1
|
Zhang F, Guo X, Ye L, Yu S. Identifying an AML Prognostic Model Using 10 Marker Genes from Single-Cell Transcriptome and Bulk Transcriptome Analysis. Biochem Genet 2024; 62:4619-4638. [PMID: 38347290 DOI: 10.1007/s10528-024-10678-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 01/02/2024] [Indexed: 11/29/2024]
Abstract
Fanconi anemia (FA) is the predominant hereditary syndrome of bone marrow failure (BMF), distinguished by impairments in DNA repair mechanisms. The deficiency in the FANC pathway, which governs DNA repair and replication rescue, results in aberrant responses to DNA damage in individuals with FA. The objective of this study is to examine the involvement of the FANC core complex in BMF and ascertain nucleolar homeostasis-related genes by conducting transcriptome analysis on primary hematopoietic stem cells obtained from FA patients with FANCA and FANCC variants. In the present study, we analyzed scRNA-seq data obtained from both healthy donors and individuals diagnosed with FA in order to investigate the phenomenon of cell-cell communication. Through the implementation of trajectory analysis, the differentiation pathways of several progenitor cell types, such as HSC cells transitioning into LMPP, N, M, B-prog, and E cells, were elucidated. Moreover, by scrutinizing the inferred interactions, notable disparities in cell-cell communication were observed between FA patients and their healthy counterparts. Our analysis has unveiled heightened interactions involving TNFSF13B, MIF, IL16, and COL4A2 in patients with FA. Furthermore, we have developed a prognostic model for predicting the outcome of acute myeloid leukemia (AML) which has exhibited remarkable predictive precision, with an AUC exceeding 0.83 at the 3- and 5-year intervals following the baseline assessment. In summary, the prognostic model that has been developed provides a valuable instrument for forecasting outcomes of AML by utilizing the genes identified through both single-cell and bulk transcriptome analyses.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Department of Urology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
- School of Clinical Medicine, Tsinghua University, Beijing, 100084, China
| | - Xiaohua Guo
- Department of Gastroenterology, Peking University Third Hospital, Beijing, 100000, China
| | - Lihong Ye
- Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Shicheng Yu
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510530, China.
| |
Collapse
|
2
|
Abbouche L, Murphy V, Gao J, van Twest S, Sobinoff A, Auweiler K, Pickett H, Bythell-Douglas R, Deans A. Mechanism of structure-specific DNA binding by the FANCM branchpoint translocase. Nucleic Acids Res 2024; 52:11029-11044. [PMID: 39189453 PMCID: PMC11472164 DOI: 10.1093/nar/gkae727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
FANCM is a DNA repair protein that recognizes stalled replication forks, and recruits downstream repair factors. FANCM activity is also essential for the survival of cancer cells that utilize the Alternative Lengthening of Telomeres (ALT) mechanism. FANCM efficiently recognizes stalled replication forks in the genome or at telomeres through its strong affinity for branched DNA structures. In this study, we demonstrate that the N-terminal translocase domain drives this specific branched DNA recognition. The Hel2i subdomain within the translocase is crucial for effective substrate engagement and couples DNA binding to catalytic ATP-dependent branch migration. Removal of Hel2i or mutation of key DNA-binding residues within this domain diminished FANCM's affinity for junction DNA and abolished branch migration activity. Importantly, these mutant FANCM variants failed to rescue the cell cycle arrest, telomere-associated replication stress, or lethality of ALT-positive cancer cells depleted of endogenous FANCM. Our results reveal the Hel2i domain is key for FANCM to properly engage DNA substrates, and therefore plays an essential role in its tumour-suppressive functions by restraining the hyperactivation of the ALT pathway.
Collapse
Affiliation(s)
- Lara Abbouche
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| | - Vincent J Murphy
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jixuan Gao
- Children's Medical Research Institute, Westmead, NSW, Australia
| | - Sylvie van Twest
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Karen M Auweiler
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Julius-Maximilians-University of Würzburg, Germany
| | - Hilda A Pickett
- Children's Medical Research Institute, Westmead, NSW, Australia
| | - Rohan Bythell-Douglas
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent's), University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
3
|
Adolph MB, Cortez D. Mechanisms and regulation of replication fork reversal. DNA Repair (Amst) 2024; 141:103731. [PMID: 39089193 PMCID: PMC11877614 DOI: 10.1016/j.dnarep.2024.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
DNA replication is remarkably accurate with estimates of only a handful of mutations per human genome per cell division cycle. Replication stress caused by DNA lesions, transcription-replication conflicts, and other obstacles to the replication machinery must be efficiently overcome in ways that minimize errors and maximize completion of DNA synthesis. Replication fork reversal is one mechanism that helps cells tolerate replication stress. This process involves reannealing of parental template DNA strands and generation of a nascent-nascent DNA duplex. While fork reversal may be beneficial by facilitating DNA repair or template switching, it must be confined to the appropriate contexts to preserve genome stability. Many enzymes have been implicated in this process including ATP-dependent DNA translocases like SMARCAL1, ZRANB3, HLTF, and the helicase FBH1. In addition, the RAD51 recombinase is required. Many additional factors and regulatory activities also act to ensure reversal is beneficial instead of yielding undesirable outcomes. Finally, reversed forks must also be stabilized and often need to be restarted to complete DNA synthesis. Disruption or deregulation of fork reversal causes a variety of human diseases. In this review we will describe the latest models for reversal and key mechanisms of regulation.
Collapse
Affiliation(s)
- Madison B Adolph
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - David Cortez
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, United States.
| |
Collapse
|
4
|
Ma R, Xu X. Deciphering the role of post-translational modifications in fanconi anemia proteins and their influence on tumorigenesis. Cancer Gene Ther 2024; 31:1113-1123. [PMID: 38879655 DOI: 10.1038/s41417-024-00797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 08/17/2024]
Abstract
Fanconi anemia (FA) is an autosomal or X-linked human disease, characterized by bone marrow failure, cancer susceptibility and various developmental abnormalities. So far, at least 22 FA genes (FANCA-W) have been identified. Germline inactivation of any one of these FA genes causes FA symptoms. Proteins encoded by FA genes are involved in the Fanconi anemia pathway, which is known for its roles in DNA inter-strand crosslinks (ICLs) repair. Besides, its roles in genome maintenance upon replication stress has also been reported. Post-translational modifications (PTMs) of FA proteins, particularly phosphorylation and ubiquitination, emerge as critical determinants in the activation of the FA pathway during ICL repair or replication stress response. Consequent inactivation of the FA pathway engenders heightened chromosomal instability, thereby constituting a genetic susceptibility conducive to cancer predisposition and the exacerbation of tumorigenesis. In this review, we have combined recent structural analysis of FA proteins and summarized knowledge on the functions of different PTMs in regulating FA pathways, and discuss potential contributions stemming from mutations at PTMs to the genesis and progression of tumorigenesis.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xinlin Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| |
Collapse
|
5
|
Liu Z, Jiang H, Lee SY, Kong N, Chan YW. FANCM promotes PARP inhibitor resistance by minimizing ssDNA gap formation and counteracting resection inhibition. Cell Rep 2024; 43:114464. [PMID: 38985669 DOI: 10.1016/j.celrep.2024.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/22/2024] [Accepted: 06/24/2024] [Indexed: 07/12/2024] Open
Abstract
Poly(ADP-ribose) polymerase inhibitors (PARPis) exhibit remarkable anticancer activity in tumors with homologous recombination (HR) gene mutations. However, the role of other DNA repair proteins in PARPi-induced lethality remains elusive. Here, we reveal that FANCM promotes PARPi resistance independent of the core Fanconi anemia (FA) complex. FANCM-depleted cells retain HR proficiency, acting independently of BRCA1 in response to PARPis. FANCM depletion leads to increased DNA damage in the second S phase after PARPi exposure, driven by elevated single-strand DNA (ssDNA) gap formation behind replication forks in the first S phase. These gaps arise from both 53BP1- and primase and DNA directed polymerase (PRIMPOL)-dependent mechanisms. Notably, FANCM-depleted cells also exhibit reduced resection of collapsed forks, while 53BP1 deletion restores resection and mitigates PARPi sensitivity. Our results suggest that FANCM counteracts 53BP1 to repair PARPi-induced DNA damage. Furthermore, FANCM depletion leads to increased chromatin bridges and micronuclei formation after PARPi treatment, elucidating the mechanism underlying extensive cell death in FANCM-depleted cells.
Collapse
Affiliation(s)
- Zeyuan Liu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Huadong Jiang
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sze Yuen Lee
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Nannan Kong
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
6
|
Xu MJ, Jordan PW. SMC5/6 Promotes Replication Fork Stability via Negative Regulation of the COP9 Signalosome. Int J Mol Sci 2024; 25:952. [PMID: 38256025 PMCID: PMC10815603 DOI: 10.3390/ijms25020952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
It is widely accepted that DNA replication fork stalling is a common occurrence during cell proliferation, but there are robust mechanisms to alleviate this and ensure DNA replication is completed prior to chromosome segregation. The SMC5/6 complex has consistently been implicated in the maintenance of replication fork integrity. However, the essential role of the SMC5/6 complex during DNA replication in mammalian cells has not been elucidated. In this study, we investigate the molecular consequences of SMC5/6 loss at the replication fork in mouse embryonic stem cells (mESCs), employing the auxin-inducible degron (AID) system to deplete SMC5 acutely and reversibly in the defined cellular contexts of replication fork stall and restart. In SMC5-depleted cells, we identify a defect in the restart of stalled replication forks, underpinned by excess MRE11-mediated fork resection and a perturbed localization of fork protection factors to the stalled fork. Previously, we demonstrated a physical and functional interaction of SMC5/6 with the COP9 signalosome (CSN), a cullin deneddylase that enzymatically regulates cullin ring ligase (CRL) activity. Employing a combination of DNA fiber techniques, the AID system, small-molecule inhibition assays, and immunofluorescence microscopy analyses, we show that SMC5/6 promotes the localization of fork protection factors to stalled replication forks by negatively modulating the COP9 signalosome (CSN). We propose that the SMC5/6-mediated modulation of the CSN ensures that CRL activity and their roles in DNA replication fork stabilization are maintained to allow for efficient replication fork restart when a replication fork stall is alleviated.
Collapse
Affiliation(s)
- Michelle J. Xu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Philip W. Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
7
|
Sun H, Chen G, Guo B, Lv S, Yuan G. Potential clinical treatment prospects behind the molecular mechanism of alternative lengthening of telomeres (ALT). J Cancer 2023; 14:417-433. [PMID: 36860927 PMCID: PMC9969575 DOI: 10.7150/jca.80097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/25/2022] [Indexed: 02/04/2023] Open
Abstract
Normal somatic cells inevitably experience replicative stress and senescence during proliferation. Somatic cell carcinogenesis can be prevented in part by limiting the reproduction of damaged or old cells and removing them from the cell cycle [1, 2]. However, Cancer cells must overcome the issues of replication pressure and senescence as well as preserve telomere length in order to achieve immortality, in contrast to normal somatic cells [1, 2]. Although telomerase accounts for the bulk of telomere lengthening methods in human cancer cells, there is a non-negligible portion of telomere lengthening pathways that depend on alternative lengthening of telomeres (ALT) [3]. For the selection of novel possible therapeutic targets for ALT-related disorders, a thorough understanding of the molecular biology of these diseases is crucial [4]. The roles of ALT, typical ALT tumor cell traits, the pathophysiology and molecular mechanisms of ALT tumor disorders, such as adrenocortical carcinoma (ACC), are all summarized in this work. Additionally, this research compiles as many of its hypothetically viable but unproven treatment targets as it can (ALT-associated PML bodies (APB), etc.). This review is intended to contribute as much as possible to the development of research, while also trying to provide a partial information for prospective investigations on ALT pathways and associated diseases.
Collapse
Affiliation(s)
- Haolu Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230011, China
| | - Guijuan Chen
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, China
| | - Baochang Guo
- Rehabilitation Department of Traditional Chinese Medicine, 969 Hospital of the Joint Support Force of the Chinese People's Liberation Army, Hohhot, 010000, China
| | - Shushu Lv
- Department of Pathology, The First Affiliated Hospital of Huzhou University, Huzhou 313000, China
| | - Guojun Yuan
- School of Environment and Chemical Engineering, Anhui Vocational and Technical College, Hefei, 230011, China
| |
Collapse
|
8
|
Ji F, Zhu X, Liao H, Ouyang L, Huang Y, Syeda MZ, Ying S. New Era of Mapping and Understanding Common Fragile Sites: An Updated Review on Origin of Chromosome Fragility. Front Genet 2022; 13:906957. [PMID: 35669181 PMCID: PMC9164283 DOI: 10.3389/fgene.2022.906957] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Common fragile sites (CFSs) are specific genomic loci prone to forming gaps or breakages upon replication perturbation, which correlate well with chromosomal rearrangement and copy number variation. CFSs have been actively studied due to their important pathophysiological relevance in different diseases such as cancer and neurological disorders. The genetic locations and sequences of CFSs are crucial to understanding the origin of such unstable sites, which require reliable mapping and characterizing approaches. In this review, we will inspect the evolving techniques for CFSs mapping, especially genome-wide mapping and sequencing of CFSs based on current knowledge of CFSs. We will also revisit the well-established hypotheses on the origin of CFSs fragility, incorporating novel findings from the comprehensive analysis of finely mapped CFSs regarding their locations, sequences, and replication/transcription, etc. This review will present the most up-to-date picture of CFSs and, potentially, a new framework for future research of CFSs.
Collapse
Affiliation(s)
- Fang Ji
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinli Zhu
- Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongwei Liao
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Liujian Ouyang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingfei Huang
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Madiha Zahra Syeda
- Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.,Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Key Laboratory of Respiratory Disease of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet 2022; 141:1811-1836. [PMID: 35596788 DOI: 10.1007/s00439-022-02462-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Fanconi anemia is a genetic disorder that is characterized by bone marrow failure, as well as a predisposition to malignancies including leukemia and squamous cell carcinoma (SCC). At least 22 genes are associated with Fanconi anemia, constituting the Fanconi anemia DNA repair pathway. This pathway coordinates multiple processes and proteins to facilitate the repair of DNA adducts including interstrand crosslinks (ICLs) that are generated by environmental carcinogens, chemotherapeutic crosslinkers, and metabolic products of alcohol. ICLs can interfere with DNA transactions, including replication and transcription. If not properly removed and repaired, ICLs cause DNA breaks and lead to genomic instability, a hallmark of cancer. In this review, we will discuss the genetic and phenotypic characteristics of Fanconi anemia, the epidemiology of the disease, and associated cancer risk. The sources of ICLs and the role of ICL-inducing chemotherapeutic agents will also be discussed. Finally, we will review the detailed mechanisms of ICL repair via the Fanconi anemia DNA repair pathway, highlighting critical regulatory processes. Together, the information in this review will underscore important contributions to Fanconi anemia research in the past two decades.
Collapse
Affiliation(s)
- Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
10
|
Chihanga T, Vicente-Muñoz S, Ruiz-Torres S, Pal B, Sertorio M, Andreassen PR, Khoury R, Mehta P, Davies SM, Lane AN, Romick-Rosendale LE, Wells SI. Head and Neck Cancer Susceptibility and Metabolism in Fanconi Anemia. Cancers (Basel) 2022; 14:cancers14082040. [PMID: 35454946 PMCID: PMC9025423 DOI: 10.3390/cancers14082040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Fanconi anemia (FA) is a rare inherited, generally autosomal recessive syndrome, but it displays X-linked or dominant negative inheritance for certain genes. FA is characterized by a deficiency in DNA damage repair that results in bone marrow failure, and in an increased risk for various epithelial tumors, most commonly squamous cell carcinomas of the head and neck (HNSCC) and of the esophagus, anogenital tract and skin. Individuals with FA exhibit increased human papilloma virus (HPV) prevalence. Furthermore, a subset of anogenital squamous cell carcinomas (SCCs) in FA harbor HPV sequences and FA-deficient laboratory models reveal molecular crosstalk between HPV and FA proteins. However, a definitive role for HPV in HNSCC development in the FA patient population is unproven. Cellular metabolism plays an integral role in tissue homeostasis, and metabolic deregulation is a known hallmark of cancer progression that supports uncontrolled proliferation, tumor development and metastatic dissemination. The metabolic consequences of FA deficiency in keratinocytes and associated impact on the development of SCC in the FA population is poorly understood. Herein, we review the current literature on the metabolic consequences of FA deficiency and potential effects of resulting metabolic reprogramming on FA cancer phenotypes.
Collapse
Affiliation(s)
- Tafadzwa Chihanga
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Sara Vicente-Muñoz
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Sonya Ruiz-Torres
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Bidisha Pal
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
| | - Mathieu Sertorio
- Department of Radiation Oncology, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Paul R. Andreassen
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA;
| | - Ruby Khoury
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Parinda Mehta
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Stella M. Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (R.K.); (P.M.); (S.M.D.)
| | - Andrew N. Lane
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY 40536, USA;
| | - Lindsey E. Romick-Rosendale
- Department of Pathology and Laboratory Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (S.V.-M.); (L.E.R.-R.)
| | - Susanne I. Wells
- Division of Oncology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA; (T.C.); (S.R.-T.); (B.P.)
- Correspondence: ; Tel.: +1-513-636-5986
| |
Collapse
|
11
|
Lu R, Pickett HA. Telomeric replication stress: the beginning and the end for alternative lengthening of telomeres cancers. Open Biol 2022; 12:220011. [PMID: 35259951 PMCID: PMC8905155 DOI: 10.1098/rsob.220011] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Telomeres are nucleoprotein structures that cap the ends of linear chromosomes. Telomeric DNA comprises terminal tracts of G-rich tandem repeats, which are inherently difficult for the replication machinery to navigate. Structural aberrations that promote activation of the alternative lengthening of telomeres (ALT) pathway of telomere maintenance exacerbate replication stress at ALT telomeres, driving fork stalling and fork collapse. This form of telomeric DNA damage perpetuates recombination-mediated repair pathways and break-induced telomere synthesis. The relationship between replication stress and DNA repair is tightly coordinated for the purpose of regulating telomere length in ALT cells, but has been shown to be experimentally manipulatable. This raises the intriguing possibility that induction of replication stress can be used as a means to cause toxic levels of DNA damage at ALT telomeres, thereby selectively disrupting the viability of ALT cancers.
Collapse
Affiliation(s)
- Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| | - Hilda A. Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
12
|
Adeyemi RO, Willis NA, Elia AEH, Clairmont C, Li S, Wu X, D'Andrea AD, Scully R, Elledge SJ. The Protexin complex counters resection on stalled forks to promote homologous recombination and crosslink repair. Mol Cell 2021; 81:4440-4456.e7. [PMID: 34597596 PMCID: PMC8588999 DOI: 10.1016/j.molcel.2021.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/11/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023]
Abstract
Protection of stalled replication forks is critical to genomic stability. Using genetic and proteomic analyses, we discovered the Protexin complex containing the ssDNA binding protein SCAI and the DNA polymerase REV3. Protexin is required specifically for protecting forks stalled by nucleotide depletion, fork barriers, fragile sites, and DNA inter-strand crosslinks (ICLs), where it promotes homologous recombination and repair. Protexin loss leads to ssDNA accumulation and profound genomic instability in response to ICLs. Protexin interacts with RNA POL2, and both oppose EXO1's resection of DNA on forks remodeled by the FANCM translocase activity. This pathway acts independently of BRCA/RAD51-mediated fork stabilization, and cells with BRCA2 mutations were dependent on SCAI for survival. These data suggest that Protexin and its associated factors establish a new fork protection pathway that counteracts fork resection in part through a REV3 polymerase-dependent resynthesis mechanism of excised DNA, particularly at ICL stalled forks.
Collapse
Affiliation(s)
- Richard O Adeyemi
- Department of Genetics, Harvard Medical School, and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Nicholas A Willis
- Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Andrew E H Elia
- Department of Genetics, Harvard Medical School, and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Connor Clairmont
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology and Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ralph Scully
- Department of Medicine and Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
13
|
Fanconi anemia proteins participate in a break-induced-replication-like pathway to counter replication stress. Nat Struct Mol Biol 2021; 28:487-500. [PMID: 34117478 DOI: 10.1038/s41594-021-00602-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/30/2021] [Indexed: 11/08/2022]
Abstract
Fanconi anemia (FA) is a devastating hereditary disease characterized by bone marrow failure (BMF) and acute myeloid leukemia (AML). As FA-deficient cells are hypersensitive to DNA interstrand crosslinks (ICLs), ICLs are widely assumed to be the lesions responsible for FA symptoms. Here, we show that FA-mutated cells are hypersensitive to persistent replication stress and that FA proteins play a role in the break-induced-replication (BIR)-like pathway for fork restart. Both the BIR-like pathway and ICL repair share almost identical molecular mechanisms of 53BP1-BRCA1-controlled signaling response, SLX4- and FAN1-mediated fork cleavage and POLD3-dependent DNA synthesis, suggesting that the FA pathway is intrinsically one of the BIR-like pathways. Replication stress not only triggers BMF in FA-deficient mice, but also specifically induces monosomy 7, which is associated with progression to AML in patients with FA, in FA-deficient cells.
Collapse
|
14
|
Abstract
DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.
Collapse
Affiliation(s)
- Daniel R Semlow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
15
|
Panday A, Willis NA, Elango R, Menghi F, Duffey EE, Liu ET, Scully R. FANCM regulates repair pathway choice at stalled replication forks. Mol Cell 2021; 81:2428-2444.e6. [PMID: 33882298 DOI: 10.1016/j.molcel.2021.03.044] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/18/2021] [Accepted: 03/26/2021] [Indexed: 01/19/2023]
Abstract
Repair pathway "choice" at stalled mammalian replication forks is an important determinant of genome stability; however, the underlying mechanisms are poorly understood. FANCM encodes a multi-domain scaffolding and motor protein that interacts with several distinct repair protein complexes at stalled forks. Here, we use defined mutations engineered within endogenous Fancm in mouse embryonic stem cells to study how Fancm regulates stalled fork repair. We find that distinct FANCM repair functions are enacted by molecularly separable scaffolding domains. These findings define FANCM as a key mediator of repair pathway choice at stalled replication forks and reveal its molecular mechanism. Notably, mutations that inactivate FANCM ATPase function disable all its repair functions and "trap" FANCM at stalled forks. We find that Brca1 hypomorphic mutants are synthetic lethal with Fancm null or Fancm ATPase-defective mutants. The ATPase function of FANCM may therefore represent a promising "druggable" target for therapy of BRCA1-linked cancer.
Collapse
Affiliation(s)
- Arvind Panday
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas A Willis
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Rajula Elango
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Francesca Menghi
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Erin E Duffey
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA
| | - Edison T Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Ralph Scully
- Department of Medicine, Division of Hematology-Oncology and Cancer Research Institute, Beth Israel Deaconess Medical Center, and Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
16
|
Network models of primary melanoma microenvironments identify key melanoma regulators underlying prognosis. Nat Commun 2021; 12:1214. [PMID: 33619278 PMCID: PMC7900178 DOI: 10.1038/s41467-021-21457-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
Melanoma is the most lethal skin malignancy, driven by genetic and epigenetic alterations in the complex tumour microenvironment. While large-scale molecular profiling of melanoma has identified molecular signatures associated with melanoma progression, comprehensive systems-level modeling remains elusive. This study builds up predictive gene network models of molecular alterations in primary melanoma by integrating large-scale bulk-based multi-omic and single-cell transcriptomic data. Incorporating clinical, epigenetic, and proteomic data into these networks reveals key subnetworks, cell types, and regulators underlying melanoma progression. Tumors with high immune infiltrates are found to be associated with good prognosis, presumably due to induced CD8+ T-cell cytotoxicity, via MYO1F-mediated M1-polarization of macrophages. Seventeen key drivers of the gene subnetworks associated with poor prognosis, including the transcription factor ZNF180, are tested for their pro-tumorigenic effects in vitro. The anti-tumor effect of silencing ZNF180 is further validated using in vivo xenografts. Experimentally validated targets of ZNF180 are enriched in the ZNF180 centered network and the known pathways such as melanoma cell maintenance and immune cell infiltration. The transcriptional networks and their critical regulators provide insights into the molecular mechanisms of melanomagenesis and pave the way for developing therapeutic strategies for melanoma. While the molecular profiling of melanoma progression has been extensively characterised by large-scale studies, there is still need for the comprehensive integration of such datasets. Here the authors construct predictive gene network models for prognostic and therapeutic purposes.
Collapse
|
17
|
Acar MB, Aprile D, Ayaz-Guner S, Guner H, Tez C, Di Bernardo G, Peluso G, Ozcan S, Galderisi U. Why Do Muse Stem Cells Present an Enduring Stress Capacity? Hints from a Comparative Proteome Analysis. Int J Mol Sci 2021; 22:2064. [PMID: 33669748 PMCID: PMC7922977 DOI: 10.3390/ijms22042064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022] Open
Abstract
Muse cells are adult stem cells that are present in the stroma of several organs and possess an enduring capacity to cope with endogenous and exogenous genotoxic stress. In cell therapy, the peculiar biological properties of Muse cells render them a possible natural alternative to mesenchymal stromal cells (MSCs) or to in vitro-generated pluripotent stem cells (iPSCs). Indeed, some studies have proved that Muse cells can survive in adverse microenvironments, such as those present in damaged/injured tissues. We performed an evaluation of Muse cells' proteome under basic conditions and followed oxidative stress treatment in order to identify ontologies, pathways, and networks that can be related to their enduring stress capacity. We executed the same analysis on iPSCs and MSCs, as a comparison. The Muse cells are enriched in several ontologies and pathways, such as endosomal vacuolar trafficking related to stress response, ubiquitin and proteasome degradation, and reactive oxygen scavenging. In Muse cells, the protein-protein interacting network has two key nodes with a high connectivity degree and betweenness: NFKB and CRKL. The protein NFKB is an almost-ubiquitous transcription factor related to many biological processes and can also have a role in protecting cells from apoptosis during exposure to a variety of stressors. CRKL is an adaptor protein and constitutes an integral part of the stress-activated protein kinase (SAPK) pathway. The identified pathways and networks are all involved in the quality control of cell components and may explain the stress resistance of Muse cells.
Collapse
Affiliation(s)
- Mustafa B. Acar
- Graduate School of Natural and Applied Sciences, Erciyes University, Kayseri 38039, Turkey;
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri 38039, Turkey;
| | - Domenico Aprile
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (D.A.); (G.D.B.)
| | - Serife Ayaz-Guner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gul University, Kayseri 38090, Turkey; (S.A.-G.); (H.G.)
| | - Huseyin Guner
- Department of Molecular Biology and Genetics, Faculty of Life and Natural Science, Abdullah Gul University, Kayseri 38090, Turkey; (S.A.-G.); (H.G.)
| | - Coskun Tez
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri 38039, Turkey;
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri 38039, Turkey
| | - Giovanni Di Bernardo
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (D.A.); (G.D.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| | | | - Servet Ozcan
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri 38039, Turkey;
- Department of Biology, Faculty of Sciences, Erciyes University, Kayseri 38039, Turkey
| | - Umberto Galderisi
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri 38039, Turkey;
- Department of Experimental Medicine, Luigi Vanvitelli Campania University, 80138 Naples, Italy; (D.A.); (G.D.B.)
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
18
|
The FANC/BRCA Pathway Releases Replication Blockades by Eliminating DNA Interstrand Cross-Links. Genes (Basel) 2020; 11:genes11050585. [PMID: 32466131 PMCID: PMC7288313 DOI: 10.3390/genes11050585] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/14/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022] Open
Abstract
DNA interstrand cross-links (ICLs) represent a major barrier blocking DNA replication fork progression. ICL accumulation results in growth arrest and cell death—particularly in cell populations undergoing high replicative activity, such as cancer and leukemic cells. For this reason, agents able to induce DNA ICLs are widely used as chemotherapeutic drugs. However, ICLs are also generated in cells as byproducts of normal metabolic activities. Therefore, every cell must be capable of rescuing lCL-stalled replication forks while maintaining the genetic stability of the daughter cells in order to survive, replicate DNA and segregate chromosomes at mitosis. Inactivation of the Fanconi anemia/breast cancer-associated (FANC/BRCA) pathway by inherited mutations leads to Fanconi anemia (FA), a rare developmental, cancer-predisposing and chromosome-fragility syndrome. FANC/BRCA is the key hub for a complex and wide network of proteins that—upon rescuing ICL-stalled DNA replication forks—allows cell survival. Understanding how cells cope with ICLs is mandatory to ameliorate ICL-based anticancer therapies and provide the molecular basis to prevent or bypass cancer drug resistance. Here, we review our state-of-the-art understanding of the mechanisms involved in ICL resolution during DNA synthesis, with a major focus on how the FANC/BRCA pathway ensures DNA strand opening and prevents genomic instability.
Collapse
|
19
|
Brosh RM, Matson SW. History of DNA Helicases. Genes (Basel) 2020; 11:genes11030255. [PMID: 32120966 PMCID: PMC7140857 DOI: 10.3390/genes11030255] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of the DNA double helix, there has been a fascination in understanding the molecular mechanisms and cellular processes that account for: (i) the transmission of genetic information from one generation to the next and (ii) the remarkable stability of the genome. Nucleic acid biologists have endeavored to unravel the mysteries of DNA not only to understand the processes of DNA replication, repair, recombination, and transcription but to also characterize the underlying basis of genetic diseases characterized by chromosomal instability. Perhaps unexpectedly at first, DNA helicases have arisen as a key class of enzymes to study in this latter capacity. From the first discovery of ATP-dependent DNA unwinding enzymes in the mid 1970's to the burgeoning of helicase-dependent pathways found to be prevalent in all kingdoms of life, the story of scientific discovery in helicase research is rich and informative. Over four decades after their discovery, we take this opportunity to provide a history of DNA helicases. No doubt, many chapters are left to be written. Nonetheless, at this juncture we are privileged to share our perspective on the DNA helicase field - where it has been, its current state, and where it is headed.
Collapse
Affiliation(s)
- Robert M. Brosh
- Section on DNA Helicases, Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| | - Steven W. Matson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (R.M.B.J.); (S.W.M.); Tel.: +1-410-558-8578 (R.M.B.J.); +1-919-962-0005 (S.W.M.)
| |
Collapse
|
20
|
Moyer CL, Ivanovich J, Gillespie JL, Doberstein R, Radke MR, Richardson ME, Kaufmann SH, Swisher EM, Goodfellow PJ. Rare BRIP1 Missense Alleles Confer Risk for Ovarian and Breast Cancer. Cancer Res 2019; 80:857-867. [PMID: 31822495 DOI: 10.1158/0008-5472.can-19-1991] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/25/2019] [Accepted: 12/04/2019] [Indexed: 11/16/2022]
Abstract
Germline loss-of-function mutations in BRCA1 interacting protein C-terminal helicase 1 (BRIP1) are associated with ovarian carcinoma and may also contribute to breast cancer risk, particularly among patients who develop disease at an early age. Normal BRIP1 activity is required for DNA interstrand cross-link (ICL) repair and is thus central to the maintenance of genome stability. Although pathogenic mutations have been identified in BRIP1, genetic testing more often reveals missense variants, for which the impact on molecular function and subsequent roles in cancer risk are uncertain. Next-generation sequencing of germline DNA in 2,160 early-onset breast cancer and 1,199 patients with ovarian cancer revealed nearly 2% of patients carry a very rare missense variant (minor allele frequency < 0.0001) in BRIP1. This is 3-fold higher than the frequency of all rare BRIP1 missense alleles reported in more than 60,000 individuals of the general population (P < 0.0001, χ 2 test). Using CRISPR-Cas9 gene editing technology and rescue assays, we functionally characterized 20 of these missense variants, focusing on the altered protein's ability to repair ICL damage. A total of 75% of the characterized variants rendered the protein hypomorph or null. In a clinical cohort of >117,000 patients with breast and ovarian cancer who underwent panel testing, the combined OR associated with BRIP1 hypomorph or null missense carriers compared with the general population was 2.30 (95% confidence interval, 1.60-3.30; P < 0.0001). These findings suggest that novel missense variants within the helicase domain of BRIP1 may confer risk for both breast and ovarian cancer and highlight the importance of functional testing for additional variants. SIGNIFICANCE: Functional characterization of rare variants of uncertain significance in BRIP1 revealed that 75% demonstrate loss-of-function activity, suggesting rare missense alleles in BRIP1 confer risk for both breast and ovarian cancer.
Collapse
Affiliation(s)
- Cassandra L Moyer
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Jennifer Ivanovich
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, Indiana
| | - Jessica L Gillespie
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Rachel Doberstein
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| | - Marc R Radke
- Division of Gynecologic Oncology, University of Washington, Seattle, Washington
| | - Marcy E Richardson
- Department of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - Scott H Kaufmann
- Division of Oncology Research, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth M Swisher
- Division of Gynecologic Oncology, University of Washington, Seattle, Washington
| | - Paul J Goodfellow
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
21
|
Domingues-Silva B, Silva B, Azzalin CM. ALTernative Functions for Human FANCM at Telomeres. Front Mol Biosci 2019; 6:84. [PMID: 31552268 PMCID: PMC6743340 DOI: 10.3389/fmolb.2019.00084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/26/2019] [Indexed: 01/13/2023] Open
Abstract
The human FANCM ATPase/translocase is involved in various cellular pathways including DNA damage repair, replication fork remodeling and R-loop resolution. Recently, reports from three independent laboratories have disclosed a previously unappreciated role for FANCM in telomerase-negative human cancer cells that maintain their telomeres through the Alternative Lengthening of Telomeres (ALT) pathway. In ALT cells, FANCM limits telomeric replication stress and damage, and, in turn, ALT activity by suppressing accumulation of telomeric R-loops and by regulating the action of the BLM helicase. As a consequence, FANCM inactivation leads to exaggerated ALT activity and ultimately cell death. The studies reviewed here not only unveil a novel function for human FANCM, but also point to this enzyme as a promising target for anti-ALT cancer therapy.
Collapse
Affiliation(s)
- Beatriz Domingues-Silva
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Bruno Silva
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
22
|
FANCM limits ALT activity by restricting telomeric replication stress induced by deregulated BLM and R-loops. Nat Commun 2019; 10:2253. [PMID: 31138795 PMCID: PMC6538666 DOI: 10.1038/s41467-019-10179-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/23/2019] [Indexed: 12/13/2022] Open
Abstract
Telomerase negative immortal cancer cells elongate telomeres through the Alternative Lengthening of Telomeres (ALT) pathway. While sustained telomeric replicative stress is required to maintain ALT, it might also lead to cell death when excessive. Here, we show that the ATPase/translocase activity of FANCM keeps telomeric replicative stress in check specifically in ALT cells. When FANCM is depleted in ALT cells, telomeres become dysfunctional, and cells stop proliferating and die. FANCM depletion also increases ALT-associated marks and de novo synthesis of telomeric DNA. Depletion of the BLM helicase reduces the telomeric replication stress and cell proliferation defects induced by FANCM inactivation. Finally, FANCM unwinds telomeric R-loops in vitro and suppresses their accumulation in cells. Overexpression of RNaseH1 completely abolishes the replication stress remaining in cells codepleted for FANCM and BLM. Thus, FANCM allows controlled ALT activity and ALT cell proliferation by limiting the toxicity of uncontrolled BLM and telomeric R-loops. In cancer cells, telomeres can be elongated through homology directed-repair pathways in a process known as Alternative Lengthening of Telomeres (ALT). Here, the authors reveal that FANCM regulates ALT activity and ALT cell proliferation by limiting the activity of uncontrolled BLM and telomeric R-loops.
Collapse
|
23
|
Lu R, O'Rourke JJ, Sobinoff AP, Allen JAM, Nelson CB, Tomlinson CG, Lee M, Reddel RR, Deans AJ, Pickett HA. The FANCM-BLM-TOP3A-RMI complex suppresses alternative lengthening of telomeres (ALT). Nat Commun 2019; 10:2252. [PMID: 31138797 PMCID: PMC6538672 DOI: 10.1038/s41467-019-10180-6] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
The collapse of stalled replication forks is a major driver of genomic instability. Several committed mechanisms exist to resolve replication stress. These pathways are particularly pertinent at telomeres. Cancer cells that use Alternative Lengthening of Telomeres (ALT) display heightened levels of telomere-specific replication stress, and co-opt stalled replication forks as substrates for break-induced telomere synthesis. FANCM is a DNA translocase that can form independent functional interactions with the BLM-TOP3A-RMI (BTR) complex and the Fanconi anemia (FA) core complex. Here, we demonstrate that FANCM depletion provokes ALT activity, evident by increased break-induced telomere synthesis, and the induction of ALT biomarkers. FANCM-mediated attenuation of ALT requires its inherent DNA translocase activity and interaction with the BTR complex, but does not require the FA core complex, indicative of FANCM functioning to restrain excessive ALT activity by ameliorating replication stress at telomeres. Synthetic inhibition of FANCM-BTR complex formation is selectively toxic to ALT cancer cells.
Collapse
Affiliation(s)
- Robert Lu
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Julienne J O'Rourke
- Genome Stability Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, 3065, VIC, Australia
- Department of Medicine (St. Vincent's), University of Melbourne, Parkville, 3052, VIC, Australia
| | - Alexander P Sobinoff
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Christopher B Nelson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Christopher G Tomlinson
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Michael Lee
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Roger R Reddel
- Cancer Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute, 9 Princes St, Fitzroy, 3065, VIC, Australia.
- Department of Medicine (St. Vincent's), University of Melbourne, Parkville, 3052, VIC, Australia.
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, 2145, NSW, Australia.
| |
Collapse
|
24
|
Huang J, Zhang J, Bellani MA, Pokharel D, Gichimu J, James RC, Gali H, Ling C, Yan Z, Xu D, Chen J, Meetei AR, Li L, Wang W, Seidman MM. Remodeling of Interstrand Crosslink Proximal Replisomes Is Dependent on ATR, FANCM, and FANCD2. Cell Rep 2019; 27:1794-1808.e5. [PMID: 31067464 PMCID: PMC6676478 DOI: 10.1016/j.celrep.2019.04.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 12/19/2018] [Accepted: 04/04/2019] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic replisomes are driven by the mini chromosome maintenance (MCM [M]) helicase complex, an offset ring locked around the template for leading strand synthesis by CDC45 (C) and GINS (G) proteins. Although the CDC45 MCM GINS (CMG) structure implies that interstrand crosslinks (ICLs) are absolute blocks to replisomes, recent studies indicate that cells can restart DNA synthesis on the side of the ICL distal to the initial encounter. Here, we report that restart requires ATR and is promoted by FANCD2 and phosphorylated FANCM. Following introduction of genomic ICLs and dependent on ATR and FANCD2 but not on the Fanconi anemia core proteins or FAAP24, FANCM binds the replisome complex, with concomitant release of the GINS proteins. In situ analysis of replisomes proximal to ICLs confirms the ATR-dependent release of GINS proteins while CDC45 is retained on the remodeled replisome. The results demonstrate the plasticity of CMG composition in response to replication stress.
Collapse
Affiliation(s)
- Jing Huang
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, China.
| | - Jing Zhang
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Durga Pokharel
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Julia Gichimu
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Ryan C James
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Himabindu Gali
- Department of Pharmacology & Experimental Therapeutics and Medicine, Boston University School of Medicine, 72 East Concord St., K-712D, Boston, MA 02118-2526
| | - Chen Ling
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Zhijiang Yan
- Institute of DNA Repair Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Dongyi Xu
- Peking University, Beijing 100871, China
| | - Junjie Chen
- Department Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77225-0334, USA
| | - Amom Ruhikanta Meetei
- Division of Experimental Hematology and Cancer Biology and Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Lei Li
- Department Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77225-0334, USA
| | - Weidong Wang
- Laboratory of Genetics and Genomics, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
25
|
Rodríguez A, Naveja JJ, Torres L, García de Teresa B, Juárez-Figueroa U, Ayala-Zambrano C, Azpeitia E, Mendoza L, Frías S. WIP1 Contributes to the Adaptation of Fanconi Anemia Cells to DNA Damage as Determined by the Regulatory Network of the Fanconi Anemia and Checkpoint Recovery Pathways. Front Genet 2019; 10:411. [PMID: 31130988 PMCID: PMC6509935 DOI: 10.3389/fgene.2019.00411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/15/2019] [Indexed: 02/01/2023] Open
Abstract
DNA damage adaptation (DDA) allows the division of cells with unrepaired DNA damage. DNA repair deficient cells might take advantage of DDA to survive. The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs), and deficiencies in this pathway cause a fraction of breast and ovarian cancers as well as FA, a chromosome instability syndrome characterized by bone marrow failure and cancer predisposition. FA cells are hypersensitive to ICLs; however, DDA might promote their survival. We present the FA-CHKREC Boolean Network Model, which explores how FA cells might use DDA. The model integrates the FA pathway with the G2 checkpoint and the checkpoint recovery (CHKREC) processes. The G2 checkpoint mediates cell-cycle arrest (CCA) and the CHKREC activates cell-cycle progression (CCP) after resolution of DNA damage. Analysis of the FA-CHKREC network indicates that CHKREC drives DDA in FA cells, ignoring the presence of unrepaired DNA damage and allowing their division. Experimental inhibition of WIP1, a CHKREC component, in FA lymphoblast and cancer cell lines prevented division of FA cells, in agreement with the prediction of the model.
Collapse
Affiliation(s)
- Alfredo Rodríguez
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - J Jesús Naveja
- PECEM, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Leda Torres
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Benilde García de Teresa
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Ulises Juárez-Figueroa
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Cecilia Ayala-Zambrano
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico
| | - Eugenio Azpeitia
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Sara Frías
- Laboratorio de Citogenética, Departamento de Investigación en Genética Humana, Instituto Nacional de Pediatría, Mexico City, Mexico.,Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
26
|
Basbous J, Constantinou A. A tumor suppressive DNA translocase named FANCM. Crit Rev Biochem Mol Biol 2019; 54:27-40. [DOI: 10.1080/10409238.2019.1568963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jihane Basbous
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| | - Angelos Constantinou
- Institute of Human Genetics (IGH), Centre National de la Recherche Scientifique (CNRS), Université de Montpellier (UM), Montpellier, France
| |
Collapse
|
27
|
Faridounnia M, Folkers GE, Boelens R. Function and Interactions of ERCC1-XPF in DNA Damage Response. Molecules 2018; 23:E3205. [PMID: 30563071 PMCID: PMC6320978 DOI: 10.3390/molecules23123205] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/27/2018] [Accepted: 12/01/2018] [Indexed: 12/28/2022] Open
Abstract
Numerous proteins are involved in the multiple pathways of the DNA damage response network and play a key role to protect the genome from the wide variety of damages that can occur to DNA. An example of this is the structure-specific endonuclease ERCC1-XPF. This heterodimeric complex is in particular involved in nucleotide excision repair (NER), but also in double strand break repair and interstrand cross-link repair pathways. Here we review the function of ERCC1-XPF in various DNA repair pathways and discuss human disorders associated with ERCC1-XPF deficiency. We also overview our molecular and structural understanding of XPF-ERCC1.
Collapse
Affiliation(s)
- Maryam Faridounnia
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Gert E Folkers
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | - Rolf Boelens
- Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| |
Collapse
|
28
|
Kasak L, Punab M, Nagirnaja L, Grigorova M, Minajeva A, Lopes AM, Punab AM, Aston KI, Carvalho F, Laasik E, Smith LB, Conrad DF, Laan M, Laan M. Bi-allelic Recessive Loss-of-Function Variants in FANCM Cause Non-obstructive Azoospermia. Am J Hum Genet 2018; 103:200-212. [PMID: 30075111 DOI: 10.1016/j.ajhg.2018.07.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/02/2018] [Indexed: 01/19/2023] Open
Abstract
Infertility affects around 7% of men worldwide. Idiopathic non-obstructive azoospermia (NOA) is defined as the absence of spermatozoa in the ejaculate due to failed spermatogenesis. There is a high probability that NOA is caused by rare genetic defects. In this study, whole-exome sequencing (WES) was applied to two Estonian brothers diagnosed with NOA and Sertoli cell-only syndrome (SCOS). Compound heterozygous loss-of-function (LoF) variants in FANCM (Fanconi anemia complementation group M) were detected as the most likely cause for their condition. A rare maternally inherited frameshift variant p.Gln498Thrfs∗7 (rs761250416) and a previously undescribed splicing variant (c.4387-10A>G) derived from the father introduce a premature STOP codon leading to a truncated protein. FANCM exhibits enhanced testicular expression. In control subjects, immunohistochemical staining localized FANCM to the Sertoli and spermatogenic cells of seminiferous tubules with increasing intensity through germ cell development. This is consistent with its role in maintaining genomic stability in meiosis and mitosis. In the individual with SCOS carrying bi-allelic FANCM LoF variants, none or only faint expression was detected in the Sertoli cells. As further evidence, we detected two additional NOA-affected case subjects with independent FANCM homozygous nonsense variants, one from Estonia (p.Gln1701∗; rs147021911) and another from Portugal (p.Arg1931∗; rs144567652). The study convincingly demonstrates that bi-allelic recessive LoF variants in FANCM cause azoospermia. FANCM pathogenic variants have also been linked with doubled risk of familial breast and ovarian cancer, providing an example mechanism for the association between infertility and cancer risk, supported by published data on Fancm mutant mouse models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maris Laan
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
29
|
The concerted roles of FANCM and Rad52 in the protection of common fragile sites. Nat Commun 2018; 9:2791. [PMID: 30022024 PMCID: PMC6052092 DOI: 10.1038/s41467-018-05066-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/10/2018] [Indexed: 12/18/2022] Open
Abstract
Common fragile sites (CFSs) are prone to chromosomal breakage and are hotspots for chromosomal rearrangements in cancer cells. We uncovered a novel function of Fanconi anemia (FA) protein FANCM in the protection of CFSs that is independent of the FA core complex and the FANCI–FANCD2 complex. FANCM, along with its binding partners FAAP24 and MHF1/2, is recruited to CFS-derived structure-prone AT-rich sequences, where it suppresses DNA double-strand break (DSB) formation and mitotic recombination in a manner dependent on FANCM translocase activity. Interestingly, we also identified an indispensable function of Rad52 in the repair of DSBs at CFS-derived AT-rich sequences, despite its nonessential function in general homologous recombination (HR) in mammalian cells. Suppression of Rad52 expression in combination with FANCM knockout drastically reduces cell and tumor growth, suggesting a synthetic lethality interaction between these two genes, which offers a potential targeted treatment strategy for FANCM-deficient tumors with Rad52 inhibition. Fanconi anemia core proteins have been linked to common fragile site stability. Here the authors shed light into the role of FANCM in common fragile site protection by suppressing double-strand break formation and mitotic recombination.
Collapse
|
30
|
Kim HM, Beese-Sims SE, Colaiácovo MP. Fanconi Anemia FANCM/FNCM-1 and FANCD2/FCD-2 Are Required for Maintaining Histone Methylation Levels and Interact with the Histone Demethylase LSD1/SPR-5 in Caenorhabditis elegans. Genetics 2018; 209:409-423. [PMID: 29588287 PMCID: PMC5972417 DOI: 10.1534/genetics.118.300823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/22/2018] [Indexed: 11/18/2022] Open
Abstract
The histone demethylase LSD1 was originally discovered by removing methyl groups from di- and monomethylated histone H3 lysine 4 (H3K4me2/1). Several studies suggest that LSD1 plays roles in meiosis as well as in the epigenetic regulation of fertility given that, in its absence, there is evidence of a progressive accumulation of H3K4me2 and increased sterility through generations. In addition to the progressive sterility phenotype observed in the mutants, growing evidence for the importance of histone methylation in the regulation of DNA damage repair has attracted more attention to the field in recent years. However, we are still far from understanding the mechanisms by which histone methylation is involved in DNA damage repair, and only a few studies have focused on the roles of histone demethylases in germline maintenance. Here, we show that the histone demethylase LSD1/CeSPR-5 interacts with the Fanconi anemia (FA) protein FANCM/CeFNCM-1 using biochemical, cytological, and genetic analyses. LSD1/CeSPR-5 is required for replication stress-induced S phase-checkpoint activation, and its absence suppresses the embryonic lethality and larval arrest observed in fncm-1 mutants. FANCM/CeFNCM-1 relocalizes upon hydroxyurea exposure and colocalizes with FANCD2/CeFCD-2 and LSD1/CeSPR-5, suggesting coordination between this histone demethylase and FA components to resolve replication stress. Surprisingly, the FA pathway is required for H3K4me2 maintenance, regardless of the presence of replication stress. Our study reveals a connection between FA and epigenetic maintenance and therefore provides new mechanistic insight into the regulation of histone methylation in DNA repair.
Collapse
Affiliation(s)
- Hyun-Min Kim
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
- School of Pharmaceutical Science and Technology, Tianjin University, 300072, China
| | - Sara E Beese-Sims
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
31
|
Nath S, Somyajit K, Mishra A, Scully R, Nagaraju G. FANCJ helicase controls the balance between short- and long-tract gene conversions between sister chromatids. Nucleic Acids Res 2017; 45:8886-8900. [PMID: 28911102 PMCID: PMC5587752 DOI: 10.1093/nar/gkx586] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/28/2017] [Indexed: 01/01/2023] Open
Abstract
The FANCJ DNA helicase is linked to hereditary breast and ovarian cancers as well as bone marrow failure disorder Fanconi anemia (FA). Although FANCJ has been implicated in the repair of DNA double-strand breaks (DSBs) by homologous recombination (HR), the molecular mechanism underlying the tumor suppressor functions of FANCJ remains obscure. Here, we demonstrate that FANCJ deficient human and hamster cells exhibit reduction in the overall gene conversions in response to a site-specific chromosomal DSB induced by I-SceI endonuclease. Strikingly, the gene conversion events were biased in favour of long-tract gene conversions in FANCJ depleted cells. The fine regulation of short- (STGC) and long-tract gene conversions (LTGC) by FANCJ was dependent on its interaction with BRCA1 tumor suppressor. Notably, helicase activity of FANCJ was essential for controlling the overall HR and in terminating the extended repair synthesis during sister chromatid recombination (SCR). Moreover, cells expressing FANCJ pathological mutants exhibited defective SCR with an increased frequency of LTGC. These data unravel the novel function of FANCJ helicase in regulating SCR and SCR associated gene amplification/duplications and imply that these functions of FANCJ are crucial for the genome maintenance and tumor suppression.
Collapse
Affiliation(s)
- Sarmi Nath
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Anup Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ralph Scully
- Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA, USA
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
32
|
FANCM, BRCA1, and BLM cooperatively resolve the replication stress at the ALT telomeres. Proc Natl Acad Sci U S A 2017; 114:E5940-E5949. [PMID: 28673972 DOI: 10.1073/pnas.1708065114] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the mammalian genome, certain genomic loci/regions pose greater challenges to the DNA replication machinery (i.e., the replisome) than others. Such known genomic loci/regions include centromeres, common fragile sites, subtelomeres, and telomeres. However, the detailed mechanism of how mammalian cells cope with the replication stress at these loci/regions is largely unknown. Here we show that depletion of FANCM, or of one of its obligatory binding partners, FAAP24, MHF1, and MHF2, induces replication stress primarily at the telomeres of cells that use the alternative lengthening of telomeres (ALT) pathway as their telomere maintenance mechanism. Using the telomere-specific single-molecule analysis of replicated DNA technique, we found that depletion of FANCM dramatically reduces the replication efficiency at ALT telomeres. We further show that FANCM, BRCA1, and BLM are actively recruited to the ALT telomeres that are experiencing replication stress and that the recruitment of BRCA1 and BLM to these damaged telomeres is interdependent and is regulated by both ATR and Chk1. Mechanistically, we demonstrated that, in FANCM-depleted ALT cells, BRCA1 and BLM help to resolve the telomeric replication stress by stimulating DNA end resection and homologous recombination (HR). Consistent with their roles in resolving the replication stress induced by FANCM deficiency, simultaneous depletion of BLM and FANCM, or of BRCA1 and FANCM, leads to increased micronuclei formation and synthetic lethality in ALT cells. We propose that these synthetic lethal interactions can be explored for targeting the ALT cancers.
Collapse
|
33
|
Crouch JD, Brosh RM. Mechanistic and biological considerations of oxidatively damaged DNA for helicase-dependent pathways of nucleic acid metabolism. Free Radic Biol Med 2017; 107:245-257. [PMID: 27884703 PMCID: PMC5440220 DOI: 10.1016/j.freeradbiomed.2016.11.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 12/21/2022]
Abstract
Cells are under constant assault from reactive oxygen species that occur endogenously or arise from environmental agents. An important consequence of such stress is the generation of oxidatively damaged DNA, which is represented by a wide range of non-helix distorting and helix-distorting bulkier lesions that potentially affect a number of pathways including replication and transcription; consequently DNA damage tolerance and repair pathways are elicited to help cells cope with the lesions. The cellular consequences and metabolism of oxidatively damaged DNA can be quite complex with a number of DNA metabolic proteins and pathways involved. Many of the responses to oxidative stress involve a specialized class of enzymes known as helicases, the topic of this review. Helicases are molecular motors that convert the energy of nucleoside triphosphate hydrolysis to unwinding of structured polynucleic acids. Helicases by their very nature play fundamentally important roles in DNA metabolism and are implicated in processes that suppress chromosomal instability, genetic disease, cancer, and aging. We will discuss the roles of helicases in response to nuclear and mitochondrial oxidative stress and how this important class of enzymes help cells cope with oxidatively generated DNA damage through their functions in the replication stress response, DNA repair, and transcriptional regulation.
Collapse
Affiliation(s)
- Jack D Crouch
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, NIH Biomedical Research Center, 251 Bayview Blvd, Baltimore, MD 21224, USA.
| |
Collapse
|
34
|
Ling C, Huang J, Yan Z, Li Y, Ohzeki M, Ishiai M, Xu D, Takata M, Seidman M, Wang W. Bloom syndrome complex promotes FANCM recruitment to stalled replication forks and facilitates both repair and traverse of DNA interstrand crosslinks. Cell Discov 2016; 2:16047. [PMID: 28058110 PMCID: PMC5167996 DOI: 10.1038/celldisc.2016.47] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/10/2016] [Indexed: 12/26/2022] Open
Abstract
The recruitment of FANCM, a conserved DNA translocase and key component of several DNA repair protein complexes, to replication forks stalled by DNA interstrand crosslinks (ICLs) is a step upstream of the Fanconi anemia (FA) repair and replication traverse pathways of ICLs. However, detection of the FANCM recruitment has been technically challenging so that its mechanism remains exclusive. Here, we successfully observed recruitment of FANCM at stalled forks using a newly developed protocol. We report that the FANCM recruitment depends upon its intrinsic DNA translocase activity, and its DNA-binding partner FAAP24. Moreover, it is dependent on the replication checkpoint kinase, ATR; but is independent of the FA core and FANCD2-FANCI complexes, two essential components of the FA pathway, indicating that the FANCM recruitment occurs downstream of ATR but upstream of the FA pathway. Interestingly, the recruitment of FANCM requires its direct interaction with Bloom syndrome complex composed of BLM helicase, Topoisomerase 3α, RMI1 and RMI2; as well as the helicase activity of BLM. We further show that the FANCM-BLM complex interaction is critical for replication stress-induced FANCM hyperphosphorylation, for normal activation of the FA pathway in response to ICLs, and for efficient traverse of ICLs by the replication machinery. Epistasis studies demonstrate that FANCM and BLM work in the same pathway to promote replication traverse of ICLs. We conclude that FANCM and BLM complex work together at stalled forks to promote both FA repair and replication traverse pathways of ICLs.
Collapse
Affiliation(s)
- Chen Ling
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Jing Huang
- Lab of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Zhijiang Yan
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Yongjiang Li
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Mioko Ohzeki
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Dongyi Xu
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Kyoto University, Kyoto, Japan
| | - Michael Seidman
- Lab of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| | - Weidong Wang
- Lab of Genetics, National Institute on Aging, National Institute of Health, Baltimore, MD, USA
| |
Collapse
|
35
|
Yang SY, Hsiung CN, Li YJ, Chang GC, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Hsiung CA, Yang PC, Chen CJ, Wu PE, Yu JC, Shen CY, Hsu HM. Fanconi anemia genes in lung adenocarcinoma- a pathway-wide study on cancer susceptibility. J Biomed Sci 2016; 23:23. [PMID: 26842001 PMCID: PMC4739091 DOI: 10.1186/s12929-016-0240-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 01/20/2016] [Indexed: 12/19/2022] Open
Abstract
Background Carcinogens in cigarette smoke can induce the formation of DNA-DNA cross-links, which are repaired by the Fanconi anemia (FA) pathway, and it is tempting to speculate that this pathway is involved in lung tumorigenesis. This study is to determine whether genetic polymorphism of the FA genes is associated with an elevated risk of lung adenocarcinoma, and whether the association between genotypes and risk is modified by exposure to cigarette smoke. Methods This case–control study genotyped 53 single-nucleotide polymorphisms (SNPs) in FA genes in 709 patients (354 males and 355 females) with lung adenocarcinoma and in 726 cancer-free individuals (339 males and 387 females). Genotypic frequencies of SNPs were compared between cases and controls to identify important FA genes associated with cancer susceptibility. Joint effects in determining cancer risk contributed by genes and smoking-related risk factors and by multiple genes involved in different FA subpathways were evaluated by multivariate regression analysis and stratified analysis. All analyses were performed on males and females separately, and the comparison of results was considered a way of examining the validity of study findings. Results Lung adenocarcinomas in both male and female patients were associated with (a) genotypic polymorphisms of FANCC and FANCD1; (b) a combined effect of harboring a higher number of high-risk genotypes and smoking/passive smoking; (c) specific interactions of multiple genes, proteins encoded by which have been known to work jointly within the FA pathway. Conclusions Genetic polymorphism of the FA genes is associated with inter-individual susceptibility to lung adenocarcinoma. Electronic supplementary material The online version of this article (doi:10.1186/s12929-016-0240-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi-Yi Yang
- Genomics Research Center, Taipei, Taiwan. .,Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | | | - Yao-Jen Li
- Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.
| | - Ying-Huang Tsai
- Department of Pulmonary and Critical Care, Chang Gung Memorial Hospital, Lincou, Taiwan.
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Ming-Shyan Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital and College of Medicine, Tainan, Taiwan.
| | - Yuh-Min Chen
- Chest Department, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Chao A Hsiung
- Division of Biostatistics and Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chien-Jen Chen
- Genomics Research Center, Taipei, Taiwan. .,Graduate Institute of Epidemiology, College of Public Health, National Taiwan University, Taipei, Taiwan.
| | - Pei-Ei Wu
- Institute of Biomedical Sciences, Taipei, Taiwan. .,Taiwan Biobank, Taipei, Taiwan.
| | - Jyh-Cherng Yu
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Taipei, Taiwan. .,Taiwan Biobank, Taipei, Taiwan. .,Life Science Library, Academia Sinica, Taipei, Taiwan. .,Graduate Institute of Environmental Science, China Medical University, Taichung, Taiwan.
| | - Huan-Ming Hsu
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
36
|
Rohleder F, Huang J, Xue Y, Kuper J, Round A, Seidman M, Wang W, Kisker C. FANCM interacts with PCNA to promote replication traverse of DNA interstrand crosslinks. Nucleic Acids Res 2016; 44:3219-32. [PMID: 26825464 PMCID: PMC4838364 DOI: 10.1093/nar/gkw037] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/12/2016] [Indexed: 12/27/2022] Open
Abstract
FANCM is a highly conserved DNA remodeling enzyme that promotes the activation of the Fanconi anemia DNA repair pathway and facilitates replication traverse of DNA interstrand crosslinks. However, how FANCM interacts with the replication machinery to promote traverse remains unclear. Here, we show that FANCM and its archaeal homolog Hef from Thermoplasma acidophilum interact with proliferating cell nuclear antigen (PCNA), an essential co-factor for DNA polymerases in both replication and repair. The interaction is mediated through a conserved PIP-box; and in human FANCM, it is strongly stimulated by replication stress. A FANCM variant carrying a mutation in the PIP-box is defective in promoting replication traverse of interstrand crosslinks and is also inefficient in promoting FANCD2 monoubiquitination, a key step of the Fanconi anemia pathway. Our data reveal a conserved interaction mode between FANCM and PCNA during replication stress, and suggest that this interaction is essential for FANCM to aid replication machines to traverse DNA interstrand crosslinks prior to post-replication repair.
Collapse
Affiliation(s)
- Florian Rohleder
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Jing Huang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, Maryland, MD 21224, USA
| | - Yutong Xue
- Laboratory of Genetics, National Institute on Aging, National Institute of Health, Baltimore, Maryland, MD 21224, USA
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, D-97080 Würzburg, Germany
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, 38042 Grenoble, France Unit for Virus Host-Cell Interactions, Univ. Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, 38042 Grenoble, France Faculty of Natural sciences, Keele University, Staffordshire ST5 5BG, UK
| | - Michael Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institute of Health, Baltimore, Maryland, MD 21224, USA
| | - Weidong Wang
- Laboratory of Genetics, National Institute on Aging, National Institute of Health, Baltimore, Maryland, MD 21224, USA
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, D-97080 Würzburg, Germany
| |
Collapse
|
37
|
Abstract
Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. In this review, Xue et al. provide an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
38
|
Schwab RA, Nieminuszczy J, Shah F, Langton J, Lopez Martinez D, Liang CC, Cohn MA, Gibbons RJ, Deans AJ, Niedzwiedz W. The Fanconi Anemia Pathway Maintains Genome Stability by Coordinating Replication and Transcription. Mol Cell 2015; 60:351-61. [PMID: 26593718 PMCID: PMC4644232 DOI: 10.1016/j.molcel.2015.09.012] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/20/2015] [Accepted: 09/16/2015] [Indexed: 01/27/2023]
Abstract
DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins. Replication and transcription collisions cause genome instability in FA A functional FA pathway protects cells from unscheduled accumulation of R-loops Transcription inhibition or R-loop removal restores normal replication in FA cells FANCM resolves R-loops via its translocase activity
Collapse
Affiliation(s)
- Rebekka A Schwab
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Jadwiga Nieminuszczy
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Fenil Shah
- Genome Stability Unit, St. Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Jamie Langton
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | - Chih-Chao Liang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Richard J Gibbons
- Medical Research Council Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Andrew J Deans
- Genome Stability Unit, St. Vincent's Institute, Fitzroy, VIC 3065, Australia
| | - Wojciech Niedzwiedz
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK.
| |
Collapse
|
39
|
Somyajit K, Saxena S, Babu S, Mishra A, Nagaraju G. Mammalian RAD51 paralogs protect nascent DNA at stalled forks and mediate replication restart. Nucleic Acids Res 2015; 43:9835-55. [PMID: 26354865 PMCID: PMC4787763 DOI: 10.1093/nar/gkv880] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/23/2015] [Indexed: 12/22/2022] Open
Abstract
Mammalian RAD51 paralogs are implicated in the repair of collapsed replication forks by homologous recombination. However, their physiological roles in replication fork maintenance prior to fork collapse remain obscure. Here, we report on the role of RAD51 paralogs in short-term replicative stress devoid of DSBs. We show that RAD51 paralogs localize to nascent DNA and common fragile sites upon replication fork stalling. Strikingly, RAD51 paralogs deficient cells exhibit elevated levels of 53BP1 nuclear bodies and increased DSB formation, the latter being attributed to extensive degradation of nascent DNA at stalled forks. RAD51C and XRCC3 promote the restart of stalled replication in an ATP hydrolysis dependent manner by disengaging RAD51 and other RAD51 paralogs from the halted forks. Notably, we find that Fanconi anemia (FA)-like disorder and breast and ovarian cancer patient derived mutations of RAD51C fails to protect replication fork, exhibit under-replicated genomic regions and elevated micro-nucleation. Taken together, RAD51 paralogs prevent degradation of stalled forks and promote the restart of halted replication to avoid replication fork collapse, thereby maintaining genomic integrity and suppressing tumorigenesis.
Collapse
Affiliation(s)
- Kumar Somyajit
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sneha Saxena
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Sharath Babu
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Anup Mishra
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| | - Ganesh Nagaraju
- Department of Biochemistry, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
40
|
Xue X, Choi K, Bonner JN, Szakal B, Chen YH, Papusha A, Saro D, Niu H, Ira G, Branzei D, Sung P, Zhao X. Selective modulation of the functions of a conserved DNA motor by a histone fold complex. Genes Dev 2015; 29:1000-5. [PMID: 25956905 PMCID: PMC4441048 DOI: 10.1101/gad.259143.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/14/2015] [Indexed: 01/10/2023]
Abstract
Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Here, Xue et al. show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Elucidating the mechanisms that regulate these motor proteins is central to understanding genome maintenance processes. Here, we show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Mechanistically, scMHF relieves the inhibition imposed by the structural maintenance of chromosome protein Smc5 on Mph1 activities relevant to replication-associated repair through binding to Mph1 but not DNA. Thus, scMHF is a function-specific enhancer of Mph1 that enables flexible response to different genome repair situations.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Jacob N Bonner
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Barnabas Szakal
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Yu-Hung Chen
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Alma Papusha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dorina Saro
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dana Branzei
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA;
| |
Collapse
|
41
|
Neelsen KJ, Lopes M. Replication fork reversal in eukaryotes: from dead end to dynamic response. Nat Rev Mol Cell Biol 2015; 16:207-20. [PMID: 25714681 DOI: 10.1038/nrm3935] [Citation(s) in RCA: 377] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The remodelling of replication forks into four-way junctions following replication perturbation, known as fork reversal, was hypothesized to promote DNA damage tolerance and repair during replication. Albeit conceptually attractive, for a long time fork reversal in vivo was found only in prokaryotes and specific yeast mutants, calling its evolutionary conservation and physiological relevance into question. Based on the recent visualization of replication forks in metazoans, fork reversal has emerged as a global, reversible and regulated process, with intriguing implications for replication completion, chromosome integrity and the DNA damage response. The study of the putative in vivo roles of recently identified eukaryotic factors in fork remodelling promises to shed new light on mechanisms of genome maintenance and to provide novel attractive targets for cancer therapy.
Collapse
Affiliation(s)
- Kai J Neelsen
- 1] Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland. [2] The Novo Nordisk Foundation Center for Protein Research, 2200 Copenhagen, Denmark
| | - Massimo Lopes
- Institute of Molecular Cancer Research, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
42
|
The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability. Cell Res 2014; 24:560-75. [PMID: 24699063 DOI: 10.1038/cr.2014.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 01/19/2023] Open
Abstract
Histone-fold proteins typically assemble in multiprotein complexes to bind duplex DNA. However, one histone-fold complex, MHF, associates with Fanconi anemia (FA) protein FANCM to form a branched DNA remodeling complex that senses and repairs stalled replication forks and activates FA DNA damage response network. How the FANCM-MHF complex recognizes branched DNA is unclear. Here, we solved the crystal structure of MHF and its complex with the MHF-interaction domain (referred to as MID) of FANCM, and performed structure-guided mutagenesis. We found that the MID-MHF complex consists of one histone H3-H4-like MHF heterotetramer wrapped by a single polypeptide of MID. We identified a zinc atom-liganding structure at the central interface between MID and MHF that is critical for stabilization of the complex. Notably, the DNA-binding surface of MHF was altered by MID in both electrostatic charges and allosteric conformation. This leads to a switch in the DNA-binding preference - from duplex DNA by MHF alone, to branched DNA by the MID-MHF complex. Mutations that disrupt either the composite DNA-binding surface or the protein-protein interface of the MID-MHF complex impaired activation of the FA network and genome stability. Our data provide the structural basis of how FANCM and MHF work together to recognize branched DNA, and suggest a novel mechanism by which histone-fold complexes can be remodeled by their partners to bind special DNA structures generated during DNA metabolism.
Collapse
|
43
|
Sukackaite R, Jensen MR, Mas PJ, Blackledge M, Buonomo SB, Hart DJ. Structural and biophysical characterization of murine rif1 C terminus reveals high specificity for DNA cruciform structures. J Biol Chem 2014; 289:13903-11. [PMID: 24634216 DOI: 10.1074/jbc.m114.557843] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mammalian Rif1 is a key regulator of DNA replication timing, double-stranded DNA break repair, and replication fork restart. Dissecting the molecular functions of Rif1 is essential to understand how it regulates such diverse processes. However, Rif1 is a large protein that lacks well defined functional domains and is predicted to be largely intrinsically disordered; these features have hampered recombinant expression of Rif1 and subsequent functional characterization. Here we applied ESPRIT (expression of soluble proteins by random incremental truncation), an in vitro evolution-like approach, to identify high yielding soluble fragments encompassing conserved regions I and II (CRI and CRII) at the C-terminal region of murine Rif1. NMR analysis showed CRI to be intrinsically disordered, whereas CRII is partially folded. CRII binds cruciform DNA with high selectivity and micromolar affinity and thus represents a functional DNA binding domain. Mutational analysis revealed an α-helical region of CRII to be important for cruciform DNA binding and identified critical residues. Thus, we present the first structural study of the mammalian Rif1, identifying a domain that directly links its function to DNA binding. The high specificity of Rif1 for cruciform structures is significant given the role of this key protein in regulating origin firing and DNA repair.
Collapse
Affiliation(s)
- Rasa Sukackaite
- From the European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 France, the Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 France, the European Molecular Biology Laboratory, Monterotondo Outstation, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Malene Ringkjøbing Jensen
- the University of Grenoble Alpes, Institut de Biologie Structurale (IBS), 6 rue Jules Horowitz, F-38027 Grenoble, France, CEA, DSV, IBS, 6 rue Jules Horowitz, F-38027 Grenoble, France, CNRS, IBS, 6 rue Jules Horowitz, F-38027 Grenoble, France, and
| | - Philippe J Mas
- From the European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 France, the Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 France
| | - Martin Blackledge
- the University of Grenoble Alpes, Institut de Biologie Structurale (IBS), 6 rue Jules Horowitz, F-38027 Grenoble, France, CEA, DSV, IBS, 6 rue Jules Horowitz, F-38027 Grenoble, France, CNRS, IBS, 6 rue Jules Horowitz, F-38027 Grenoble, France, and
| | - Sara B Buonomo
- the European Molecular Biology Laboratory, Monterotondo Outstation, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015 Monterotondo, Italy
| | - Darren J Hart
- From the European Molecular Biology Laboratory (EMBL), Grenoble Outstation, 6 rue Jules Horowitz, 38042 France, the Unit for Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS, 6 rue Jules Horowitz, 38042 France,
| |
Collapse
|
44
|
Walden H, Deans AJ. The Fanconi anemia DNA repair pathway: structural and functional insights into a complex disorder. Annu Rev Biophys 2014; 43:257-78. [PMID: 24773018 DOI: 10.1146/annurev-biophys-051013-022737] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in any of at least sixteen FANC genes (FANCA-Q) cause Fanconi anemia, a disorder characterized by sensitivity to DNA interstrand crosslinking agents. The clinical features of cytopenia, developmental defects, and tumor predisposition are similar in each group, suggesting that the gene products participate in a common pathway. The Fanconi anemia DNA repair pathway consists of an anchor complex that recognizes damage caused by interstrand crosslinks, a multisubunit ubiquitin ligase that monoubiquitinates two substrates, and several downstream repair proteins including nucleases and homologous recombination enzymes. We review progress in the use of structural and biochemical approaches to understanding how each FANC protein functions in this pathway.
Collapse
Affiliation(s)
- Helen Walden
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, United Kingdom;
| | | |
Collapse
|
45
|
Benitez A, Yuan F, Nakajima S, Wei L, Qian L, Myers R, Hu JJ, Lan L, Zhang Y. Damage-dependent regulation of MUS81-EME1 by Fanconi anemia complementation group A protein. Nucleic Acids Res 2013; 42:1671-83. [PMID: 24170812 PMCID: PMC3919598 DOI: 10.1093/nar/gkt975] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
MUS81-EME1 is a DNA endonuclease involved in replication-coupled repair of DNA interstrand cross-links (ICLs). A prevalent hypothetical role of MUS81-EME1 in ICL repair is to unhook the damage by incising the leading strand at the 3′ side of an ICL lesion. In this study, we report that purified MUS81-EME1 incises DNA at the 5′ side of a psoralen ICL residing in fork structures. Intriguingly, ICL repair protein, Fanconi anemia complementation group A protein (FANCA), greatly enhances MUS81-EME1-mediated ICL incision. On the contrary, FANCA exhibits a two-phase incision regulation when DNA is undamaged or the damage affects only one DNA strand. Studies using truncated FANCA proteins indicate that both the N- and C-moieties of the protein are required for the incision regulation. Using laser-induced psoralen ICL formation in cells, we find that FANCA interacts with and recruits MUS81 to ICL lesions. This report clarifies the incision specificity of MUS81-EME1 on ICL damage and establishes that FANCA regulates the incision activity of MUS81-EME1 in a damage-dependent manner.
Collapse
Affiliation(s)
- Anaid Benitez
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Fenghua Yuan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Satoshi Nakajima
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Leizhen Wei
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Liangyue Qian
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Richard Myers
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jennifer J. Hu
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Li Lan
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yanbin Zhang
- Department of Biochemistry & Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA, Department of Microbiology & Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15213, USA and Department of Epidemiology & Public Health, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- *To whom correspondence should be addressed. Tel: +1 305 243 9237; Fax: +1 305 243 3955;
| |
Collapse
|
46
|
Clauson C, Schärer OD, Niedernhofer L. Advances in understanding the complex mechanisms of DNA interstrand cross-link repair. Cold Spring Harb Perspect Biol 2013; 5:a012732. [PMID: 24086043 DOI: 10.1101/cshperspect.a012732] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA interstrand cross-links (ICLs) are lesions caused by a variety of endogenous metabolites, environmental exposures, and cancer chemotherapeutic agents that have two reactive groups. The common feature of these diverse lesions is that two nucleotides on opposite strands are covalently joined. ICLs prevent the separation of two DNA strands and therefore essential cellular processes including DNA replication and transcription. ICLs are mainly detected in S phase when a replication fork stalls at an ICL. Damage signaling and repair of ICLs are promoted by the Fanconi anemia pathway and numerous posttranslational modifications of DNA repair and chromatin structural proteins. ICLs are also detected and repaired in nonreplicating cells, although the mechanism is less clear. A unique feature of ICL repair is that both strands of DNA must be incised to completely remove the lesion. This is accomplished in sequential steps to prevent creating multiple double-strand breaks. Unhooking of an ICL from one strand is followed by translesion synthesis to fill the gap and create an intact duplex DNA, harboring a remnant of the ICL. Removal of the lesion from the second strand is likely accomplished by nucleotide excision repair. Inadequate repair of ICLs is particularly detrimental to rapidly dividing cells, explaining the bone marrow failure characteristic of Fanconi anemia and why cross-linking agents are efficacious in cancer therapy. Herein, recent advances in our understanding of ICLs and the biological responses they trigger are discussed.
Collapse
Affiliation(s)
- Cheryl Clauson
- Department of Microbiology and Molecular Genetics, The University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | | | | |
Collapse
|
47
|
Yang H, Zhang T, Tao Y, Wang F, Tong L, Ding J. Structural insights into the functions of the FANCM-FAAP24 complex in DNA repair. Nucleic Acids Res 2013; 41:10573-83. [PMID: 24003026 PMCID: PMC3905867 DOI: 10.1093/nar/gkt788] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Fanconi anemia (FA) is a genetically heterogeneous disorder associated with deficiencies in the FA complementation group network. FA complementation group M (FANCM) and FA-associated protein 24 kDa (FAAP24) form a stable complex to anchor the FA core complex to chromatin in repairing DNA interstrand crosslinks. Here, we report the first crystal structure of the C-terminal segment of FANCM in complex with FAAP24. The C-terminal segment of FANCM and FAAP24 both consist of a nuclease domain at the N-terminus and a tandem helix-hairpin-helix (HhH)2 domain at the C-terminus. The FANCM-FAAP24 complex exhibits a similar architecture as that of ApXPF. However, the variations of several key residues and the electrostatic property at the active-site region render a catalytically inactive nuclease domain of FANCM, accounting for the lack of nuclease activity. We also show that the first HhH motif of FAAP24 is a potential binding site for DNA, which plays a critical role in targeting FANCM-FAAP24 to chromatin. These results reveal the mechanistic insights into the functions of FANCM-FAAP24 in DNA repair.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China, Graduate School of Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China and Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | | | | | | | |
Collapse
|
48
|
Coulthard R, Deans A, Swuec P, Bowles M, Costa A, West S, McDonald N. Architecture and DNA recognition elements of the Fanconi anemia FANCM-FAAP24 complex. Structure 2013; 21:1648-58. [PMID: 23932590 PMCID: PMC3763369 DOI: 10.1016/j.str.2013.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/19/2023]
Abstract
Fanconi anemia (FA) is a disorder associated with a failure in DNA repair. FANCM (defective in FA complementation group M) and its partner FAAP24 target other FA proteins to sites of DNA damage. FANCM-FAAP24 is related to XPF/MUS81 endonucleases but lacks endonucleolytic activity. We report a structure of an FANCM C-terminal fragment (FANCMCTD) bound to FAAP24 and DNA. This S-shaped structure reveals the FANCM (HhH)2 domain is buried, whereas the FAAP24 (HhH)2 domain engages DNA. We identify a second DNA contact and a metal center within the FANCM pseudo-nuclease domain and demonstrate that mutations in either region impair double-stranded DNA binding in vitro and FANCM-FAAP24 function in vivo. We show the FANCM translocase domain lies in proximity to FANCMCTD by electron microscopy and that binding fork DNA structures stimulate its ATPase activity. This suggests a tracking model for FANCM-FAAP24 until an encounter with a stalled replication fork triggers ATPase-mediated fork remodeling.
Collapse
Affiliation(s)
- Rachel Coulthard
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Andrew J. Deans
- Genome Stability Laboratory, St Vincent’s Institute, 9 Princes Street, Fitzroy 3165 Australia
- Genetic Recombination Laboratory, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Paolo Swuec
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Maureen Bowles
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Alessandro Costa
- Architecture and Dynamics of Macromolecular Machines, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Stephen C. West
- Genetic Recombination Laboratory, Clare Hall Laboratories, Blanche Lane, South Mimms EN6 3LD, UK
| | - Neil Q. McDonald
- Structural Biology Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
- Institute of Structural and Molecular Biology, School of Biological Sciences, Birkbeck College, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
49
|
Manthei KA, Keck JL. The BLM dissolvasome in DNA replication and repair. Cell Mol Life Sci 2013; 70:4067-84. [PMID: 23543275 DOI: 10.1007/s00018-013-1325-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 02/21/2013] [Accepted: 03/14/2013] [Indexed: 02/07/2023]
Abstract
RecQ DNA helicases are critical for proper maintenance of genomic stability, and mutations in multiple human RecQ genes are linked with genetic disorders characterized by a predisposition to cancer. RecQ proteins are conserved from prokaryotes to humans and in all cases form higher-order complexes with other proteins to efficiently execute their cellular functions. The focus of this review is a conserved complex that is formed between RecQ helicases and type-I topoisomerases. In humans, this complex is referred to as the BLM dissolvasome or BTR complex, and is comprised of the RecQ helicase BLM, topoisomerase IIIα, and the RMI proteins. The BLM dissolvasome functions to resolve linked DNA intermediates without exchange of genetic material, which is critical in somatic cells. We will review the history of this complex and highlight its roles in DNA replication, recombination, and repair. Additionally, we will review recently established interactions between BLM dissolvasome and a second set of genome maintenance factors (the Fanconi anemia proteins) that appear to allow coordinated genome maintenance efforts between the two systems.
Collapse
Affiliation(s)
- Kelly A Manthei
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA
| | | |
Collapse
|
50
|
FANCM and FAAP24 maintain genome stability via cooperative as well as unique functions. Mol Cell 2013; 49:997-1009. [PMID: 23333308 DOI: 10.1016/j.molcel.2012.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 10/19/2012] [Accepted: 12/13/2012] [Indexed: 12/29/2022]
Abstract
The DNA remodeling enzyme FANCM and its DNA-binding partner, FAAP24, constitute a complex involved in the activation of Fanconi anemia (FA) DNA damage response mechanism, but neither gene has distinct patient mutants. In this study, we created isogenic models for both FANCM and FAAP24 and investigated their integrated functions in DNA damage response. We found that FANCM and FAAP24 coordinately facilitate FA pathway activation and suppress sister chromatid exchange. Importantly, we show that FANCM and FAAP24 possess nonoverlapping functions such that FAAP24 promotes ATR-mediated checkpoint activation particularly in response to DNA crosslinking agents, whereas FANCM participates in recombination-independent interstrand crosslink repair by facilitating recruitment of lesion incision activities, which requires its translocase activity. Our data suggest that FANCM and FAAP24 play multiple, while not fully epistatic, roles in maintaining genomic integrity.
Collapse
|