from patients with different types of mucopolysaccharidoses (MPS I, II, IIIA, IIIB, IVA) and in vivo, in the murine MPS IIIB model. In both cases we found no changes in mRNA levels of several UPR-related genes, such as the spliced or unspliced form of Xbp-1, Bip, Chop, Edem1, Edem2, Edem3. Therefore, we report here that the unfolded protein response of the ER is not triggered either in vitro or in vivo; accordingly, cytotoxicity assays indicated that affected fibroblasts are no more sensitive to apoptosis induction than normal cells. However, our results show that in most of the analyzed MPS fibroblasts the expression of a poorly known protein belonging to the family of the protein disulfide isomerases, namely Pdia5, is upregulated; here we discuss if its upregulation could be an early event of ER stress possibly related to the severity of the damage induced in the mutant proteins.
Collapse
Affiliation(s)
- Guglielmo R D Villani
- Department of Biochemistry and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy.
| | | | | | | |
Collapse
|
48
|
Thelen M, Daμμe M, Schweizer M, Hagel C, Wong AM, Cooper JD, Braulke T, Galliciotti G. Disruption of the autophagy-lysosome pathway is involved in neuropathology of the nclf mouse model of neuronal ceroid lipofuscinosis. PLoS One 2012; 7:e35493. [PMID: 22536393 PMCID: PMC3335005 DOI: 10.1371/journal.pone.0035493] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 03/16/2012] [Indexed: 11/18/2022] Open
Abstract
Variant late-infantile neuronal ceroid lipofuscinosis, a fatal lysosomal storage disorder accompanied by regional atrophy and pronounced neuron loss in the brain, is caused by mutations in the CLN6 gene. CLN6 is a non-glycosylated endoplasmic reticulum (ER)-resident membrane protein of unknown function. To investigate mechanisms contributing to neurodegeneration in CLN6 disease we examined the nclf mouse, a naturally occurring model of the human CLN6 disease. Prominent autofluorescent and electron-dense lysosomal storage material was found in cerebellar Purkinje cells, thalamus, hippocampus, olfactory bulb and in cortical layer II to V. Another prominent early feature of nclf pathogenesis was the localized astrocytosis that was evident in many brain regions and the more widespread microgliosis. Expression analysis of mutant Cln6 found in nclf mice demonstrated synthesis of a truncated protein with a reduced half-life. Whereas the rapid degradation of the mutant Cln6 protein can be inhibited by proteasomal inhibitors, there was no evidence for ER stress or activation of the unfolded protein response in various brain areas during postnatal development. Age-dependent increases in LC3-II, ubiquitinated proteins, and neuronal p62-positive aggregates were observed, indicating a disruption of the autophagy-lysosome degradation pathway of proteins in brains of nclf mice, most likely due to defective fusion between autophagosomes and lysosomes. These data suggest that proteasomal degradation of mutant Cln6 is sufficient to prevent the accumulation of misfolded Cln6 protein, whereas lysosomal dysfunction impairs constitutive autophagy promoting neurodegeneration.
Collapse
Affiliation(s)
- Melanie Thelen
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Daμμe
- Department of Biochemistry 1, University Bielefeld, Bielefeld, Germany
| | - Michaela Schweizer
- Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Hagel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andrew M.S. Wong
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, MRC Centre for Neurodegeneration Research, Kinǵs College London, Institute of Psychiatry, London, United Kingdom
| | - Jonathan D. Cooper
- Department of Neuroscience and Centre for the Cellular Basis of Behaviour, MRC Centre for Neurodegeneration Research, Kinǵs College London, Institute of Psychiatry, London, United Kingdom
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanna Galliciotti
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
49
|
Shacka JJ. Mouse models of neuronal ceroid lipofuscinoses: useful pre-clinical tools to delineate disease pathophysiology and validate therapeutics. Brain Res Bull 2012; 88:43-57. [PMID: 22502604 DOI: 10.1016/j.brainresbull.2012.03.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 03/04/2012] [Accepted: 03/14/2012] [Indexed: 12/11/2022]
Abstract
The neuronal ceroid lipofuscinoses (NCL, also known as Batten disease) is a devastating neurodegenerative diseases caused by mutations in either soluble enzymes or membrane-associated structural proteins that result in lysosome dysfunction. Different forms of NCL were defined initially by age of onset, affected population and/or type of storage material but collectively represent the most prevalent pediatric hereditary neurovisceral storage disorder. Specific gene mutations are now known for each subclass of NCL in humans that now largely define the disease: cathepsin D (CTSD) for congenital (CLN10 form); palmitoyl protein thioesterase 1 (PPT1) for infantile (CLN1 form); tripeptidyl peptidase 1 (TPP1) for classic late infantile (CLN2 form); variant late infantile-CLN5, CLN6 or CLN8 for variant late infantile forms; and CLN3 for juvenile (CLN3 form). Several mouse models of NCL have been developed, or in some cases exist sporadically, that exhibit mutations producing a progressive neurodegenerative phenotype similar to that observed in human NCL. The study of these mouse models of NCL has dramatically advanced our knowledge of NCL pathophysiology and in some cases has helped delineate the function of proteins mutated in human NCL. In addition, NCL mutant mice have been tested for several different therapeutic approaches and as such they have become important pre-clinical models for validating treatment options. In this review we will assess the current state of mouse models of NCL with regards to their unique pathophysiology and how these mice have helped investigators achieve a better understanding of human NCL disease and therapy.
Collapse
Affiliation(s)
- John J Shacka
- Neuropathology Division, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
50
|
Saha A, Sarkar C, Singh SP, Zhang Z, Munasinghe J, Peng S, Chandra G, Kong E, Mukherjee AB. The blood-brain barrier is disrupted in a mouse model of infantile neuronal ceroid lipofuscinosis: amelioration by resveratrol. Hum Mol Genet 2012; 21:2233-44. [PMID: 22331300 DOI: 10.1093/hmg/dds038] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Disruption of the blood-brain barrier (BBB) is a serious complication frequently encountered in neurodegenerative disorders. Infantile neuronal ceroid lipofuscinosis (INCL) is a devastating childhood neurodegenerative lysosomal storage disorder caused by palmitoyl-protein thioesterase-1 (PPT1) deficiency. It remains unclear whether BBB is disrupted in INCL and if so, what might be the molecular mechanism(s) of this complication. We previously reported that the Ppt1-knockout (Ppt1-KO) mice that mimic INCL manifest high levels of oxidative stress and neuroinflammation. Recently, it has been reported that CD4(+) T-helper 17 (T(H)17) lymphocytes may mediate BBB disruption and neuroinflammation, although the precise molecular mechanism(s) remain unclear. We sought to determine: (i) whether the BBB is disrupted in Ppt1-KO mice, (ii) if so, do T(H)17-lymphocytes underlie this complication, and (iii) how might T(H)17 lymphocytes breach the BBB. Here, we report that the BBB is disrupted in Ppt1-KO mice and that T(H)17 lymphocytes producing IL-17A mediate disruption of the BBB by stimulating production of matrix metalloproteinases (MMPs), which degrade the tight junction proteins essential for maintaining BBB integrity. Importantly, dietary supplementation of resveratrol (RSV), a naturally occurring antioxidant/anti-inflammatory polyphenol, markedly reduced the levels of T(H)17 cells, IL-17A and MMPs, and elevated the levels of tight junction proteins, which improved the BBB integrity in Ppt1-KO mice. Intriguingly, we found that RSV suppressed the differentiation of CD4(+) T lymphocytes to IL-17A-positive T(H)17 cells. Our findings uncover a mechanism by which T(H)17 lymphocytes mediate BBB disruption and suggest that small molecules such as RSV that suppress T(H)17 differentiation are therapeutic targets for neurodegenerative disorders such as INCL.
Collapse
Affiliation(s)
- Arjun Saha
- Section on Developmental Genetics, Program on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892-1830, USA
| | | | | | | | | | | | | | | | | |
Collapse
|