1
|
Yao L, Cai X, Yang S, Song Y, Xing L, Li G, Cui Z, Chen J. A single-cell landscape of the regenerating spinal cord of zebrafish. Neural Regen Res 2026; 21:780-789. [PMID: 40326988 DOI: 10.4103/nrr.nrr-d-24-01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/03/2025] [Indexed: 05/07/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00046/figure1/v/2025-05-05T160104Z/r/image-tiff Unlike mammals, zebrafish possess a remarkable ability to regenerate their spinal cord after injury, making them an ideal vertebrate model for studying regeneration. While previous research has identified key cell types involved in this process, the underlying molecular and cellular mechanisms remain largely unexplored. In this study, we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish. Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury, while molecular signals promoting growth cone collapse were inhibited. Radial glial cells exhibited significant proliferation and differentiation potential post injury, indicating their intrinsic roles in promoting neurogenesis and axonal regeneration, respectively. Additionally, we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury, creating a microenvironment permissive for tissue repair and regeneration. Furthermore, oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury. These findings demonstrated that the rapid and orderly regulation of inflammation, as well as the efficient proliferation and redifferentiation of new neurons and glial cells, enabled zebrafish to reconstruct the spinal cord. This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration, offering promising avenues for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yao
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
| | - Xinyi Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Saishuai Yang
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
| | - Yixing Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Zhiming Cui
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu Province, China
| | - Jiajia Chen
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Fanari O, Tavakoli S, Qiu Y, Makhamreh A, Nian K, Akeson S, Meseonznik M, McCormick CA, Bloch D, Gamper H, Jain M, Hou YM, Wanunu M, Rouhanifard SH. Probing enzyme-dependent pseudouridylation using direct RNA sequencing to assess epitranscriptome plasticity in a neuronal cell line. Cell Syst 2025; 16:101238. [PMID: 40118059 PMCID: PMC12006983 DOI: 10.1016/j.cels.2025.101238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/03/2024] [Accepted: 02/21/2025] [Indexed: 03/23/2025]
Abstract
Chemical modifications in mRNAs, such as pseudouridine (psi), can control gene expression. Yet, we know little about how they are regulated, especially in neurons. We applied nanopore direct RNA sequencing to investigate psi dynamics in SH-SY5Y cells in response to two perturbations that model a natural and unnatural cellular state: retinoic-acid-mediated differentiation (healthy) and exposure to the neurotoxicant lead (unhealthy). We discovered that the expression of some psi writers changes significantly in response to physiological conditions. We also found that globally, lead-treated cells have more psi sites but lower relative occupancy than untreated cells and differentiated cells. Examples of highly plastic sites were accompanied by constant expression for psi writers, suggesting trans-regulation. Many positions were static throughout all three cellular states, suggestive of a "housekeeping" function. This study enables investigations into mechanisms that control psi modifications in neurons and their possible protective effects in response to cellular stress.
Collapse
Affiliation(s)
- Oleksandra Fanari
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Sepideh Tavakoli
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Yuchen Qiu
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Amr Makhamreh
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Keqing Nian
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Stuart Akeson
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | | | | | - Dylan Bloch
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Miten Jain
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Meni Wanunu
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA
| | | |
Collapse
|
3
|
Cheng CJ, Wang LC, Chu LJ, Chen KY, Huang CY, Lan KL, Huang KY. Extracellular vesicles from fifth-stage larval Angiostrongylus cantonensis upregulate cholesterol biosynthesis and suppress NLRP2-associated inflammatory responses in mouse astrocytes. mSystems 2025; 10:e0101424. [PMID: 39636121 PMCID: PMC11748502 DOI: 10.1128/msystems.01014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Angiostrongylus cantonensis is a zoonotic parasite that causes severe symptoms in humans, including eosinophilic meningitis and eosinophilic meningoencephalitis. Extracellular vesicles (EVs) derived from helminthes have been implicated in regulating host survival and immune response. However, the roles of A. cantonensis EVs in modulating parasite pathogenesis and host immune response remain poorly understood. Herein, we characterized EVs derived from A. cantonensis fifth-stage larvae (L5) and adult worms. Ultrastructural features showed that EVs from adult worms are smaller in size compared with those from L5. Proteomic analysis identified stage-specific proteins packaged in L5 and adult worm EVs. To investigate the crosstalk between L5 EVs and host cells, RNA sequencing analysis was conducted to identify the differentially expressed genes (DEGs) and enriched biological pathways in mouse astrocytes treated with L5 EVs. GO and KEGG enrichment analysis demonstrated that the pathways related to "cholesterol biosynthesis" are significantly upregulated in L5 EV-treated astrocytes. Based on the transcriptomic data, we observed a downregulated trend of NOD-like receptors (NLRs) protein 2 (NLRP2), a key regulator of brain inflammation, in mouse astrocytes treated with L5 EVs. To validate this result, we utilized ATP to induce the expression of NLRP2 inflammasome-related genes and proteins, as well as the secretion of downstream cytokines. Notably, ATP-induced overexpression of NLRP2 inflammasome-related molecules was significantly reduced in mouse astrocytes upon L5 EV treatment. Collectively, our data suggest that A. cantonensis L5 EVs enhance cholesterol synthesis and potentially modulate immune response by reducing NLRP2 inflammasome-related signaling in non-permissive host cells.IMPORTANCEAngiostrongylus cantonensis is a significant causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. Helminth-derived extracellular vesicles (EVs) are known to play a crucial role in parasite pathogenesis and host immunomodulation. However, the protein compositions of A. cantonensis EVs and their roles in parasite pathogenesis and host immune response remain unclear. Our results demonstrate for the first time the distinct protein compositions in A. cantonensis L5 and adult worm EVs. The highly abundant proteins in L5 EVs that have immunomodulatory or pathogenic potential in the host deserve further investigation. Additionally, the uptake of L5 EVs by mouse astrocytes significantly upregulates cholesterol synthesis and suppresses ATP-induced NLRP2 inflammasome-related signaling. This study highlights the immunomodulatory roles of L5 EVs in non-permissive hosts, suggesting their potential as therapeutic targets and vaccine candidates against A. cantonensis.
Collapse
Affiliation(s)
- Chien-Ju Cheng
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, Taiwan
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Lichieh Julie Chu
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
- Department of Otolaryngology—Head & Neck Surgery, Chang Gung Memorial Hospital, Taoyuan City, Taiwan
| | - Kuang-Yao Chen
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan City, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City, Taiwan
| | - Ching-Yun Huang
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City, Taiwan
| | - Kuo-Lun Lan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City, Taiwan
| | - Kuo-Yang Huang
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City, Taiwan
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City, Taiwan
| |
Collapse
|
4
|
Mondal S, Becskei A. Gene choice in cancer cells is exclusive in ion transport but concurrent in DNA replication. Comput Struct Biotechnol J 2024; 23:2534-2547. [PMID: 38974885 PMCID: PMC11226983 DOI: 10.1016/j.csbj.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 07/09/2024] Open
Abstract
Cancers share common cellular and physiological features. Little is known about whether distinctive gene expression patterns can be displayed at the single-cell level by gene families in cancer cells. The expression of gene homologs within a family can exhibit concurrence and exclusivity. Concurrence can promote all-or-none expression patterns of related genes and underlie alternative physiological states. Conversely, exclusive gene families express the same or similar number of homologs in each cell, allowing a broad repertoire of cell identities to be generated. We show that gene families involved in the cell-cycle and antigen presentation are expressed concurrently. Concurrence in the DNA replication complex MCM reflects the replicative status of cells, including cell lines and cancer-derived organoids. Exclusive expression requires precise regulatory mechanism, but cancer cells retain this form of control for ion homeostasis and extend it to gene families involved in cell migration. Thus, the cell adhesion-based identity of healthy cells is transformed to an identity based on migration in the population of cancer cells, reminiscent of epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Samuel Mondal
- Biozentrum, University of Basel, Spitalstrasse 41, Basel 4056, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Spitalstrasse 41, Basel 4056, Switzerland
| |
Collapse
|
5
|
Fanari O, Tavakoli S, Qiu Y, Makhamreh A, Nian K, Akeson S, Meseonznik M, McCormick CA, Bloch D, Gamper H, Jain M, Hou YM, Wanunu M, Rouhanifard SH. Probing enzyme-dependent pseudouridylation using direct RNA sequencing to assess neuronal epitranscriptome plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586895. [PMID: 38585714 PMCID: PMC10996719 DOI: 10.1101/2024.03.26.586895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Chemical modifications in mRNAs, such as pseudouridine (psi), can control gene expression. Yet, we know little about how they are regulated, especially in neurons. We applied nanopore direct RNA sequencing to investigate psi dynamics in SH-SY5Y cells in response to two perturbations that model a natural and unnatural cellular state: retinoic-acid-mediated differentiation (healthy) and exposure to the neurotoxicant, lead (unhealthy). We discovered that the expression of some psi writers change significantly in response to physiological conditions. We also found that globally, lead-treated cells have more psi sites but lower relative occupancy than untreated cells and differentiated cells. Interestingly, examples of highly plastic sites were accompanied by constant expression for psi writers, suggesting trans-regulation. Many positions were static throughout all three cellular states, suggestive of a "housekeeping" function. This study enables investigations into mechanisms that control psi modifications in neurons and its possible protective effects in response to cellular stress.
Collapse
Affiliation(s)
| | | | - Yuchen Qiu
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Amr Makhamreh
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Keqing Nian
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Stuart Akeson
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | | | | | - Dylan Bloch
- Dept. of Bioengineering, Northeastern University, Boston, MA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Miten Jain
- Dept. of Bioengineering, Northeastern University, Boston, MA
- Dept. of Physics, Northeastern University, Boston, MA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA
| | - Meni Wanunu
- Dept. of Bioengineering, Northeastern University, Boston, MA
- Dept. of Physics, Northeastern University, Boston, MA
| | | |
Collapse
|
6
|
Cao Y, Guan L, Yang L, Wei C. PANoptosis-related molecular clustering and prognostic signature associated with the immune landscape and therapy response in breast cancer. Medicine (Baltimore) 2024; 103:e39511. [PMID: 39287311 PMCID: PMC11404910 DOI: 10.1097/md.0000000000039511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 09/19/2024] Open
Abstract
Breast cancer (BC) remains one of the most pervasive and complex malignancies. PANoptosis represents a recently identified cellular mechanism leading to programmed cell death. However, the prognostic implications and influence on the immune microenvironment of BC pertaining to PANoptosis-related genes (PRGs) remain significantly understudied. We conducted differential expression analysis to identify prognostic-Related PRGs by the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Next, we identified the PANoptosis-related molecular subtype using the consensus clustering analysis, and constructed and validated the PANoptosis-related prognostic signature using LASSO and Cox regression analyses. ROC curves were employed to assess the performance of the signatures. Furthermore, drug sensitivity between low- and high-risk group were analysis. Finally, we conducted RT-qPCR to assess the gene expression levels involved in this signature. We categorized BC patients into 2 distinct molecular clusters based on PRGs and identified differentially expressed genes associated with prognosis. Subsequently, BC patients were then divided into 2 gene clusters. The identified PRGs molecular clusters and gene clusters demonstrated association with patient survival, immune system functions, and biological processes and pathways of BC. A prognostic signature comprising 5 genes was established, and BC patients were classified into low- and high-risk groups based on the risk scores. The ROC curves demonstrated that those in the low-risk category exhibited notably extended survival compared to the high-risk group. A nomogram model for patient survival was constructed based on the risk score in conjunction with other clinical features. High-risk group had higher tumor burden mutation, CSC index and lower StomalScore, ImmuneScore, and ESTIMATEScore. Subsequently, we established a correlation between the risk score and drug sensitivity among BC patients. Finally, qRT-PCR results showed that the expression of CXCL1, PIGR, and TNFRSF14 significantly decreased, while CXCL13 and NKAIN were significantly increased in BC tissues. We have developed a molecular clustering and prognostic signature based on PANoptosis to improve the prediction of BC prognosis. This discovery has the potential to not only assist in assessing overall patient prognosis but also to deepen our understanding of the underlying mechanisms of PANoptosis in BC pathogenesis.
Collapse
Affiliation(s)
- Yiming Cao
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
- Department of Breast and Thyroid Surgery, Liuzhou People’s Hospital, Liuzhou, P.R. China
| | - LinJing Guan
- Department of Abdomen Ultrasound, Nanning Sixth People’s Hospital, Nanning, P.R. China
| | - Li Yang
- Department of Pathology, Liuzhou People’s Hospital, Liuzhou, P.R. China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, P.R. China
| |
Collapse
|
7
|
Wang X, Yang F, Sun Z, Zhao G, Pu Q, Geng C, Dong K, Zhang X, Liu Z, Song H. NKAIN1, as an oncogene, promotes the proliferation and metastasis of breast cancer, affecting its prognosis. Mol Carcinog 2024; 63:1392-1405. [PMID: 38651944 DOI: 10.1002/mc.23732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Na, K-ATPase interaction (NKAIN) is a transmembrane protein family, which can interact with Na, K-ATPase β1 subunit. NKAIN1 plays an important role in alcohol-dependent diseases such as endometrial and prostate cancers. However, the relationship between NKAIN1 and human breast cancer has not been studied. Hence, this study aimed to explore the relationship between NKAIN1 expression and breast cancer. Data used in this study were mainly from the Cancer Genome Atlas, including differential expression analysis, Kaplan-Meier survival analysis, receiver operating characteristic curve analysis, multiple Cox regression analysis, co-expression gene analysis, and gene set enrichment analysis. Analyses were performed using reverse transcription-quantitative polymerase chain reaction, western blot analysis, and immunohistochemistry on 46 collected samples. The knockdown or overexpression of NKAIN1 in vitro in MCF-7 and MDA-MB-231 cell lines altered the proliferation and migration abilities of tumor cells. In vivo experiments further confirmed that NKAIN1 knockdown effectively inhibited the proliferation and migration of cancer cells. Therefore, our study identified NKAIN1 as an oncogene that is highly expressed in breast cancer tissues. The findings highlight the potential of NKAIN1 as a molecular biomarker of breast cancer.
Collapse
Affiliation(s)
- XiMei Wang
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - FangZheng Yang
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Zhi Sun
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Department of Breast Disease(II), Shandong Second Provincial General Hospital, Jinan, China
| | - GuangHui Zhao
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Qingdao Key Lab of Mitochondrial Medicine, Qingdao, China
| | - Qian Pu
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - ChenChen Geng
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Ke Dong
- Department of General Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - XiaoDong Zhang
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Qingdao Key Lab of Mitochondrial Medicine, Qingdao, China
| | - ZiQian Liu
- Department of Medical Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Qingdao Key Lab of Mitochondrial Medicine, Qingdao, China
| | - HaiYun Song
- Department of Pathology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
8
|
Yingping W, Lizhi L, Haiying L, Li C, Tiantian G, Xiaoyu Z, Yingying Y, Jiahui L. The effect of LINC9137 targeting miR-140-3p-NKAIN3 signal axis on the development of goose testis sertoli cells. Poult Sci 2024; 103:103724. [PMID: 38701630 PMCID: PMC11087709 DOI: 10.1016/j.psj.2024.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/05/2024] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
Sertoli cells (SC) are a type of important cells in the testes, which can provide transport proteins, regulatory proteins, growth factors, and other cytokines for the spermatogenic process. They participate in the regulation of the maturation and differentiation of spermatogenic cells and play an important supporting role in the migration, proliferation, and differentiation of germ cells at all levels in the testes. Previous studies found differential expression of LINC9137, miR-140-3p, and Sodium/Potassium Transporting ATPase Interacting 3 (NKAIN3) genesin high and low sperm motility goose testicular tissues. This study investigated the effects of the LINC9137-miR-140-3p-NKAIN3 signal axis on the proliferation and apoptosis of goose testicular sertoli cells at the cellular level, respectively. The results showed that through acridine orange staining, oil red O staining, Alkaline phosphatase (AKP) staining, and RT qPCR assay, it was comprehensively identified that the cultured testicular sertoli cells were purified in vitro. Through the dual luciferase activity detection test, it was found that LINC9137 has a targeted binding site with miR-140-3p and NKAIN3. In addition, this study found that overexpression of miR-140-3p significantly inhibited the expression of LINC9137 and NKAIN3 in sertoli cells, and their expression was significantly increased when miR-140-3p was interfered with. By measuring cell proliferation activity and apoptosis related gene expression, it was found that overexpression of LINC9137 decreased cell proliferation activity (P > 0.05), while the expression level of apoptosis factor Bcl2 Associated X Protein (Bax)/B-cell lymphoma-2 (Bcl2) increased (P > 0.05). On the contrary, when interfering with LINC9137, the cell proliferation activity of sertoli cells was significantly increased (P < 0.01), and the expression level of apoptosis factor Bax/Bcl2 was significantly reduced (P < 0.05); The effect of miR-140-3p on the proliferation and apoptosis of sertoli cells is opposite to that of LINC9137. Meanwhile, this study co transfected overexpressed LINC9137 and miR-140-3p plasmids into sertoli cells, and found that the effect of LINC9137 overexpression on supporting cell proliferation was weakened by miR-140-3p. This study elucidates the role and function of the LINC9137 miR-140-3p-NKAIN3 signaling axis in the development of goose testes and spermatogenesis, establishes a regulatory network related to spermatogenesis, and provides a theoretical basis for studying the genetic regulation of goose spermatogenesis.
Collapse
Affiliation(s)
- Wu Yingping
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Lu Lizhi
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Hangzhou 310021, China
| | - Li Haiying
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China.
| | - Chen Li
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Hangzhou 310021, China
| | - Gu Tiantian
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou, Hangzhou 310021, China
| | - Zhao Xiaoyu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Yao Yingying
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| | - Li Jiahui
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830000, China
| |
Collapse
|
9
|
Sonoda GG, Tobaruela EDC, Norenburg J, Fabi JP, Andrade SCS. Venomous Noodles: The Evolution of Toxins in Nemertea through Positive Selection and Gene Duplication. Toxins (Basel) 2023; 15:650. [PMID: 37999513 PMCID: PMC10674772 DOI: 10.3390/toxins15110650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023] Open
Abstract
Some, probably most and perhaps all, members of the phylum Nemertea are poisonous, documented so far from marine and benthic specimens. Although the toxicity of these animals has been long known, systematic studies on the characterization of toxins, mechanisms of toxicity, and toxin evolution for this group are scarce. Here, we present the first investigation of the molecular evolution of toxins in Nemertea. Using a proteo-transcriptomic approach, we described toxins in the body and poisonous mucus of the pilidiophoran Lineus sanguineus and the hoplonemertean Nemertopsis pamelaroeae. Using these new and publicly available transcriptomes, we investigated the molecular evolution of six selected toxin gene families. In addition, we also characterized in silico the toxin genes found in the interstitial hoplonemertean, Ototyphlonemertes erneba, a meiofaunal taxa. We successfully identified over 200 toxin transcripts in each of these species. Evidence of positive selection and gene duplication was observed in all investigated toxin genes. We hypothesized that the increased rates of gene duplications observed for Pilidiophora could be involved with the expansion of toxin genes. Studies concerning the natural history of Nemertea are still needed to understand the evolution of their toxins. Nevertheless, our results show evolutionary mechanisms similar to other venomous groups.
Collapse
Affiliation(s)
- Gabriel Gonzalez Sonoda
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo 05508-090, Brazil;
- Instituto Butantan, São Paulo 05503-900, Brazil
| | - Eric de Castro Tobaruela
- Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo, São Paulo 05508-080, Brazil; (E.d.C.T.); (J.P.F.)
| | | | - João Paulo Fabi
- Faculdade de Ciências Farmacêuticas, Food Research Center (FoRC), Universidade de São Paulo, São Paulo 05508-080, Brazil; (E.d.C.T.); (J.P.F.)
| | - Sónia C. S. Andrade
- Departamento de Genética e Biologia Evolutiva, IB-Universidade de São Paulo, São Paulo 05508-090, Brazil;
| |
Collapse
|
10
|
Wu Y, Zhang L, Li H, Zhao X, Ding Y, Yao Y, Wang L. Association between Yili goose sperm motility and expression profiles of mRNA and miRNA in testis. BMC Genomics 2023; 24:640. [PMID: 37875805 PMCID: PMC10599010 DOI: 10.1186/s12864-023-09727-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND The study was conducted to find out the candidate microRNA (miRNA) and genes that associated with sperm motility of Yili goose through small RNA sequencing of testicular tissue of Yili goose, and provide a theoretical basis for the study of the regulation mechanism of sperm motility of Yili goose gander. RESULTS In this study, five male geese with high sperm motility and five male geese with low sperm motility were slaughtered to obtain their testis tissues for small RNA sequencing, and biological information methods were used for data analysis. The results showed that a total of 1575 known miRNAs and 68 novel miRNAs were identified in the testis tissue of Yili goose, and 71 differentially expressed miRNAs and 660 differentially expressed genes were screened. GO functional analysis showed that miRNAs target genes were mainly involved in the binding, kinase activity, structural constituent of cytoskeleton and intermediate filament cytoskeleton. KEGG functional analysis showed that miRNAs target genes were significantly enriched in arginine and proline metabolism, glycolysis / gluconeogenesis, fructose and mannose metabolism and beta-Alanine metabolism and other pathways. miRNAs-mRNAs interaction network suggests miR-140/miR-140-3p/miR-140-3p-NKAIN3, let-7d-BTG1 and miR-145-5p/miR -145a-5p-CLEC2E may play an important role in testis development and spermatogenesis. CONCLUSIONS The results of this study suggest that the sperm motility of Yili goose may be regulated by different miRNAs, and the target genes are significantly enriched in pathways related to sperm metabolism, indicating that miRNAs affect the sperm motility of Yili goose by regulating the metabolic process of sperm and the expression of related genes. This study can provide a reference for revealing the regulation mechanism of Yili goose sperm motility at the molecular level.
Collapse
Affiliation(s)
- Yingping Wu
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Lihua Zhang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Haiying Li
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China.
| | - Xiaoyu Zhao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Yawen Ding
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Yingying Yao
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Ling Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830000, China
| |
Collapse
|
11
|
Czamara D, Neufang A, Dieterle R, Iurato S, Arloth J, Martins J, Ising M, Binder EE, Erhardt A. Effects of stressful life-events on DNA methylation in panic disorder and major depressive disorder. Clin Epigenetics 2022; 14:55. [PMID: 35477560 PMCID: PMC9047302 DOI: 10.1186/s13148-022-01274-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/07/2022] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Panic disorder (PD) is characterized by recurrent panic attacks and higher affection of women as compared to men. The lifetime prevalence of PD is about 2-3% in the general population leading to tremendous distress and disability. Etiologically, genetic and environmental factors, such as stress, contribute to the onset and relapse of PD. In the present study, we investigated epigenome-wide DNA methylation (DNAm) in respond to a cumulative, stress-weighted life events score (wLE) in patients with PD and its boundary to major depressive disorder (MDD), frequently co-occurring with symptoms of PD. METHODS DNAm was assessed by the Illumina HumanMethylation450 BeadChip. In a meta-analytic approach, epigenome-wide DNAm changes in association with wLE were first analyzed in two PD cohorts (with a total sample size of 183 PD patients and 85 healthy controls) and lastly in 102 patients with MDD to identify possible overlapping and opposing effects of wLE on DNAm. Additionally, analysis of differentially methylated regions (DMRs) was conducted to identify regional clusters of association. RESULTS Two CpG-sites presented with p-values below 1 × 10-05 in PD: cg09738429 (p = 6.40 × 10-06, located in an intergenic shore region in next proximity of PYROXD1) and cg03341655 (p = 8.14 × 10-06, located in the exonic region of GFOD2). The association of DNAm at cg03341655 and wLE could be replicated in the independent MDD case sample indicating a diagnosis independent effect. Genes mapping to the top hits were significantly upregulated in brain and top hits have been implicated in the metabolic system. Additionally, two significant DMRs were identified for PD only on chromosome 10 and 18, including CpG-sites which have been reported to be associated with anxiety and other psychiatric phenotypes. CONCLUSION This first DNAm analysis in PD reveals first evidence of small but significant DNAm changes in PD in association with cumulative stress-weighted life events. Most of the top associated CpG-sites are located in genes implicated in metabolic processes supporting the hypothesis that environmental stress contributes to health damaging changes by affecting a broad spectrum of systems in the body.
Collapse
Affiliation(s)
- Darina Czamara
- Translational Department, Max Planck Institute for Psychiatry, Kraepelinstrasse 2+10, 80804, Munich, Germany.
| | - Alexa Neufang
- Institute of Statistics, Faculty of Mathematics, Informatics and Statistics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roman Dieterle
- Institute of Statistics, Faculty of Mathematics, Informatics and Statistics, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stella Iurato
- Translational Department, Max Planck Institute for Psychiatry, Kraepelinstrasse 2+10, 80804, Munich, Germany
| | - Janine Arloth
- Translational Department, Max Planck Institute for Psychiatry, Kraepelinstrasse 2+10, 80804, Munich, Germany
| | - Jade Martins
- Translational Department, Max Planck Institute for Psychiatry, Kraepelinstrasse 2+10, 80804, Munich, Germany
| | - Marcus Ising
- Translational Department, Max Planck Institute for Psychiatry, Kraepelinstrasse 2+10, 80804, Munich, Germany
| | - Elisabeth E Binder
- Translational Department, Max Planck Institute for Psychiatry, Kraepelinstrasse 2+10, 80804, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Emory University, Atlanta, GA, USA
| | - Angelika Erhardt
- Translational Department, Max Planck Institute for Psychiatry, Kraepelinstrasse 2+10, 80804, Munich, Germany
- Department of Psychiatry, Psychosomatics and Psychotherapy, Centre of Mental Health, Julius-Maximilians-University, Wuerzburg, Germany
| |
Collapse
|
12
|
Blokland GAM, Grove J, Chen CY, Cotsapas C, Tobet S, Handa R, St Clair D, Lencz T, Mowry BJ, Periyasamy S, Cairns MJ, Tooney PA, Wu JQ, Kelly B, Kirov G, Sullivan PF, Corvin A, Riley BP, Esko T, Milani L, Jönsson EG, Palotie A, Ehrenreich H, Begemann M, Steixner-Kumar A, Sham PC, Iwata N, Weinberger DR, Gejman PV, Sanders AR, Buxbaum JD, Rujescu D, Giegling I, Konte B, Hartmann AM, Bramon E, Murray RM, Pato MT, Lee J, Melle I, Molden E, Ophoff RA, McQuillin A, Bass NJ, Adolfsson R, Malhotra AK, Martin NG, Fullerton JM, Mitchell PB, Schofield PR, Forstner AJ, Degenhardt F, Schaupp S, Comes AL, Kogevinas M, Guzman-Parra J, Reif A, Streit F, Sirignano L, Cichon S, Grigoroiu-Serbanescu M, Hauser J, Lissowska J, Mayoral F, Müller-Myhsok B, Świątkowska B, Schulze TG, Nöthen MM, Rietschel M, Kelsoe J, Leboyer M, Jamain S, Etain B, Bellivier F, Vincent JB, Alda M, O'Donovan C, Cervantes P, Biernacka JM, Frye M, McElroy SL, Scott LJ, Stahl EA, Landén M, Hamshere ML, Smeland OB, Djurovic S, Vaaler AE, Andreassen OA, Baune BT, Air T, Preisig M, Uher R, Levinson DF, Weissman MM, Potash JB, Shi J, Knowles JA, Perlis RH, Lucae S, et alBlokland GAM, Grove J, Chen CY, Cotsapas C, Tobet S, Handa R, St Clair D, Lencz T, Mowry BJ, Periyasamy S, Cairns MJ, Tooney PA, Wu JQ, Kelly B, Kirov G, Sullivan PF, Corvin A, Riley BP, Esko T, Milani L, Jönsson EG, Palotie A, Ehrenreich H, Begemann M, Steixner-Kumar A, Sham PC, Iwata N, Weinberger DR, Gejman PV, Sanders AR, Buxbaum JD, Rujescu D, Giegling I, Konte B, Hartmann AM, Bramon E, Murray RM, Pato MT, Lee J, Melle I, Molden E, Ophoff RA, McQuillin A, Bass NJ, Adolfsson R, Malhotra AK, Martin NG, Fullerton JM, Mitchell PB, Schofield PR, Forstner AJ, Degenhardt F, Schaupp S, Comes AL, Kogevinas M, Guzman-Parra J, Reif A, Streit F, Sirignano L, Cichon S, Grigoroiu-Serbanescu M, Hauser J, Lissowska J, Mayoral F, Müller-Myhsok B, Świątkowska B, Schulze TG, Nöthen MM, Rietschel M, Kelsoe J, Leboyer M, Jamain S, Etain B, Bellivier F, Vincent JB, Alda M, O'Donovan C, Cervantes P, Biernacka JM, Frye M, McElroy SL, Scott LJ, Stahl EA, Landén M, Hamshere ML, Smeland OB, Djurovic S, Vaaler AE, Andreassen OA, Baune BT, Air T, Preisig M, Uher R, Levinson DF, Weissman MM, Potash JB, Shi J, Knowles JA, Perlis RH, Lucae S, Boomsma DI, Penninx BWJH, Hottenga JJ, de Geus EJC, Willemsen G, Milaneschi Y, Tiemeier H, Grabe HJ, Teumer A, Van der Auwera S, Völker U, Hamilton SP, Magnusson PKE, Viktorin A, Mehta D, Mullins N, Adams MJ, Breen G, McIntosh AM, Lewis CM, Hougaard DM, Nordentoft M, Mors O, Mortensen PB, Werge T, Als TD, Børglum AD, Petryshen TL, Smoller JW, Goldstein JM. Sex-Dependent Shared and Nonshared Genetic Architecture Across Mood and Psychotic Disorders. Biol Psychiatry 2022; 91:102-117. [PMID: 34099189 PMCID: PMC8458480 DOI: 10.1016/j.biopsych.2021.02.972] [Show More Authors] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. METHODS We conducted the largest to date genome-wide genotype-by-sex (G×S) interaction of risk for these disorders using 85,735 cases (33,403 SCZ, 19,924 BIP, and 32,408 MDD) and 109,946 controls from the PGC (Psychiatric Genomics Consortium) and iPSYCH. RESULTS Across disorders, genome-wide significant single nucleotide polymorphism-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815, p = 3.2 × 10-8), which interacts with sodium/potassium-transporting ATPase (adenosine triphosphatase) enzymes, implicating neuronal excitability. Three additional loci showed evidence (p < 1 × 10-6) for cross-disorder G×S interaction (rs7302529, p = 1.6 × 10-7; rs73033497, p = 8.8 × 10-7; rs7914279, p = 6.4 × 10-7), implicating various functions. Gene-based analyses identified G×S interaction across disorders (p = 8.97 × 10-7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282, p = 1.5 × 10-7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509, p = 1.1 × 10-7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant G×S interaction of genes regulating vascular endothelial growth factor receptor signaling in MDD (false discovery rate-corrected p < .05). CONCLUSIONS In the largest genome-wide G×S analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development and immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway levels.
Collapse
Affiliation(s)
- Gabriëlla A M Blokland
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands; Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts.
| | - Jakob Grove
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark; Bioinformatics Research Centre (BiRC), Aarhus, Denmark
| | - Chia-Yen Chen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Biogen Inc., Cambridge, Massachusetts
| | - Chris Cotsapas
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Departments of Neurology and Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Stuart Tobet
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Robert Handa
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - David St Clair
- University of Aberdeen, Institute of Medical Sciences, Aberdeen, United Kingdom
| | - Todd Lencz
- The Feinstein Institute for Medical Research, Manhasset, New York; The Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York; The Zucker Hillside Hospital, Glen Oaks, New York
| | - Bryan J Mowry
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia; Queensland Centre for Mental Health Research, University of Queensland, Brisbane, Queensland, Australia
| | - Sathish Periyasamy
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia; Queensland Centre for Mental Health Research, The Park - Centre for Mental Health, Wacol, Queensland, Australia
| | - Murray J Cairns
- Schizophrenia Research Institute, Sydney, New South Wales, Australia; School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Jing Qin Wu
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Schizophrenia Research Institute, Sydney, New South Wales, Australia
| | - Brian Kelly
- Priority Centre for Translational Neuroscience and Mental Health, University of Newcastle, Newcastle, New South Wales, Australia
| | - George Kirov
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Patrick F Sullivan
- Departments of Genetics and Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Brien P Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Departments of Psychiatry and Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia
| | - Tõnu Esko
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Lili Milani
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Erik G Jönsson
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm, Sweden; Norwegian Centre for Mental Disorders Research (NORMENT), KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aarno Palotie
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Hannelore Ehrenreich
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Martin Begemann
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Agnes Steixner-Kumar
- Department of Clinical Neuroscience, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China; State Key Laboratory for Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR China; Centre for Genomic Sciences, The University of Hong Kong, Hong Kong, SAR China
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, Maryland; Departments of Psychiatry, Neurology, Neuroscience and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Pablo V Gejman
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, North Shore University Health System, Evanston, Illinois
| | - Alan R Sanders
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois; Department of Psychiatry and Behavioral Sciences, North Shore University Health System, Evanston, Illinois
| | - Joseph D Buxbaum
- Departments of Human Genetics and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dan Rujescu
- Department of Psychiatry, University of Halle, Halle, Germany; Department of Psychiatry, University of Munich, Munich, Germany
| | - Ina Giegling
- Department of Psychiatry, University of Halle, Halle, Germany; Department of Psychiatry, University of Munich, Munich, Germany
| | - Bettina Konte
- Department of Psychiatry, University of Halle, Halle, Germany
| | | | - Elvira Bramon
- Mental Health Neuroscience Research Department, Division of Psychiatry, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Robin M Murray
- Institute of Psychiatry, King's College London, London, United Kingdom
| | - Michele T Pato
- Institute for Genomic Health, SUNY Downstate Medical Center College of Medicine, Brooklyn, New York; Department of Psychiatry and Zilkha Neurogenetics Institute, Keck School of Medicine at University of Southern California, Los Angeles, California
| | - Jimmy Lee
- Research Division and Department of General Psychiatry, Institute of Mental Health, Singapore, Singapore; Duke-National University of Singapore Graduate Medical School, Singapore
| | - Ingrid Melle
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Department of Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, Oslo, Norway
| | - Roel A Ophoff
- University Medical Center Utrecht, Department of Psychiatry, Rudolf Magnus Institute of Neuroscience, Utrecht, the Netherlands; Department of Human Genetics, University of California, Los Angeles, California; David Geffen School of Medicine, and Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, California
| | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
| | - Nicholas J Bass
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, United Kingdom
| | - Rolf Adolfsson
- Department of Clinical Sciences, Psychiatry, Umeå University Medical Faculty, Umeå, Sweden
| | - Anil K Malhotra
- The Feinstein Institute for Medical Research, Manhasset, New York; The Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York; The Zucker Hillside Hospital, Glen Oaks, New York
| | - Nicholas G Martin
- School of Psychology, University of Queensland, Brisbane, Queensland, Australia; Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Janice M Fullerton
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, New South Wales, Australia
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia; School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andreas J Forstner
- Centre for Human Genetics, University of Marburg, Marburg, Germany; Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Duisburg, Germany
| | - Sabrina Schaupp
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Ashley L Comes
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), Munich, Germany
| | | | - José Guzman-Parra
- Mental Health Department, University Regional Hospital, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lea Sirignano
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sven Cichon
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany; Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Biomedicine, University of Basel, Basel, Switzerland; Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Maria Grigoroiu-Serbanescu
- Biometric Psychiatric Genetics Research Unit, Alexandru Obregia Clinical Psychiatric Hospital, Bucharest, Romania
| | - Joanna Hauser
- Department of Psychiatry, Laboratory of Psychiatric Genetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jolanta Lissowska
- Cancer Epidemiology and Prevention, M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Fermin Mayoral
- Mental Health Department, University Regional Hospital, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - Bertram Müller-Myhsok
- University of Liverpool, Liverpool, United Kingdom; Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Beata Świątkowska
- Department of Environmental Epidemiology, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Thomas G Schulze
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland; Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany; Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany; Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - John Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Marion Leboyer
- Faculté de Médecine, Université Paris Est, Créteil, France; Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; Institut national de la santé et de la recherche médicale (INSERM), Paris, France
| | - Stéphane Jamain
- Faculté de Médecine, Université Paris Est, Créteil, France; INSERM U955, Psychiatrie Translationnelle, Créteil, France
| | - Bruno Etain
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom; Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; UMR-S1144 Team 1 Biomarkers of relapse and therapeutic response in addiction and mood disorders, INSERM, Paris, France; Psychiatry, Université Paris Diderot, Paris, France
| | - Frank Bellivier
- Department of Psychiatry and Addiction Medicine, Assistance Publique - Hôpitaux de Paris, Paris, France; UMR-S1144 Team 1 Biomarkers of relapse and therapeutic response in addiction and mood disorders, INSERM, Paris, France; Psychiatry, Université Paris Diderot, Paris, France; Paris Bipolar and TRD Expert Centres, FondaMental Foundation, Paris, France
| | - John B Vincent
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Pablo Cervantes
- Department of Psychiatry, Mood Disorders Program, McGill University Health Center, Montréal, Québec, Canada
| | - Joanna M Biernacka
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Mark Frye
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, Minnesota
| | | | - Laura J Scott
- Center for Statistical Genetics and Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Eli A Stahl
- Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden; Institute of Neuroscience and Physiology, the Sahlgrenska Academy at Gothenburg University, Gothenburg, Sweden
| | - Marian L Hamshere
- MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Olav B Smeland
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Bernhard T Baune
- Department of Psychiatry, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia; Department of Psychiatry, University of Münster, Münster, Germany
| | - Tracy Air
- Discipline of Psychiatry, The University of Adelaide, Adelaide, South Austrlalia, Australia
| | - Martin Preisig
- Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Douglas F Levinson
- Psychiatry & Behavioral Sciences, Stanford University, Stanford, California
| | - Myrna M Weissman
- Department of Psychiatry, Columbia University College of Physicians and Surgeons, New York, New York; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, New York
| | - James B Potash
- Department of Psychiatry, University of Iowa, Iowa City, Iowa
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland
| | - James A Knowles
- Psychiatry & The Behavioral Sciences, University of Southern California, Los Angeles, California
| | - Roy H Perlis
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Susanne Lucae
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany; Max Planck Institute of Psychiatry, Munich, Germany
| | - Dorret I Boomsma
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Brenda W J H Penninx
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Jouke-Jan Hottenga
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology/Netherlands Twin Register, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Public Health Research Institute, Amsterdam UMC, Amsterdam, the Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, the Netherlands
| | - Henning Tiemeier
- Child and Adolescent Psychiatry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Alexander Teumer
- Institute of Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Alexander Viktorin
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Divya Mehta
- School of Psychology and Counseling, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Niamh Mullins
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Social, Genetic and Developmental Psychiatry Centre, King's College London, London, United Kingdom
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Gerome Breen
- NIHR Maudsley Biomedical Research Centre, King's College London, London, United Kingdom
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, United Kingdom
| | - Cathryn M Lewis
- Department of Medical & Molecular Genetics, King's College London, London, United Kingdom
| | - David M Hougaard
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Neonatal Screening, Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Merete Nordentoft
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Copenhagen Mental Health Center, Mental Health Services Capital Region of Denmark Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Mors
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Psychosis Research Unit, Aarhus University Hospital, Risskov, Denmark
| | - Preben B Mortensen
- Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark; National Centre for Register-Based Research (NCCR), Aarhus University, Aarhus, Denmark; Centre for Integrated Register-based Research (CIRRAU), Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark
| | - Thomas Werge
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark
| | - Thomas D Als
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark
| | - Anders D Børglum
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; The Lundbeck Foundation Initiative for Integrative Psychiatric Research (iPSYCH), Copenhagen, Denmark; Center for Genome Analysis and Personalized Medicine, Aarhus, Denmark
| | - Tracey L Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts; Concert Pharmaceuticals, Inc., Lexington, Massachusetts
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry and Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Jill M Goldstein
- Innovation Center on Sex Differences in Medicine (ICON), Massachusetts General Hospital, Boston, Massachusetts; Department of Psychiatry and Vincent Department of Obstetrics, Gynecology & Reproductive Biology, Massachusetts General Hospital, Boston, Massachusetts; MGH-MIT-HMS Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, Massachusetts; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
13
|
Iglesias González AB, Jakobsson JET, Vieillard J, Lagerström MC, Kullander K, Boije H. Single Cell Transcriptomic Analysis of Spinal Dmrt3 Neurons in Zebrafish and Mouse Identifies Distinct Subtypes and Reveal Novel Subpopulations Within the dI6 Domain. Front Cell Neurosci 2021; 15:781197. [PMID: 35002627 PMCID: PMC8733252 DOI: 10.3389/fncel.2021.781197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/15/2021] [Indexed: 11/15/2022] Open
Abstract
The spinal locomotor network is frequently used for studies into how neuronal circuits are formed and how cellular activity shape behavioral patterns. A population of dI6 interneurons, marked by the Doublesex and mab-3 related transcription factor 3 (Dmrt3), has been shown to participate in the coordination of locomotion and gaits in horses, mice and zebrafish. Analyses of Dmrt3 neurons based on morphology, functionality and the expression of transcription factors have identified different subtypes. Here we analyzed the transcriptomes of individual cells belonging to the Dmrt3 lineage from zebrafish and mice to unravel the molecular code that underlies their subfunctionalization. Indeed, clustering of Dmrt3 neurons based on their gene expression verified known subtypes and revealed novel populations expressing unique markers. Differences in birth order, differential expression of axon guidance genes, neurotransmitters, and their receptors, as well as genes affecting electrophysiological properties, were identified as factors likely underlying diversity. In addition, the comparison between fish and mice populations offers insights into the evolutionary driven subspecialization concomitant with the emergence of limbed locomotion.
Collapse
Affiliation(s)
| | | | | | | | | | - Henrik Boije
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
D'Orazio FM, Balwierz PJ, González AJ, Guo Y, Hernández-Rodríguez B, Wheatley L, Jasiulewicz A, Hadzhiev Y, Vaquerizas JM, Cairns B, Lenhard B, Müller F. Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization. Dev Cell 2021; 56:641-656.e5. [PMID: 33651978 PMCID: PMC7957325 DOI: 10.1016/j.devcel.2021.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/25/2020] [Accepted: 02/03/2021] [Indexed: 02/09/2023]
Abstract
In many animal models, primordial germ cell (PGC) development depends on maternally deposited germ plasm, which prevents somatic cell fate. Here, we show that PGCs respond to regulatory information from the germ plasm in two distinct phases using two distinct mechanisms in zebrafish. We demonstrate that PGCs commence zygotic genome activation together with the somatic blastocysts with no demonstrable differences in transcriptional and chromatin opening. Unexpectedly, both PGC and somatic blastocysts activate germ-cell-specific genes, which are only stabilized in PGCs by cytoplasmic germ plasm determinants. Disaggregated perinuclear relocalization of germ plasm during PGC migration is regulated by the germ plasm determinant Tdrd7 and is coupled to dramatic divergence between PGC and somatic transcriptomes. This transcriptional divergence relies on PGC-specific cis-regulatory elements characterized by promoter-proximal distribution. We show that Tdrd7-dependent reconfiguration of chromatin accessibility is required for elaboration of PGC fate but not for PGC migration. No evidence for transcriptional activation delay in zebrafish PGCs Germ-plasm-associated post-transcriptional divergence during ZGA Epigenetic reprogramming marks onset of PGC migration Epigenetic reprogramming in PGCs relies on Tdrd7, coupled to germ plasm relocalization
Collapse
Affiliation(s)
- Fabio M D'Orazio
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Piotr J Balwierz
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Ada Jimenez González
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yixuan Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Lucy Wheatley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Aleksandra Jasiulewicz
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yavor Hadzhiev
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Juan M Vaquerizas
- MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, Muenster, Germany
| | - Bradley Cairns
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Boris Lenhard
- MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK.
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
15
|
Tang Y, Qazi MA, Brown KR, Mikolajewicz N, Moffat J, Singh SK, McNicholas PD. Identification of five important genes to predict glioblastoma subtypes. Neurooncol Adv 2021; 3:vdab144. [PMID: 34765972 PMCID: PMC8577514 DOI: 10.1093/noajnl/vdab144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM), the most common and aggressive primary brain tumour in adults, has been classified into three subtypes: classical, mesenchymal, and proneural. While the original classification relied on an 840 gene-set, further clarification on true GBM subtypes uses a 150-gene signature to accurately classify GBM into the three subtypes. We hypothesized whether a machine learning approach could be used to identify a smaller gene-set to accurately predict GBM subtype. METHODS Using a supervised machine learning approach, extreme gradient boosting (XGBoost), we developed a classifier to predict the three subtypes of glioblastoma (GBM): classical, mesenchymal, and proneural. We tested the classifier on in-house GBM tissue, cell lines, and xenograft samples to predict their subtype. RESULTS We identified the five most important genes for characterizing the three subtypes based on genes that often exhibited high Importance Scores in our XGBoost analyses. On average, this approach achieved 80.12% accuracy in predicting these three subtypes of GBM. Furthermore, we applied our five-gene classifier to successfully predict the subtype of GBM samples at our centre. CONCLUSION Our 5-gene set classifier is the smallest classifier to date that can predict GBM subtypes with high accuracy, which could facilitate the future development of a five-gene subtype diagnostic biomarker for routine assays in GBM samples.
Collapse
Affiliation(s)
- Yang Tang
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
| | - Maleeha A Qazi
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Kevin R Brown
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas Mikolajewicz
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Sheila K Singh
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Paul D McNicholas
- Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
16
|
Chasovskikh NY, Grechishnikova AY. Functional Annotation of Genes of Predisposition to Schizophrenia and Celiac Disease. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420100038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Nisar S, Bhat AA, Hashem S, Syed N, Yadav SK, Uddin S, Fakhro K, Bagga P, Thompson P, Reddy R, Frenneaux MP, Haris M. Genetic and Neuroimaging Approaches to Understanding Post-Traumatic Stress Disorder. Int J Mol Sci 2020; 21:4503. [PMID: 32599917 PMCID: PMC7352752 DOI: 10.3390/ijms21124503] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/15/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a highly disabling condition, increasingly recognized as both a disorder of mental health and social burden, but also as an anxiety disorder characterized by fear, stress, and negative alterations in mood. PTSD is associated with structural, metabolic, and molecular changes in several brain regions and the neural circuitry. Brain areas implicated in the traumatic stress response include the amygdala, hippocampus, and prefrontal cortex, which play an essential role in memory function. Abnormalities in these brain areas are hypothesized to underlie symptoms of PTSD and other stress-related psychiatric disorders. Conventional methods of studying PTSD have proven to be insufficient for diagnosis, measurement of treatment efficacy, and monitoring disease progression, and currently, there is no diagnostic biomarker available for PTSD. A deep understanding of cutting-edge neuroimaging genetic approaches is necessary for the development of novel therapeutics and biomarkers to better diagnose and treat the disorder. A current goal is to understand the gene pathways that are associated with PTSD, and how those genes act on the fear/stress circuitry to mediate risk vs. resilience for PTSD. This review article explains the rationale and practical utility of neuroimaging genetics in PTSD and how the resulting information can aid the diagnosis and clinical management of patients with PTSD.
Collapse
Affiliation(s)
- Sabah Nisar
- Functional and Molecular Imaging Department, Research Branch, Sidra Medicine, Doha 26999, Qatar; (S.N.); (A.A.B.); (S.H.); (N.S.); (S.K.Y.)
| | - Ajaz A. Bhat
- Functional and Molecular Imaging Department, Research Branch, Sidra Medicine, Doha 26999, Qatar; (S.N.); (A.A.B.); (S.H.); (N.S.); (S.K.Y.)
| | - Sheema Hashem
- Functional and Molecular Imaging Department, Research Branch, Sidra Medicine, Doha 26999, Qatar; (S.N.); (A.A.B.); (S.H.); (N.S.); (S.K.Y.)
| | - Najeeb Syed
- Functional and Molecular Imaging Department, Research Branch, Sidra Medicine, Doha 26999, Qatar; (S.N.); (A.A.B.); (S.H.); (N.S.); (S.K.Y.)
| | - Santosh K. Yadav
- Functional and Molecular Imaging Department, Research Branch, Sidra Medicine, Doha 26999, Qatar; (S.N.); (A.A.B.); (S.H.); (N.S.); (S.K.Y.)
| | - Shahab Uddin
- Translational Research Institute, Hamad Medical Corporation, Doha 3050, Qatar;
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, Doha 26999, Qatar;
- Department of Genetic Medicine, Weill Cornell Medical College, Doha 24144, Qatar
| | - Puneet Bagga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | - Paul Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck USC School of Medicine, Los Angeles, CA 90033, USA;
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.B.); (R.R.)
| | | | - Mohammad Haris
- Functional and Molecular Imaging Department, Research Branch, Sidra Medicine, Doha 26999, Qatar; (S.N.); (A.A.B.); (S.H.); (N.S.); (S.K.Y.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
18
|
Wei M, Ge H, Shao C, Yan X, Nie H, Duan H, Liao X, Zhang M, Chen Y, Zhang D, Dong Z. Chromosome-Level Clam Genome Helps Elucidate the Molecular Basis of Adaptation to a Buried Lifestyle. iScience 2020; 23:101148. [PMID: 32454450 PMCID: PMC7251785 DOI: 10.1016/j.isci.2020.101148] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/10/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Bivalve mollusks are economically important invertebrates that exhibit marked diversity in benthic lifestyle and provide valuable resources for understanding the molecular basis of adaptation to benthic life. In this report, we present a high-quality, chromosome-anchored reference genome of the Venus clam, Cyclina sinensis. The chromosome-level genome was assembled by Pacific Bioscience single-molecule real-time sequencing, Illumina paired-end sequencing, 10× Genomics, and high-throughput chromosome conformation capture technologies. The final genome assembly of C. sinensis is 903.2 Mb in size, with a contig N50 size of 2.6 Mb and a scaffold N50 size of 46.5 Mb. Enrichment analyses of significantly expanded and positively selected genes suggested evolutionary adaptation of this clam to buried life. In addition, a change in shell color represents another mechanism of adaptation to burial in sediment. The high-quality genome generated in this work provides a valuable resource for investigating the molecular mechanisms of adaptation to buried lifestyle. A chromosome-level assembly for clam genome is provided The evolutionary order of bivalve adductor muscle is from double to single The work suggests evolutionary adaptations to a buried lifestyle Change of shell color represents another mechanism of adaptation to burial in sediment
Collapse
Affiliation(s)
- Min Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hongxing Ge
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Changwei Shao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Hongtao Nie
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Haibao Duan
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoting Liao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Min Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yihua Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dongdong Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhiguo Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
19
|
López-Escardó D, Grau-Bové X, Guillaumet-Adkins A, Gut M, Sieracki ME, Ruiz-Trillo I. Reconstruction of protein domain evolution using single-cell amplified genomes of uncultured choanoflagellates sheds light on the origin of animals. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190088. [PMID: 31587642 PMCID: PMC6792448 DOI: 10.1098/rstb.2019.0088] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/25/2022] Open
Abstract
Understanding the origins of animal multicellularity is a fundamental biological question. Recent genome data have unravelled the role that co-option of pre-existing genes played in the origin of animals. However, there were also some important genetic novelties at the onset of Metazoa. To have a clear understanding of the specific genetic innovations and how they appeared, we need the broadest taxon sampling possible, especially among early-branching animals and their unicellular relatives. Here, we take advantage of single-cell genomics to expand our understanding of the genomic diversity of choanoflagellates, the sister-group to animals. With these genomes, we have performed an updated and taxon-rich reconstruction of protein evolution from the Last Eukaryotic Common Ancestor (LECA) to animals. Our novel data re-defines the origin of some genes previously thought to be metazoan-specific, like the POU transcription factor, which we show appeared earlier in evolution. Moreover, our data indicate that the acquisition of new genes at the stem of Metazoa was mainly driven by duplications and protein domain rearrangement processes at the stem of Metazoa. Furthermore, our analysis allowed us to reveal protein domains that are essential to the maintenance of animal multicellularity. Our analyses also demonstrate the utility of single-cell genomics from uncultured taxa to address evolutionary questions. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- David López-Escardó
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Institut de Ciències del Mar (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Xavier Grau-Bové
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Amy Guillaumet-Adkins
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | | | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
20
|
Baker MA, Wang F, Liu Y, Kriegel AJ, Geurts AM, Usa K, Xue H, Wang D, Kong Y, Liang M. MiR-192-5p in the Kidney Protects Against the Development of Hypertension. Hypertension 2019; 73:399-406. [PMID: 30595117 DOI: 10.1161/hypertensionaha.118.11875] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MicroRNA miR-192-5p is one of the most abundant microRNAs in the kidney and targets the mRNA for ATP1B1 (β1 subunit of Na+/K+-ATPase). Na+/K+-ATPase drives renal tubular reabsorption. We hypothesized that miR-192-5p in the kidney would protect against the development of hypertension. We found miR-192-5p levels were significantly lower in kidney biopsy specimens from patients with hypertension (n=8) or hypertensive nephrosclerosis (n=32) compared with levels in controls (n=10). Similarly, Dahl salt-sensitive (SS) rats showed a reduced abundance of miR-192-5p in the renal cortex compared with congenic SS.13BN26 rats that had reduced salt sensitivity (n=9; P<0.05). Treatment with anti-miR-192-5p delivered through renal artery injection in uninephrectomized SS.13BN26 rats exacerbated hypertension significantly. Mean arterial pressure on a 4% NaCl high-salt diet at day 14 post anti-miR-192-5p treatment was 16 mm Hg higher than in rats treated with scrambled anti-miR (n=8 and 6; P<0.05). Similarly, Mir192 knockout mice on the high-salt diet treated with Ang II (angiotensin II) for 14 days exhibited a mean arterial pressure 22 mm Hg higher than wild-type mice (n=9 and 5; P<0.05). Furthermore, protein levels of ATP1B1 were higher in Dahl SS rats than in SS.13BN26 rats. Na+/K+-ATPase activity increased in the renal cortex of SS.13BN26 rats 9 days posttreatment with anti-miR-192-5p compared with that of control anti-miR treated rats. Intrarenal knockdown of ATP1B1 attenuated hypertension in SS.13BN26 rats with intrarenal knockdown of miR-192-5p. In conclusion, miR-192-5p in the kidney protects against the development of hypertension, which is mediated, at least in part, by targeting Atp1b1.
Collapse
Affiliation(s)
- Maria Angeles Baker
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Feng Wang
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.W., Y.K.)
| | - Yong Liu
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Alison J Kriegel
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Aron M Geurts
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Kristie Usa
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Hong Xue
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Dandan Wang
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| | - Yiwei Kong
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.).,Department of Nephrology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, China (F.W., Y.K.)
| | - Mingyu Liang
- From the Department of Physiology, Center of Systems Molecular Medicine, Medical College of Wisconsin, Milwaukee (M.A.B., F.W., Y.L., A.J.K., A.M.G., K.U., H.X., D.W., Y.K., M.L.)
| |
Collapse
|
21
|
Kuznetsov VA, Bondarenko V, Wongsurawat T, Yenamandra SP, Jenjaroenpun P. Toward predictive R-loop computational biology: genome-scale prediction of R-loops reveals their association with complex promoter structures, G-quadruplexes and transcriptionally active enhancers. Nucleic Acids Res 2019; 46:7566-7585. [PMID: 29945198 PMCID: PMC6125637 DOI: 10.1093/nar/gky554] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
R-loops are three-stranded RNA:DNA hybrid structures essential for many normal and pathobiological processes. Previously, we generated a quantitative R-loop forming sequence (RLFS) model, quantitative model of R-loop-forming sequences (QmRLFS) and predicted ∼660 000 RLFSs; most of them located in genes and gene-flanking regions, G-rich regions and disease-associated genomic loci in the human genome. Here, we conducted a comprehensive comparative analysis of these RLFSs using experimental data and demonstrated the high performance of QmRLFS predictions on the nucleotide and genome scales. The preferential co-localization of RLFS with promoters, U1 splice sites, gene ends, enhancers and non-B DNA structures, such as G-quadruplexes, provides evidence for the mechanical linkage between DNA tertiary structures, transcription initiation and R-loops in critical regulatory genome regions. We introduced and characterized an abundant class of reverse-forward RLFS clusters highly enriched in non-B DNA structures, which localized to promoters, gene ends and enhancers. The RLFS co-localization with promoters and transcriptionally active enhancers suggested new models for in cis and in trans regulation by RNA:DNA hybrids of transcription initiation and formation of 3D-chromatin loops. Overall, this study provides a rationale for the discovery and characterization of the non-B DNA regulatory structures involved in the formation of the RNA:DNA interactome as the basis for an emerging quantitative R-loop biology and pathobiology.
Collapse
Affiliation(s)
- Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Urology, Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vladyslav Bondarenko
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Thidathip Wongsurawat
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surya P Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
22
|
Shrivastava AN, Triller A, Melki R. Cell biology and dynamics of Neuronal Na +/K +-ATPase in health and diseases. Neuropharmacology 2018; 169:107461. [PMID: 30550795 DOI: 10.1016/j.neuropharm.2018.12.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/17/2018] [Accepted: 12/08/2018] [Indexed: 10/27/2022]
Abstract
Neuronal Na+/K+-ATPase is responsible for the maintenance of ionic gradient across plasma membrane. In doing so, in a healthy brain, Na+/K+-ATPase activity accounts for nearly half of total brain energy consumption. The α3-subunit containing Na+/K+-ATPase expression is restricted to neurons. Heterozygous mutations within α3-subunit leads to Rapid-onset Dystonia Parkinsonism, Alternating Hemiplegia of Childhood and other neurological and neuropsychiatric disorders. Additionally, proteins such as α-synuclein, amyloid-β, tau and SOD1 whose aggregation is associated to neurodegenerative diseases directly bind and impair α3-Na+/K+-ATPase activity. The review will provide a summary of neuronal α3-Na+/K+-ATPase functional properties, expression pattern, protein-protein interactions at the plasma membrane, biophysical properties (distribution and lateral diffusion). Lastly, the role of α3-Na+/K+-ATPase in neurological and neurodegenerative disorders will be discussed. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Amulya Nidhi Shrivastava
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France.
| | - Antoine Triller
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, INSERM, CNRS, PSL, Research University, 46 Rue d'Ulm, 75005 Paris, France
| | - Ronald Melki
- CEA, Institut François Jacob (MIRcen) and CNRS, Laboratory of Neurodegenerative Diseases (U9199), 18 Route du Panorama, 92265, Fontenay-aux-Roses, France
| |
Collapse
|
23
|
Higgins MG, Fitzsimons C, McClure MC, McKenna C, Conroy S, Kenny DA, McGee M, Waters SM, Morris DW. GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and GFRA2 expression in beef cattle. Sci Rep 2018; 8:14301. [PMID: 30250203 PMCID: PMC6155370 DOI: 10.1038/s41598-018-32374-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
Residual feed intake (RFI), a measure of feed efficiency, is an important economic and environmental trait in beef production. Selection of low RFI (feed efficient) cattle could maintain levels of production, while decreasing feed costs and methane emissions. However, RFI is a difficult and expensive trait to measure. Identification of single nucleotide polymorphisms (SNPs) associated with RFI may enable rapid, cost effective genomic selection of feed efficient cattle. Genome-wide association studies (GWAS) were conducted in multiple breeds followed by meta-analysis to identify genetic variants associated with RFI and component traits (average daily gain (ADG) and feed intake (FI)) in Irish beef cattle (n = 1492). Expression quantitative trait loci (eQTL) analysis was conducted to identify functional effects of GWAS-identified variants. Twenty-four SNPs were associated (P < 5 × 10-5) with RFI, ADG or FI. The variant rs43555985 exhibited strongest association for RFI (P = 8.28E-06). An eQTL was identified between this variant and GFRA2 (P = 0.0038) where the allele negatively correlated with RFI was associated with increased GFRA2 expression in liver. GFRA2 influences basal metabolic rates, suggesting a mechanism by which genetic variation may contribute to RFI. This study identified SNPs that may be useful both for genomic selection of RFI and for understanding the biology of feed efficiency.
Collapse
Affiliation(s)
- Marc G Higgins
- Discipline of Biochemistry, National University of Ireland, Galway, Ireland.,Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Claire Fitzsimons
- Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.,Department of Agriculture, Fisheries and the Marine, Celbridge, Co. Kildare, Ireland
| | - Matthew C McClure
- Irish Cattle Breeding Federation, Highfield House, Bandon, Co. Cork, Ireland.,ABS-Global, DeForest, WI, USA
| | - Clare McKenna
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Stephen Conroy
- Irish Cattle Breeding Federation, Highfield House, Bandon, Co. Cork, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Mark McGee
- Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| | - Derek W Morris
- Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
24
|
Regulation of Neuronal Na,K-ATPase by Extracellular Scaffolding Proteins. Int J Mol Sci 2018; 19:ijms19082214. [PMID: 30060621 PMCID: PMC6121408 DOI: 10.3390/ijms19082214] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 12/19/2022] Open
Abstract
Neuronal activity leads to an influx of Na⁺ that needs to be rapidly cleared. The sodium-potassium ATPase (Na,K-ATPase) exports three Na⁺ ions and imports two K⁺ ions at the expense of one ATP molecule. Na,K-ATPase turnover accounts for the majority of energy used by the brain. To prevent an energy crisis, the energy expense for Na⁺ clearance must provide an optimal effect. Here we report that in rat primary hippocampal neurons, the clearance of Na⁺ ions is more efficient if Na,K-ATPase is laterally mobile in the membrane than if it is clustered. Using fluorescence recovery after photobleaching and single particle tracking analysis, we show that the ubiquitous α1 and the neuron-specific α3 catalytic subunits as well as the supportive β1 subunit of Na,K-ATPase are highly mobile in the plasma membrane. We show that cross-linking of the β1 subunit with polyclonal antibodies or exposure to Modulator of Na,K-ATPase (MONaKA), a secreted protein which binds to the extracellular domain of the β subunit, clusters the α3 subunit in the membrane and restricts its mobility. We demonstrate that clustering, caused by cross-linking or by exposure to MONaKA, reduces the efficiency in restoring intracellular Na⁺. These results demonstrate that extracellular interactions with Na,K-ATPase regulate the Na⁺ extrusion efficiency with consequences for neuronal energy balance.
Collapse
|
25
|
Sun D, Chen J, Liu L, Zhao G, Dong P, Wu B, Wang J, Dong L. Establishment of a 12-gene expression signature to predict colon cancer prognosis. PeerJ 2018; 6:e4942. [PMID: 29915691 PMCID: PMC6004299 DOI: 10.7717/peerj.4942] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/21/2018] [Indexed: 12/27/2022] Open
Abstract
A robust and accurate gene expression signature is essential to assist oncologists to determine which subset of patients at similar Tumor-Lymph Node-Metastasis (TNM) stage has high recurrence risk and could benefit from adjuvant therapies. Here we applied a two-step supervised machine-learning method and established a 12-gene expression signature to precisely predict colon adenocarcinoma (COAD) prognosis by using COAD RNA-seq transcriptome data from The Cancer Genome Atlas (TCGA). The predictive performance of the 12-gene signature was validated with two independent gene expression microarray datasets: GSE39582 includes 566 COAD cases for the development of six molecular subtypes with distinct clinical, molecular and survival characteristics; GSE17538 is a dataset containing 232 colon cancer patients for the generation of a metastasis gene expression profile to predict recurrence and death in COAD patients. The signature could effectively separate the poor prognosis patients from good prognosis group (disease specific survival (DSS): Kaplan Meier (KM) Log Rank p = 0.0034; overall survival (OS): KM Log Rank p = 0.0336) in GSE17538. For patients with proficient mismatch repair system (pMMR) in GSE39582, the signature could also effectively distinguish high risk group from low risk group (OS: KM Log Rank p = 0.005; Relapse free survival (RFS): KM Log Rank p = 0.022). Interestingly, advanced stage patients were significantly enriched in high 12-gene score group (Fisher’s exact test p = 0.0003). After stage stratification, the signature could still distinguish poor prognosis patients in GSE17538 from good prognosis within stage II (Log Rank p = 0.01) and stage II & III (Log Rank p = 0.017) in the outcome of DFS. Within stage III or II/III pMMR patients treated with Adjuvant Chemotherapies (ACT) and patients with higher 12-gene score showed poorer prognosis (III, OS: KM Log Rank p = 0.046; III & II, OS: KM Log Rank p = 0.041). Among stage II/III pMMR patients with lower 12-gene scores in GSE39582, the subgroup receiving ACT showed significantly longer OS time compared with those who received no ACT (Log Rank p = 0.021), while there is no obvious difference between counterparts among patients with higher 12-gene scores (Log Rank p = 0.12). Besides COAD, our 12-gene signature is multifunctional in several other cancer types including kidney cancer, lung cancer, uveal and skin melanoma, brain cancer, and pancreatic cancer. Functional classification showed that seven of the twelve genes are involved in immune system function and regulation, so our 12-gene signature could potentially be used to guide decisions about adjuvant therapy for patients with stage II/III and pMMR COAD.
Collapse
Affiliation(s)
- Dalong Sun
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Chen
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Longzi Liu
- Department of Hepatic Surgery, Liver Cancer Institute, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guangxi Zhao
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Pingping Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bingrui Wu
- Key Laboratory of Glycoconjugate Research Ministry of Public Health, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Sanders AR, Beecham GW, Guo S, Dawood K, Rieger G, Badner JA, Gershon ES, Krishnappa RS, Kolundzija AB, Duan J, Gejman PV, Bailey JM, Martin ER. Genome-Wide Association Study of Male Sexual Orientation. Sci Rep 2017; 7:16950. [PMID: 29217827 PMCID: PMC5721098 DOI: 10.1038/s41598-017-15736-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/31/2017] [Indexed: 11/11/2022] Open
Abstract
Family and twin studies suggest that genes play a role in male sexual orientation. We conducted a genome-wide association study (GWAS) of male sexual orientation on a primarily European ancestry sample of 1,077 homosexual men and 1,231 heterosexual men using Affymetrix single nucleotide polymorphism (SNP) arrays. We identified several SNPs with p < 10-5, including regions of multiple supporting SNPs on chromosomes 13 (minimum p = 7.5 × 10-7) and 14 (p = 4.7 × 10-7). The genes nearest to these peaks have functions plausibly relevant to the development of sexual orientation. On chromosome 13, SLITRK6 is a neurodevelopmental gene mostly expressed in the diencephalon, which contains a region previously reported as differing in size in men by sexual orientation. On chromosome 14, TSHR genetic variants in intron 1 could conceivably help explain past findings relating familial atypical thyroid function and male homosexuality. Furthermore, skewed X chromosome inactivation has been found in the thyroid condition, Graves' disease, as well as in mothers of homosexual men. On pericentromeric chromosome 8 within our previously reported linkage peak, we found support (p = 4.1 × 10-3) for a SNP association previously reported (rs77013977, p = 7.1 × 10-8), with the combined analysis yielding p = 6.7 × 10-9, i.e., a genome-wide significant association.
Collapse
Affiliation(s)
- Alan R Sanders
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem Research Institute, Evanston, Illinois, 60201, United States of America.
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, 60637, United States of America.
| | - Gary W Beecham
- Department of Human Genetics, University of Miami, Miami, Florida, 33136, United States of America
| | - Shengru Guo
- Department of Human Genetics, University of Miami, Miami, Florida, 33136, United States of America
| | - Khytam Dawood
- Department of Psychology, Pennsylvania State University, University Park, Pennsylvania, 16802, United States of America
| | - Gerulf Rieger
- Department of Psychology, University of Essex, Colchester, England, CO4 3SQ, United Kingdom
| | - Judith A Badner
- Department of Psychiatry, Rush University Medical Center, Chicago, Illinois, 60612, United States of America
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Ritesha S Krishnappa
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, Elmhurst, New York, 11373, United States of America
| | - Alana B Kolundzija
- Department of Sociomedical Sciences, Mailman School of Public Health, Columbia University, New York, New York, 10027, United States of America
| | - Jubao Duan
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem Research Institute, Evanston, Illinois, 60201, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - Pablo V Gejman
- Department of Psychiatry and Behavioral Sciences, NorthShore University HealthSystem Research Institute, Evanston, Illinois, 60201, United States of America
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, Illinois, 60637, United States of America
| | - J Michael Bailey
- Department of Psychology, Northwestern University, Evanston, Illinois, 60208, United States of America
| | - Eden R Martin
- Department of Human Genetics, University of Miami, Miami, Florida, 33136, United States of America
| |
Collapse
|
27
|
Morey RA, Davis SL, Garrett ME, Haswell CC, Marx CE, Beckham JC, McCarthy G, Hauser MA, Ashley-Koch AE. Genome-wide association study of subcortical brain volume in PTSD cases and trauma-exposed controls. Transl Psychiatry 2017; 7:1265. [PMID: 29187748 PMCID: PMC5802459 DOI: 10.1038/s41398-017-0021-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 08/18/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
Depending on the traumatic event, a significant fraction of trauma survivors subsequently develop PTSD. The additional variability in PTSD risk is expected to arise from genetic susceptibility. Unfortunately, several genome-wide association studies (GWAS) have failed to identify a consistent genetic marker for PTSD. The heritability of intermediate phenotypes such as regional brain volumes is often 80% or higher. We conducted a GWAS of subcortical brain volumes in a sample of recent military veteran trauma survivors (n = 157), grouped into PTSD (n = 66) and non-PTSD controls (n = 91). Covariates included PTSD diagnosis, sex, intracranial volume, ancestry, childhood trauma, SNP×PTSD diagnosis, and SNP×childhood trauma. We identified several genetic markers in high linkage disequilibrium (LD) with rs9373240 (p = 2.0 × 10-7, FDR q = 0.0375) that were associated with caudate volume. We also observed a significant interaction between rs9373240 and childhood trauma (p-values = 0.0007-0.002), whereby increased trauma exposure produced a stronger association between SNPs and increased caudate volume. We identified several SNPs in high LD with rs34043524, which is downstream of the TRAM1L1 gene that were associated with right lateral ventricular volume (p = 1.73 × 10-7; FDR q = 0.032) and were also associated with lifetime alcohol abuse or dependence (p = 2.49 × 10-7; FDR q = 0.0375). Finally, we identified several SNPs in high LD with rs13140180 (p = 2.58 × 10-7; FDR q = .0016), an intergenic region on chromosome 4, and several SNPs in the TMPRSS15 associated with right nucleus accumbens volume (p = 2.58 × 10-7; FDR q = 0.017). Both TRAM1L1 and TMPRSS15 have been previously implicated in neuronal function. Key results survived genome-wide multiple-testing correction in our sample. Leveraging neuroimaging phenotypes may offer a shortcut, relative to clinical phenotypes, in mapping the genetic architecture and neurobiological pathways of PTSD.
Collapse
Affiliation(s)
- Rajendra A Morey
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA.
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA.
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA.
| | - Sarah L Davis
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Melanie E Garrett
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Courtney C Haswell
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, USA
| | - Christine E Marx
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Jean C Beckham
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - Michael A Hauser
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| | - Allison E Ashley-Koch
- Mid-Atlantic Mental Illness Research Education and Clinical Center, Durham VAMC, Durham, NC, USA
- Duke Molecular Physiology Institute, Durham, NC, USA
| |
Collapse
|
28
|
Transcriptomic correlates of neuron electrophysiological diversity. PLoS Comput Biol 2017; 13:e1005814. [PMID: 29069078 PMCID: PMC5673240 DOI: 10.1371/journal.pcbi.1005814] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/06/2017] [Accepted: 10/09/2017] [Indexed: 12/19/2022] Open
Abstract
How neuronal diversity emerges from complex patterns of gene expression remains poorly understood. Here we present an approach to understand electrophysiological diversity through gene expression by integrating pooled- and single-cell transcriptomics with intracellular electrophysiology. Using neuroinformatics methods, we compiled a brain-wide dataset of 34 neuron types with paired gene expression and intrinsic electrophysiological features from publically accessible sources, the largest such collection to date. We identified 420 genes whose expression levels significantly correlated with variability in one or more of 11 physiological parameters. We next trained statistical models to infer cellular features from multivariate gene expression patterns. Such models were predictive of gene-electrophysiological relationships in an independent collection of 12 visual cortex cell types from the Allen Institute, suggesting that these correlations might reflect general principles relating expression patterns to phenotypic diversity across very different cell types. Many associations reported here have the potential to provide new insights into how neurons generate functional diversity, and correlations of ion channel genes like Gabrd and Scn1a (Nav1.1) with resting potential and spiking frequency are consistent with known causal mechanisms. Our work highlights the promise and inherent challenges in using cell type-specific transcriptomics to understand the mechanistic origins of neuronal diversity.
Collapse
|
29
|
Hnoonual A, Thammachote W, Tim-Aroon T, Rojnueangnit K, Hansakunachai T, Sombuntham T, Roongpraiwan R, Worachotekamjorn J, Chuthapisith J, Fucharoen S, Wattanasirichaigoon D, Ruangdaraganon N, Limprasert P, Jinawath N. Chromosomal microarray analysis in a cohort of underrepresented population identifies SERINC2 as a novel candidate gene for autism spectrum disorder. Sci Rep 2017; 7:12096. [PMID: 28935972 PMCID: PMC5608768 DOI: 10.1038/s41598-017-12317-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 09/07/2017] [Indexed: 01/11/2023] Open
Abstract
Chromosomal microarray (CMA) is now recognized as the first-tier genetic test for detection of copy number variations (CNVs) in patients with autism spectrum disorder (ASD). The aims of this study were to identify known and novel ASD associated-CNVs and to evaluate the diagnostic yield of CMA in Thai patients with ASD. The Infinium CytoSNP-850K BeadChip was used to detect CNVs in 114 Thai patients comprised of 68 retrospective ASD patients (group 1) with the use of CMA as a second line test and 46 prospective ASD and developmental delay patients (group 2) with the use of CMA as the first-tier test. We identified 7 (6.1%) pathogenic CNVs and 22 (19.3%) variants of uncertain clinical significance (VOUS). A total of 29 patients with pathogenic CNVs and VOUS were found in 22% (15/68) and 30.4% (14/46) of the patients in groups 1 and 2, respectively. The difference in detected CNV frequencies between the 2 groups was not statistically significant (Chi square = 1.02, df = 1, P = 0.31). In addition, we propose one novel ASD candidate gene, SERINC2, which warrants further investigation. Our findings provide supportive evidence that CMA studies using population-specific reference databases in underrepresented populations are useful for identification of novel candidate genes.
Collapse
Affiliation(s)
- Areerat Hnoonual
- Graduate Program in Biomedical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Weerin Thammachote
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thipwimol Tim-Aroon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kitiwan Rojnueangnit
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine, Thammasart University, Pathumthani, Thailand
| | - Tippawan Hansakunachai
- Division of Child Development, Department of Pediatrics, Faculty of Medicine, Thammasart University, Pathumthani, Thailand
| | - Tasanawat Sombuntham
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rawiwan Roongpraiwan
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Juthamas Worachotekamjorn
- Division of Child Development, Department of Pediatrics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jariya Chuthapisith
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nichara Ruangdaraganon
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pornprot Limprasert
- Division of Human Genetics, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand. .,Integrative Computational Bioscience Center, Mahidol University, Salaya, Nakhon Pathom, Thailand.
| |
Collapse
|
30
|
Orentas RJ, Sindiri S, Duris C, Wen X, He J, Wei JS, Jarzembowski J, Khan J. Paired Expression Analysis of Tumor Cell Surface Antigens. Front Oncol 2017; 7:173. [PMID: 28871274 PMCID: PMC5566986 DOI: 10.3389/fonc.2017.00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/31/2017] [Indexed: 01/15/2023] Open
Abstract
Adoptive immunotherapy with antibody-based therapy or with T cells transduced to express chimeric antigen receptors (CARs) is useful to the extent that the cell surface membrane protein being targeted is not expressed on normal tissues. The most successful CAR-based (anti-CD19) or antibody-based therapy (anti-CD20) in hematologic malignancies has the side effect of eliminating the normal B cell compartment. Targeting solid tumors may not provide a similar expendable marker. Beyond antibody to Her2/NEU and EGFR, very few antibody-based and no CAR-based therapies have seen broad clinical application for solid tumors. To expand the way in which the surfaceome of solid tumors can be analyzed, we created an algorithm that defines the pairwise relative overexpression of surface antigens. This enables the development of specific immunotherapies that require the expression of two discrete antigens on the surface of the tumor target. This dyad analysis was facilitated by employing the Hotelling’s T-squared test (Hotelling–Lawley multivariate analysis of variance) for two independent variables in comparison to a third constant entity (i.e., gene expression levels in normal tissues). We also present a unique consensus scoring mechanism for identifying transcripts that encode cell surface proteins. The unique application of our bioinformatics processing pipeline and statistical tools allowed us to compare the expression of two membrane protein targets as a pair, and to propose a new strategy based on implementing immunotherapies that require both antigens to be expressed on the tumor cell surface to trigger therapeutic effector mechanisms. Specifically, we found that, for MYCN amplified neuroblastoma, pairwise expression of ACVR2B or anaplastic lymphoma kinase (ALK) with GFRA3, GFRA2, Cadherin 24, or with one another provided the strongest hits. For MYCN, non-amplified stage 4 neuroblastoma, neurotrophic tyrosine kinase 1, or ALK paired with GFRA2, GFRA3, SSK1, GPR173, or with one another provided the most promising paired-hits. We propose that targeting these markers together would increase the specificity and thereby the safety of CAR-based therapy for neuroblastoma.
Collapse
Affiliation(s)
- Rimas J Orentas
- Lentigen Technology, Inc., a Miltenyi Biotec Company, Gaithersburg, MD, United States
| | - Sivasish Sindiri
- Genetics Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Christine Duris
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Xinyu Wen
- Genetics Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Jianbin He
- Genetics Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Jun S Wei
- Genetics Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| | - Jason Jarzembowski
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Javed Khan
- Genetics Branch, National Cancer Institute, Center for Cancer Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
31
|
Mao X, Luo F, Boyd LK, Zhou B, Zhang Y, Stankiewicz E, Marzec J, Vasiljevic N, Yu Y, Feng N, Xu J, Lorincz A, Jiang Y, Chelala C, Ren G, Berney DM, Zhao SC, Lu YJ. NKAIN2 functions as a novel tumor suppressor in prostate cancer. Oncotarget 2016; 7:63793-63803. [PMID: 27588475 PMCID: PMC5325404 DOI: 10.18632/oncotarget.11690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 08/22/2016] [Indexed: 11/25/2022] Open
Abstract
Recurrent chromosome breakpoints at 6q22.31, leading to truncation and potential loss-of-function of the NKAIN2 gene, in Chinese prostate cancer patients were previously identified. In this study we investigated genomic, methylation and expression changes of NKAIN2 in a large number of prostate cancer samples and determined its functional role in prostate cancer cells. Fluorescence in situ hybridization analysis confirmed that NKAIN2 truncation is specific to Chinese while deletion of the gene is frequent in both Chinese and UK prostate cancers. Significantly reduced expression of NKAIN2 was also detected at both RNA and protein levels. Somatic mutations of NKAIN2 in prostate cancer samples exist but at very low frequency, suggesting that it is a putative tumor suppressor gene (TSG) with haploid insufficiency. Our functional studies showed that overexpression of NKAIN2 in prostate cancer cells inhibits cellular growth by promoting cell apoptosis, and decreasing cell migration and invasion. Conversely, knockdown of NKAIN2 promotes prostate cancer cell growth by inhibiting cell apoptosis, and increasing cell migration and invasion. These data imply that NKAIN2 is a novel TSG whose activity is commonly reduced in prostate cancer. It may restrain the disease development and progression by inducing apoptosis and suppressing cancer cell growth, migration and invasion. This study provides new insights into prostate carcinogenesis and opportunities for development of novel therapies for prostate cancer.
Collapse
Affiliation(s)
- Xueying Mao
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Fei Luo
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Proteomics of Guangdong Province and Key Laboratory of Transcriptomics and Proteomics of Human Diseases Supported by The Ministry of Education of China, Southern Medical University, Guangzhou, 510515, China
| | - Lara K. Boyd
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Bowei Zhou
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Key Laboratory of Proteomics of Guangdong Province and Key Laboratory of Transcriptomics and Proteomics of Human Diseases Supported by The Ministry of Education of China, Southern Medical University, Guangzhou, 510515, China
| | - Yanling Zhang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, 310009, China
- Department of Gynecology and Obstetrics, Sir Run Run Shaw Hospital, Zhejiang University Medical College, Hangzhou, 310009, China
| | - Elzbieta Stankiewicz
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Jacek Marzec
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Natasa Vasiljevic
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Yongwei Yu
- Department of Pathology, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Ninghan Feng
- Department of Urology, Wuxi Second People's Hospital, Nanjing Medical University, Wuxi, 214002, China
| | - Jia Xu
- Key Laboratory of Proteomics of Guangdong Province and Key Laboratory of Transcriptomics and Proteomics of Human Diseases Supported by The Ministry of Education of China, Southern Medical University, Guangzhou, 510515, China
| | - Attila Lorincz
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Yong Jiang
- Key Laboratory of Proteomics of Guangdong Province and Key Laboratory of Transcriptomics and Proteomics of Human Diseases Supported by The Ministry of Education of China, Southern Medical University, Guangzhou, 510515, China
| | - Claude Chelala
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Guoping Ren
- Department of Pathology, The First Affiliated Hospital, Zhejiang University Medical College, Hangzhou, 310009, China
| | - Daniel M Berney
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Shan-Chao Zhao
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Jie Lu
- Centre for Molecular Oncology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| |
Collapse
|
32
|
Lian YF, Yuan J, Cui Q, Feng QS, Xu M, Bei JX, Zeng YX, Feng L. Upregulation of KLHDC4 Predicts a Poor Prognosis in Human Nasopharyngeal Carcinoma. PLoS One 2016; 11:e0152820. [PMID: 27030985 PMCID: PMC4816273 DOI: 10.1371/journal.pone.0152820] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/18/2016] [Indexed: 11/18/2022] Open
Abstract
Kelch proteins are implicated in the pathogenesis of many human diseases, including cancer. Nasopharyngeal carcinoma (NPC) is a rare malignancy in most countries, but prevalent in southern China and certain areas of Southeast Asia. In this study, we identified Kelch Domain Containing 4 (KLHDC4), an orphan member of the kelch repeat superfamily, as a prognosis marker for NPC. We examined the expression of KLHDC4 in 168 NPC cases by immunohistochemical staining and found a substantially higher level of KLHDC4 in NPC biopsies compared to adjacent normal nasopharyngeal mucosa. KLHDC4 expression was significantly related to the T classification (P <0.05), N classification (P <0.05) and total staging (P <0.01) in NPC, and patients with higher KLHDC4 expression had poorer overall (P <0.01) and metastasis-free survival (P <0.05) rates. Knockout (KO) of KLHDC4 via CRISPR/Cas9-mediated gene editing in NPC cell line dramatically inhibited cell proliferation, colony formation in soft agar and tumor formation in nude mice. In addition, cell migration and invasion were also impaired by KLHDC4 depletion as revealed by wound healing and Transwell assay. Mechanically, loss of KLHDC4 markedly induced spontaneous apoptosis in NPC cells, as evidenced by increased levels of cleaved caspase-3 and cleaved PARP. Consistently, KLHDC4 knockout cell-derived xenografts also showed elevated cleaved caspase-3 and PARP but reduced Ki-67 staining. In conclusion, our results suggest that KLHDC4 promotes NPC oncogenesis by suppressing cellular apoptosis. Thus, KLHDC4 may serve as a prognosis biomarker and a potential therapeutic target for NPC.
Collapse
Affiliation(s)
- Yi-Fan Lian
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jing Yuan
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qian Cui
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Qi-Sheng Feng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Miao Xu
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Jin-Xin Bei
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yi-Xin Zeng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- Beijing Hospital, Beijing, China
- * E-mail: (LF); (YXZ)
| | - Lin Feng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- * E-mail: (LF); (YXZ)
| |
Collapse
|
33
|
Brionne A, Nys Y, Hennequet-Antier C, Gautron J. Hen uterine gene expression profiling during eggshell formation reveals putative proteins involved in the supply of minerals or in the shell mineralization process. BMC Genomics 2014; 15:220. [PMID: 24649854 PMCID: PMC3999959 DOI: 10.1186/1471-2164-15-220] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/11/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The chicken eggshell is a natural mechanical barrier to protect egg components from physical damage and microbial penetration. Its integrity and strength is critical for the development of the embryo or to ensure for consumers a table egg free of pathogens. This study compared global gene expression in laying hen uterus in the presence or absence of shell calcification in order to characterize gene products involved in the supply of minerals and / or the shell biomineralization process. RESULTS Microarrays were used to identify a repertoire of 302 over-expressed genes during shell calcification. GO terms enrichment was performed to provide a global interpretation of the functions of the over-expressed genes, and revealed that the most over-represented proteins are related to reproductive functions. Our analysis identified 16 gene products encoding proteins involved in mineral supply, and allowed updating of the general model describing uterine ion transporters during eggshell calcification. A list of 57 proteins potentially secreted into the uterine fluid to be active in the mineralization process was also established. They were classified according to their potential functions (biomineralization, proteoglycans, molecular chaperone, antimicrobials and proteases/antiproteases). CONCLUSIONS Our study provides detailed descriptions of genes and corresponding proteins over-expressed when the shell is mineralizing. Some of these proteins involved in the supply of minerals and influencing the shell fabric to protect the egg contents are potentially useful biological markers for the genetic improvement of eggshell quality.
Collapse
Affiliation(s)
| | | | | | - Joël Gautron
- INRA, UR83 Recherches Avicoles, F-37380 Nouzilly, France.
| |
Collapse
|
34
|
Genetic and functional studies implicate synaptic overgrowth and ring gland cAMP/PKA signaling defects in the Drosophila melanogaster neurofibromatosis-1 growth deficiency. PLoS Genet 2013; 9:e1003958. [PMID: 24278035 PMCID: PMC3836801 DOI: 10.1371/journal.pgen.1003958] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 10/01/2013] [Indexed: 12/21/2022] Open
Abstract
Neurofibromatosis type 1 (NF1), a genetic disease that affects 1 in 3,000, is caused by loss of a large evolutionary conserved protein that serves as a GTPase Activating Protein (GAP) for Ras. Among Drosophila melanogaster Nf1 (dNf1) null mutant phenotypes, learning/memory deficits and reduced overall growth resemble human NF1 symptoms. These and other dNf1 defects are relatively insensitive to manipulations that reduce Ras signaling strength but are suppressed by increasing signaling through the 3′-5′ cyclic adenosine monophosphate (cAMP) dependent Protein Kinase A (PKA) pathway, or phenocopied by inhibiting this pathway. However, whether dNf1 affects cAMP/PKA signaling directly or indirectly remains controversial. To shed light on this issue we screened 486 1st and 2nd chromosome deficiencies that uncover >80% of annotated genes for dominant modifiers of the dNf1 pupal size defect, identifying responsible genes in crosses with mutant alleles or by tissue-specific RNA interference (RNAi) knockdown. Validating the screen, identified suppressors include the previously implicated dAlk tyrosine kinase, its activating ligand jelly belly (jeb), two other genes involved in Ras/ERK signal transduction and several involved in cAMP/PKA signaling. Novel modifiers that implicate synaptic defects in the dNf1 growth deficiency include the intersectin-related synaptic scaffold protein Dap160 and the cholecystokinin receptor-related CCKLR-17D1 drosulfakinin receptor. Providing mechanistic clues, we show that dAlk, jeb and CCKLR-17D1 are among mutants that also suppress a recently identified dNf1 neuromuscular junction (NMJ) overgrowth phenotype and that manipulations that increase cAMP/PKA signaling in adipokinetic hormone (AKH)-producing cells at the base of the neuroendocrine ring gland restore the dNf1 growth deficiency. Finally, supporting our previous contention that ALK might be a therapeutic target in NF1, we report that human ALK is expressed in cells that give rise to NF1 tumors and that NF1 regulated ALK/RAS/ERK signaling appears conserved in man. Neurofibromatosis type 1 (NF1) is a genetic disease that affects 1 in 3,000 and that is caused by loss of a protein that inactivates Ras oncoproteins. NF1 is a characteristically variable disease that predisposes patients to several symptoms, the most common of which include benign and malignant tumors, reduced growth and learning problems. We and others previously found that fruit fly mutants that lack a highly conserved dNf1 gene are reduced in size and exhibit impaired learning and memory, and that both defects appear due to abnormal Ras and cyclic-AMP (cAMP) signaling. The former was unremarkable, but how loss of dNf1 affects cAMP signaling remains poorly understood. Here we report results of a genetic screen for dominant modifiers of the dNf1 growth defect. This screen and follow-up functional studies support a model in which synaptic defects and reduced cAMP signaling in specific parts of the neuroendocrine ring gland contribute to the dNf1 growth defect. Beyond these results, we show that human ALK is expressed in cells that give rise to NF1 tumors, and that NF1 regulated ALK/RAS/ERK signaling is evolutionary conserved.
Collapse
|
35
|
Romania P, Castellano A, Surace C, Citti A, De Ioris MA, Sirleto P, De Mariano M, Longo L, Boldrini R, Angioni A, Locatelli F, Fruci D. High-resolution array CGH profiling identifies Na/K transporting ATPase interacting 2 (NKAIN2) as a predisposing candidate gene in neuroblastoma. PLoS One 2013; 8:e78481. [PMID: 24205241 PMCID: PMC3808344 DOI: 10.1371/journal.pone.0078481] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/13/2013] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma (NB), the most common solid cancer in early childhood, usually occurs sporadically but also its familial occurance is known in 1-2% of NB patients. Germline mutations in the ALK and PHOX2B genes have been found in a subset of familial NBs. However, because some individuals harbouring mutations in these genes do not develop this tumor, additional genetic alterations appear to be required for NB pathogenesis. Herein, we studied an Italian family with three NB patients, two siblings and a first cousin, carrying an ALK germline-activating mutation R1192P, that was inherited from their unaffected mothers and with no mutations in the PHOX2B gene. A comparison between somatic and germline DNA copy number changes in the two affected siblings by a high resolution array-based Comparative Genomic Hybridization (CGH) analysis revealed a germline gain at NKAIN2 (Na/K transporting ATPase interacting 2) locus in one of the sibling, that was inherited from the parent who does not carry the ALK mutation. Surprisingly, NKAIN2 was expressed at high levels also in the affected sibling that lacks the genomic gain at this locus, clearly suggesting the existance of other regulatory mechanisms. High levels of NKAIN2 were detected in the MYCN-amplified NB cell lines and in the most aggressive NB lesions as well as in the peripheral blood of a large cohort of NB patients. Consistent with a role of NKAIN2 in NB development, NKAIN2 was down-regulated during all-trans retinoic acid differentiation in two NB cell lines. Taken together, these data indicate a potential role of NKAIN2 gene in NB growth and differentiation.
Collapse
Affiliation(s)
- Paolo Romania
- Paediatric Haematology/Oncology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Aurora Castellano
- Paediatric Haematology/Oncology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Cecilia Surace
- Cytogenetics and Molecular Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Arianna Citti
- Pathology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Pietro Sirleto
- Cytogenetics and Molecular Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marilena De Mariano
- Immunological Therapy, IRCCS A.O.U. San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Luca Longo
- Immunological Therapy, IRCCS A.O.U. San Martino-IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | - Renata Boldrini
- Pathology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Adriano Angioni
- Cytogenetics and Molecular Genetics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Paediatric Haematology/Oncology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Pediatrics Department, University of Pavia, Pavia, Italy
| | - Doriana Fruci
- Paediatric Haematology/Oncology Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
36
|
Zuo L, Wang KS, Zhang XY, Li CSR, Zhang F, Wang X, Chen W, Gao G, Zhang H, Krystal JH, Luo X. Rare SERINC2 variants are specific for alcohol dependence in individuals of European descent. Pharmacogenet Genomics 2013; 23:395-402. [PMID: 23778322 PMCID: PMC4287355 DOI: 10.1097/fpc.0b013e328362f9f2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES We have previously reported a top-ranked risk gene [i.e., serine incorporator 2 gene (SERINC2)] for alcohol dependence in individuals of European descent by analyzing the common variants in a genome-wide association study. In the present study, we comprehensively examined the rare variants [minor allele frequency (MAF)<0.05] in the NKAIN1-SERINC2 region to confirm our previous finding. MATERIALS AND METHODS A discovery sample (1409 European-American patients with alcohol dependence and 1518 European-American controls) and a replication sample (6438 European-Australian family participants with 1645 alcohol-dependent probands) were subjected to an association analysis. A total of 39,903 individuals from 19 other cohorts with 11 different neuropsychiatric and neurological disorders served as contrast groups. The entire NKAIN1-SERINC2 region was imputed in all cohorts using the same reference panels of genotypes that included rare variants from the whole-genome sequencing data. We stringently cleaned the phenotype and genotype data, and obtained a total of about 220 single-nucleotide polymorphisms in individuals of European descent and about 450 single-nucleotide polymorphisms in the individuals of African descent with 0 RESULTS Using a weighted regression analysis implemented in the program SCORE-Seq, we found a rare variant constellation across the entire NKAIN1-SERINC2 region that was associated with alcohol dependence in European-Americans (Fp: overall, P=1.8×10(-4); VT: overall, P=1.4×10(-4); Collapsing, P=6.5×10(-5)) and European-Australians (Fp: overall, P=0.028; Collapsing, P=0.025), but not in African-Americans, and not associated with any other disorder examined. Association signals in this region came mainly from SERINC2, a gene that codes for an activity-regulated protein expressed in the brain that incorporates serine into lipids. In addition, 26 individual rare variants were nominally associated with alcohol dependence in European-Americans (P<0.05). The associations of five of these rare variants that lay within SERINC2 showed region-wide significance (P<α=0.0006) and 25 associations survived correction for a false discovery rate (q<0.05). The associations of two rare variants at SERINC2 were replicated in European-Australians (P<0.05). CONCLUSION We concluded that SERINC2 was a replicable and significant risk gene specific for alcohol dependence in individuals of European descent.
Collapse
Affiliation(s)
- Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Ke-Sheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Xiang-Yang Zhang
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Fengyu Zhang
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Xiaoping Wang
- Department of Neurology, First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Wenan Chen
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Guimin Gao
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA, USA
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Epidemiology and Public Health, New Haven, CT, USA
| | - John H. Krystal
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Psychiatry Services, Yale-New Haven Hospital, New Haven, CT
- VA Alcohol Research Center, VA Connecticut Healthcare System, West Haven, CT
| | - Xingguang Luo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
37
|
Newbury DF, Mari F, Sadighi Akha E, Macdermot KD, Canitano R, Monaco AP, Taylor JC, Renieri A, Fisher SE, Knight SJL. Dual copy number variants involving 16p11 and 6q22 in a case of childhood apraxia of speech and pervasive developmental disorder. Eur J Hum Genet 2012; 21:361-5. [PMID: 22909776 PMCID: PMC3598310 DOI: 10.1038/ejhg.2012.166] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
38
|
Christian WV, Li N, Hinkle PM, Ballatori N. β-Subunit of the Ostα-Ostβ organic solute transporter is required not only for heterodimerization and trafficking but also for function. J Biol Chem 2012; 287:21233-43. [PMID: 22535958 PMCID: PMC3375545 DOI: 10.1074/jbc.m112.352245] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 04/09/2012] [Indexed: 12/29/2022] Open
Abstract
The organic solute transporter, Ost/Slc51, is composed of two distinct proteins that must heterodimerize to generate transport activity, but the role of the individual subunits in mediating transport activity is unknown. The present study identified regions in Ostβ required for heterodimerization with Ostα, trafficking of the Ostα-Ostβ complex to the plasma membrane, and bile acid transport activity in HEK293 cells. Bimolecular fluorescence complementation analysis revealed that a 25-amino acid peptide containing the Ostβ transmembrane (TM) domain heterodimerized with Ostα, although the resulting complex failed to reach the plasma membrane and generate cellular [(3)H]taurocholate transport activity. Deletion of the single TM domain of Ostβ abolished interaction with Ostα, demonstrating that the TM segment is necessary and sufficient for formation of a heteromeric complex with Ostα. Mutation of the highly conserved tryptophan-asparagine sequence within the TM domain of Ostβ to alanines did not prevent cell surface trafficking, but abolished transport activity. Removal of the N-terminal 27 amino acids of Ostβ resulted in a transporter complex that reached the plasma membrane and exhibited transport activity at 30 °C. Complete deletion of the C terminus of Ostβ abolished [(3)H]taurocholate transport activity, but reinsertion of two native arginines immediately C-terminal to the TM domain rescued this defect. These positively charged residues establish the correct N(exo)/C(cyt) topology of the peptide, in accordance with the positive inside rule. Together, the results demonstrate that Ostβ is required for both proper trafficking of Ostα and formation of the functional transport unit, and identify specific residues of Ostβ critical for these processes.
Collapse
Affiliation(s)
| | - Na Li
- From the Departments of Environmental Medicine and
| | - Patricia M. Hinkle
- Pharmacology and Physiology, University of Rochester School of Medicine, Rochester, New York 14642
| | | |
Collapse
|
39
|
Morth JP, Pedersen BP, Buch-Pedersen MJ, Andersen JP, Vilsen B, Palmgren MG, Nissen P. A structural overview of the plasma membrane Na+,K+-ATPase and H+-ATPase ion pumps. Nat Rev Mol Cell Biol 2011; 12:60-70. [PMID: 21179061 DOI: 10.1038/nrm3031] [Citation(s) in RCA: 267] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Plasma membrane ATPases are primary active transporters of cations that maintain steep concentration gradients. The ion gradients and membrane potentials derived from them form the basis for a range of essential cellular processes, in particular Na(+)-dependent and proton-dependent secondary transport systems that are responsible for uptake and extrusion of metabolites and other ions. The ion gradients are also both directly and indirectly used to control pH homeostasis and to regulate cell volume. The plasma membrane H(+)-ATPase maintains a proton gradient in plants and fungi and the Na(+),K(+)-ATPase maintains a Na(+) and K(+) gradient in animal cells. Structural information provides insight into the function of these two distinct but related P-type pumps.
Collapse
Affiliation(s)
- J Preben Morth
- Danish National Research Foundation, Centre for Membrane Pumps in Cells and Disease - PUMPKIN, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
How are ion pumps and agrin signaling integrated? Trends Biochem Sci 2010; 35:653-9. [DOI: 10.1016/j.tibs.2010.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/29/2010] [Accepted: 05/04/2010] [Indexed: 11/23/2022]
|
41
|
Brignone MS, Lanciotti A, Macioce P, Macchia G, Gaetani M, Aloisi F, Petrucci TC, Ambrosini E. The beta1 subunit of the Na,K-ATPase pump interacts with megalencephalic leucoencephalopathy with subcortical cysts protein 1 (MLC1) in brain astrocytes: new insights into MLC pathogenesis. Hum Mol Genet 2010; 20:90-103. [PMID: 20926452 DOI: 10.1093/hmg/ddq435] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Megalencephalic leucoencephalopathy with subcortical cysts (MLC) is a rare congenital leucodystrophy caused by mutations in MLC1, a membrane protein of unknown function. MLC1 expression in astrocyte end-feet contacting blood vessels and meninges, along with brain swelling, fluid cysts and myelin vacuolation observed in MLC patients, suggests a possible role for MLC1 in the regulation of fluid and ion homeostasis and cellular volume changes. To identify MLC1 direct interactors and dissect the molecular pathways in which MLC1 is involved, we used NH2-MLC1 domain as a bait to screen a human brain library in a yeast two-hybrid assay. We identified the β1 subunit of the Na,K-ATPase pump as one of the interacting clones and confirmed it by pull-downs, co-fractionation assays and immunofluorescence stainings in human and rat astrocytes in vitro and in brain tissue. By performing ouabain-affinity chromatography on astrocyte and brain extracts, we isolated MLC1 and the whole Na,K-ATPase enzyme in a multiprotein complex that included Kir4.1, syntrophin and dystrobrevin. Because Na,K-ATPase is involved in intracellular osmotic control and volume regulation, we investigated the effect of hypo-osmotic stress on MLC1/Na,K-ATPase relationship in astrocytes. We found that hypo-osmotic conditions increased MLC1 membrane expression and favoured MLC1/Na,K-ATPase-β1 association. Moreover, hypo-osmosis induced astrocyte swelling and the reversible formation of endosome-derived vacuoles, where the two proteins co-localized. These data suggest that through its interaction with Na,K-ATPase, MLC1 is involved in the control of intracellular osmotic conditions and volume regulation in astrocytes, opening new perspectives for understanding the pathological mechanisms of MLC disease.
Collapse
Affiliation(s)
- Maria S Brignone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Garon EB, Finn RS, Hosmer W, Dering J, Ginther C, Adhami S, Kamranpour N, Pitts S, Desai A, Elashoff D, French T, Smith P, Slamon DJ. Identification of common predictive markers of in vitro response to the Mek inhibitor selumetinib (AZD6244; ARRY-142886) in human breast cancer and non-small cell lung cancer cell lines. Mol Cancer Ther 2010; 9:1985-94. [PMID: 20587667 DOI: 10.1158/1535-7163.mct-10-0037] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Selumetinib (AZD6244; ARRY-142886) is a tight-binding, uncompetitive inhibitor of mitogen-activated protein kinase kinases (MEK) 1 and 2 currently in clinical development. We evaluated the effects of selumetinib in 31 human breast cancer cell lines and 43 human non-small cell lung cancer (NSCLC) cell lines to identify characteristics correlating with in vitro sensitivity to MEK inhibition. IC(50) <1 micromol/L (considered sensitive) was seen in 5 of 31 breast cancer cell lines and 15 of 43 NSCLC cell lines, with a correlation between sensitivity and raf mutations in breast cancer cell lines (P = 0.022) and ras mutations in NSCLC cell lines (P = 0.045). Evaluation of 27 of the NSCLC cell lines with Western blots showed no clear association between MEK and phosphoinositide 3-kinase pathway activation and sensitivity to MEK inhibition. Baseline gene expression profiles were generated for each cell line using Agilent gene expression arrays to identify additional predictive markers. Genes associated with differential sensitivity to selumetinib were seen in both histologies, including a small number of genes in which differential expression was common to both histologies. In total, these results suggest that clinical trials of selumetinib in breast cancer and NSCLC might select patients whose tumors harbor raf and ras mutations, respectively.
Collapse
Affiliation(s)
- Edward B Garon
- 1Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Baumann O, Salvaterra PM, Takeyasu K. Developmental changes in β-subunit composition of Na,K-ATPase in the Drosophila eye. Cell Tissue Res 2010; 340:215-28. [DOI: 10.1007/s00441-010-0948-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 02/15/2010] [Indexed: 10/19/2022]
|
44
|
Abstract
PURPOSE OF REVIEW Na,K-ATPase is an oligomeric protein composed of alpha subunits, beta subunits and FXYD proteins. The catalytic alpha subunit hydrolyzes ATP and transports the cations. Increasing experimental evidence suggest that beta subunits and FXYD proteins essentially contribute to the variable physiological needs of Na,K-ATPase function in different tissues. RECENT FINDINGS Beta subunits have a crucial role in the structural and functional maturation of Na,K-ATPase and modulate its transport properties. The chaperone function of the beta subunit is essential, for example, in the formation of tight junctions and cell polarity. Recent studies suggest that beta subunits also have inherent functions, which are independent of Na,K-ATPase activity and which may be involved in cell-cell adhesiveness and in suppression of cell motility. As for FXYD proteins, they modulate Na,K-ATPase activity in a tissue-specific way, in some cases in close cooperation with posttranslational modifications such as phosphorylation. SUMMARY A better understanding of the multiple functional roles of the accessory subunits of Na,K-ATPase is crucial to appraise their influence on physiological processes and their implication in pathophysiological states.
Collapse
|