1
|
Eleuteri S, Wang B, Cutillo G, Zhang Fang TS, Tao K, Qu Y, Yang Q, Wei W, Simon DK. PGC-1α regulation by FBXW7 through a novel mechanism linking chaperone-mediated autophagy and the ubiquitin-proteasome system. FEBS J 2025; 292:332-354. [PMID: 39429232 DOI: 10.1111/febs.17276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/21/2024] [Accepted: 09/06/2024] [Indexed: 10/22/2024]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and antioxidative defenses, and it may play a critical role in Parkinson's disease (PD). F-box/WD repeat domain-containing protein (FBXW7), an E3 protein ligase, promotes the degradation of substrate proteins through the ubiquitin-proteasome system (UPS) and leads to the clearance of PGC-1α. Here, we elucidate a novel post-translational mechanism for regulating PGC-1α levels in neurons. We show that enhancing chaperone-mediated autophagy (CMA) activity promotes the CMA-mediated degradation of FBXW7 and consequently increases PGC-1α. We confirm the relevance of this pathway in vivo by showing decreased FBXW7 and increased PGC-1α as a result of boosting CMA selectively in dopaminergic (DA) neurons by overexpressing lysosomal-associated membrane protein 2A (LAMP2A) in TH-Cre-LAMP2-loxp conditional mice. We further demonstrate that these mice are protected against MPTP-induced oxidative stress and neurodegeneration. These results highlight a novel regulatory pathway for PGC-1α in DA neurons and suggest targeted increasing of CMA or decreasing FBXW7 in DA neurons as potential neuroprotective strategies in PD.
Collapse
Affiliation(s)
- Simona Eleuteri
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Bao Wang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Gianni Cutillo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Tracy Shi Zhang Fang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kai Tao
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Qian Yang
- Department of Neurosurgery, Tangdu Hospital: Fourth Military Medical University, Xi'an, China
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Anjo SI, He Z, Hussain Z, Farooq A, McIntyre A, Laughton CA, Carvalho AN, Finelli MJ. Protein Oxidative Modifications in Neurodegenerative Diseases: From Advances in Detection and Modelling to Their Use as Disease Biomarkers. Antioxidants (Basel) 2024; 13:681. [PMID: 38929122 PMCID: PMC11200609 DOI: 10.3390/antiox13060681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Oxidation-reduction post-translational modifications (redox-PTMs) are chemical alterations to amino acids of proteins. Redox-PTMs participate in the regulation of protein conformation, localization and function, acting as signalling effectors that impact many essential biochemical processes in the cells. Crucially, the dysregulation of redox-PTMs of proteins has been implicated in the pathophysiology of numerous human diseases, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. This review aims to highlight the current gaps in knowledge in the field of redox-PTMs biology and to explore new methodological advances in proteomics and computational modelling that will pave the way for a better understanding of the role and therapeutic potential of redox-PTMs of proteins in neurodegenerative diseases. Here, we summarize the main types of redox-PTMs of proteins while providing examples of their occurrence in neurodegenerative diseases and an overview of the state-of-the-art methods used for their detection. We explore the potential of novel computational modelling approaches as essential tools to obtain insights into the precise role of redox-PTMs in regulating protein structure and function. We also discuss the complex crosstalk between various PTMs that occur in living cells. Finally, we argue that redox-PTMs of proteins could be used in the future as diagnosis and prognosis biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
- Sandra I. Anjo
- CNC-Center for Neurosciences and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
- Centre for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-517 Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3030-789 Coimbra, Portugal
| | - Zhicheng He
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Zohaib Hussain
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Aruba Farooq
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alan McIntyre
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Charles A. Laughton
- Biodiscovery Institute, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisbon, Portugal
| | - Mattéa J. Finelli
- Biodiscovery Institute, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
3
|
Mi Z, Ma J, Zeh DJ, Rose ME, Henchir JJ, Liu H, Ma X, Cao G, Dixon CE, Graham SH. Systemic treatment with ubiquitin carboxy terminal hydrolase L1 TAT protein ameliorates axonal injury and reduces functional deficits after traumatic brain injury in mice. Exp Neurol 2024; 373:114650. [PMID: 38092186 PMCID: PMC10939891 DOI: 10.1016/j.expneurol.2023.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Traumatic brain injury (TBI) is often associated with axonal injury that leads to significant motor and cognitive deficits. Ubiquitin carboxy terminal hydrolase L1 (UCHL1) is highly expressed in neurons and loss of its activity plays an important role in the pathogenesis of TBI. Fusion protein was constructed containing wild type (WT) UCHL1 and the HIV trans-activator of transcription capsid protein transduction domain (TAT-UCHL1) that facilitates transport of the protein into neurons after systemic administration. Additional mutant proteins bearing cysteine to alanine UCHL1 mutations at cysteine 152 (C152A TAT-UCHL1) that prevents nitric oxide and reactive lipid binding of C152, and at cysteine 220 (C220A TAT-UCHL1) that inhibits farnesylation of the C220 site were also constructed. WT, C152A, and C220A TAT-UCHL1 proteins administered to mice systemically after controlled cortical impact (CCI) were detectable in brain at 1 h, 4 h and 24 h after CCI by immunoblot. Mice treated with C152A or WT TAT-UCHL1 decreased axonal injury detected by NF200 immunohistochemistry 24 h after CCI, but C220A TAT-UCHL1 treatment had no significant effect. Further study indicated that WT TAT-UCHL1 treatment administered 24 h after CCI alleviated axonal injury as detected by SMI32 immunoreactivity 7 d after CCI, improved motor and cognitive deficits, reduced accumulation of total and K48-linked poly-Ub proteins, and attenuated the increase of the autophagy marker Beclin-1. These results suggest that UCHL1 activity contributes to the pathogenesis of white matter injury, and that restoration of UCHL1 activity by systemic treatment with WT TAT-UCHL1 after CCI may improve motor and cognitive deficits. These results also suggest that farnesylation of the C220 site may be required for the protective effects of UCHL1.
Collapse
Affiliation(s)
- Zhiping Mi
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jie Ma
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dennis J Zeh
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Marie E Rose
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jeremy J Henchir
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Hao Liu
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Pathology and Laboratory Medicine, Medical University of South Carolina
| | - Xiecheng Ma
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Guodong Cao
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - C Edward Dixon
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15216, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15216, USA
| | - Steven H Graham
- Geriatric Research Educational and Clinical Center, V.A. Pittsburgh Healthcare System, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Reichelt J, Sachs W, Frömbling S, Fehlert J, Studencka-Turski M, Betz A, Loreth D, Blume L, Witt S, Pohl S, Brand J, Czesla M, Knop J, Florea BI, Zielinski S, Sachs M, Hoxha E, Hermans-Borgmeyer I, Zahner G, Wiech T, Krüger E, Meyer-Schwesinger C. Non-functional ubiquitin C-terminal hydrolase L1 drives podocyte injury through impairing proteasomes in autoimmune glomerulonephritis. Nat Commun 2023; 14:2114. [PMID: 37055432 PMCID: PMC10102022 DOI: 10.1038/s41467-023-37836-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/03/2023] [Indexed: 04/15/2023] Open
Abstract
Little is known about the mechanistic significance of the ubiquitin proteasome system (UPS) in a kidney autoimmune environment. In membranous nephropathy (MN), autoantibodies target podocytes of the glomerular filter resulting in proteinuria. Converging biochemical, structural, mouse pathomechanistic, and clinical information we report that the deubiquitinase Ubiquitin C-terminal hydrolase L1 (UCH-L1) is induced by oxidative stress in podocytes and is directly involved in proteasome substrate accumulation. Mechanistically, this toxic gain-of-function is mediated by non-functional UCH-L1, which interacts with and thereby impairs proteasomes. In experimental MN, UCH-L1 becomes non-functional and MN patients with poor outcome exhibit autoantibodies with preferential reactivity to non-functional UCH-L1. Podocyte-specific deletion of UCH-L1 protects from experimental MN, whereas overexpression of non-functional UCH-L1 impairs podocyte proteostasis and drives injury in mice. In conclusion, the UPS is pathomechanistically linked to podocyte disease by aberrant proteasomal interactions of non-functional UCH-L1.
Collapse
Affiliation(s)
- Julia Reichelt
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wiebke Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Frömbling
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Julia Fehlert
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Studencka-Turski
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Hamburg, Germany
| | - Anna Betz
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Desiree Loreth
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Blume
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Witt
- Protein production Core Facility, Centre for Structural Systems Biology, Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany
| | - Sandra Pohl
- Skeletal Pathobiochemistry, Department of Osteology and Biomechanics, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Brand
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maire Czesla
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Knop
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bogdan I Florea
- Bio-organic synthesis group, Leiden University, Leiden, The Netherlands
| | - Stephanie Zielinski
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlies Sachs
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elion Hoxha
- III Medical Clinic and Polyclinic, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Transgenic Animal Service Group, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III Medical Clinic and Polyclinic, Nephrology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thorsten Wiech
- Institute of Pathology, Nephropathology Section, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Hamburg, Germany
| | - Catherine Meyer-Schwesinger
- Institute of Cellular and Integrative Physiology, Center for Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
5
|
Mi Z, Graham SH. Role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury. Ageing Res Rev 2023; 86:101856. [PMID: 36681249 PMCID: PMC9992267 DOI: 10.1016/j.arr.2023.101856] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
UCHL1 is a multifunctional protein expressed at high concentrations in neurons in the brain and spinal cord. UCHL1 plays important roles in regulating the level of cellular free ubiquitin and redox state as well as the degradation of select proteins. This review focuses on the potential role of UCHL1 in the pathogenesis of neurodegenerative diseases and brain injury and recovery. Subjects addressed in the review include 1) Normal physiological functions of UCHL1. 2) Posttranslational modification sites and splice variants that alter the function of UCHL1 and mouse models with mutations and deletions of UCHL1. 3) The hypothesized role and pathogenic mechanisms of UCHL1 in neurodegenerative diseases and brain injury. 4) Potential therapeutic strategies targeting UCHL1 in these disorders.
Collapse
Affiliation(s)
- Zhiping Mi
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| | - Steven H Graham
- Departments of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States; Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA 15213, United States.
| |
Collapse
|
6
|
Wang X, Zhang N, Li M, Hong T, Meng W, Ouyang T. Ubiquitin C‑terminal hydrolase‑L1: A new cancer marker and therapeutic target with dual effects (Review). Oncol Lett 2023; 25:123. [PMID: 36844618 PMCID: PMC9950345 DOI: 10.3892/ol.2023.13709] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/08/2022] [Indexed: 02/11/2023] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1), a member of the lesser-known deubiquitinating enzyme family, has deubiquitinase and ubiquitin (Ub) ligase activity and the role of stabilizing Ub. UCH-L1 was first discovered in the brain and is associated with regulating cell differentiation, proliferation, transcriptional regulation and numerous other biological processes. UCH-L1 is predominantly expressed in the brain and serves a role in tumor promotion or inhibition. There is still controversy about the effect of UCH-L1 dysregulation in cancer and its mechanisms are unknown. Extensive research to investigate the mechanism of UCH-L1 in different types of cancer is key for the future treatment of UCH-L1-associated cancer. The present review details the molecular structure and function of UCH-L1. The role of UCH-L1 in different types of cancer is also summarized and how novel treatment targets provide a theoretical foundation in cancer research is discussed.
Collapse
Affiliation(s)
- Xiaowei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Department of The Second Clinical Medical College of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Na Zhang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Meng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| | - Taohui Ouyang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China,Correspondence to: Dr Wei Meng or Dr Taohui Ouyang, Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Nanchang, Jiangxi 330006, P.R. China, E-mail:
| |
Collapse
|
7
|
The Consequences of GBA Deficiency in the Autophagy-Lysosome System in Parkinson's Disease Associated with GBA. Cells 2023; 12:cells12010191. [PMID: 36611984 PMCID: PMC9818455 DOI: 10.3390/cells12010191] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/31/2022] [Indexed: 01/05/2023] Open
Abstract
GBA gene variants were the first genetic risk factor for Parkinson's disease. GBA encodes the lysosomal enzyme glucocerebrosidase (GBA), which is involved in sphingolipid metabolism. GBA exhibits a complex physiological function that includes not only the degradation of its substrate glucosylceramide but also the metabolism of other sphingolipids and additional lipids such as cholesterol, particularly when glucocerebrosidase activity is deficient. In the context of Parkinson's disease associated with GBA, the loss of GBA activity has been associated with the accumulation of α-synuclein species. In recent years, several hypotheses have proposed alternative and complementary pathological mechanisms to explain why lysosomal enzyme mutations lead to α-synuclein accumulation and become important risk factors in Parkinson's disease etiology. Classically, loss of GBA activity has been linked to a dysfunctional autophagy-lysosome system and to a subsequent decrease in autophagy-dependent α-synuclein turnover; however, several other pathological mechanisms underlying GBA-associated parkinsonism have been proposed. This review summarizes and discusses the different hypotheses with a special focus on autophagy-dependent mechanisms, as well as autophagy-independent mechanisms, where the role of other players such as sphingolipids, cholesterol and other GBA-related proteins make important contributions to Parkinson's disease pathogenesis.
Collapse
|
8
|
Kang D, Baek Y, Lee JS. Mechanisms of RNA and Protein Quality Control and Their Roles in Cellular Senescence and Age-Related Diseases. Cells 2022; 11:cells11244062. [PMID: 36552825 PMCID: PMC9777292 DOI: 10.3390/cells11244062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Cellular senescence, a hallmark of aging, is defined as irreversible cell cycle arrest in response to various stimuli. It plays both beneficial and detrimental roles in cellular homeostasis and diseases. Quality control (QC) is important for the proper maintenance of cellular homeostasis. The QC machineries regulate the integrity of RNA and protein by repairing or degrading them, and are dysregulated during cellular senescence. QC dysfunction also contributes to multiple age-related diseases, including cancers and neurodegenerative, muscle, and cardiovascular diseases. In this review, we describe the characters of cellular senescence, discuss the major mechanisms of RNA and protein QC in cellular senescence and aging, and comprehensively describe the involvement of these QC machineries in age-related diseases. There are many open questions regarding RNA and protein QC in cellular senescence and aging. We believe that a better understanding of these topics could propel the development of new strategies for addressing age-related diseases.
Collapse
Affiliation(s)
- Donghee Kang
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
| | - Yurim Baek
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Jae-Seon Lee
- Research Center for Controlling Intercellular Communication (RCIC), College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Inha University, Incheon 22212, Republic of Korea
- Program in Biomedical Science & Engineering, Inha University, Incheon 22212, Republic of Korea
- Correspondence: ; Tel.: +82-32-860-9832; Fax: +82-32-885-8302
| |
Collapse
|
9
|
Kang JB, Shah MA, Park DJ, Koh PO. Retinoic acid regulates the ubiquitin-proteasome system in a middle cerebral artery occlusion animal model. Lab Anim Res 2022; 38:13. [PMID: 35562751 PMCID: PMC9102573 DOI: 10.1186/s42826-022-00123-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background Retinoic acid is a major metabolite of vitamin A and exerts beneficial effects including anti-oxidant and anti-inflammatory activities in neurons. The ubiquitin–proteasome system is an important biological system that regulates cell survival. Ubiquitination regulates protein degradation and plays an important role in oxidative stress. Deubiquitinating enzymes cleave ubiquitin from proteins and control ubiquitination-induced degradation. We detected decreases in ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in cerebral ischemic damage. In this study, we investigated whether retinoic acid regulates the expression of deubiquitinating enzymes ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in cerebral ischemic injury. Right middle cerebral artery occlusion (MCAO) was performed to induce cerebral ischemic damage in male rats. Retinoic acid (5 mg/kg) or vehicle was intraperitoneally injected every day from 4 days before surgery. Neurological behavioral tests were performed 24 h after MCAO, and right cerebral cortical tissues were collected. Results MCAO damage caused neurological behavioral dysfunction, and retinoic acid alleviated these deficits. The identified proteins decreased in MCAO animals with vehicle, while retinoic acid treatment attenuated these decreases. The results of proteomic study were confirmed by a reverse transcription-PCR technique. Expressions of ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 were decreased in MCAO animals treated with vehicle. Retinoic acid treatment alleviated these MCAO-induced reductions. The ubiquitin–proteasome system plays an essential role in maintaining cell function and preserving cell shape against ischemic damage. Conclusions These findings suggest that retinoic acid regulates ubiquitin- and proteasome-related proteins including ubiquitin carboxy-terminal hydrolase L1, ubiquitin thioesterase OTUB1, and proteasome subunit alpha types 1 and 3 in a brain ischemia model. Changes in these proteins are involved in the neuroprotective effects of retinoic acid.
Collapse
Affiliation(s)
- Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Murad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, South Korea.
| |
Collapse
|
10
|
Deubiquitinating enzymes (DUBs): decipher underlying basis of neurodegenerative diseases. Mol Psychiatry 2022; 27:259-268. [PMID: 34285347 DOI: 10.1038/s41380-021-01233-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/06/2021] [Indexed: 02/07/2023]
Abstract
Neurodegenerative diseases (NDs) are characterized by the aggregation of neurotoxic proteins in the central nervous system. Aberrant protein accumulation in NDs is largely caused by the dysfunction of the two principal protein catabolism pathways, the ubiquitin-proteasome system (UPS), and the autophagy-lysosomal pathway (ALP). The two protein quality control pathways are bridged by ubiquitination, a post-translational modification that can induce protein degradation via both the UPS and the ALP. Perturbed ubiquitination leads to the formation of toxic aggregates and inclusion bodies that are deleterious to neurons. Ubiquitination is promoted by a cascade of ubiquitinating enzymes and counter-regulated by deubiquitinating enzymes (DUBs). As fine-tuning regulators of ubiquitination and protein degradation, DUBs modulate the stability of ND-associated pathogenic proteins including amyloid β protein, Tau, and α-synuclein. Besides, DUBs also influence ND-associated mitophagy, protein secretion, and neuroinflammation. Given the various and critical functions of DUBs in NDs, DUBs may become potential therapeutic targets for NDs.
Collapse
|
11
|
UCH-L1 inhibitor LDN-57444 hampers mouse oocyte maturation by regulating oxidative stress and mitochondrial function and reducing ERK1/2 expression. Biosci Rep 2021; 40:226606. [PMID: 33030206 PMCID: PMC7601359 DOI: 10.1042/bsr20201308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
Oocyte maturation is a prerequisite for successful fertilization and embryo development. Incomplete oocyte maturation can result in infertility. Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) has been found to be implicated in oocyte maturation and embryo development. However, the cellular and molecular mechanisms of UCH-L1 underlying oocyte maturation have not been fully elucidated. In the present study, we observed that the introduction of UCH-L1 inhibitor LDN-57444 suppressed first polar body extrusion during mouse oocyte maturation. The inhibition of UCH-L1 by LDN-57444 led to the notable increase in reactive oxygen species (ROS) level, conspicuous reduction in glutathione (GSH) content and mitochondrial membrane potential (MMP), and blockade of spindle body formation. As a conclusion, UCH-L1 inhibitor LDN-57444 suppressed mouse oocyte maturation by improving oxidative stress, attenuating mitochondrial function, curbing spindle body formation and down-regulating extracellular signal-related kinases (ERK1/2) expression, providing a deep insight into the cellular and molecular basis of UCH-L1 during mouse oocyte maturation.
Collapse
|
12
|
Cross-over Loop Cysteine C152 Acts as an Antioxidant to Maintain the Folding Stability and Deubiquitinase Activity of UCH-L1 Under Oxidative Stress. J Mol Biol 2021; 433:166879. [PMID: 33617897 DOI: 10.1016/j.jmb.2021.166879] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022]
Abstract
Redox-dependent inactivation of deubiquitinases (DUBs) is a critical factor for attenuating their DUB activity in response to cellular oxidative stress. Ubiquitin C-terminal hydrolase isoform (UCH-L1) is an important DUB that is highly expressed in human neuronal cells and is implicated in a myriad of human diseases such as neurodegenerative diseases and cancer. Increasing evidence suggests an important role of UCH-L1 in redox regulation and the protection of neuronal cells from oxidative stress. In this study, we examined the molecular basis of how UCH-L1 responds to oxidation in a reversible manner. Using H2O2 as a model oxidant, we showed by mass spectrometry that a subset of methionine and cysteine residues, namely (M1, M6, M12, C90, and C152) were more susceptible to oxidation. Spectroscopic analysis showed that oxidation of C90 can lead to profound structural changes in addition to the loss of function. Importantly, we further demonstrated that C152, which is located at the substrate recognition cross-over loop, serves as a reactive oxygen species (ROS) scavenger to protect catalytic C90 from oxidation under moderate oxidative conditions. Hydrogen-deuterium exchange mass spectrometry analysis provided detailed structural mapping of the destabilizing effect of H2O2-mediated oxidation, which resulted in global destabilization far beyond the oxidation sites. These perturbations may be responsible for irreversible aggregation when subject to prolonged oxidative stress.
Collapse
|
13
|
The Emerging Role of the Lysosome in Parkinson's Disease. Cells 2020; 9:cells9112399. [PMID: 33147750 PMCID: PMC7692401 DOI: 10.3390/cells9112399] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Lysosomal function has a central role in maintaining neuronal homeostasis, and, accordingly, lysosomal dysfunction has been linked to neurodegeneration and particularly to Parkinson’s disease (PD). Lysosomes are the converging step where the substrates delivered by autophagy and endocytosis are degraded in order to recycle their primary components to rebuild new macromolecules. Genetic studies have revealed the important link between the lysosomal function and PD; several of the autosomal dominant and recessive genes associated with PD as well as several genetic risk factors encode for lysosomal, autophagic, and endosomal proteins. Mutations in these PD-associated genes can cause lysosomal dysfunction, and since α-synuclein degradation is mostly lysosomal-dependent, among other consequences, lysosomal impairment can affect α-synuclein turnover, contributing to increase its intracellular levels and therefore promoting its accumulation and aggregation. Recent studies have also highlighted the bidirectional link between Parkinson’s disease and lysosomal storage diseases (LSD); evidence includes the presence of α-synuclein inclusions in the brain regions of patients with LSD and the identification of several lysosomal genes involved in LSD as genetic risk factors to develop PD.
Collapse
|
14
|
Krabill AD, Chen H, Hussain S, Feng C, Abdullah A, Das C, Aryal UK, Post CB, Wendt MK, Galardy PJ, Flaherty DP. Ubiquitin C-Terminal Hydrolase L1: Biochemical and Cellular Characterization of a Covalent Cyanopyrrolidine-Based Inhibitor. Chembiochem 2020; 21:712-722. [PMID: 31449350 PMCID: PMC7042063 DOI: 10.1002/cbic.201900434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Indexed: 11/09/2022]
Abstract
The deubiquitinase (DUB) ubiquitin C-terminal hydrolase L1 (UCHL1) is expressed primarily in the central nervous system under normal physiological conditions. However, UCHL1 is overexpressed in various aggressive forms of cancer with strong evidence supporting UCHL1 as an oncogene in lung, glioma, and blood cancers. In particular, the level of UCHL1 expression in these cancers correlates with increased invasiveness and metastatic behavior, as well as poor patient prognosis. Although UCHL1 is considered an oncogene with potential as a therapeutic target, there remains a significant lack of useful small-molecule probes to pharmacologically validate in vivo targeting of the enzyme. Herein, we describe the characterization of a new covalent cyanopyrrolidine-based UCHL1 inhibitory scaffold in biochemical and cellular studies to better understand the utility of this inhibitor in elucidating the role of UCHL1 in cancer biology.
Collapse
Affiliation(s)
- Aaron D Krabill
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Hao Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Sajjad Hussain
- Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First St. SW, Guggenheim 15, Rochester, MN, 55905, USA
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, 200 First St. SW, Guggenheim 15, Rochester, MN, 55905, USA
| | - Chao Feng
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Ammara Abdullah
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
| | - Chittaranjan Das
- Department of Chemistry, College of Science, Purdue University, 560 Oval, West Lafayette, IN, 47907, USA
| | - Uma K Aryal
- Purdue Proteomics Facility, Bindley Biosciences Center, Purdue University, 1275 3rd St., West Lafayette, IN, 47907, USA
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, 915 W State St., West Lafayette, IN, 47907, USA
- Purdue Institute for Drug Discovery, 720 Clinic Dr., West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 S University St., West Lafayette, IN, 47907, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
- Purdue Institute for Drug Discovery, 720 Clinic Dr., West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 S University St., West Lafayette, IN, 47907, USA
| | - Paul J Galardy
- Division of Pediatric Hematology-Oncology, Mayo Clinic, 200 First St. SW, Guggenheim 15, Rochester, MN, 55905, USA
| | - Daniel P Flaherty
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47907, USA
- Purdue Institute for Drug Discovery, 720 Clinic Dr., West Lafayette, IN, 47907, USA
- Purdue Center for Cancer Research, Hanson Life Sciences Research Building, 201 S University St., West Lafayette, IN, 47907, USA
| |
Collapse
|
15
|
Calogero AM, Mazzetti S, Pezzoli G, Cappelletti G. Neuronal microtubules and proteins linked to Parkinson's disease: a relevant interaction? Biol Chem 2020; 400:1099-1112. [PMID: 31256059 DOI: 10.1515/hsz-2019-0142] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/24/2019] [Indexed: 12/13/2022]
Abstract
Neuronal microtubules are key determinants of cell morphology, differentiation, migration and polarity, and contribute to intracellular trafficking along axons and dendrites. Microtubules are strictly regulated and alterations in their dynamics can lead to catastrophic effects in the neuron. Indeed, the importance of the microtubule cytoskeleton in many human diseases is emerging. Remarkably, a growing body of evidence indicates that microtubule defects could be linked to Parkinson's disease pathogenesis. Only a few of the causes of the progressive neuronal loss underlying this disorder have been identified. They include gene mutations and toxin exposure, but the trigger leading to neurodegeneration is still unknown. In this scenario, the evidence showing that mutated proteins in Parkinson's disease are involved in the regulation of the microtubule cytoskeleton is intriguing. Here, we focus on α-Synuclein, Parkin and Leucine-rich repeat kinase 2 (LRRK2), the three main proteins linked to the familial forms of the disease. The aim is to dissect their interaction with tubulin and microtubules in both physiological and pathological conditions, in which these proteins are overexpressed, mutated or absent. We highlight the relevance of such an interaction and suggest that these proteins could trigger neurodegeneration via defective regulation of the microtubule cytoskeleton.
Collapse
Affiliation(s)
- Alessandra M Calogero
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy
| | - Samanta Mazzetti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy.,Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135 Milan, Italy
| | - Gianni Pezzoli
- Fondazione Grigioni per il Morbo di Parkinson, via Zuretti 35, I-20135 Milan, Italy.,Parkinson Institute, ASST "G.Pini-CTO", via Bignami 1, I-20133 Milan, Italy
| | - Graziella Cappelletti
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, I-20133 Milan, Italy.,Center of Excellence on Neurodegenerative Diseases, Università degli Studi di Milano, via Balzaretti, I-20133 Milan, Italy
| |
Collapse
|
16
|
Zorrilla S, Mónico A, Duarte S, Rivas G, Pérez-Sala D, Pajares MA. Integrated approaches to unravel the impact of protein lipoxidation on macromolecular interactions. Free Radic Biol Med 2019; 144:203-217. [PMID: 30991143 DOI: 10.1016/j.freeradbiomed.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022]
Abstract
Protein modification by lipid derived reactive species, or lipoxidation, is increased during oxidative stress, a common feature observed in many pathological conditions. Biochemical and functional consequences of lipoxidation include changes in the conformation and assembly of the target proteins, altered recognition of ligands and/or cofactors, changes in the interactions with DNA or in protein-protein interactions, modifications in membrane partitioning and binding and/or subcellular localization. These changes may impact, directly or indirectly, signaling pathways involved in the activation of cell defense mechanisms, but when these are overwhelmed they may lead to pathological outcomes. Mass spectrometry provides state of the art approaches for the identification and characterization of lipoxidized proteins/residues and the modifying species. Nevertheless, understanding the complexity of the functional effects of protein lipoxidation requires the use of additional methodologies. Herein, biochemical and biophysical methods used to detect and measure functional effects of protein lipoxidation at different levels of complexity, from in vitro and reconstituted cell-like systems to cells, are reviewed, focusing especially on macromolecular interactions. Knowledge generated through innovative and complementary technologies will contribute to comprehend the role of lipoxidation in pathophysiology and, ultimately, its potential as target for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Zorrilla
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Andreia Mónico
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Sofia Duarte
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Germán Rivas
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Dolores Pérez-Sala
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - María A Pajares
- Dept. of Structural and Chemical Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
17
|
Butterfield DA, Boyd-Kimball D. Redox proteomics and amyloid β-peptide: insights into Alzheimer disease. J Neurochem 2019; 151:459-487. [PMID: 30216447 PMCID: PMC6417976 DOI: 10.1111/jnc.14589] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/15/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder associated with aging and characterized pathologically by the presence of senile plaques, neurofibrillary tangles, and neurite and synapse loss. Amyloid beta-peptide (1-42) [Aβ(1-42)], a major component of senile plaques, is neurotoxic and induces oxidative stress in vitro and in vivo. Redox proteomics has been used to identify proteins oxidatively modified by Aβ(1-42) in vitro and in vivo. In this review, we discuss these proteins in the context of those identified to be oxidatively modified in animal models of AD, and human studies including familial AD, pre-clinical AD (PCAD), mild cognitive impairment (MCI), early AD, late AD, Down syndrome (DS), and DS with AD (DS/AD). These redox proteomics studies indicate that Aβ(1-42)-mediated oxidative stress occurs early in AD pathogenesis and results in altered antioxidant and cellular detoxification defenses, decreased energy yielding metabolism and mitochondrial dysfunction, excitotoxicity, loss of synaptic plasticity and cell structure, neuroinflammation, impaired protein folding and degradation, and altered signal transduction. Improved access to biomarker imaging and the identification of lifestyle interventions or treatments to reduce Aβ production could be beneficial in preventing or delaying the progression of AD. This article is part of the special issue "Proteomics".
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506
| | - Debra Boyd-Kimball
- Department of Chemistry and Biochemistry, University of Mount Union, Alliance, OH 44601
| |
Collapse
|
18
|
Choi JE, Lee JJ, Kang W, Kim HJ, Cho JH, Han PL, Lee KJ. Proteomic Analysis of Hippocampus in a Mouse Model of Depression Reveals Neuroprotective Function of Ubiquitin C-terminal Hydrolase L1 (UCH-L1) via Stress-induced Cysteine Oxidative Modifications. Mol Cell Proteomics 2018; 17:1803-1823. [PMID: 29959188 PMCID: PMC6126396 DOI: 10.1074/mcp.ra118.000835] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/20/2018] [Indexed: 01/08/2023] Open
Abstract
Chronic physical restraint stress increases oxidative stress in the brain, and dysregulation of oxidative stress can be one of the causes of major depressive disorder. To understand the underlying mechanisms, we undertook a systematic proteomic analysis of hippocampus in a chronic restraint stress mouse model of depression. Combining two-dimensional gel electrophoresis (2D-PAGE) for protein separation with nanoUPLC-ESI-q-TOF tandem mass spectrometry, we identified sixty-three protein spots that changed in the hippocampus of mice subjected to chronic restraint stress. We identified and classified the proteins that changed after chronic stress, into three groups respectively functioning in neural plasticity, metabolic processes and protein aggregation. Of these, 5 proteins including ubiquitin C-terminal hydrolase L1 (UCH-L1), dihydropyrimidinase-related protein 2 (DPYL2), haloacid dehalogenase-like hydrolase domain-containing protein 2 (HDHD2), actin-related protein 2/3 complex subunit 5 (ARPC5) and peroxiredoxin-2 (PRDX2), showed pI shifts attributable to post-translational modifications. Further analysis indicated that UCH-L1 underwent differential oxidations of 2 cysteine residues following chronic stress. We investigated whether the oxidized form of UCH-L1 plays a role in stressed hippocampus, by comparing the effects of UCH-L1 and its Cys mutants on hippocampal cell line HT-22 in response to oxidative stress. This study demonstrated that UCH-L1 wild-type and cysteine to aspartic acid mutants, but not its cysteine to serine mutants, afforded neuroprotective effects against oxidative stress; there were no discernible differences between wild-type UCH-L1 and its mutants in the absence of oxidative stress. These findings suggest that cysteine oxidative modifications of UCH-L1 in the hippocampus play key roles in neuroprotection against oxidative stress caused in major depressive disorder.
Collapse
Affiliation(s)
- Jung-Eun Choi
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| | - Jae-Jin Lee
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| | - Wonmo Kang
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| | - Hyun Jung Kim
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| | - Jin-Hwan Cho
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| | - Pyung-Lim Han
- §Department of Brain and Cognitive Sciences, Ewha Womans University, Seoul, Korea 03760
| | - Kong-Joo Lee
- From the ‡College of Pharmacy and Graduate School of Pharmaceutical Sciences, and
| |
Collapse
|
19
|
Lee YTC, Hsu STD. A Natively Monomeric Deubiquitinase UCH-L1 Forms Highly Dynamic but Defined Metastable Oligomeric Folding Intermediates. J Phys Chem Lett 2018; 9:2433-2437. [PMID: 29688017 DOI: 10.1021/acs.jpclett.8b00815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oligomerization of misfolded protein species is implicated in many human disorders. Here we showed by size-exclusion chromatography-coupled multiangle light scattering (SEC-MALS) and small-angle X-ray scattering (SEC-SAXS) that urea-induced folding intermediate of human ubiquitin C-terminal hydrolase, UCH-L1, can form well-defined dimers and tetramers under denaturing conditions despite being highly disordered. Introduction of a Parkinson disease-associated mutation, I93M, resulted in increased aggregation propensity and formation of irreversible precipitants in the presence of a moderate amount of urea. Since UCH-L1 exhibits highly populated partially unfolded forms under native conditions that resemble urea-induced folding intermediates, it is likely that these metastable dimers and tetramers can form under physiological conditions. Our findings highlighted the unique strength of integrated SEC-MALS/SAXS in quantitative analyses of the structure and dynamics of oligomeric folding intermediates that enabled us to extract information that is inaccessible to conventional biophysical techniques.
Collapse
Affiliation(s)
- Yun-Tzai Cloud Lee
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
- Institute of Biochemical Sciences , National Taiwan University , Taipei 10617 , Taiwan
| | - Shang-Te Danny Hsu
- Institute of Biological Chemistry , Academia Sinica , Taipei 11529 , Taiwan
- Institute of Biochemical Sciences , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
20
|
Aoyama A, Murai M, Ichimaru N, Aburaya S, Aoki W, Miyoshi H. Epoxycyclohexenedione-Type Compounds Make Up a New Class of Inhibitors of the Bovine Mitochondrial ADP/ATP Carrier. Biochemistry 2018; 57:1031-1044. [PMID: 29313673 DOI: 10.1021/acs.biochem.7b01119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Through the extensive screening of our chemical library, we found epoxycyclohexenedione (ECHD)-type compounds (AMM-59 and -120) as unique inhibitors of the bovine heart mitochondrial ADP/ATP carrier (AAC). This study investigated the mechanism of inhibition of AAC by ECHDs using submitochondrial particles (SMPs). Proteomic analyses of ECHD-bound AAC as well as biochemical characterization using different SH reagents showed that ECHDs inhibit the function of AAC by covalently binding primarily to Cys57 and secondarily to Cys160. Interestingly, AAC remarkably aggregated in SMPs upon being incubated with high concentrations of ECHDs for a long period of time. This aggregation was observed under both oxidative and reductive conditions of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of SMP proteins, indicating that aggregation is not caused by intermolecular S-S linkages. ECHDs are the first chemicals, to the best of our knowledge, to induce prominent structural alteration in AAC without forming intermolecular S-S linkages. When all solvent-accessible cysteines (Cys57, Cys160, and Cys257) were previously modified by N-ethylmaleimide, the aggregation of AAC was completely suppressed. In contrast, when Cys57 or Cys160 is selectively modified by a SH reagent, the covalent binding of ECHDs to a residual free residue of the two cysteines is sufficient to induce aggregation. The aggregation-inducing ability of another ECHD analogue (AMM-124), which has an alkyl chain that is shorter than those of AMM-59 and -120, was significantly less efficient than that of the two compounds. On the basis of these results, the mechanism underlying the aggregation of AAC induced by ECHDs is discussed.
Collapse
Affiliation(s)
- Ayaki Aoyama
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Masatoshi Murai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Naoya Ichimaru
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Shunsuke Aburaya
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| | - Hideto Miyoshi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University , Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
21
|
Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J 2017; 473:2453-62. [PMID: 27515257 PMCID: PMC4980807 DOI: 10.1042/bcj20160082] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1–5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly expressed in several forms of cancer. Although UCH-L1 is classed as a deubiquitinating enzyme (DUB) the direct functions of UCH-L1 remain enigmatic and a wide array of alternative functions has been proposed. UCH-L1 is not essential for neuronal development but it is absolutely required for the maintenance of axonal integrity and UCH-L1 dysfunction is implicated in neurodegenerative disease. Here we review the properties of UCH-L1, and how understanding its complex structure can provide new insights into its roles in neuronal function and pathology.
Collapse
|
22
|
In vivo transduction of neurons with TAT-UCH-L1 protects brain against controlled cortical impact injury. PLoS One 2017; 12:e0178049. [PMID: 28542502 PMCID: PMC5443532 DOI: 10.1371/journal.pone.0178049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 05/07/2017] [Indexed: 12/17/2022] Open
Abstract
Many mechanisms or pathways are involved in secondary post-traumatic brain injury, such as the ubiquitin-proteasome pathway (UPP), axonal degeneration and neuronal cell apoptosis. UCH-L1 is a protein that is expressed in high levels in neurons and may have important roles in the UPP, autophagy and axonal integrity. The current study aims to evaluate the role of UCH-L1 in post-traumatic brain injury (TBI) and its potential therapeutic effects. A novel protein was constructed that fused the protein transduction domain (PTD) of trans-activating transduction (TAT) protein with UCH-L1 (TAT-UCH-L1) in order to promote neuronal transduction. The TAT-UCH-L1 protein was readily detected in brain by immunoblotting and immunohistochemistry after i.p. administration in mice. TBI was induced in mice using the controlled cortical impact (CCI) model. TAT-UCH-L1 treatment significantly attenuated K48-linkage polyubiquitin (polyUb)-protein accumulation in hippocampus after CCI compared to vehicle controls, but had no effects on K65-linkage polyUb-protein. TAT-UCH-L1 treatment also attenuated expression of Beclin-1 and LC3BII after CCI. TAT-UCH-L1-treated mice had significantly increased spared tissue volumes and increased survival of CA3 neurons 21 d after CCI compared to control vehicle-treated mice. Axonal injury, detected by APP immunohistochemistry, was reduced in thalamus 24 h and 21 d after CCI in TAT-UCH-L1-treated mice. These results suggest that TAT-UCH-L1 treatment improves function of the UPP and decreases activation of autophagy after CCI. Furthermore, TAT-UCH-L1 treatment also attenuates axonal injury and increases hippocampal neuronal survival after CCI. Taken together these results suggest that UCH-L1 may play an important role in the pathogenesis of cell death and axonal injury after TBI.
Collapse
|
23
|
Wang KK, Yang Z, Sarkis G, Torres I, Raghavan V. Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Expert Opin Ther Targets 2017; 21:627-638. [DOI: 10.1080/14728222.2017.1321635] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Kumar R, Jangir DK, Verma G, Shekhar S, Hanpude P, Kumar S, Kumari R, Singh N, Sarovar Bhavesh N, Ranjan Jana N, Kanti Maiti T. S-nitrosylation of UCHL1 induces its structural instability and promotes α-synuclein aggregation. Sci Rep 2017; 7:44558. [PMID: 28300150 PMCID: PMC5353675 DOI: 10.1038/srep44558] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin C-terminal Hydrolase-1 (UCHL1) is a deubiquitinating enzyme, which plays a key role in Parkinson’s disease (PD). It is one of the most important proteins, which constitute Lewy body in PD patient. However, how this well folded highly soluble protein presents in this proteinaceous aggregate is still unclear. We report here that UCHL1 undergoes S-nitrosylation in vitro and rotenone induced PD mouse model. The preferential nitrosylation in the Cys 90, Cys 152 and Cys 220 has been observed which alters the catalytic activity and structural stability. We show here that nitrosylation induces structural instability and produces amorphous aggregate, which provides a nucleation to the native α-synuclein for faster aggregation. Our findings provide a new link between UCHL1-nitrosylation and PD pathology.
Collapse
Affiliation(s)
- Roshan Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India.,Manipal University, Manipal, Karnataka, 576104, India
| | - Deepak K Jangir
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| | - Garima Verma
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shashi Shekhar
- Molecular Neuroscience Laboratory, National Brain Research Centre (NBRC), Manesar, Gurgaon, 122051, India
| | - Pranita Hanpude
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India.,Manipal University, Manipal, Karnataka, 576104, India
| | - Sanjay Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India.,Manipal University, Manipal, Karnataka, 576104, India
| | - Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| | - Nirpendra Singh
- Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nihar Ranjan Jana
- Molecular Neuroscience Laboratory, National Brain Research Centre (NBRC), Manesar, Gurgaon, 122051, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001, India
| |
Collapse
|
25
|
Graham SH, Liu H. Life and death in the trash heap: The ubiquitin proteasome pathway and UCHL1 in brain aging, neurodegenerative disease and cerebral Ischemia. Ageing Res Rev 2017; 34:30-38. [PMID: 27702698 DOI: 10.1016/j.arr.2016.09.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
Abstract
The ubiquitin proteasome pathway (UPP) is essential for removing abnormal proteins and preventing accumulation of potentially toxic proteins within the neuron. UPP dysfunction occurs with normal aging and is associated with abnormal accumulation of protein aggregates within neurons in neurodegenerative diseases. Ischemia disrupts UPP function and thus may contribute to UPP dysfunction seen in the aging brain and in neurodegenerative diseases. Ubiquitin carboxy-terminal hydrolase L1 (UCHL1), an important component of the UPP in the neuron, is covalently modified and its activity inhibited by reactive lipids produced after ischemia. As a result, degradation of toxic proteins is impaired which may exacerbate neuronal function and cell death in stroke and neurodegenerative diseases. Preserving or restoring UCHL1 activity may be an effective therapeutic strategy in stroke and neurodegenerative diseases.
Collapse
|
26
|
Aizawa S, Fujiwara Y, Contu VR, Hase K, Takahashi M, Kikuchi H, Kabuta C, Wada K, Kabuta T. Lysosomal putative RNA transporter SIDT2 mediates direct uptake of RNA by lysosomes. Autophagy 2016; 12:565-78. [PMID: 27046251 PMCID: PMC4836006 DOI: 10.1080/15548627.2016.1145325] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lysosomes are thought to be the major intracellular compartment for the degradation of macromolecules. We recently identified a novel type of autophagy, RNautophagy, where RNA is directly taken up by lysosomes in an ATP-dependent manner and degraded. However, the mechanism of RNA translocation across the lysosomal membrane and the physiological role of RNautophagy remain unclear. In the present study, we performed gain- and loss-of-function studies with isolated lysosomes, and found that SIDT2 (SID1 transmembrane family, member 2), an ortholog of the Caenorhabditis elegans putative RNA transporter SID-1 (systemic RNA interference deficient-1), mediates RNA translocation during RNautophagy. We also observed that SIDT2 is a transmembrane protein, which predominantly localizes to lysosomes. Strikingly, knockdown of Sidt2 inhibited up to ˜50% of total RNA degradation at the cellular level, independently of macroautophagy. Moreover, we showed that this impairment is mainly due to inhibition of lysosomal RNA degradation, strongly suggesting that RNautophagy plays a significant role in constitutive cellular RNA degradation. Our results provide a novel insight into the mechanisms of RNA metabolism, intracellular RNA transport, and atypical types of autophagy.
Collapse
Affiliation(s)
- Shu Aizawa
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| | - Yuuki Fujiwara
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan.,b Department of Electrical Engineering and Bioscience , Graduate School of Advanced Science and Engineering, Waseda University , Shinjuku-ku , Tokyo , Japan
| | - Viorica Raluca Contu
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan.,c Department of Neurology , Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi , Chuo , Yamanashi , Japan
| | - Katsunori Hase
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan.,b Department of Electrical Engineering and Bioscience , Graduate School of Advanced Science and Engineering, Waseda University , Shinjuku-ku , Tokyo , Japan
| | - Masayuki Takahashi
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| | - Hisae Kikuchi
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| | - Chihana Kabuta
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| | - Keiji Wada
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| | - Tomohiro Kabuta
- a Department of Degenerative Neurological Diseases , National Institute of Neuroscience, National Center of Neurology and Psychiatry , Kodaira , Tokyo , Japan
| |
Collapse
|
27
|
Xie M, Han Y, Yu Q, Wang X, Wang S, Liao X. UCH-L1 Inhibition Decreases the Microtubule-Binding Function of Tau Protein. J Alzheimers Dis 2016; 49:353-63. [PMID: 26444754 DOI: 10.3233/jad-150032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is critical for protein degradation and free ubiquitin recycling. In Alzheimer's disease brains, UCH-L1 is negatively related to neurofibrillary tangles whose major component is hyperphosphorylated tau protein, but the direct action of UCH-L1 on tau has not been reported. In the current study, mouse neuroblastoma Neuro2a (N2a) cells were treated by the different concentrations of UCH-L1 inhibitor LDN (2.5, 5 and 10 μM) to inhibit the hydrolase activity of UCH-L1. In addition, we also used UCH-L1 siRNA to treat the HEK293/tau441 cells to decrease the expression of UCH-L1. After LDN and UCH-L1 siRNA treatment, we used immunofluorescence, immunoprecipitation, and tau-microtubule binding assay to measure the microtubule-binding ability and post-translational modifications of tau protein. All the results presented that both inhibition of the activity and expression of UCH-L1 induced the decreased microtubule-binding ability and increased phosphorylation of tau protein. Abnormal aggregation and ubiquitination of tau protein was also observed after UCH-L1 inhibition. The above results suggested that aggregation of tau protein might be devoted to the abnormal post-translational modifications of tau protein. Our study first indicates that dysfunction of UCH-L1 most likely affected normal biological function of tau protein through decreasing degradation of ubiquitinated and hyperphosphorylated tau.
Collapse
|
28
|
Toyama T, Abiko Y, Katayama Y, Kaji T, Kumagai Y. S-Mercuration of ubiquitin carboxyl-terminal hydrolase L1 through Cys152 by methylmercury causes inhibition of its catalytic activity and reduction of monoubiquitin levels in SH-SY5Y cells. J Toxicol Sci 2016; 40:887-93. [PMID: 26558469 DOI: 10.2131/jts.40.887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Methylmercury (MeHg) is an environmental electrophile that covalently modifies cellular proteins. In this study, we identified proteins that undergo S-mercuration by MeHg. By combining two-dimensional SDS-PAGE, atomic absorption spectrometry and ultra performance liquid chromatography mass spectrometry (UPLC/MS/MS), we revealed that ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a target for S-mercuration in human neuroblastoma SH-SY5Y cells exposed to MeHg (1 µM, 9 hr). The modification site of UCH-L1 by MeHg was Cys152, as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. MeHg was shown to inhibit the catalytic activity of recombinant human UCH-L1 in a concentration-dependent manner. Knockdown of UCH-L1 indicated that this enzyme plays a critical role in regulating mono-ubiquitin (monoUb) levels in SH-SY5Y cells and exposure of SH-SY5Y cells to MeHg caused a reduction in the level of monoUb in these cells. These observations suggest that UCH-L1 readily undergoes S-mercuration by MeHg through Cys152 and this covalent modification inhibits UCH-L1, leading to the potential disruption of the maintenance of cellular monoUb levels.
Collapse
|
29
|
It Is All about (U)biquitin: Role of Altered Ubiquitin-Proteasome System and UCHL1 in Alzheimer Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2756068. [PMID: 26881020 PMCID: PMC4736377 DOI: 10.1155/2016/2756068] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 11/26/2015] [Indexed: 02/07/2023]
Abstract
Free radical-mediated damage to macromolecules and the resulting oxidative modification of different cellular components are a common feature of aging, and this process becomes much more pronounced in age-associated pathologies, including Alzheimer disease (AD). In particular, proteins are particularly sensitive to oxidative stress-induced damage and these irreversible modifications lead to the alteration of protein structure and function. In order to maintain cell homeostasis, these oxidized/damaged proteins have to be removed in order to prevent their toxic accumulation. It is generally accepted that the age-related accumulation of “aberrant” proteins results from both the increased occurrence of damage and the decreased efficiency of degradative systems. One of the most important cellular proteolytic systems responsible for the removal of oxidized proteins in the cytosol and in the nucleus is the proteasomal system. Several studies have demonstrated the impairment of the proteasome in AD thus suggesting a direct link between accumulation of oxidized/misfolded proteins and reduction of this clearance system. In this review we discuss the impairment of the proteasome system as a consequence of oxidative stress and how this contributes to AD neuropathology. Further, we focus the attention on the oxidative modifications of a key component of the ubiquitin-proteasome pathway, UCHL1, which lead to the impairment of its activity.
Collapse
|
30
|
Hanpude P, Bhattacharya S, Dey AK, Maiti TK. Deubiquitinating enzymes in cellular signaling and disease regulation. IUBMB Life 2015; 67:544-55. [PMID: 26178252 DOI: 10.1002/iub.1402] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/27/2022]
Abstract
Protein post-translational modification by ubiquitin represents a complex signaling system that regulates many cellular events including proteostasis to intercellular communications. Deubiquitinating enzymes (DUBs) that specifically disassemble Ub-chains or regulate ubiquitin homeostasis reside as a central component in ubiquitin signaling. Human genome encodes almost 100 DUBs and majority of them are not well characterized. Considerable progress has been made in the understanding of enzymatic mechanism; however, their cellular substrate specificity and regulation are largely unknown. Involvement of DUBs in disease regulation has been depicted since its discovery and several attempts have been made for evaluating DUBs as a drug target. In this review, we have updated briefly a new insight of DUBs activity, their cellular role, disease regulation, and therapeutic potential.
Collapse
Affiliation(s)
- Pranita Hanpude
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| | - Sushmita Bhattacharya
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| | - Amit Kumar Dey
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| | - Tushar Kanti Maiti
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| |
Collapse
|
31
|
Kabuta C, Kono K, Wada K, Kabuta T. 4-Hydroxynonenal induces persistent insolubilization of TDP-43 and alters its intracellular localization. Biochem Biophys Res Commun 2015; 463:82-7. [PMID: 25998392 DOI: 10.1016/j.bbrc.2015.05.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 05/08/2015] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by progressive degeneration of motor neurons. TDP-43 has been found to be a major component of ubiquitin-positive inclusions in ALS. Aberrant TDP-43, which is found in inclusions, is phosphorylated and is re-distributed from the nucleus to the cytoplasm. Alterations of TDP-43 protein, particularly insolubilization/aggregation and cytosolic distribution are thought to be involved in the pathogenesis of ALS. Levels of 4-hydroxynonenal (HNE), a marker of oxidative stress, have been reported to be elevated in sporadic ALS patients. However, the effects of HNE on TDP-43 are unclear. In this study, we found that HNE treatment of cells causes insolubilization, phosphorylation, and partial cytosolic localization of TDP-43. HNE-induced cytosolic TDP-43 was diffusely localized and only a small proportion of TDP-43 localized to stress granules, which are transient structures. HNE-induced TDP-43 insolubilization and phosphorylation were even observed 24 h after washout of HNE. We also showed that the cysteine residues of TDP-43 are responsible for HNE-induced insolubilization of TDP-43. Our results indicate that HNE can cause biochemical changes of TDP-43, which resemble the aberrant alterations of this protein in ALS, and suggest that upregulation of HNE could be a risk factor for ALS.
Collapse
Affiliation(s)
- Chihana Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kanako Kono
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of Electrical Engineering and Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Tomohiro Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan.
| |
Collapse
|
32
|
Costes S, Gurlo T, Rivera JF, Butler PC. UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in β-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy 2015; 10:1004-14. [PMID: 24879150 DOI: 10.4161/auto.28478] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The islet in type 2 diabetes mellitus (T2DM) is characterized by a deficit in β-cells and increased β-cell apoptosis attributable at least in part to intracellular toxic oligomers of IAPP (islet amyloid polypeptide). β-cells of individuals with T2DM are also characterized by accumulation of polyubiquitinated proteins and deficiency in the deubiquitinating enzyme UCHL1 (ubiquitin carboxyl-terminal esterase L1 [ubiquitin thiolesterase]), accounting for a dysfunctional ubiquitin/proteasome system. In the present study, we used mouse genetics to elucidate in vivo whether a partial deficit in UCHL1 enhances the vulnerability of β-cells to human-IAPP (hIAPP) toxicity, and thus accelerates diabetes onset. We further investigated whether a genetically induced deficit in UCHL1 function in β-cells exacerbates hIAPP-induced alteration of the autophagy pathway in vivo. We report that a deficit in UCHL1 accelerated the onset of diabetes in hIAPP transgenic mice, due to a decrease in β-cell mass caused by increased β-cell apoptosis. We report that UCHL1 dysfunction aggravated the hIAPP-induced defect in the autophagy/lysosomal pathway, illustrated by the marked accumulation of autophagosomes and cytoplasmic inclusions positive for SQSTM1/p62 and polyubiquitinated proteins with lysine 63-specific ubiquitin chains. Collectively, this study shows that defective UCHL1 function may be an early contributor to vulnerability of pancreatic β-cells for protein misfolding and proteotoxicity, hallmark defects in islets of T2DM. Also, given that deficiency in UCHL1 exacerbated the defective autophagy/lysosomal degradation characteristic of hIAPP proteotoxicity, we demonstrate a previously unrecognized role of UCHL1 in the function of the autophagy/lysosomal pathway in β-cells.
Collapse
Affiliation(s)
- Safia Costes
- Larry L. Hillblom Islet Research Center; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles, CA USA
| | - Tatyana Gurlo
- Larry L. Hillblom Islet Research Center; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles, CA USA
| | - Jacqueline F Rivera
- Larry L. Hillblom Islet Research Center; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles, CA USA
| | - Peter C Butler
- Larry L. Hillblom Islet Research Center; David Geffen School of Medicine; University of California, Los Angeles; Los Angeles, CA USA
| |
Collapse
|
33
|
Pukaß K, Richter-Landsberg C. Inhibition of UCH-L1 in oligodendroglial cells results in microtubule stabilization and prevents α-synuclein aggregate formation by activating the autophagic pathway: implications for multiple system atrophy. Front Cell Neurosci 2015; 9:163. [PMID: 25999815 PMCID: PMC4419839 DOI: 10.3389/fncel.2015.00163] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 04/13/2015] [Indexed: 01/12/2023] Open
Abstract
α-Synuclein (α-syn) positive glial cytoplasmic inclusions (GCI) originating in oligodendrocytes (ODC) are a characteristic hallmark in multiple system atrophy (MSA). Their occurrence may be linked to a failure of the ubiquitin proteasome system (UPS) or the autophagic pathway. For proteasomal degradation, proteins need to be covalently modified by ubiquitin, and deubiquitinated by deubiquitinating enzymes (DUBs) before proteolytic degradation is performed. The DUB ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a component of the UPS, it is abundantly expressed in neuronal brain cells and has been connected to Parkinson’s disease (PD). It interacts with α-syn and tubulin. The present study was undertaken to investigate whether UCH-L1 is a constituent of ODC, the myelin forming cells of the CNS, and is associated with GCIs in MSA. Furthermore, LDN-57444 (LDN), a specific UCH-L1 inhibitor, was used to analyze its effects on cell morphology, microtubule (MT) organization and the proteolytic degradation system. Towards this an oligodendroglial cell line (OLN cells), stably transfected with α-syn or with α-syn and GFP-LC3, to monitor the autophagic flux, was used. The data show that UCH-L1 is expressed in ODC derived from the brains of newborn rats and colocalizes with α-syn in GCIs of MSA brain sections. LDN treatment had a direct impact on the MT network by affecting tubulin posttranslational modifications, i.e., acetylation and tyrosination. An increase in α-tubulin detyrosination was observed and detyrosinated MT were abundantly recruited to the cellular extensions. Furthermore, small α-syn aggregates, which are constitutively expressed in OLN cells overexpressing α-syn, were abolished, and LDN caused the upregulation of the autophagic pathway. Our data add to the knowledge that the UPS and the autophagy-lysosomal pathway are tightly balanced, and that UCH-L1 and its regulation may play a role in neurodegenerative diseases with oligodendroglia pathology.
Collapse
Affiliation(s)
- Katharina Pukaß
- Department of Neuroscience, Molecular Neurobiology, University of Oldenburg Oldenburg, Germany
| | | |
Collapse
|
34
|
Association of ubiquitin carboxy-terminal hydrolase-L1 in cerebrospinal fluid with clinical severity in a cohort of patients with Guillain-Barré syndrome. Neurol Sci 2015; 36:921-6. [PMID: 25739945 DOI: 10.1007/s10072-015-2137-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 02/26/2015] [Indexed: 01/28/2023]
Abstract
Guillain-Barré syndrome (GBS) is an acute immune-mediated polyneuropathy. Although its pathogenic mechanism has been revealed and various therapeutic trials have been performed, a proportion of patients experience the severe sequelae associated with GBS. In this paper, we investigated whether the amount of the neuron-specific protein, ubiquitin carboxy-terminal hydrolase-L1 (UCH-L1), in the cerebrospinal fluid of patients with GBS was correlated with the clinical course of the disease. UCH-L1 protein levels were greater in patients with GBS than in controls. The patients with GBS whose UCH-L1 protein levels were higher than those of the controls presented with more severe symptoms at peak. UCH-L1 protein levels tended to become elevated as the total protein levels were increased; however, elevated UCH-L1 without an increase in total protein might be correlated with severe disease course (bedridden or ventilator supported). These results suggest that UCH-L1 could be a biomarker associated with the severity of the disease at the acute phase of GBS.
Collapse
|
35
|
Rout AK, Strub MP, Piszczek G, Tjandra N. Structure of transmembrane domain of lysosome-associated membrane protein type 2a (LAMP-2A) reveals key features for substrate specificity in chaperone-mediated autophagy. J Biol Chem 2014; 289:35111-23. [PMID: 25342746 PMCID: PMC4271201 DOI: 10.1074/jbc.m114.609446] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/21/2014] [Indexed: 12/11/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation.
Collapse
Affiliation(s)
| | | | - Grzegorz Piszczek
- Biophysics Core, Biochemistry and Biophysics Center, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | | |
Collapse
|
36
|
Abstract
SIGNIFICANCE Impairment of the ubiquitin-proteasome system (UPS) has been implicated in the pathogenesis of a wide variety of neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's diseases. The most significant risk factor for the development of these disorders is aging, which is associated with a progressive decline in UPS activity and the accumulation of oxidatively modified proteins. To date, no therapies have been developed that can specifically up-regulate this system. RECENT ADVANCES In the neurodegenerative brain, dysfunction of the UPS has been associated with the deposition of ubiquitinated protein aggregates and widespread disruption of the proteostasis network. Recent research has identified further evidence of impairment in substrate ubiquitination and proteasomal degradation, which could contribute to the loss of cellular proteostasis in neurodegenerative disease. Novel strategies for activation of the UPS by genetic manipulation and treatment with synthetic compounds have also recently been identified. CRITICAL ISSUES Here, we discuss the specific roles of the UPS in the healthy central nervous system and establish how dysfunctional components can contribute to neurotoxicity in the context of disease. FUTURE DIRECTIONS Knowledge of the UPS components that are specifically or preferentially involved in neurodegenerative disease will be critical in the development of targeted therapies which aim at limiting the accumulation of misfolded proteins without gross disturbance of this major proteolytic pathway.
Collapse
Affiliation(s)
- Chris McKinnon
- Department of Neurodegenerative Disease, University College London Institute of Neurology , London, United Kingdom
| | | |
Collapse
|
37
|
Bishop P, Rubin P, Thomson AR, Rocca D, Henley JM. The ubiquitin C-terminal hydrolase L1 (UCH-L1) C terminus plays a key role in protein stability, but its farnesylation is not required for membrane association in primary neurons. J Biol Chem 2014; 289:36140-9. [PMID: 25326379 PMCID: PMC4276877 DOI: 10.1074/jbc.m114.557124] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is highly expressed in neurons. A possible role for UCH-L1 in neurodegeneration has been highlighted because of its presence in Lewy bodies associated with Parkinson disease and neurofibrillary tangles observed in Alzheimer disease. UCH-L1 exists in two forms in neurons, a soluble cytoplasmic form (UCH-L1(C)) and a membrane-associated form (UCH-L1(M)). Alzheimer brains show reduced levels of soluble UCH-L1(C) correlating with the formation of UCH-L1-immunoreactive tau tangles, whereas UCH-L1(M) has been implicated in α-synuclein dysfunction. Given these reports of divergent roles, we investigated the properties of UCH-L1 membrane association. Surprisingly, our results indicate that UCH-L1 does not partition to the membrane in the cultured cell lines we tested. Furthermore, in primary cultured neurons, a proportion of UCH-L1(M) does partition to the membrane, but, contrary to a previous report, this does not require farnesylation. Deletion of the four C-terminal residues caused the loss of protein solubility, abrogation of substrate binding, increased cell death, and an abnormal intracellular distribution, consistent with protein dysfunction and aggregation. These data indicate that UCH-L1 is differently processed in neurons compared with clonal cell lines and that farnesylation does not account for the membrane association in neurons.
Collapse
Affiliation(s)
- Paul Bishop
- From the School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Philip Rubin
- From the School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Andrew R Thomson
- From the School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Dan Rocca
- From the School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Jeremy M Henley
- From the School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
38
|
Bourdenx M, Bezard E, Dehay B. Lysosomes and α-synuclein form a dangerous duet leading to neuronal cell death. Front Neuroanat 2014; 8:83. [PMID: 25177278 PMCID: PMC4132369 DOI: 10.3389/fnana.2014.00083] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/28/2014] [Indexed: 11/13/2022] Open
Abstract
Neurodegenerative diseases are (i) characterized by a selective neuronal vulnerability to degeneration in specific brain regions; and (ii) likely to be caused by disease-specific protein misfolding. Parkinson's disease (PD) is characterized by the presence of intraneuronal proteinacious cytoplasmic inclusions, called Lewy Bodies (LB). α-Synuclein, an aggregation prone protein, has been identified as a major protein component of LB and the causative for autosomal dominant PD. Lysosomes are responsible for the clearance of long-lived proteins, such as α-synuclein, and for the removal of old or damaged organelles, such as mitochondria. Interestingly, PD-linked α-synuclein mutants and dopamine-modified wild-type α-synuclein block its own degradation, which result in insufficient clearance, leading to its aggregation and cell toxicity. Moreover, both lysosomes and lysosomal proteases have been found to be involved in the activation of certain cell death pathways. Interestingly, lysosomal alterations are observed in the brains of patients suffering from sporadic PD and also in toxic and genetic rodent models of PD-related neurodegeneration. All these events have unraveled a causal link between lysosomal impairment, α-synuclein accumulation, and neurotoxicity. In this review, we emphasize the pathophysiological mechanisms connecting α-synuclein and lysosomal dysfunction in neuronal cell death.
Collapse
Affiliation(s)
- Mathieu Bourdenx
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| | - Erwan Bezard
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| | - Benjamin Dehay
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293 Bordeaux, France ; CNRS, Institut des Maladies Neurodégénératives, UMR 5293 Bordeaux, France
| |
Collapse
|
39
|
Kim HJ, Kim HJ, Jeong JE, Baek JY, Jeong J, Kim S, Kim YM, Kim Y, Nam JH, Huh SH, Seo J, Jin BK, Lee KJ. N-terminal truncated UCH-L1 prevents Parkinson's disease associated damage. PLoS One 2014; 9:e99654. [PMID: 24959670 PMCID: PMC4069018 DOI: 10.1371/journal.pone.0099654] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/16/2014] [Indexed: 11/20/2022] Open
Abstract
Ubiquitin C-terminal hydrolase-L1 (UCH-L1) has been proposed as one of the Parkinson's disease (PD) related genes, but the possible molecular connection between UCH-L1 and PD is not well understood. In this study, we discovered an N-terminal 11 amino acid truncated variant UCH-L1 that we called NT-UCH-L1, in mouse brain tissue as well as in NCI-H157 lung cancer and SH-SY5Y neuroblastoma cell lines. In vivo experiments and hydrogen-deuterium exchange (HDX) with tandem mass spectrometry (MS) studies showed that NT-UCH-L1 is readily aggregated and degraded, and has more flexible structure than UCH-L1. Post-translational modifications including monoubiquitination and disulfide crosslinking regulate the stability and cellular localization of NT-UCH-L1, as confirmed by mutational and proteomic studies. Stable expression of NT-UCH-L1 decreases cellular ROS levels and protects cells from H2O2, rotenone and CCCP-induced cell death. NT-UCH-L1-expressing transgenic mice are less susceptible to degeneration of nigrostriatal dopaminergic neurons seen in the MPTP mouse model of PD, in comparison to control animals. These results suggest that NT-UCH-L1 may have the potential to prevent neural damage in diseases like PD.
Collapse
Affiliation(s)
- Hee-Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyun Jung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jae-Eun Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jeong Yeob Baek
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jaeho Jeong
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Sun Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Young-Mee Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Youhwa Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Jin Han Nam
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Sue Hee Huh
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Jawon Seo
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Byung Kwan Jin
- Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
- * E-mail: (KJL); (BKJ)
| | - Kong-Joo Lee
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea
- * E-mail: (KJL); (BKJ)
| |
Collapse
|
40
|
Mishra AK, ur Rasheed MS, Shukla S, Tripathi MK, Dixit A, Singh MP. Aberrant Autophagy and Parkinsonism: Does Correction Rescue from Disease Progression? Mol Neurobiol 2014; 51:893-908. [DOI: 10.1007/s12035-014-8744-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/05/2014] [Indexed: 12/29/2022]
|
41
|
Could dysregulation of UPS be a common underlying mechanism for cancer and neurodegeneration? Lessons from UCHL1. Cell Biochem Biophys 2014; 67:45-53. [PMID: 23695785 DOI: 10.1007/s12013-013-9631-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ubiquitin proteasome system (UPS) determines the timing and extent of protein turnover in cells, and it is one of the most strictly controlled cellular mechanisms. Lack of proper control over UPS is attributed to both cancer and to neurodegenerative diseases, yet in different context and direction. Cancerous cells have altered cellular metabolisms, uncontrolled cellular division, and increased proteasome activity. The specialized function prevent neurons from undergoing cellular division but allow them to extend an axon over long distances, establish connections, and to form stable neuronal circuitries. Neurons heavily depend on the proper function of the proteasome and the UPS for their proper function. Reduction of UPS function in vulnerable neurons results in protein aggregation, increased ER stress, and cell death. Identification of compounds that selectively block proteasome function in distinct set of malignancies added momentum to drug discovery efforts, and deubiquitinases (DUBs) gained much attention. This review will focus on ubiquitin carboxy-terminal hydrolase L1 (UCHL1), a DUB that is attributed to both cancer and neurodegeneration. The potential of developing effective treatment strategies for two major health problems by controlling the function of UPS opens up new avenues for innovative approaches and therapeutic interventions.
Collapse
|
42
|
Toyama T, Shinkai Y, Yazawa A, Kakehashi H, Kaji T, Kumagai Y. Glutathione-mediated reversibility of covalent modification of ubiquitin carboxyl-terminal hydrolase L1 by 1,2-naphthoquinone through Cys152, but not Lys4. Chem Biol Interact 2014; 214:41-8. [PMID: 24582816 DOI: 10.1016/j.cbi.2014.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 12/31/2013] [Accepted: 02/19/2014] [Indexed: 12/13/2022]
Abstract
Covalent modification of cellular proteins by electrophiles affects electrophilic signal transduction and the dysfunction of enzymes that is involved in cytotoxicity. We have recently found a unique reaction which restores glyceraldehyde-3-phosphate dehydrogenase (GAPDH) that has been modified by 1,2-naphthoquinone (1,2-NQ) through a glutathione (GSH)-dependent S-transarylation reaction. We report here that ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) undergoes the same reaction. Exposure of human neuroblastoma SH-SY5Y cells to 1,2-NQ after pretreatment with buthionine sulfoximine (BSO) to deplete GSH resulted in an enhancement of covalent modification of UCH-L1 by 1,2-NQ. With recombinant human UCH-L1, we demonstrated that UCH-L1 underwent arylation by 1,2-NQ through Cys152 and Lys4, thereby decreasing its catalytic activity. Addition of GSH to an incubation mixture of 1,2-NQ-UCH-L1 adduct partially restored this decline in enzyme activity which was accompanied by decreased covalent attachment of 1,2-NQ, together with production of 1,2-NQ-GSH adduct. UCH-L1 in which Lys4 was mutated exhibited a lower level of covalent modification and enzyme inhibition, but completely recovered after addition of GSH. Taken together, these results suggest that Cys152 modification in UCH-L1 by 1,2-NQ is reversible via GSH-mediated S-transarylation reaction whereas Lys4 modification by 1,2-NQ is irreversible by GSH. Because UCH-L1 dysfunction has been associated with neurodegeneration, the electrophilic modification of Lys rather than Cys in UCH-L1 may be implicated in such neurodegenerative diseases.
Collapse
Affiliation(s)
- Takashi Toyama
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Research Fellow of the Japan Society for the Promotion of Science, 1-8 Chiyoda, Tokyo 102-8472, Japan
| | - Yasuhiro Shinkai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Aki Yazawa
- College of Biological Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hidenao Kakehashi
- Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Toshiyuki Kaji
- Department of Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshito Kumagai
- Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan; Master's Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
43
|
Jarome TJ, Kwapis JL, Hallengren JJ, Wilson SM, Helmstetter FJ. The ubiquitin-specific protease 14 (USP14) is a critical regulator of long-term memory formation. Learn Mem 2013; 21:9-13. [PMID: 24344179 PMCID: PMC3867711 DOI: 10.1101/lm.032771.113] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous studies have suggested a role for ubiquitin-proteasome-mediated protein degradation in learning-dependent synaptic plasticity; however, very little is known about how protein degradation is regulated at the level of the proteasome during memory formation. The ubiquitin-specific protease 14 (USP14) is a proteasomal deubiquitinating enzyme that is thought to regulate protein degradation in neurons; however, it is unknown if USP14 is involved in learning-dependent synaptic plasticity. We found that infusion of a USP14 inhibitor into the amygdala impaired long-term memory for a fear conditioning task, suggesting that USP14 is a critical regulator of long-term memory formation in the amygdala.
Collapse
Affiliation(s)
- Timothy J Jarome
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| | | | | | | | | |
Collapse
|
44
|
Bentz GL, Bheda-Malge A, Wang L, Shackelford J, Damania B, Pagano JS. KSHV LANA and EBV LMP1 induce the expression of UCH-L1 following viral transformation. Virology 2013; 448:293-302. [PMID: 24314660 DOI: 10.1016/j.virol.2013.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/20/2013] [Accepted: 10/11/2013] [Indexed: 12/30/2022]
Abstract
Ubiquitin C-terminal Hydrolase L1 (UCH-L1) has oncogenic properties and is highly expressed during malignancies. We recently documented that Epstein-Barr virus (EBV) infection induces uch-l1 expression. Here we show that Kaposi's Sarcoma-associated herpesvirus (KSHV) infection induced UCH-L1 expression, via cooperation of KSHV Latency-Associated Nuclear Antigen (LANA) and RBP-Jκ and activation of the uch-l1 promoter. UCH-L1 expression was also increased in Primary Effusion Lymphoma (PEL) cells co-infected with KSHV and EBV compared with PEL cells infected only with KSHV, suggesting EBV augments the effect of LANA on uch-l1. EBV latent membrane protein 1 (LMP1) is one of the few EBV products expressed in PEL cells. Results showed that LMP1 was sufficient to induce uch-l1 expression, and co-expression of LMP1 and LANA had an additive effect on uch-l1 expression. These results indicate that viral latency products of both human γ-herpesviruses contribute to uch-l1 expression, which may contribute to the progression of lymphoid malignancies.
Collapse
Affiliation(s)
- Gretchen L Bentz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, USA
| | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Colzani M, Aldini G, Carini M. Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts. J Proteomics 2013; 92:28-50. [DOI: 10.1016/j.jprot.2013.03.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 01/28/2023]
|
47
|
Wulfänger J, Biehl K, Tetzner A, Wild P, Ikenberg K, Meyer S, Seliger B. Heterogeneous expression and functional relevance of the ubiquitin carboxyl-terminal hydrolase L1 in melanoma. Int J Cancer 2013; 133:2522-32. [PMID: 23686552 DOI: 10.1002/ijc.28278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 05/02/2013] [Indexed: 11/11/2022]
Abstract
The expression of ubiquitin carboxyl-terminal hydrolase 1 (UCHL1) is deregulated in human cancer cells with tumor inhibiting or promoting functions. Due to less knowledge on the role of UCHL1 in melanoma progression, the expression pattern and function of UCHL1 as well as the deregulated signaling pathways were characterized. A large number of melanoma cell lines, tissue microarrays of melanoma lesions and control tissues were analyzed for UCHL1 expression using PCR, Western blot and/or immunohistochemistry. The analysis revealed that melanocyte cultures, 24 of 331 melanoma lesions, two of 18 short-term cultures and two of 19 melanoma cell lines tested, respectively, heterogeneously expressed UCHL1. The low frequency of UCHL1 expression in melanoma cells was due to gene silencing by promoter DNA hypermethylation. Using different transfection models an enzyme activity-dependent growth promoting function of UCHL1 via the activation of the mitogen-activated protein kinase signaling pathway was found in melanoma cells. Under oxygen stress a dose-dependent effect of UCHL1 was detected, which was mediated by a dynamic modification of the PI3K-Akt signaling. Thus, the aberrant UCHL1 expression in melanoma cells is linked to dynamic changes in growth properties and signal transduction cascades suggesting that UCHL1 provides a novel marker and/or therapeutic target at least for a subset of melanoma patients.
Collapse
Affiliation(s)
- Jens Wulfänger
- Martin Luther University Halle-Wittenberg, Institute of Medical Immunology, 06112, Halle (Saale), Germany
| | | | | | | | | | | | | |
Collapse
|
48
|
Kabuta T, Mitsui T, Takahashi M, Fujiwara Y, Kabuta C, Konya C, Tsuchiya Y, Hatanaka Y, Uchida K, Hohjoh H, Wada K. Ubiquitin C-terminal hydrolase L1 (UCH-L1) acts as a novel potentiator of cyclin-dependent kinases to enhance cell proliferation independently of its hydrolase activity. J Biol Chem 2013; 288:12615-26. [PMID: 23543736 DOI: 10.1074/jbc.m112.435701] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Dysregulation of cell proliferation and the cell cycle are associated with various diseases, such as cancer. Cyclin-dependent kinases (CDKs) play central roles in cell proliferation and the cell cycle. Ubiquitin C-terminal hydrolase L1 (UCH-L1) is expressed in a restricted range of tissues, including the brain and numerous types of cancer. However, the molecular functions of UCH-L1 remain elusive. In this study, we found that UCH-L1 physically interacts with CDK1, CDK4, and CDK5, enhancing their kinase activity. Using several mutants of UCH-L1, we showed that this enhancement is dependent upon interaction levels between UCH-L1 and CDKs but is independent of the known ubiquitin-related functions of UCH-L1. Gain- and loss-of-function studies revealed that UCH-L1 enhances proliferation of multiple cell types, including human cancer cells. Inhibition of the interaction between UCH-L1 and cell cycle-associated CDK resulted in the abolishment of UCH-L1-induced enhancement of cell proliferation. RNA interference of UCH-L1 reduced the growth of human xenograft tumors in mice. We concluded that UCH-L1 is a novel regulator of the kinase activities of CDKs. We believe that our findings from this study will significantly contribute to our understanding of cell cycle-associated diseases.
Collapse
Affiliation(s)
- Tomohiro Kabuta
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Janda E, Isidoro C, Carresi C, Mollace V. Defective autophagy in Parkinson's disease: role of oxidative stress. Mol Neurobiol 2012; 46:639-61. [PMID: 22899187 DOI: 10.1007/s12035-012-8318-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/30/2012] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a paradigmatic example of neurodegenerative disorder with a critical role of oxidative stress in its etiopathogenesis. Genetic susceptibility factors of PD, such as mutations in Parkin, PTEN-induced kinase 1, and DJ-1 as well as the exposure to pesticides and heavy metals, both contribute to altered redox balance and degeneration of dopaminergic neurons in the substantia nigra. Dysregulation of autophagy, a lysosomal-driven process of self degradation of cellular organelles and protein aggregates, is also implicated in PD and PD-related mutations, and environmental toxins deregulate autophagy. However, experimental evidence suggests a complex and ambiguous role of autophagy in PD since either impaired or abnormally upregulated autophagic flux has been shown to cause neuronal loss. Finally, it is generally believed that oxidative stress is a strong proautophagic stimulus. However, some evidence coming from neurobiology as well as from other fields indicate an inhibitory role of reactive oxygen species and reactive nitrogen species on the autophagic machinery. This review examines the scientific evidence supporting different concepts on how autophagy is dysregulated in PD and attempts to reconcile apparently contradictory views on the role of oxidative stress in autophagy regulation. The complex relationship between autophagy and oxidative stress is also considered in the context of the ongoing search for a novel PD therapy.
Collapse
Affiliation(s)
- Elzbieta Janda
- Department of Health Sciences, University Magna Graecia, Edificio Bioscienze, viale Europa, Campus Salvatore Venuta, Germaneto, 88100 Catanzaro, Italy.
| | | | | | | |
Collapse
|
50
|
Curtis JM, Hahn WS, Long EK, Burrill JS, Arriaga EA, Bernlohr DA. Protein carbonylation and metabolic control systems. Trends Endocrinol Metab 2012; 23:399-406. [PMID: 22742812 PMCID: PMC3408802 DOI: 10.1016/j.tem.2012.05.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 12/16/2022]
Abstract
Oxidative stress is linked to the production of reactive lipid aldehydes that non-enzymatically alkylate cysteine, histidine, or lysine residues in a reaction termed protein carbonylation. Reactive lipid aldehydes and their derivatives are detoxified via a variety of phase I and phase II systems, and when antioxidant defenses are compromised or oxidative conditions are increased, protein carbonylation is increased. The resulting modification has been implicated as causative in a variety of metabolic states including neurodegeneration, muscle wasting, insulin resistance, and aging. Although such modifications usually result in loss of protein function, protein carbonylation may be regulatory and activate signaling pathways involved in antioxidant biology and cellular homeostasis.
Collapse
Affiliation(s)
- Jessica M. Curtis
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - Wendy S. Hahn
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - Eric K. Long
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - Joel S. Burrill
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - Edgar A. Arriaga
- Department of Chemistry, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, The University of Minnesota-Twin Cities, Minneapolis, MN 55455
| |
Collapse
|