1
|
Pinard A, Ye W, Fraser SM, Rosenfeld JA, Pichurin P, Hickey SE, Guo D, Cecchi AC, Boerio ML, Guey S, Aloui C, Lee K, Kraemer M, Alyemni SO, Bamshad MJ, Nickerson DA, Tournier-Lasserve E, Haider S, Jin SC, Smith ER, Kahle KT, Jan LY, He M, Milewicz DM. Rare variants in ANO1, encoding a calcium-activated chloride channel, predispose to moyamoya disease. Brain 2023; 146:3616-3623. [PMID: 37253099 PMCID: PMC10473557 DOI: 10.1093/brain/awad172] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/24/2023] [Accepted: 04/16/2023] [Indexed: 06/01/2023] Open
Abstract
Moyamoya disease, a cerebrovascular disease leading to strokes in children and young adults, is characterized by progressive occlusion of the distal internal carotid arteries and the formation of collateral vessels. Altered genes play a prominent role in the aetiology of moyamoya disease, but a causative gene is not identified in the majority of cases. Exome sequencing data from 151 individuals from 84 unsolved families were analysed to identify further genes for moyamoya disease, then candidate genes assessed in additional cases (150 probands). Two families had the same rare variant in ANO1, which encodes a calcium-activated chloride channel, anoctamin-1. Haplotype analyses found the families were related, and ANO1 p.Met658Val segregated with moyamoya disease in the family with an LOD score of 3.3. Six additional ANO1 rare variants were identified in moyamoya disease families. The ANO1 rare variants were assessed using patch-clamp recordings, and the majority of variants, including ANO1 p.Met658Val, displayed increased sensitivity to intracellular Ca2+. Patients harbouring these gain-of-function ANO1 variants had classic features of moyamoya disease, but also had aneurysm, stenosis and/or occlusion in the posterior circulation. Our studies support that ANO1 gain-of-function pathogenic variants predispose to moyamoya disease and are associated with unique involvement of the posterior circulation.
Collapse
Affiliation(s)
- Amélie Pinard
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Wenlei Ye
- Howard Hughes Medical Institute, Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Stuart M Fraser
- Department of Pediatrics, Division of Child Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pavel Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55902, USA
| | - Scott E Hickey
- Department of Pediatrics, The Ohio State University, Columbus, OH 43210, USA
- Division of Genetic and Genomic Medicine, Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Dongchuan Guo
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alana C Cecchi
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Maura L Boerio
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Stéphanie Guey
- Université de Paris, Inserm U1141, AP-HP Groupe hospitalier Lariboisière Saint Louis, 75019 Paris, France
| | - Chaker Aloui
- Université de Paris, Inserm U1141, AP-HP Groupe hospitalier Lariboisière Saint Louis, 75019 Paris, France
| | - Kwanghyuk Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Markus Kraemer
- Department of Neurology, Alfried Krupp-Hospital, 45131 Essen, Germany
- Department of Neurology, Medical Faculty, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | | | - Michael J Bamshad
- Division of Genetics Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Elisabeth Tournier-Lasserve
- Université de Paris, Inserm U1141, AP-HP Groupe hospitalier Lariboisière Saint Louis, 75019 Paris, France
- AP-HP, Service de génétique moléculaire neurovasculaire, Centre de Référence des Maladies Vasculaires Rares du Cerveau et de l’oeil, Groupe Hospitalier Saint-Louis Lariboisière, 75010 Paris, France
| | - Shozeb Haider
- UCL School of Pharmacy, Bloomsbury, London WC1N 1AX, UK
- UCL Centre for Advanced Research Computing, University College London, London WC1H 9RN, UK
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mu He
- Howard Hughes Medical Institute, Department of Physiology, University of California San Francisco, San Francisco, CA 94158, USA
- School of Biomedical Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Dianna M Milewicz
- Department of Internal Medicine, Division of Medical Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
2
|
Armstrong AE, Belzberg AJ, Crawford JR, Hirbe AC, Wang ZJ. Treatment decisions and the use of MEK inhibitors for children with neurofibromatosis type 1-related plexiform neurofibromas. BMC Cancer 2023; 23:553. [PMID: 37328781 PMCID: PMC10273716 DOI: 10.1186/s12885-023-10996-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023] Open
Abstract
Neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome, occurs when NF1 gene variants result in loss of neurofibromin, a negative regulator of RAS activity. Plexiform neurofibromas (PN) are peripheral nerve sheath tumors that develop in patients with NF1 and are associated with substantial morbidity and for which, until recently, the only treatment was surgical resection. However, surgery carries several risks and a proportion of PN are considered inoperable. Understanding the genetic underpinnings of PN led to the investigation of targeted therapies as medical treatment options, and the MEK1/2 inhibitor selumetinib has shown promising efficacy in pediatric patients with NF1 and symptomatic, inoperable PN. In a phase I/II trial, most children (approximately 70%) achieved reduction in tumor volume accompanied by improvements in patient-reported outcomes (decreased tumor-related pain and improvements in quality of life, strength, and range of motion). Selumetinib is currently the only licensed medical therapy indicated for use in pediatric patients with symptomatic, inoperable NF1-PN, with approval based on the results of this pivotal clinical study. Several other MEK inhibitors (binimetinib, mirdametinib, trametinib) and the tyrosine kinase inhibitor cabozantinib are also being investigated as medical therapies for NF1-PN. Careful consideration of multiple aspects of both disease and treatments is vital to reduce morbidity and improve outcomes in patients with this complex and heterogeneous disease, and clinicians should be fully aware of the risks and benefits of available treatments. There is no single treatment pathway for patients with NF1-PN; surgery, watchful waiting, and/or medical treatment are options. Treatment should be individualized based on recommendations from a multidisciplinary team, considering the size and location of PN, effects on adjacent tissues, and patient and family preferences. This review outlines the treatment strategies currently available for patients with NF1-PN and the evidence supporting the use of MEK inhibitors, and discusses key considerations in clinical decision-making.
Collapse
Affiliation(s)
- Amy E Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Allan J Belzberg
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John R Crawford
- CHOC Neuroscience Institute, Children's Hospital of Orange County, Orange, CA, USA
- Department of Pediatrics, Division of Child Neurology University of California Irvine, Orange, CA, USA
| | - Angela C Hirbe
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhihong J Wang
- Division of Hematology and Oncology, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
3
|
Reply. Retina 2022; 42:e36-e38. [PMID: 35877970 DOI: 10.1097/iae.0000000000003533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Tritz R, Hudson FZ, Harris V, Ghoshal P, Singla B, Lin H, Csanyi G, Stansfield BK. MEK inhibition exerts temporal and myeloid cell-specific effects in the pathogenesis of neurofibromatosis type 1 arteriopathy. Sci Rep 2021; 11:24345. [PMID: 34934133 PMCID: PMC8692602 DOI: 10.1038/s41598-021-03750-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/09/2021] [Indexed: 11/18/2022] Open
Abstract
Mutations in the NF1 tumor suppressor gene are linked to arteriopathy. Nf1 heterozygosity (Nf1+/–) results in robust neointima formation, similar to humans, and myeloid-restricted Nf1+/– recapitulates this phenotype via MEK-ERK activation. Here we define the contribution of myeloid subpopulations to NF1 arteriopathy. Neutrophils from WT and Nf1+/– mice were functionally assessed in the presence of MEK and farnesylation inhibitors in vitro and neutrophil recruitment to lipopolysaccharide was assessed in WT and Nf1+/– mice. Littermate 12–15 week-old male wildtype and Nf1+/– mice were subjected to carotid artery ligation and provided either a neutrophil depleting antibody (1A8), liposomal clodronate to deplete monocytes/macrophages, or PD0325901 and neointima size was assessed 28 days after injury. Bone marrow transplant experiments assessed monocyte/macrophage mobilization during neointima formation. Nf1+/– neutrophils exhibit enhanced proliferation, migration, and adhesion via p21Ras activation of MEK in vitro and in vivo. Neutrophil depletion suppresses circulating Ly6Clow monocytes and enhances neointima size, while monocyte/macrophage depletion and deletion of CCR2 in bone marrow cells abolish neointima formation in Nf1+/– mice. Taken together, these findings suggest that neurofibromin-MEK-ERK activation in circulating neutrophils and monocytes during arterial remodeling is nuanced and points to important cross-talk between these populations in the pathogenesis of NF1 arteriopathy.
Collapse
Affiliation(s)
- Rebekah Tritz
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Farlyn Z Hudson
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Valerie Harris
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | | | - Bhupesh Singla
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Huiping Lin
- Vascular Biology Center, Augusta University, Augusta, GA, USA
| | - Gabor Csanyi
- Vascular Biology Center, Augusta University, Augusta, GA, USA.,Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA
| | - Brian K Stansfield
- Vascular Biology Center, Augusta University, Augusta, GA, USA. .,Division of Neonatology, Department of Pediatrics, Medical College of Georgia at Augusta University, Augusta University, 1120 15th St, BIW6033, Augusta, GA, 30912, USA.
| |
Collapse
|
5
|
Burks CA, Rhodes SD, Bessler WK, Chen S, Smith A, Gehlhausen JR, Hawley ET, Jiang L, Li X, Yuan J, Lu Q, Jacobsen M, Sandusky GE, Jones DR, Clapp DW, Blakeley JO. Ketotifen Modulates Mast Cell Chemotaxis to Kit-Ligand, but Does Not Impact Mast Cell Numbers, Degranulation, or Tumor Behavior in Neurofibromas of Nf1-Deficient Mice. Mol Cancer Ther 2019; 18:2321-2330. [PMID: 31527226 DOI: 10.1158/1535-7163.mct-19-0123] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/31/2019] [Accepted: 09/09/2019] [Indexed: 01/08/2023]
Abstract
Neurofibromatosis Type 1 (NF1) is one of the most common genetic tumor predisposition syndromes in humans. Mutant NF1 results in dysregulated RAS allowing neoplasms throughout the neuroaxis. Plexiform neurofibromas (pNF) afflict up to 50% of patients with NF1. They are complex tumors of the peripheral nerve that cause major morbidity via nerve dysregulation and mortality via conversion to malignant sarcoma. Genetically engineered mouse models (GEMM) of NF1 provide valuable insights for the identification of therapies that have utility in people with pNF. Preclinical studies in GEMMs implicate mast cells and the c-Kit/Kit ligand pathway in pNF tumorigenesis. Kit ligand is a potent chemokine secreted by tumorigenic, Nf1-deficient Schwann cells. Ketotifen is an FDA-approved drug for the treatment of allergic conjunctivitis and asthma that promotes mast cell stabilization and has been used in prior case studies to treat or prevent pNFs. This study investigated the effect of ketotifen on mast cell infiltration and degranulation in the presence and absence of Kit ligand provocation and the effect of ketotifen on shrinking or preventing pNF formation in the Nf1flox/flox ;PostnCre + GEMM. Ketotifen decreased mast cell infiltration in response to exogenous Kit ligand administration, but did not affect mast cell degranulation. Importantly, ketotifen did not reduce mast cells numbers or activity in pNF and did not prevent pNF formation or decrease the volume of established pNF despite administration of pharmacologically active doses. These findings suggest that ketotifen has limited use as monotherapy to prevent or reduce pNF burden in the setting of Nf1 mutations.
Collapse
Affiliation(s)
- Ciersten A Burks
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Steven D Rhodes
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Shi Chen
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Abbi Smith
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | | | - Eric T Hawley
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Li Jiang
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Xiaohong Li
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Jin Yuan
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Qingbo Lu
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana
| | - Max Jacobsen
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - David R Jones
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - D Wade Clapp
- Herman B. Wells Center for Pediatric Research, Indianapolis, Indiana. .,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
When and why is surgical revascularization indicated for the treatment of moyamoya syndrome in patients with RASopathies? A systematic review of the literature and a single institute experience. Childs Nerv Syst 2018; 34:1311-1323. [PMID: 29797062 DOI: 10.1007/s00381-018-3833-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/13/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Moyamoya disease (MMD) is a cerebrovascular disorder characterized by the progressive occlusion of the supraclinoid internal carotid artery (ICA), resulting in the formation of an abnormal cerebral vascular network. When MMD occurs in association with an underlying medical condition, including some distinctive genetic disorders, it is named moyamoya syndrome (MMS). The discrimination between MMD and MMS has been validated by recent genetic researches and international reviews. Similarly to patients suffering from MMD, patients with MMS generally become symptomatic because of ischemic complications, which lead to hemiparesis, transient ischemic events, seizures, and sensory symptoms. RASopathies are a group of neurodevelopmental disorders that can be associated with MMS. RESULTS We retrospectively reviewed 18 RASopathy patients with MMS treated at our institution from 2000 to 2015 (16 neurofibromatosis type 1, 1 Costello syndrome, and 1 Schimmelpenning syndrome). Here, we report clinical data, performed surgical procedures, and clinic-radiological outcome of these patients. Most of them received both indirect revascularization and medical therapy. CONCLUSIONS At the moment, there are no univocal recommendations on which of these two treatment strategies is the treatment of choice in patients with RASopathies and MMS. We suggest that patients with a good overall prognosis (primarily depending on the distinctive underlying genetic disorder) and initial cerebrovascular disease could benefit from a prophylactic surgical revascularization, in order to prevent the cognitive impairment due to the progression of the vasculopathy.
Collapse
|
7
|
Dard L, Bellance N, Lacombe D, Rossignol R. RAS signalling in energy metabolism and rare human diseases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:845-867. [PMID: 29750912 DOI: 10.1016/j.bbabio.2018.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The RAS pathway is a highly conserved cascade of protein-protein interactions and phosphorylation that is at the heart of signalling networks that govern proliferation, differentiation and cell survival. Recent findings indicate that the RAS pathway plays a role in the regulation of energy metabolism via the control of mitochondrial form and function but little is known on the participation of this effect in RAS-related rare human genetic diseases. Germline mutations that hyperactivate the RAS pathway have been discovered and linked to human developmental disorders that are known as RASopathies. Individuals with RASopathies, which are estimated to affect approximately 1/1000 human birth, share many overlapping characteristics, including cardiac malformations, short stature, neurocognitive impairment, craniofacial dysmorphy, cutaneous, musculoskeletal, and ocular abnormalities, hypotonia and a predisposition to developing cancer. Since the identification of the first RASopathy, type 1 neurofibromatosis (NF1), which is caused by the inactivation of neurofibromin 1, several other syndromes have been associated with mutations in the core components of the RAS-MAPK pathway. These syndromes include Noonan syndrome (NS), Noonan syndrome with multiple lentigines (NSML), which was formerly called LEOPARD syndrome, Costello syndrome (CS), cardio-facio-cutaneous syndrome (CFC), Legius syndrome (LS) and capillary malformation-arteriovenous malformation syndrome (CM-AVM). Here, we review current knowledge about the bioenergetics of the RASopathies and discuss the molecular control of energy homeostasis and mitochondrial physiology by the RAS pathway.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - N Bellance
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076 Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000 Bordeaux, France; INSERM U1211, 33000 Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
8
|
Abstract
In Neurofibromatosis 1 (NF1) germ line loss of function mutations result in reduction of cellular neurofibromin content (NF1+/-, NF1 haploinsufficiency). The Ras-GAP neurofibromin is a very large cytoplasmic protein (2818 AA, 319 kDa) involved in the RAS-MAPK pathway. Aside from regulation of proliferation, it is involved in mechanosensoric of cells. We investigated neurofibromin replacement in cultured human fibroblasts showing reduced amount of neurofibromin. Full length neurofibromin was produced recombinantly in insect cells and purified. Protein transduction into cultured fibroblasts was performed employing cell penetrating peptides along with photochemical internalization. This combination of transduction strategies ensures the intracellular uptake and the translocation to the cytoplasm of neurofibromin. The transduced neurofibromin is functional, indicated by functional rescue of reduced mechanosensoric blindness and reduced RasGAP activity in cultured fibroblasts of NF1 patients or normal fibroblasts treated by NF1 siRNA. Our study shows that recombinant neurofibromin is able to revert cellular effects of NF1 haploinsuffiency in vitro, indicating a use of protein transduction into cells as a potential treatment strategy for the monogenic disease NF1.
Collapse
|
9
|
Santoro C, Di Rocco F, Kossorotoff M, Zerah M, Boddaert N, Calmon R, Vidaud D, Cirillo M, Cinalli G, Mirone G, Giugliano T, Piluso G, D'Amico A, Capra V, Pavanello M, Cama A, Nobili B, Lyonnet S, Perrotta S. Moyamoya syndrome in children with neurofibromatosis type 1: Italian-French experience. Am J Med Genet A 2017; 173:1521-1530. [DOI: 10.1002/ajmg.a.38212] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 02/17/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Claudia Santoro
- Dipartimento della Donna; del Bambino e di Chirurgia Generale e Specialistica; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
- Department of Biochemistry; Biophysics and General Pathology; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Federico Di Rocco
- Service de neurochirurgie pédiatrique; Université Paris Descartes; Assistance Publique-Hôpitaux de Paris; Hôpital Necker-Enfants-Malades; Paris France
| | - Manoelle Kossorotoff
- Pediatric Neurology; French Centre for Pediatric Stroke; Université Paris Descartes; Assistance Publique-Hôpitaux de Paris; Hôpital Necker Enfants-Malades; Paris France
| | - Michel Zerah
- Service de neurochirurgie pédiatrique; Université Paris Descartes; Assistance Publique-Hôpitaux de Paris; Hôpital Necker-Enfants-Malades; Paris France
| | - Nathalie Boddaert
- Department of Pediatric Radiology; Université Paris Descartes; Assistance Publique-Hôpitaux de Paris; Hôpital Necker Enfants Malades; Paris France
- Sorbonne Paris Cité; Institut Imagine; INSERM U1000 and UMR 1163; Paris France
| | - Raphael Calmon
- Department of Pediatric Radiology; Université Paris Descartes; Assistance Publique-Hôpitaux de Paris; Hôpital Necker Enfants Malades; Paris France
| | - Dominique Vidaud
- Service de Biochimie et Génétique Moléculaire; Hôpital Cochin, Assistance Publique-Hôpitaux de Paris; Paris France
- Génétique et Biothérapie des Maladies Dégénératives et Prolifératives du Système Nerveux Faculté des Sciences Pharmaceutiques et Biologiques; Paris France
| | - Mario Cirillo
- Dipartimento di Scienze Mediche; Chirurgiche; Neurologiche; Metaboliche e dell’ Invecchiamento; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Giuseppe Cinalli
- Department of Pediatric Neurosurgery; Santobono Children's Hospital; Naples Italy
| | - Giuseppe Mirone
- Department of Pediatric Neurosurgery; Santobono Children's Hospital; Naples Italy
| | - Teresa Giugliano
- Department of Biochemistry; Biophysics and General Pathology; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Giulio Piluso
- Department of Biochemistry; Biophysics and General Pathology; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Alessandra D'Amico
- Dipartimento di Scienze Biomediche avanzate; Università Federico II; Naples Italy
| | | | | | | | - Bruno Nobili
- Dipartimento della Donna; del Bambino e di Chirurgia Generale e Specialistica; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| | - Stanislas Lyonnet
- Genetic Department; Université Paris Descartes; Assistance Publique-Hôpitaux de Paris; Hôpital Necker Enfants-Malades; Paris France
- Sorbonne Paris Cité; Institut Imagine; INSERM UMR-1163; Paris France
| | - Silverio Perrotta
- Dipartimento della Donna; del Bambino e di Chirurgia Generale e Specialistica; Università degli Studi della Campania “Luigi Vanvitelli,”; Naples Italy
| |
Collapse
|
10
|
Bessler WK, Hudson FZ, Zhang H, Harris V, Wang Y, Mund JA, Downing B, Ingram DA, Case J, Fulton DJ, Stansfield BK. Neurofibromin is a novel regulator of Ras-induced reactive oxygen species production in mice and humans. Free Radic Biol Med 2016; 97:212-222. [PMID: 27266634 PMCID: PMC5765860 DOI: 10.1016/j.freeradbiomed.2016.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/25/2016] [Accepted: 06/02/2016] [Indexed: 12/22/2022]
Abstract
Neurofibromatosis type 1 (NF1) predisposes individuals to early and debilitating cardiovascular disease. Loss of function mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin, leads to accelerated p21(Ras) activity and phosphorylation of multiple downstream kinases, including Erk and Akt. Nf1 heterozygous (Nf1(+/-)) mice develop a robust neointima that mimics human disease. Monocytes/macrophages play a central role in NF1 arterial stenosis as Nf1 mutations in myeloid cells alone are sufficient to reproduce the enhanced neointima observed in Nf1(+/-) mice. Though the molecular mechanisms underlying NF1 arterial stenosis remain elusive, macrophages are important producers of reactive oxygen species (ROS) and Ras activity directly regulates ROS production. Here, we use compound mutant and lineage-restricted mice to demonstrate that Nf1(+/-) macrophages produce excessive ROS, which enhance Nf1(+/-) smooth muscle cell proliferation in vitro and in vivo. Further, use of a specific NADPH oxidase-2 inhibitor to limit ROS production prevents neointima formation in Nf1(+/-) mice. Finally, mononuclear cells from asymptomatic NF1 patients have increased oxidative DNA damage, an indicator of chronic exposure to oxidative stress. These data provide genetic and pharmacologic evidence that excessive exposure to oxidant species underlie NF1 arterial stenosis and provide a platform for designing novels therapies and interventions.
Collapse
Affiliation(s)
- Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Farlyn Z Hudson
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Hanfang Zhang
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Valerie Harris
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States
| | - Yusi Wang
- Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Julie A Mund
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Brandon Downing
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis 46202, United States; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202, United States
| | - Jamie Case
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis 46202, United States; Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis 46202, United States; Scripps Clinic Medical Group, Center for Organ and Cell Transplantation, La Jolla, CA 92037, United States
| | - David J Fulton
- Vascular Biology Center, Augusta University, Augusta, GA 30912, United States; Department of Pharmacology and Toxicology, Augusta University, Augusta, GA 30912, United States
| | - Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine, Augusta University, Augusta, GA 30912, United States; Vascular Biology Center, Augusta University, Augusta, GA 30912, United States.
| |
Collapse
|
11
|
Jindal GA, Goyal Y, Burdine RD, Rauen KA, Shvartsman SY. RASopathies: unraveling mechanisms with animal models. Dis Model Mech 2016. [PMID: 26203125 PMCID: PMC4527292 DOI: 10.1242/dmm.020339] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RASopathies are developmental disorders caused by germline mutations in the Ras-MAPK pathway, and are characterized by a broad spectrum of functional and morphological abnormalities. The high incidence of these disorders (∼1/1000 births) motivates the development of systematic approaches for their efficient diagnosis and potential treatment. Recent advances in genome sequencing have greatly facilitated the genotyping and discovery of mutations in affected individuals, but establishing the causal relationships between molecules and disease phenotypes is non-trivial and presents both technical and conceptual challenges. Here, we discuss how these challenges could be addressed using genetically modified model organisms that have been instrumental in delineating the Ras-MAPK pathway and its roles during development. Focusing on studies in mice, zebrafish and Drosophila, we provide an up-to-date review of animal models of RASopathies at the molecular and functional level. We also discuss how increasingly sophisticated techniques of genetic engineering can be used to rigorously connect changes in specific components of the Ras-MAPK pathway with observed functional and morphological phenotypes. Establishing these connections is essential for advancing our understanding of RASopathies and for devising rational strategies for their management and treatment. Summary: Developmental disorders caused by germline mutations in the Ras-MAPK pathway are called RASopathies. Studies with animal models, including mice, zebrafish and Drosophila, continue to enhance our understanding of these diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Yogesh Goyal
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca D Burdine
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Katherine A Rauen
- Department of Pediatrics, MIND Institute, Division of Genomic Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Stanislav Y Shvartsman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
12
|
Figueiredo ACPCT, Mata-Machado N, McCoyd M, Biller J. Neurocutaneous Disorders for the Practicing Neurologist: a Focused Review. Curr Neurol Neurosci Rep 2016; 16:19. [DOI: 10.1007/s11910-015-0612-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Bessler WK, Kim G, Hudson FZ, Mund JA, Mali R, Menon K, Kapur R, Clapp DW, Ingram DA, Stansfield BK. Nf1+/- monocytes/macrophages induce neointima formation via CCR2 activation. Hum Mol Genet 2016; 25:1129-39. [PMID: 26740548 DOI: 10.1093/hmg/ddv635] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/30/2015] [Indexed: 12/21/2022] Open
Abstract
Persons with neurofibromatosis type 1 (NF1) have a predisposition for premature and severe arterial stenosis. Mutations in the NF1 gene result in decreased expression of neurofibromin, a negative regulator of p21(Ras), and increases Ras signaling. Heterozygous Nf1 (Nf1(+/-)) mice develop a marked arterial stenosis characterized by proliferating smooth muscle cells (SMCs) and a predominance of infiltrating macrophages, which closely resembles arterial lesions from NF1 patients. Interestingly, lineage-restricted inactivation of a single Nf1 allele in monocytes/macrophages is sufficient to recapitulate the phenotype observed in Nf1(+/-) mice and to mobilize proinflammatory CCR2+ monocytes into the peripheral blood. Therefore, we hypothesized that CCR2 receptor activation by its primary ligand monocyte chemotactic protein-1 (MCP-1) is critical for monocyte infiltration into the arterial wall and neointima formation in Nf1(+/-) mice. MCP-1 induces a dose-responsive increase in Nf1(+/-) macrophage migration and proliferation that corresponds with activation of multiple Ras kinases. In addition, Nf1(+/-) SMCs, which express CCR2, demonstrate an enhanced proliferative response to MCP-1 when compared with WT SMCs. To interrogate the role of CCR2 activation on Nf1(+/-) neointima formation, we induced neointima formation by carotid artery ligation in Nf1(+/-) and WT mice with genetic deletion of either MCP1 or CCR2. Loss of MCP-1 or CCR2 expression effectively inhibited Nf1(+/-) neointima formation and reduced macrophage content in the arterial wall. Finally, administration of a CCR2 antagonist significantly reduced Nf1(+/-) neointima formation. These studies identify MCP-1 as a potent chemokine for Nf1(+/-) monocytes/macrophages and CCR2 as a viable therapeutic target for NF1 arterial stenosis.
Collapse
Affiliation(s)
- Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Grace Kim
- Department of Pediatrics and Neonatal-Perinatal Medicine and Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Farlyn Z Hudson
- Department of Pediatrics and Neonatal-Perinatal Medicine and Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Julie A Mund
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and
| | - Raghuveer Mali
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Keshav Menon
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - D Wade Clapp
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics and Neonatal-Perinatal Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brian K Stansfield
- Department of Pediatrics and Neonatal-Perinatal Medicine and Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
14
|
A new horizon of moyamoya disease and associated health risks explored through RNF213. Environ Health Prev Med 2015; 21:55-70. [PMID: 26662949 PMCID: PMC4771639 DOI: 10.1007/s12199-015-0498-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/18/2015] [Indexed: 01/27/2023] Open
Abstract
The cerebrovascular disorder moyamoya disease (MMD) was first described in 1957 in Japan, and is typically considered to be an Asian-specific disease. However, it is globally recognized as one of the major causes of childhood stroke. Although several monogenic diseases are known to be complicated by Moyamoya angiopathy, the ring finger protein 213 gene (RNF213) was identified as a susceptibility gene for MMD. RNF213 is unusual, because (1) it induces MMD with no other recognizable phenotypes, (2) the RNF213 p.R4810K variant is an Asian founder mutation common to Japanese, Korean and Chinese with carrier rates of 0.5–2 % of the general population but a low penetrance, and (3) it encodes a relatively largest proteins with a dual AAA+ ATPase and E3 Ligase activities. In this review, we focus on the genetics and genetic epidemiology of RNF213, the pathology of RNF213 R4810K, and the molecular functions of RNF213, and also address the public health contributions to current unresolved issues of MMD. We also emphasize the importance of a more updated definition for MMD, of qualified cohort studies based on genetic epidemiology and an awareness of the ethical issues associated with genetic testing of carriers.
Collapse
|
15
|
Abstract
Neurofibromatosis type 1 (NF1) is a relatively common tumour predisposition syndrome related to germline aberrations of NF1, a tumour suppressor gene. The gene product neurofibromin is a negative regulator of the Ras cellular proliferation pathway, and also exerts tumour suppression via other mechanisms. Recent next-generation sequencing projects have revealed somatic NF1 aberrations in various sporadic tumours. NF1 plays a critical role in a wide range of tumours. NF1 alterations appear to be associated with resistance to therapy and adverse outcomes in several tumour types. Identification of a patient's germline or somatic NF1 aberrations can be challenging, as NF1 is one of the largest human genes, with a myriad of possible mutations. Epigenetic factors may also contribute to inadequate levels of neurofibromin in cancer cells. Clinical trials of NF1-based therapeutic approaches are currently limited. Preclinical studies on neurofibromin-deficient malignancies have mainly been on malignant peripheral nerve sheath tumour cell lines or xenografts derived from NF1 patients. However, the emerging recognition of the role of NF1 in sporadic cancers may lead to the development of NF1-based treatments for other tumour types. Improved understanding of the implications of NF1 aberrations is critical for the development of novel therapeutic strategies.
Collapse
|
16
|
Waheed W, Nathan MH, Allen GB, Borden NM, Babi MA, Tandan R. Neurofibromatosis 1-associated panhypopituitarism presenting as hypoglycaemic seizures and stroke-like symptoms. BMJ Case Rep 2015; 2015:bcr-2015-210816. [PMID: 26531733 DOI: 10.1136/bcr-2015-210816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A 37-year-old man with a known history of neurofibromatosis 1 (NF1) presented within 2 days of diarrhoeal illness followed by encephalopathy, facial twitching, hypoglycaemia, hypotension, tachycardia and low-grade fever. Examination showed multiple café-au-lait spots and neurofibromas over the trunk, arms and legs and receptive aphasia with right homonymous hemianopia, which resolved. Workup for cardiac, inflammatory and infectious aetiologies was unrevealing. A brain MRI showed gyral swelling with increased T2 fluid-attenuated inversion recovery signal and diffusion restriction in the left cerebral cortex. Neuroendocrine findings suggested panhypopituitarism with centrally derived adrenal insufficiency. Supportive treatment, hormone supplementation, antibiotics, antivirals and levetiracetam yielded clinical improvement. A follow-up brain MRI showed focal left parieto-occipital atrophy with findings of cortical laminar necrosis. In conclusion, we describe a case of NF1-associated panhypopituitarism presenting as hypoglycaemic seizures and stroke-like findings, hitherto unreported manifestations of NF1. Prompt recognition and treatment of these associated conditions can prevent devastating complications.
Collapse
Affiliation(s)
- Waqar Waheed
- Department of Neurological sciences, University of Vermont, Burlington, Vermont, USA
| | - Muriel H Nathan
- Division of Endocrinology, Department of Medicine, University of Vermont College of Medicine, South Burlington, Vermont, USA
| | - Gilman B Allen
- Division of Pulmonary & Critical Care, Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Neil M Borden
- Department of Radiology, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - M Ali Babi
- Department of Neurological sciences, University of Vermont, Burlington, Vermont, USA
| | - Rup Tandan
- Department of Neurological sciences, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
17
|
Epstein JA, Ingram DA, Hirbe AC, Gutmann DH. A multidisciplinary approach in neurofibromatosis 1--authors' reply. Lancet Neurol 2015; 14:30-1. [PMID: 25496893 DOI: 10.1016/s1474-4422(14)70298-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Jonathan A Epstein
- Department of Cell and Developmental Biology, The Institute for Regenerative Medicine and the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Ingram
- Department of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Angela C Hirbe
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
18
|
Khelifa I, Saurat J, Prins C. Use of imatinib in a patient with cutaneous vasculopathy in the context of von Recklinghausen disease/neurofibromatosis. Br J Dermatol 2014; 172:253-6. [DOI: 10.1111/bjd.13170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2014] [Indexed: 11/28/2022]
Affiliation(s)
- I. Khelifa
- Department of Dermatology; University Hospital of Geneva; 4 Rue Gabrielle Perret-Gentil Geneva 1205 Switzerland
| | - J.H. Saurat
- Department of Dermatology; University Hospital of Geneva; 4 Rue Gabrielle Perret-Gentil Geneva 1205 Switzerland
| | - C. Prins
- Department of Dermatology; University Hospital of Geneva; 4 Rue Gabrielle Perret-Gentil Geneva 1205 Switzerland
| |
Collapse
|
19
|
Liang JT, Huo LR, Bao YH, Wang ZY, Ling F. Cerebral vasculopathy in a Chinese family with neurofibromatosis type I mutation. Neurosci Bull 2013; 29:708-14. [PMID: 24218100 DOI: 10.1007/s12264-013-1388-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/22/2013] [Indexed: 01/03/2023] Open
Abstract
Neurofibromatosis type I (NF1) is a hereditary, autosomal dominant, neurocutaneous syndrome that is attributed to NF1 gene mutation. NF1 has been associated with scoliosis, macrocephaly, pseudoarthrosis, short stature, mental retardation, and malignancies. NF1-associated vasculopathy is an uncommon and easily-overlooked presentation. Examination of a Chinese family affected by NF1 combined with cerebral vessel stenosis and/or abnormality suggested a possible relationship between NF1 and vessel stenosis. To determine which NF1 gene mutation is associated with vascular lesions, particularly cerebral vessel stenosis, we examined one rare family with combined cerebral vessel lesions or maldevelopment. Vascular lesions were detected using transcranial Doppler sonography and digital subtraction angiography in family members. Next, denaturing high-performance liquid chromatography and sequencing were used to screen for NF1 gene mutations. The results revealed a nonsense mutation, c.541C>T, in the NF1 gene. This mutation truncated the NF1 protein by 2659 amino-acid residues at the C-terminus and co-segregated with all of the patients, but was not present in unaffected individuals in the family. Exceptionally, three novel mutations were identified in unaffected family members, but these did not affect the product of the NF1 gene. Thus the nonsense mutation, c.541C>T, located in the NF1 gene could constitute one genetic factor for cerebral vessel lesions.
Collapse
Affiliation(s)
- Jian-Tao Liang
- Department of Neurosurgery, Xuan Wu Hospital of Capital Medical University, Beijing, 100053, China
| | | | | | | | | |
Collapse
|
20
|
Stansfield BK, Bessler WK, Mali R, Mund JA, Downing BD, Kapur R, Ingram DA. Ras-Mek-Erk signaling regulates Nf1 heterozygous neointima formation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:79-85. [PMID: 24211110 DOI: 10.1016/j.ajpath.2013.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/03/2013] [Accepted: 09/20/2013] [Indexed: 11/20/2022]
Abstract
Neurofibromatosis type 1 (NF1) results from mutations in the NF1 tumor-suppressor gene, which encodes neurofibromin, a negative regulator of diverse Ras signaling cascades. Arterial stenosis is a nonneoplastic manifestation of NF1 that predisposes some patients to debilitating morbidity and sudden death. Recent murine studies demonstrate that Nf1 heterozygosity (Nf1(+/-)) in monocytes/macrophages significantly enhances intimal proliferation after arterial injury. However, the downstream Ras effector pathway responsible for this phenotype is unknown. Based on in vitro assays demonstrating enhanced extracellular signal-related kinase (Erk) signaling in Nf1(+/-) macrophages and vascular smooth muscle cells and in vivo evidence of Erk amplification without alteration of phosphatidylinositol 3-kinase signaling in Nf1(+/-) neointimas, we tested the hypothesis that Ras-Erk signaling regulates intimal proliferation in a murine model of NF1 arterial stenosis. By using a well-established in vivo model of inflammatory cell migration and standard cell culture, neurofibromin-deficient macrophages demonstrate enhanced sensitivity to growth factor stimulation in vivo and in vitro, which is significantly diminished in the presence of PD0325901, a specific inhibitor of Ras-Erk signaling in phase 2 clinical trials for cancer. After carotid artery injury, Nf1(+/-) mice demonstrated increased intimal proliferation compared with wild-type mice. Daily administration of PD0325901 significantly reduced Nf1(+/-) neointima formation to levels of wild-type mice. These studies identify the Ras-Erk pathway in neurofibromin-deficient macrophages as the aberrant pathway responsible for enhanced neointima formation.
Collapse
Affiliation(s)
- Brian K Stansfield
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Raghuveer Mali
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julie A Mund
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brandon D Downing
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
21
|
Loirand G, Sauzeau V, Pacaud P. Small G Proteins in the Cardiovascular System: Physiological and Pathological Aspects. Physiol Rev 2013; 93:1659-720. [DOI: 10.1152/physrev.00021.2012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Small G proteins exist in eukaryotes from yeast to human and constitute the Ras superfamily comprising more than 100 members. This superfamily is structurally classified into five families: the Ras, Rho, Rab, Arf, and Ran families that control a wide variety of cell and biological functions through highly coordinated regulation processes. Increasing evidence has accumulated to identify small G proteins and their regulators as key players of the cardiovascular physiology that control a large panel of cardiac (heart rhythm, contraction, hypertrophy) and vascular functions (angiogenesis, vascular permeability, vasoconstriction). Indeed, basal Ras protein activity is required for homeostatic functions in physiological conditions, but sustained overactivation of Ras proteins or spatiotemporal dysregulation of Ras signaling pathways has pathological consequences in the cardiovascular system. The primary object of this review is to provide a comprehensive overview of the current progress in our understanding of the role of small G proteins and their regulators in cardiovascular physiology and pathologies.
Collapse
Affiliation(s)
- Gervaise Loirand
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Vincent Sauzeau
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| | - Pierre Pacaud
- INSERM, UMR S1087; University of Nantes; and CHU Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
22
|
Kaas B, Huisman TA, Tekes A, Bergner A, Blakeley JO, Jordan LC. Spectrum and prevalence of vasculopathy in pediatric neurofibromatosis type 1. J Child Neurol 2013; 28:561-9. [PMID: 22832780 PMCID: PMC3496801 DOI: 10.1177/0883073812448531] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To describe the spectrum and associated clinical features of peripheral and cerebral vasculopathy in pediatric patients with neurofibromatosis type 1, children seen at a single center from 2000 to 2010 with appropriate imaging studies were identified. Scans were assessed for vascular disease by 2 pediatric neuroradiologists. Of 181 children, 80 had pertinent imaging studies: 77 had brain imaging, 6 had peripheral imaging, and 3 had both. Vasculopathy was identified in 14/80 children (18%, minimum prevalence of 14/181; 8%). Of those with vascular abnormalities, 2/14 had peripheral vasculopathy (1% minimum prevalence) and 12/14 had cerebrovascular abnormalities (7% minimum prevalence). No associations were found between vasculopathy and common clinical features of neurofibromatosis type 1, including optic pathway glioma, plexiform neurofibroma, skeletal abnormalities, attention-deficit hyperactivity disorder (ADHD), or suspected learning disability. Both peripheral and cerebral vasculopathy are important complications of pediatric neurofibromatosis type 1 and should be considered in the management of this complex disease.
Collapse
Affiliation(s)
| | | | - Aylin Tekes
- Johns Hopkins Dept of Radiology and Radiological Science
| | | | | | - Lori C. Jordan
- Johns Hopkins Dept of Neurology, now Vanderbilt University Dept of Neurology
| |
Collapse
|
23
|
Shen FH, Jin J, Li J, Wang Y, Zhu SH, Lu YJ, Ou TM, Huang ZS, Huang M, Huang ZY. The G-quadruplex ligand, SYUIQ-FM05, targets proto-oncogene c-kit transcription and induces apoptosis in K562 cells. PHARMACEUTICAL BIOLOGY 2013; 51:447-454. [PMID: 23363047 DOI: 10.3109/13880209.2012.738424] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
CONTEXT N'-(7-Fluoro-5-N-methyl-10H-indolo[3,2-b]quinolin-5-ium)-N,N-dimethylpropane-1,3-diamine iodide (SYUIQ-FM05) is a semi-synthetic derivative of cryptolepine which is from Cryptolepis sanguinolenta (Lindl.) Schlechter (Periplocaeae). This ligand inhibits telomerase activity by stabilizing the G-quadruplex structure and induces growth arrest in cancer cells. OBJECTIVE The anticancer activity of SYUIQ-FM05 via inhibiting c-kit transcription was investigated in leukemic cells. MATERIALS AND METHODS The cytotoxicity of SYUIQ-FM05 in K562 cells was evaluated using a cell viability assay and flow cytometry (FCM) at 0.4, 2.0, 10.0 and 20.0 nM. Under the same concentrations of SYUIQ-FM05 or 100 nM imatinib mesylate (IM), quantitative polymerase chain reaction (Q-PCR) investigated transcription of c-kit and bcl-2, and western blotting analyzed the expression levels of c-Kit, total mitogen-activated protein kinase kinases (MEKs), phospho-MEK (p-MEK), total extracellular regulated protein kinases (ERKs), phospho-ERK (p-ERK), Bcl-2 and Bax. RESULTS SYUIQ-FM05 inhibited cellular growth with an IC(50) of 10.83 ± 0.05 nM in K562 cells. c-Kit transcription was suppressed 2.69-, 4.39-, 7.71- and 10.52-fold at 0.4, 2.0, 10.0 and 20.0 nM SYUIQ-FM05, respectively, which produced proportional loss of total c-Kit protein except IM. Both SYUIQ-FM05 and IM downregulated p-MEK and p-ERK. Furthermore, bcl-2 transcription was suppressed 1.58- and 1.86-fold at 10.0 and 20.0 nM SYUIQ-FM05, respectively, but 0.4 and 2.0 nM SYUIQ-FM05 had no effect. A decrease in Bcl-2 and an increase in Bax appeared in these treated cells. DISCUSSION AND CONCLUSION These findings demonstrate that SYUIQ-FM05 could induce apoptosis in a leukemic cell line through inhibiting c-kit transcription, which supports the anticancer potency of SYUIQ-FM05 in c-Kit-positive leukemic cells.
Collapse
Affiliation(s)
- Fei-Hai Shen
- Center of Preclinical Screening and Evaluation on New Drug, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Neurofibromatosis 1 (NF1) is an inherited neurocutaneous disease that has a major impact on the nervous system, eye, skin, and bone. Individuals with NF1 have a predisposition to benign and malignant tumor formation and the hallmark lesion is the neurofibroma, a benign peripheral nerve sheath tumor. The gene for NF1 was cloned on chromosome 17q11.2 and neurofibromin, the NF1 protein, controls cell growth and proliferation by regulating the proto-oncogene Ras and cyclic adenosine monophosphate (AMP). Advances in molecular biology and mouse models of disease have enhanced our understanding of the pathogenesis of NF1 complications and facilitated targeted therapy. Progress has been made in developing robust clinical and radiological outcome measures and clinical trials are underway for children with learning difficulties and for individuals with symptomatic plexiform neurofibromas.
Collapse
|
25
|
Kaufmann D, Hoesch J, Su Y, Deeg L, Mellert K, Spatz JP, Kemkemer R. Partial Blindness to Submicron Topography in NF1 Haploinsufficient Cultured Fibroblasts Indicates a New Function of Neurofibromin in Regulation of Mechanosensoric. Mol Syndromol 2012; 3:169-79. [PMID: 23239959 DOI: 10.1159/000342698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2012] [Indexed: 12/22/2022] Open
Abstract
Cells sense physical properties of their extracellular environment and translate them into biochemical signals. In this study, cell responses to surfaces with submicron topographies were investigated in cultured human NF1 haploinsufficient fibroblasts. Age-matched fibroblasts from 8 patients with neurofibromatosis type 1 (NF1(+/-)) and 9 controls (NF1(+/+)) were cultured on surfaces with grooves of 200 nm height and lateral distance of 2 μm. As cellular response indicator, the mean cell orientation along microstructured grooves was systematically examined. The tested NF1 haploinsufficient fibroblasts were significantly less affected by the topography than those from healthy donors. Incubation of the NF1(+/-) fibroblasts with the farnesyltransferase inhibitor FTI-277 and other inhibitors of the neurofibromin pathway ameliorates significantly the cell orientation. These data indicate that NF1 haploinsufficiency results in an altered response to specific surface topography in fibroblasts. We suggest a new function of neurofibromin in the sensoric mechanism to topographies and a partial mechanosensoric blindness by NF1 haploinsufficiency.
Collapse
Affiliation(s)
- D Kaufmann
- Institute of Human Genetics, University of Ulm, Ulm, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
26
|
Stansfield BK, Bessler WK, Mali R, Mund JA, Downing B, Li F, Sarchet KN, DiStasi MR, Conway SJ, Kapur R, Ingram DA. Heterozygous inactivation of the Nf1 gene in myeloid cells enhances neointima formation via a rosuvastatin-sensitive cellular pathway. Hum Mol Genet 2012. [PMID: 23197650 DOI: 10.1093/hmg/dds502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mutations in the NF1 tumor suppressor gene cause Neurofibromatosis type 1 (NF1). Neurofibromin, the protein product of NF1, functions as a negative regulator of Ras activity. Some NF1 patients develop cardiovascular disease, which represents an underrecognized disease complication and contributes to excess morbidity and mortality. Specifically, NF1 patients develop arterial occlusion resulting in tissue ischemia and sudden death. Murine studies demonstrate that heterozygous inactivation of Nf1 (Nf1(+/-)) in bone marrow cells enhances neointima formation following arterial injury. Macrophages infiltrate Nf1(+/-) neointimas, and NF1 patients have increased circulating inflammatory monocytes in their peripheral blood. Therefore, we tested the hypothesis that heterozygous inactivation of Nf1 in myeloid cells is sufficient for neointima formation. Specific ablation of a single copy of the Nf1 gene in myeloid cells alone mobilizes a discrete pro-inflammatory murine monocyte population via a cell autonomous and gene-dosage dependent mechanism. Furthermore, lineage-restricted heterozygous inactivation of Nf1 in myeloid cells is sufficient to reproduce the enhanced neointima formation observed in Nf1(+/-) mice when compared with wild-type controls, and homozygous inactivation of Nf1 in myeloid cells amplified the degree of arterial stenosis after arterial injury. Treatment of Nf1(+/-) mice with rosuvastatin, a stain with anti-inflammatory properties, significantly reduced neointima formation when compared with control. These studies identify neurofibromin-deficient myeloid cells as critical cellular effectors of Nf1(+/-) neointima formation and propose a potential therapeutic for NF1 cardiovascular disease.
Collapse
Affiliation(s)
- Brian K Stansfield
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, IN 46202, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Robertson KA, Nalepa G, Yang FC, Bowers DC, Ho CY, Hutchins GD, Croop JM, Vik TA, Denne SC, Parada LF, Hingtgen CM, Walsh LE, Yu M, Pradhan KR, Edwards-Brown MK, Cohen MD, Fletcher JW, Travers JB, Staser KW, Lee MW, Sherman MR, Davis CJ, Miller LC, Ingram DA, Clapp DW. Imatinib mesylate for plexiform neurofibromas in patients with neurofibromatosis type 1: a phase 2 trial. Lancet Oncol 2012; 13:1218-24. [PMID: 23099009 DOI: 10.1016/s1470-2045(12)70414-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Plexiform neurofibromas are slow-growing chemoradiotherapy-resistant tumours arising in patients with neurofibromatosis type 1 (NF1). Currently, there are no viable therapeutic options for patients with plexiform neurofibromas that cannot be surgically removed because of their proximity to vital body structures. We undertook an open-label phase 2 trial to test whether treatment with imatinib mesylate can decrease the volume burden of clinically significant plexiform neurofibromas in patients with NF1. METHODS Eligible patients had to be aged 3-65 years, and to have NF1 and a clinically significant plexiform neurofibroma. Patients were treated with daily oral imatinib mesylate at 220 mg/m(2) twice a day for children and 400 mg twice a day for adults for 6 months. The primary endpoint was a 20% or more reduction in plexiform size by sequential volumetric MRI imaging. Clinical data were analysed on an intention-to-treat basis; a secondary analysis was also done for those patients able to take imatinib mesylate for 6 months. This trial is registered with ClinicalTrials.gov, number NCT01673009. FINDINGS Six of 36 patients (17%, 95% CI 6-33), enrolled on an intention-to-treat basis, had an objective response to imatinib mesylate, with a 20% or more decrease in tumour volume. Of the 23 patients who received imatinib mesylate for at least 6 months, six (26%, 95% CI 10-48) had a 20% or more decrease in volume of one or more plexiform tumours. The most common adverse events were skin rash (five patients) and oedema with weight gain (six). More serious adverse events included reversible grade 3 neutropenia (two), grade 4 hyperglycaemia (one), and grade 4 increases in aminotransferase concentrations (one). INTERPRETATION Imatinib mesylate could be used to treat plexiform neurofibromas in patients with NF1. A multi-institutional clinical trial is warranted to confirm these results. FUNDING Novartis Pharmaceuticals, the Indiana University Simon Cancer Centre, and the Indiana University Herman B Wells Center for Pediatric Research.
Collapse
Affiliation(s)
- Kent A Robertson
- Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
El Khassawna T, Toben D, Kolanczyk M, Schmidt-Bleek K, Koennecke I, Schell H, Mundlos S, Duda GN. Deterioration of fracture healing in the mouse model of NF1 long bone dysplasia. Bone 2012; 51:651-60. [PMID: 22868293 DOI: 10.1016/j.bone.2012.07.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/01/2012] [Accepted: 07/13/2012] [Indexed: 01/20/2023]
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease resulting from inactivating mutations in the gene encoding the protein neurofibromin. NF1 manifests as a heritable susceptibility to tumours of neural tissue mainly located in the skin (neurofibromas) and pigmented skin lesions. Besides these more common clinical manifestations, many NF1 patients (50%) have abnormalities of the skeleton. Long bones are often affected (usually the tibia) and the clinical signs range from bowing to spontaneous fractures and non-unions. Here we present the analysis of bone fracture healing in the Nf1(Prx1)-knock-out mouse, a model of NF1 long bone dysplasia. In line with previously reported cortical bone injury results, fracture healing was impaired in Nf1(Prx1) mice. We showed that the defective fracture healing in Nf1(Prx1) mice is characterized by diminished cartilaginous callus formation and a thickening of the periosteal bone. These changes are paralleled by fibrous tissue accumulation within the fracture site. We identify a population of fibrous tissue cells within the Nf1 deficient fracture as alpha-smooth muscle actin positive myofibroblasts. Additionally, histological and in-situ hybridization analysis reveal a direct contact of the fracture site with muscle fascia, suggesting a possible involvement of muscle derived cells in the fracture deterioration.
Collapse
Affiliation(s)
- T El Khassawna
- Julius Wolff Institute and Center for Musculoskeletal Surgery, Charite Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Doyle JJ, Gerber EE, Dietz HC. Matrix-dependent perturbation of TGFβ signaling and disease. FEBS Lett 2012; 586:2003-15. [PMID: 22641039 PMCID: PMC3426037 DOI: 10.1016/j.febslet.2012.05.027] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/13/2012] [Accepted: 05/15/2012] [Indexed: 02/07/2023]
Abstract
Transforming growth factor beta (TGFβ) is a multipotent cytokine that is sequestered in the extracellular matrix (ECM) through interactions with a number of ECM proteins. The ECM serves to concentrate latent TGFβ at sites of intended function, to influence the bioavailability and/or function of TGFβ activators, and perhaps to regulate the intrinsic performance of cell surface effectors of TGFβ signal propagation. The downstream consequences of TGFβ signaling cascades in turn provide feedback modulation of the ECM. This review covers recent examples of how genetic mutations in constituents of the ECM or TGFβ signaling cascade result in altered ECM homeostasis, cellular performance and ultimately disease, with an emphasis on emerging therapeutic strategies that seek to capitalize on this refined mechanistic understanding.
Collapse
|
30
|
Baek ST, Tallquist MD. Nf1 limits epicardial derivative expansion by regulating epithelial to mesenchymal transition and proliferation. Development 2012; 139:2040-9. [PMID: 22535408 DOI: 10.1242/dev.074054] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The epicardium is the primary source of coronary vascular smooth muscle cells (cVSMCs) and fibroblasts that reside in the compact myocardium. To form these epicardial-derived cells (EPDCs), the epicardium undergoes the process of epithelial to mesenchymal transition (EMT). Although several signaling pathways have been identified that disrupt EMT, no pathway has been reported that restricts this developmental process. Here, we identify neurofibromin 1 (Nf1) as a key mediator of epicardial EMT. To determine the function of Nf1 during epicardial EMT and the formation of epicardial derivatives, cardiac fibroblasts and cVSMCs, we generated mice with a tissue-specific deletion of Nf1 in the epicardium. We found that mutant epicardial cells transitioned more readily to mesenchymal cells in vitro and in vivo. The mesothelial epicardium lost epithelial gene expression and became more invasive. Using lineage tracing of EPDCs, we found that the process of EMT occurred earlier in Nf1 mutant hearts, with an increase in epicardial cells entering the compact myocardium. Moreover, loss of Nf1 caused increased EPDC proliferation and resulted in more cardiac fibroblasts and cVSMCs. Finally, we were able to partially reverse the excessive EMT caused by loss of Nf1 by disrupting Pdgfrα expression in the epicardium. Conversely, Nf1 activation was able to inhibit PDGF-induced epicardial EMT. Our results demonstrate a regulatory role for Nf1 during epicardial EMT and provide insights into the susceptibility of patients with disrupted NF1 signaling to cardiovascular disease.
Collapse
Affiliation(s)
- Seung Tae Baek
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | | |
Collapse
|
31
|
Abstract
NF1 (neurofibromatosis type I) is a common genetic disease that affects one in 3500 individuals. The disease is completely penetrant but shows variable phenotypic expression in patients. NF1 is a large gene, and its pre-mRNA undergoes alternative splicing. The NF1 protein, neurofibromin, is involved in diverse signalling cascades. One of the best characterized functions of NF1 is its function as a Ras-GAP (GTPase-activating protein). NF1 exon 23a is an alternative exon that lies within the GAP-related domain of neurofibromin. This exon is predominantly included in most tissues, and it is skipped in CNS (central nervous system) neurons. The isoform in which exon 23a is skipped has 10 times higher Ras-GAP activity than the isoform in which exon 23a is included. Exon 23a inclusion is tightly regulated by at least three different families of RNA-binding proteins: CELF {CUG-BP (cytosine-uridine-guanine-binding protein) and ETR-3 [ELAV (embryonic lethal abnormal vision)-type RNA-binding protein]-like factor}, Hu and TIA-1 (T-cell intracellular antigen 1)/TIAR (T-cell intracellular antigen 1-related protein). The CELF and Hu proteins promote exon 23a skipping, while the TIA-1/TIAR proteins promote its inclusion. The widespread clinical variability that is observed among NF1 patients cannot be explained by NF1 mutations alone and it is believed that modifier genes may have a role in the variability. We suggest that the regulation of alternative splicing may act as a modifier to contribute to the variable expression in NF1 patients.
Collapse
|
32
|
Staser K, Yang FC, Clapp DW. Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. ANNUAL REVIEW OF PATHOLOGY 2011; 7:469-95. [PMID: 22077553 PMCID: PMC3694738 DOI: 10.1146/annurev-pathol-011811-132441] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disease that results from either heritable or spontaneous autosomal dominant mutations in the NF1 gene. A second-hit mutation precedes the predominant NF1 neoplasms, which include myeloid leukemia, optic glioma, and plexiform neurofibroma. Despite this requisite NF1 loss of heterozygosity in the tumor cell of origin, nontumorigenic cells contribute to both generalized and specific disease manifestations. In mouse models of plexiform neurofibroma formation, Nf1 haploinsufficient mast cells promote inflammation, accelerating tumor formation and growth. These recruited mast cells, hematopoietic effector cells long known to permeate neurofibroma tissue, mediate key mitogenic signals that contribute to vascular ingrowth, collagen deposition, and tumor growth. Thus, the plexiform neurofibroma microenvironment involves a tumor/stromal interaction with the hematopoietic system that depends, at the molecular level, on a stem cell factor/c-kit-mediated signaling axis. These observations parallel findings in other NF1 disease manifestations and are clearly relevant to medical management of these neurofibromas.
Collapse
Affiliation(s)
- Karl Staser
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
33
|
|
34
|
The Neurovascular Link in Health and Disease: Molecular Mechanisms and Therapeutic Implications. Neuron 2011; 71:406-24. [DOI: 10.1016/j.neuron.2011.07.013] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2011] [Indexed: 01/08/2023]
|
35
|
Montani D, Coulet F, Girerd B, Eyries M, Bergot E, Mal H, Biondi G, Dromer C, Hugues T, Marquette C, O'Connell C, O'Callaghan DS, Savale L, Jaïs X, Dorfmüller P, Begueret H, Bertoletti L, Sitbon O, Bellanné-Chantelot C, Zalcman G, Simonneau G, Humbert M, Soubrier F. Pulmonary hypertension in patients with neurofibromatosis type I. Medicine (Baltimore) 2011; 90:201-211. [PMID: 21512413 DOI: 10.1097/md.0b013e31821be2b7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Neurofibromatosis type I (NF1) is a rare genetic disease caused by mutations in the NF1 gene, which codes for tumor suppressor neurofibromin. NF1 is transmitted as an autosomal dominant and fully penetrant trait with no sex predominance. Precapillary pulmonary hypertension (PH) is a severe complication of NF1, initially described in patients with advanced parenchymal lung disease, which may complicate the course of NF1. We conducted this study to describe clinical, functional, radiologic, and hemodynamic characteristics and outcome of patients with NF1-associated PH. We identified 8 new cases of NF1-associated PH in patients carrying a NF1 gene mutation. No bone morphogenic protein receptor 2 (BMPR2) point mutation or large size rearrangements were identified. Seven female patients and 1 male patient were reported, suggesting a possible female predominance. PH occurred late in the course of the disease (median age, 62 yr; range, 53-68 yr). Dyspnea and signs of right heart failure were the major symptoms leading to the diagnosis of PH. At diagnosis, patients had severe hemodynamic impairment with low cardiac index (median, 2.3 L/min per m2; range, 1.9-4.7) and elevated indexed pulmonary vascular resistance (median, 15.1 mm Hg/L/min per m2; range, 4.5-25.9). All patients were in New York Heart Association functional class III with severe exercise limitation (median 6-min walk distance, 180 m; range, 60-375 m). Most patients had associated parenchymal lung disease, but some had no or mild lung involvement with disproportionate pulmonary vascular disease. Overall, the impact of PH therapy was limited and outcomes were poor. In conclusion, PH represents a rare but severe complication of NF1, characterized by female predominance, late onset in the course of NF1, and severe functional and hemodynamic impairment. Because of poor outcome and limited impact of specific PH therapy, eligible patients require early referral for lung transplantation. Further studies are needed to better understand the pathophysiology and the role, if any, of neurofibromin in NF1-associated PH.
Collapse
Affiliation(s)
- David Montani
- From Faculté de Médecine, (DM, BG, CO, DSO, LS, XJ, OS, GS, MH), Université Paris-Sud, Kremlin-Bicêtre; Service de Pneumologie et Réanimation Respiratoire (DM, BG, CO, DSO, LS, XJ, OS, GS, MH), Centre de Référence de l'Hypertension Pulmonaire Sévère, Hôpital Antoine Béclère, AP-HP, Clamart; INSERM U999, Hypertension Artérielle Pulmonaire: Physiopathologie et Innovation Thérapeutique (DM, BG, CO, DSO, LS, XJ, PD, OS, GS, MH), and Service d'Anatomie Pathologique (PD), Centre Chirurgical Marie-Lannelongue, Le Plessis-Robinson; Département de Génétique (FC, ME, CBC, FS), GH Pitié-Salpêtrière, UPMC, AP-HP, Paris; Service de Pneumologie et Centre Régional de Compétence de l'HTAP (EB, GZ), Caen University Hospital, Caen; ER3 INSERM (EB, GZ), Caen; Service de Pneumologie B et Transplantation Pulmonaire (HM, GB), Hôpital Bichat, AP-HP, Paris; Service de Chirurgie Thoracique (CD), and Service d'Anatomie Pathologique (HB), Hôpital du Haut Levesque, Bordeaux; Université Nice Sophia Antipolis (TH, CM), Service de Pneumologie, CHU de Nice, Nice; Groupe de Recherche sur la Thrombose (LB), Université de St-Etienne, St-Etienne; and UMR-S 956 UPMC-INSERM (FS), Paris; France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Munot P, Crow YJ, Ganesan V. Paediatric stroke: genetic insights into disease mechanisms and treatment targets. Lancet Neurol 2011; 10:264-74. [PMID: 21349441 DOI: 10.1016/s1474-4422(10)70327-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In children, stroke is as common as brain tumour and causes substantial mortality and long-term morbidity, with recurrence in up to 20%. There are three sets of international clinical guidelines relating to childhood stroke; however, acute and preventive treatment recommendations are based on interventions effective in adults, rather than data regarding efficacy in children. A wide spectrum of risk factors underlies childhood stroke, and these risk factors vary from those encountered in adults. Specific disease mechanisms implicated in childhood arterial ischaemic stroke have received little attention, but an increased understanding of disease pathogenesis could lead to novel targeted treatment approaches. Here, we consider insights into the pathogenesis of childhood arterial ischaemic stroke and cerebral arteriopathy, provided by current knowledge of Mendelian diseases that are associated with an increased risk of these conditions. We give particular attention to aspects of vascular development, homoeostasis, and response to environmental effects. Our analysis highlights a potential role for interventions already licensed for pharmaceutical use, as well as new therapeutic targets and avenues for further research.
Collapse
Affiliation(s)
- Pinki Munot
- Department of Neurology, Great Ormond Street Hospital for Children NHS Trust, London, UK.
| | | | | |
Collapse
|
37
|
Ng J, Ganesan V. Expert opinion on emerging drugs in childhood arterial ischemic stroke. Expert Opin Emerg Drugs 2011; 16:363-72. [DOI: 10.1517/14728214.2011.565050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
38
|
Yin Y, Zhao X, Fang Y, Huang L. Carotid artery wire injury mouse model with a nonmicrosurgical procedure. Vascular 2010; 18:221-6. [PMID: 20643031 DOI: 10.2310/6670.2010.00031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A mouse model of endothelial denudation in the common carotid artery is usually established with a flexible wire under a dissecting microscope. In this article, we introduce a modified procedure to establish a carotid arterial injury mouse model in which no dissecting microscope is used. In the nonmicrosurgical procedure, carotid clamps, which were used to block the blood flow of the common carotid artery and the internal carotid artery, were substituted with silk slipknots. Curved flexible wire, which was used to introduce carotid artery injury, was tailored so that it could be inserted into the external carotid artery easily. A tailored hook was used to place silk around the external carotid artery and the internal carotid artery. The data show that the nonmicrosurgical procedure could achieve an effect in endothelial denudation and neointima formation similar to that of the microsurgical procedure. The operating achievement ratio and survival rates at 1 day and 4 weeks are also similar between the two groups. The operating time was reduced significantly in the nonmicrosurgical group compared to the microsurgical group. The present study suggests that establishing a carotid arterial injury mouse model with a nonmicrosurgical procedure is simple, effective, and time-saving.
Collapse
Affiliation(s)
- Yangguang Yin
- Emergency Department, Xin Qiao Hospital of the Third Military Medical University, Chongquing, China
| | | | | | | |
Collapse
|
39
|
Reid AJ, Bhattacharjee MB, Regalado ES, Milewicz AL, El-Hakam LM, Dauser RC, Milewicz DM. Diffuse and uncontrolled vascular smooth muscle cell proliferation in rapidly progressing pediatric moyamoya disease. J Neurosurg Pediatr 2010; 6:244-9. [PMID: 20809708 DOI: 10.3171/2010.5.peds09505] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Moyamoya disease is a rare stroke syndrome of unknown etiology resulting from stenosis or occlusion of the supraclinoid internal carotid artery (ICA) in association with an abnormal vascular network in the basal ganglia. Although the highest incidence of moyamoya disease is in pediatric patients, pathology reports have been primarily limited to adult samples and describe occlusive fibrocellular lesions in the intimae of affected arteries. We describe the case of a young girl with primary moyamoya disease who presented at 18 months of age with right hemiparesis following an ischemic stroke. Angiography showed stenosis of the distal left ICA, left middle cerebral artery, and right ICA. An emergent left-sided dural inversion was performed. Recurrent strokes and alternating hemiplegia necessitated a right dural inversion 6 months later. Nonetheless, her aggressive disease proved uniquely refractory to surgical revascularization, and she succumbed to recurrent strokes and neurological deterioration at 2.5 years of age. Pathological specimens revealed a striking bilateral occlusion of the anterior carotid circulation resulting from intimal proliferation of smooth muscle cells (SMCs). Most strikingly, the ascending aorta and the superior mesenteric artery demonstrated similar intimal proliferation, along with SMC proliferation in the media. The systemic pathology involving multiple arteries in this extremely young child, the first case of its kind available for autopsy, suggests that globally uncontrolled SMC proliferation, in the absence of environmental risk factors and likely resulting from an underlying genetic alteration, may be a primary etiologic event leading to moyamoya disease.
Collapse
Affiliation(s)
- Amy J Reid
- Department of Internal Medicine, University of Texas Health Science Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Genetic variants promoting smooth muscle cell proliferation can result in diffuse and diverse vascular diseases: evidence for a hyperplastic vasculomyopathy. Genet Med 2010; 12:196-203. [PMID: 20130469 DOI: 10.1097/gim.0b013e3181cdd687] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genetic predisposition to early onset of occlusive vascular diseases, including coronary artery disease, ischemic stroke, and Moyamoya disease, may represent varying presentations of a common underlying dysregulation of vascular smooth muscle cell proliferation. We discuss mutations in two genes, NF1 and ACTA2, which predispose affected individuals to diffuse and diverse vascular diseases. These patients show evidence of diffuse occlusive disease in multiple arterial beds or even develop seemingly diverse arterial pathologies, ranging from occlusions to arterial aneurysms. We also present the current evidence that both NF1 and ACTA2 mutations promote increased smooth muscle cell proliferation in vitro and in vivo, which leads us to propose that these diffuse and diverse vascular diseases are the outward signs of a more fundamental disease: a hyperplastic vasculomyopathy. We suggest that the concept of a hyperplastic vasculomyopathy offers a new approach not only to identifying mutated genes that lead to vascular diseases but also to counseling and possibly treating patients harboring such mutations. In other words, this framework may offer the opportunity to therapeutically target the inappropriate smooth muscle cell behavior that predisposes to a variety of vascular diseases throughout the arterial system.
Collapse
|
41
|
Staser K, Yang FC, Clapp DW. Mast cells and the neurofibroma microenvironment. Blood 2010; 116:157-64. [PMID: 20233971 PMCID: PMC2910605 DOI: 10.1182/blood-2009-09-242875] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 11/12/2009] [Indexed: 12/24/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is the most common genetic disorder with a predisposition to malignancy and affects 1 in 3500 persons worldwide. NF1 is caused by a mutation in the NF1 tumor suppressor gene that encodes the protein neurofibromin. Patients with NF1 have cutaneous, diffuse, and plexiform neurofibromas, tumors comprised primarily of Schwann cells, blood vessels, fibroblasts, and mast cells. Studies from human and murine models that closely recapitulate human plexiform neurofibroma formation indicate that tumorigenesis necessitates NF1 loss of heterozygosity in the Schwann cell. In addition, our most recent studies with bone marrow transplantation and pharmacologic experiments implicate haploinsufficiency of Nf1 (Nf1(+/-)) and c-kit signaling in the hematopoietic system as required and sufficient for tumor progression. Here, we review recent studies implicating the hematopoietic system in plexiform neurofibroma genesis, delineate the physiology of stem cell factor-dependent hematopoietic cells and their contribution to the neurofibroma microenvironment, and highlight the application of this research toward the first successful, targeted medical treatment of a patient with a nonresectable and debilitating neurofibroma. Finally, we emphasize the importance of the tumor microenvironment hypothesis, asserting that tumorigenic cells in the neurofibroma do not arise and grow in isolation.
Collapse
Affiliation(s)
- Karl Staser
- Department of Biochemistry, and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | |
Collapse
|
42
|
Staser K, Yang FC, Clapp DW. Plexiform neurofibroma genesis: questions of Nf1 gene dose and hyperactive mast cells. Curr Opin Hematol 2010; 17:287-93. [PMID: 20571392 PMCID: PMC3539783 DOI: 10.1097/moh.0b013e328339511b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Tumorigenic cells can co-opt normal functions of nonmalignant hematopoietic cells, promoting tumor progression. Recent mouse and human studies indicate that mast cells underpin inflammation in the plexiform neurofibroma microenvironment of neurofibromatosis type 1. In this model, Nf1 homozygous-deficient Schwann cells recruit hyperactive mast cells, promoting tumorigenesis. Here, we discuss the importance of Nf1 gene dosage, delineate hematopoietic contributions to the plexiform neurofibroma microenvironment, and highlight applications to human treatment. RECENT FINDINGS Previous studies found that plexiform neurofibroma formation in a mouse model requires biallelic loss of Nf1 in Schwann cells and an Nf1 heterozygous cellular background. Now, transplantation and pharmacological experiments have indicated that tumor formation specifically requires Nf1 heterozygosity of c-kit-dependent bone marrow. SUMMARY Neurofibromatosis type 1 results from autosomal dominant mutations of the NF1 tumor suppressor gene. Although unpredictable second-hit mutations in the remaining NF1 allele precede local manifestations such as tumor formation, human and mouse data indicate that NF1/Nf1 gene haploinsufficiency modulates cellular physiology and disease pathogeneses. In particular, Nf1 haplo insufficient mast cells demonstrate multiple gain-in-functions, and mast cells permeate neurofibroma tissue. Transplantation experiments have shown that these aberrant mast cells critically underpin the tumor microenvironment. Using these findings, clinicians have medically treated a patient with a debilitating plexiform neurofibroma.
Collapse
Affiliation(s)
- Karl Staser
- Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
43
|
Cao J, Gong L, Guo DC, Mietzsch U, Kuang SQ, Kwartler CS, Safi H, Estrera A, Gambello MJ, Milewicz DM. Thoracic aortic disease in tuberous sclerosis complex: molecular pathogenesis and potential therapies in Tsc2+/- mice. Hum Mol Genet 2010; 19:1908-20. [PMID: 20159776 DOI: 10.1093/hmg/ddq066] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a genetic disorder with pleiotropic manifestations caused by heterozygous mutations in either TSC1 or TSC2. One of the less investigated complications of TSC is the formation of aneurysms of the descending aorta, which are characterized on pathologic examination by smooth muscle cell (SMC) proliferation in the aortic media. SMCs were explanted from Tsc2(+/-) mice to investigate the pathogenesis of aortic aneurysms caused by TSC2 mutations. Tsc2(+/-) SMCs demonstrated increased phosphorylation of mammalian target of rapamycin (mTOR), S6 and p70S6K and increased proliferation rates compared with wild-type (WT) SMCs. Tsc2(+/-) SMCs also had reduced expression of SMC contractile proteins compared with WT SMCs. An inhibitor of mTOR signaling, rapamycin, decreased SMC proliferation and increased contractile protein expression in the Tsc2(+/-) SMCs to levels similar to WT SMCs. Exposure to alpha-elastin fragments also decreased proliferation of Tsc2(+/-) SMCs and increased levels of p27(kip1), but failed to increase expression of contractile proteins. In response to artery injury using a carotid artery ligation model, Tsc2(+/-) mice significantly increased neointima formation compared with the control mice, and the neointima formation was inhibited by treatment with rapamycin. These results demonstrate that Tsc2 haploinsufficiency in SMCs increases proliferation and decreases contractile protein expression and suggest that the increased proliferative potential of the mutant cells may be suppressed in vivo by interaction with elastin. These findings provide insights into the molecular pathogenesis of aortic disease in TSC patients and identify a potential therapeutic target for treatment of this complication of the disease.
Collapse
Affiliation(s)
- Jiumei Cao
- Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lasater EA, Li F, Bessler WK, Estes ML, Vemula S, Hingtgen CM, Dinauer MC, Kapur R, Conway SJ, Ingram DA. Genetic and cellular evidence of vascular inflammation in neurofibromin-deficient mice and humans. J Clin Invest 2010; 120:859-70. [PMID: 20160346 DOI: 10.1172/jci41443] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 01/06/2010] [Indexed: 11/17/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) results from mutations in the NF1 tumor suppressor gene, which encodes the protein neurofibromin. NF1 patients display diverse clinical manifestations, including vascular disease, which results from neointima formation and vessel occlusion. However, the pathogenesis of NF1 vascular disease remains unclear. Vessel wall homeostasis is maintained by complex interactions between vascular and bone marrow-derived cells (BMDCs), and neurofibromin regulates the function of each cell type. Therefore, utilizing cre/lox techniques and hematopoietic stem cell transplantation to delete 1 allele of Nf1 in endothelial cells, vascular smooth muscle cells, and BMDCs alone, we determined which cell lineage is critical for neointima formation in vivo in mice. Here we demonstrate that heterozygous inactivation of Nf1 in BMDCs alone was necessary and sufficient for neointima formation after vascular injury and provide evidence of vascular inflammation in Nf1+/- mice. Further, analysis of peripheral blood from NF1 patients without overt vascular disease revealed increased concentrations of inflammatory cells and cytokines previously linked to vascular inflammation and vasoocclusive disease. These data provide genetic and cellular evidence of vascular inflammation in NF1 patients and Nf1+/- mice and provide a framework for understanding the pathogenesis of NF1 vasculopathy and potential therapeutic and diagnostic interventions.
Collapse
Affiliation(s)
- Elisabeth A Lasater
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, 46202, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Okazaki K, Kakita A, Tanaka H, Kimura K, Minagawa M, Morita T, Takahashi H. Widespread ischemic brain lesions caused by vasculopathy associated with neurofibromatosis type 1. Neuropathology 2010; 30:627-33. [DOI: 10.1111/j.1440-1789.2009.01097.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Demestre M, Herzberg J, Holtkamp N, Hagel C, Reuss D, Friedrich RE, Kluwe L, Von Deimling A, Mautner VF, Kurtz A. Imatinib mesylate (Glivec) inhibits Schwann cell viability and reduces the size of human plexiform neurofibroma in a xenograft model. J Neurooncol 2009; 98:11-9. [PMID: 19921098 DOI: 10.1007/s11060-009-0049-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 10/26/2009] [Indexed: 01/13/2023]
Abstract
Plexiform neurofibromas (PNF), one of the major features of neurofibromatosis type 1 (NF1), are characterized by complex cellular composition and mostly slow but variable growth patterns. In this study, we examined the effect of imatinib mesylate, a receptor tyrosine kinase inhibitor, on PNF-derived Schwann cells and PNF tumour growth in vitro and in vivo. In vitro, PNF-derived primary Schwann cells express platelet-derived growth factors receptors (PDGFR) alpha and beta, both targets of imatinib, and cell viability was reduced by imatinib mesylate, with 50% inhibition concentration (IC(50)) of 10 microM. For in vivo studies, PNF tumour fragments xenografted onto the sciatic nerve of athymic nude mice were first characterized. The tumours persisted for at least 63 days and maintained typical characteristics of PNFs such as complex cellular composition, low proliferation rate and angiogenesis. A transient enlargement of the graft size was due to inflammation by host cells. Treatment with imatinib mesylate at a daily dose of 75 mg/kg for 4 weeks reduced the graft size by an average of 80% (n = 8), significantly different from the original sizes within the group and from sizes of the grafts in 11 untreated mice in the control group (P < 0.001). We demonstrated that grafting human PNF tumour fragments into nude mice provides an adequate in vivo model for drug testing. Our results provide in vivo and in vitro evidence for efficacy of imatinib mesylate for PNF.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Benzamides
- Brain Neoplasms/drug therapy
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Cell Size/drug effects
- Cell Survival/drug effects
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Imatinib Mesylate
- Ki-67 Antigen/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Neoplasm Transplantation/methods
- Neurofibroma, Plexiform/drug therapy
- Neurofibroma, Plexiform/pathology
- Piperazines/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Pyrimidines/pharmacology
- Receptor, Platelet-Derived Growth Factor alpha/metabolism
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- S100 Proteins/metabolism
- Schwann Cells/cytology
- Schwann Cells/drug effects
- Young Adult
Collapse
Affiliation(s)
- Maria Demestre
- Department of Maxillofacial Surgery, University Medical Centre Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Daginakatte GC, Gianino SM, Zhao NW, Parsadanian AS, Gutmann DH. Increased c-Jun-NH2-kinase signaling in neurofibromatosis-1 heterozygous microglia drives microglia activation and promotes optic glioma proliferation. Cancer Res 2009; 68:10358-66. [PMID: 19074905 DOI: 10.1158/0008-5472.can-08-2506] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neurofibromatosis-1 (NF1) is a common tumor predisposition syndrome in which affected individuals develop benign and malignant tumors. Previous studies from our laboratory and others have shown that benign tumor formation in Nf1 genetically engineered mice (GEM) requires a permissive tumor microenvironment. In the central nervous system, Nf1 loss in glia is insufficient for glioma formation unless coupled with Nf1 heterozygosity in the brain. Our subsequent studies identified Nf1+/- microglia as a critical cellular determinant of optic glioma growth in Nf1 GEM. Using NF1 as an experimental paradigm to further characterize the role of microglia in glioma growth, we first examined the properties of Nf1+/- microglia in vitro and in vivo. Nf1+/- microglia exhibit increased proliferation and motility and express elevated levels of genes associated with microglia activation. We further show that Nf1+/- microglia harbor high levels of activated c-Jun-NH(2)-kinase (JNK) without any significant changes in Akt, mitogen-activated protein kinase (MAPK), or p38-MAPK activity. In contrast, Nf1-/- astrocytes do not exhibit increased JNK activation. SP600125 inhibition of JNK activity in Nf1+/- microglia results in amelioration of the increased proliferation and motility phenotypes and reduces the levels of expression of activated microglia-associated transcripts. Moreover, SP600125 treatment of Nf1 optic glioma-bearing GEM results in reduced optic glioma proliferation in vivo. Collectively, these findings suggest that Nf1+/- microglia represent a good model system to study the role of specialized microglia in brain tumorigenesis and identify a unique Nf1 deregulated pathway for therapeutic studies aimed at abrogating microenvironmental signals that promote brain tumor growth.
Collapse
Affiliation(s)
- Girish C Daginakatte
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|