1
|
Brownlie RJ, Salmond RJ. Regulation of T Cell Signaling and Immune Responses by PTPN22. Mol Cell Biol 2024; 44:443-452. [PMID: 39039893 PMCID: PMC11486154 DOI: 10.1080/10985549.2024.2378810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/01/2024] [Accepted: 07/07/2024] [Indexed: 07/24/2024] Open
Abstract
Protein tyrosine phosphatases (PTPs) play central roles in the regulation of cell signaling, organismal development, cellular differentiation and proliferation, and cancer. In the immune system, PTPs regulate the activation, differentiation and effector function of lymphocytes and myeloid cells whilst single-nucleotide polymorphisms (SNPs) in PTP-encoding genes have been identified as risk factors for the development of autoimmunity. In this review we describe the roles for PTP nonreceptor type 22 (PTPN22) in the regulation of T lymphocyte signaling and activation in autoimmunity, infection and cancer. We summarize recent progress in our understanding of the regulation of PTPN22 activity, the impact of autoimmune disease-associated PTPN22 SNPs on T cell responses and describe approaches to harness PTPN22 as a target to improve T cell-based immunotherapies in cancer.
Collapse
|
2
|
Cadena-Sandoval D, Montúfar-Robles I, Barbosa-Cobos RE, Hernández-Molina G, Karen Salas-García A, Sánchez-Zauco N, Ramírez-Bello J. Interactions between TNFAIP3, PTPN22, and TRAF1-C5 gene polymorphisms in patients with primary Sjögren's syndrome. Arch Rheumatol 2024; 39:60-70. [PMID: 38774701 PMCID: PMC11104759 DOI: 10.46497/archrheumatol.2024.10108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2024] Open
Abstract
Objectives The aim of our study was to investigate whether TNFAIP3, PTPN22, and TRAF1-5 single nucleotide polymorphisms (SNPs) are associated with susceptibility, severity, or serological markers in primary Sjögren's syndrome (pSS). Patients and methods The cases and controls study was conducted between December 2021 and June 2022. TNFAIP3 rs10499194C/T, rs6920220G/A, and rs2230926T/G, PTPN22 rs2476601C/T and rs33996649G/A, and TRAF1-C5 rs10818488G/A polymorphisms were genotyped in 154 female pSS patients (mean age: 45.2±6.8 years) and 313 female control subjects (mean age: 50.3±7.5 years) using the TaqMan® SNP genotyping assay. An association analysis between TNFAIP3, PTPN22, and TRAF1-C5 SNPs and susceptibility, clinical characteristics, and serological markers of pSS was performed. Interactions between TNFAIP3, PTPN22, and TRAF1-C5 SNPs were also evaluated in patients and controls. Results The genotype and allele frequencies showed no association with susceptibility, severity, or serological markers of pSS. Nevertheless, several interactions between TNFAIP3 and TRAF1-C5 or TNFAIP3, PTPN22, and TRAF1-C5 genotypes were associated with susceptibility to pSS (p<0.01). Conclusion Individual TNFAIP3, PTPN22, and TRAF1-C5 SNPs are not associated with susceptibility, severity, or serological markers of pSS. However, genetic interactions between TRAF1-C5 and TNFAIP3 or TNFAIP3, PTPN22, and TRAF1-C5 SNPs are risk factors for pSS.
Collapse
Affiliation(s)
- Daniel Cadena-Sandoval
- Universidad Juárez Autónoma De Tabasco, Comalcalco Multidisciplinary Academic Division, Comalcalco, Tabasco, Mexico
| | | | | | - Gabriela Hernández-Molina
- Departamento De Inmunología Y Reumatología, Instituto Nacional De Ciencias Médicas Y Nutrición, Ciudad De México , Mexico
| | | | - Norma Sánchez-Zauco
- División De Diagnostico Y Tratamientos Auxiliares, Centro Médico Nacional Siglo Xxi, Ciudad De México, Mexico
| | - Julian Ramírez-Bello
- Subdirección de Investigación Clínica, Instituto Nacional De Cardiologia Ignacio Chávez, Ciudad De Mexico, Mexico
| |
Collapse
|
3
|
Ciesielski TH, Sirugo G, Iyengar SK, Williams SM. Characterizing the pathogenicity of genetic variants: the consequences of context. NPJ Genom Med 2024; 9:3. [PMID: 38195641 PMCID: PMC10776585 DOI: 10.1038/s41525-023-00386-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024] Open
Affiliation(s)
- Timothy H Ciesielski
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Mary Ann Swetland Center for Environmental Health at Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Ronin Institute, Montclair, NJ, USA.
| | - Giorgio Sirugo
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sudha K Iyengar
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- The Department of Genetics and Genome Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
| | - Scott M Williams
- The Department of Population and Quantitative Health Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- The Department of Genetics and Genome Sciences at Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Cleveland, OH, USA
| |
Collapse
|
4
|
Stanford SM, Bottini N. Targeting protein phosphatases in cancer immunotherapy and autoimmune disorders. Nat Rev Drug Discov 2023; 22:273-294. [PMID: 36693907 PMCID: PMC9872771 DOI: 10.1038/s41573-022-00618-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2022] [Indexed: 01/25/2023]
Abstract
Protein phosphatases act as key regulators of multiple important cellular processes and are attractive therapeutic targets for various diseases. Although extensive effort has been dedicated to phosphatase-targeted drug discovery, early expeditions for competitive phosphatase inhibitors were plagued by druggability issues, leading to the stigmatization of phosphatases as difficult targets. Despite challenges, persistent efforts have led to the identification of several drug-like, non-competitive modulators of some of these enzymes - including SH2 domain-containing protein tyrosine phosphatase 2, protein tyrosine phosphatase 1B, vascular endothelial protein tyrosine phosphatase and protein phosphatase 1 - reigniting interest in therapeutic targeting of phosphatases. Here, we discuss recent progress in phosphatase drug discovery, with emphasis on the development of selective modulators that exhibit biological activity. The roles and regulation of protein phosphatases in immune cells and their potential as powerful targets for immuno-oncology and autoimmunity indications are assessed.
Collapse
Affiliation(s)
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, CA, USA.
| |
Collapse
|
5
|
Tizaoui K, Shin JI, Jeong GH, Yang JW, Park S, Kim JH, Hwang SY, Park SJ, Koyanagi A, Smith L. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina (B Aires) 2022; 58:medicina58081034. [PMID: 36013501 PMCID: PMC9415475 DOI: 10.3390/medicina58081034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
It is known that the etiology and clinical outcomes of autoimmune diseases are associated with a combination of genetic and environmental factors. In the case of the genetic factor, the SNPs of the PTPN22 gene have shown strong associations with several diseases. The recent exploding numbers of genetic studies have made it possible to find these associations rapidly, and a variety of autoimmune diseases were found to be associated with PTPN22 polymorphisms. Proteins encoded by PTPN22 play a key role in the adaptative and immune systems by regulating both T and B cells. Gene variants, particularly SNPs, have been shown to significantly disrupt several immune functions. In this review, we summarize the mechanism of how PTPN22 and its genetic variants are involved in the pathophysiology of autoimmune diseases. In addition, we sum up the findings of studies reporting the genetic association of PTPN22 with different types of diseases, including type 1 diabetes mellitus, systemic lupus erythematosus, juvenile idiopathic arthritis, and several other diseases. By understanding these findings comprehensively, we can explain the complex etiology of autoimmunity and help to determine the criteria of disease diagnosis and prognosis, as well as medication developments.
Collapse
Affiliation(s)
- Kalthoum Tizaoui
- Department of Basic Sciences, Division of Histology and Immunology, Faculty of Medicine Tunis, Tunis El Manar University, Tunis 2092, Tunisia;
| | - Jae Il Shin
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
| | - Gwang Hun Jeong
- College of Medicine, Gyeongsang National University, Jinju 52727, Korea;
| | - Jae Won Yang
- Department of Nephrology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea;
| | - Seoyeon Park
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Ji Hong Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul 03722, Korea;
- Correspondence: ; Tel.: +82-2-2019-3352; Fax: +82-2-3461-9473
| | - Soo Young Hwang
- Yonsei University College of Medicine, Seoul 06273, Korea; (S.P.); (S.Y.H.)
| | - Se Jin Park
- Department of Pediatrics, Eulji University School of Medicine, Daejeon 35233, Korea;
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Déu, CIBERSAM, Dr. Antoni Pujadas, 42, Sant Boi de Llobregat, 08830 Barcelona, Spain;
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Lee Smith
- Centre for Health Performance and Wellbeing, Anglia Ruskin University, Cambridge CB1 1PT, UK;
| |
Collapse
|
6
|
Shumanska M, Bogeski I. Redoxing PTPN22 activity. eLife 2022; 11:79125. [PMID: 35588003 PMCID: PMC9119671 DOI: 10.7554/elife.79125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The oxidative state of a critical cysteine residue determines the enzymatic activity of a phosphatase involved in T-cell immune responses.
Collapse
Affiliation(s)
- Magdalena Shumanska
- Molecular Physiology Division, Institute of Cardiovascular Physiology, University Medical Center, Georg-August University, Göttingen, Germany
| | - Ivan Bogeski
- Molecular Physiology Division, Institute of Cardiovascular Physiology, University Medical Center, Georg-August University, Göttingen, Germany
| |
Collapse
|
7
|
Immunogenetics of Lupus Erythematosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:213-257. [DOI: 10.1007/978-3-030-92616-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Armitage LH, Wallet MA, Mathews CE. Influence of PTPN22 Allotypes on Innate and Adaptive Immune Function in Health and Disease. Front Immunol 2021; 12:636618. [PMID: 33717184 PMCID: PMC7946861 DOI: 10.3389/fimmu.2021.636618] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/18/2021] [Indexed: 01/18/2023] Open
Abstract
Protein tyrosine phosphatase, non-receptor type 22 (PTPN22) regulates a panoply of leukocyte signaling pathways. A single nucleotide polymorphism (SNP) in PTPN22, rs2476601, is associated with increased risk of Type 1 Diabetes (T1D) and other autoimmune diseases. Over the past decade PTPN22 has been studied intensely in T cell receptor (TCR) and B cell receptor (BCR) signaling. However, the effect of the minor allele on PTPN22 function in TCR signaling is controversial with some reports concluding it has enhanced function and blunts TCR signaling and others reporting it has reduced function and increases TCR signaling. More recently, the core function of PTPN22 as well as functional derangements imparted by the autoimmunity-associated variant allele of PTPN22 have been examined in monocytes, macrophages, dendritic cells, and neutrophils. In this review we will discuss the known functions of PTPN22 in human cells, and we will elaborate on how autoimmunity-associated variants influence these functions across the panoply of immune cells that express PTPN22. Further, we consider currently unresolved questions that require clarification on the role of PTPN22 in immune cell function.
Collapse
Affiliation(s)
- Lucas H. Armitage
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
- Immuno-Oncology at Century Therapeutics, LLC, Philadelphia, PA, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
Ukadike KC, Mustelin T. Implications of Endogenous Retroelements in the Etiopathogenesis of Systemic Lupus Erythematosus. J Clin Med 2021; 10:856. [PMID: 33669709 PMCID: PMC7922054 DOI: 10.3390/jcm10040856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease. While its etiology remains elusive, current understanding suggests a multifactorial process with contributions by genetic, immunologic, hormonal, and environmental factors. A hypothesis that combines several of these factors proposes that genomic elements, the L1 retrotransposons, are instrumental in SLE pathogenesis. L1 retroelements are transcriptionally activated in SLE and produce two proteins, ORF1p and ORF2p, which are immunogenic and can drive type I interferon (IFN) production by producing DNA species that activate cytosolic DNA sensors. In addition, these two proteins reside in RNA-rich macromolecular assemblies that also contain well-known SLE autoantigens like Ro60. We surmise that cells expressing L1 will exhibit all the hallmarks of cells infected by a virus, resulting in a cellular and humoral immune response similar to those in chronic viral infections. However, unlike exogenous viruses, L1 retroelements cannot be eliminated from the host genome. Hence, dysregulated L1 will cause a chronic, but perhaps episodic, challenge for the immune system. The clinical and immunological features of SLE can be at least partly explained by this model. Here we review the support for, and the gaps in, this hypothesis of SLE and its potential for new diagnostic, prognostic, and therapeutic options in SLE.
Collapse
Affiliation(s)
| | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington School of Medicine, 750 Republican Street, Seattle, WA 98109, USA;
| |
Collapse
|
10
|
Castro-Sanchez P, Teagle AR, Prade S, Zamoyska R. Modulation of TCR Signaling by Tyrosine Phosphatases: From Autoimmunity to Immunotherapy. Front Cell Dev Biol 2020; 8:608747. [PMID: 33425916 PMCID: PMC7793860 DOI: 10.3389/fcell.2020.608747] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 02/06/2023] Open
Abstract
Early TCR signaling is dependent on rapid phosphorylation and dephosphorylation of multiple signaling and adaptor proteins, leading to T cell activation. This process is tightly regulated by an intricate web of interactions between kinases and phosphatases. A number of tyrosine phosphatases have been shown to modulate T cell responses and thus alter T cell fate by negatively regulating early TCR signaling. Mutations in some of these enzymes are associated with enhanced predisposition to autoimmunity in humans, and mouse models deficient in orthologous genes often show T cell hyper-activation. Therefore, phosphatases are emerging as potential targets in situations where it is desirable to enhance T cell responses, such as immune responses to tumors. In this review, we summarize the current knowledge about tyrosine phosphatases that regulate early TCR signaling and discuss their involvement in autoimmunity and their potential as targets for tumor immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Rose Zamoyska
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
11
|
Yang S, Svensson MND, Harder NHO, Hsieh WC, Santelli E, Kiosses WB, Moresco JJ, Yates JR, King CC, Liu L, Stanford SM, Bottini N. PTPN22 phosphorylation acts as a molecular rheostat for the inhibition of TCR signaling. Sci Signal 2020; 13:13/623/eaaw8130. [PMID: 32184287 DOI: 10.1126/scisignal.aaw8130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The hematopoietic-specific protein tyrosine phosphatase nonreceptor type 22 (PTPN22) is encoded by a major autoimmunity risk gene. PTPN22 inhibits T cell activation by dephosphorylating substrates involved in proximal T cell receptor (TCR) signaling. Here, we found by mass spectrometry that PTPN22 was phosphorylated at Ser751 by PKCα in Jurkat and primary human T cells activated with phorbol ester/ionomycin or antibodies against CD3/CD28. The phosphorylation of PTPN22 at Ser751 prolonged its half-life by inhibiting K48-linked ubiquitination and impairing recruitment of the phosphatase to the plasma membrane, which is necessary to inhibit proximal TCR signaling. Additionally, the phosphorylation of PTPN22 at Ser751 enhanced the interaction of PTPN22 with the carboxyl-terminal Src kinase (CSK), an interaction that is impaired by the PTPN22 R620W variant associated with autoimmune disease. The phosphorylation of Ser751 did not affect the recruitment of PTPN22 R620W to the plasma membrane but protected this mutant from degradation. Together, out data indicate that phosphorylation at Ser751 mediates a reciprocal regulation of PTPN22 stability versus translocation to TCR signaling complexes by CSK-dependent and CSK-independent mechanisms.
Collapse
Affiliation(s)
- Shen Yang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mattias N D Svensson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathaniel H O Harder
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Wan-Chen Hsieh
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Eugenio Santelli
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - William B Kiosses
- Core Microscopy, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - James J Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Charles C King
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lin Liu
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, 92037, USA.,Veterans Affairs San Diego Healthcare System, San Diego, CA 90026, USA
| | - Stephanie M Stanford
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Nunzio Bottini
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. .,Division of Cellular Biology, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| |
Collapse
|
12
|
Li K, Hou X, Li R, Bi W, Yang F, Chen X, Xiao P, Liu T, Lu T, Zhou Y, Tian Z, Shen Y, Zhang Y, Wang J, Fang H, Sun J, Yu X. Identification and structure-function analyses of an allosteric inhibitor of the tyrosine phosphatase PTPN22. J Biol Chem 2019; 294:8653-8663. [PMID: 30979725 DOI: 10.1074/jbc.ra118.007129] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/23/2019] [Indexed: 01/08/2023] Open
Abstract
Protein-tyrosine phosphatase nonreceptor type 22 (PTPN22) is a lymphoid-specific tyrosine phosphatase (LYP), and mutations in the PTPN22 gene are highly correlated with a spectrum of autoimmune diseases. However, compounds and mechanisms that specifically inhibit LYP enzymes to address therapeutic needs to manage these diseases remain to be discovered. Here, we conducted a similarity search of a commercial database for PTPN22 inhibitors and identified several LYP inhibitor scaffolds, which helped identify one highly active inhibitor, NC1. Using noncompetitive inhibition curve and phosphatase assays, we determined NC1's inhibition mode toward PTPN22 and its selectivity toward a panel of phosphatases. We found that NC1 is a noncompetitive LYP inhibitor and observed that it exhibits selectivity against other protein phosphatases and effectively inhibits LYP activity in lymphoid T cells and modulates T-cell receptor signaling. Results from site-directed mutagenesis, fragment-centric topographic mapping, and molecular dynamics simulation experiments suggested that NC1, unlike other known LYP inhibitors, concurrently binds to a "WPD" pocket and a second pocket surrounded by an LYP-specific insert, which contributes to its selectivity against other phosphatases. Moreover, using a newly developed method to incorporate the unnatural amino acid 2-fluorine-tyrosine and 19F NMR spectroscopy, we provide direct evidence that NC1 allosterically regulates LYP activity by restricting WPD-loop movement. In conclusion, our approach has identified a new allosteric binding site in LYP useful for selective LYP inhibitor development; we propose that the 19F NMR probe developed here may also be useful for characterizing allosteric inhibitors of other tyrosine phosphatases.
Collapse
Affiliation(s)
- Kangshuai Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China; Department of Chemistry, New York University, New York, New York 10003
| | - Ruirui Li
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenxiang Bi
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Fan Yang
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xu Chen
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Peng Xiao
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tiantian Liu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tiange Lu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuan Zhou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhaomei Tian
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, New York 10003; NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Jiangyun Wang
- Laboratory of Quantum Biophysics and Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, 100101, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Jinpeng Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
13
|
Mustelin T, Bottini N, Stanford SM. The Contribution of PTPN22 to Rheumatic Disease. Arthritis Rheumatol 2019; 71:486-495. [PMID: 30507064 PMCID: PMC6438733 DOI: 10.1002/art.40790] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/27/2018] [Indexed: 12/22/2022]
Abstract
One of the unresolved questions in modern medicine is why certain individuals develop a disorder such as rheumatoid arthritis (RA) or lupus, while others do not. Contemporary science indicates that genetics is partly responsible for disease development, while environmental and stochastic factors also play a role. Among the many genes that increase the risk of autoimmune conditions, the risk allele encoding the W620 variant of protein tyrosine phosphatase N22 (PTPN22) is shared between multiple rheumatic diseases, suggesting that it plays a fundamental role in the development of immune dysfunction. Herein, we discuss how the presence of the PTPN22 risk allele may shape the signs and symptoms of these diseases. Besides the emerging clarity regarding how PTPN22 tunes T and B cell antigen receptor signaling, we discuss recent discoveries of important functions of PTPN22 in myeloid cell lineages. Taken together, these new insights reveal important clues to the molecular mechanisms of prevalent diseases like RA and lupus and may open new avenues for the development of personalized therapies that spare the normal function of the immune system.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, 750 Republican Street, Room E507, Seattle, WA 99108, phone (206) 616-6130,
| | - Nunzio Bottini
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, MC0656, La Jolla, CA 92093-0656, phone (858) 246-2398 (N.B.) and (858) 246-2397 (S.M.S.), (N.B.) and (S.M.S.)
| | - Stephanie M. Stanford
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, MC0656, La Jolla, CA 92093-0656, phone (858) 246-2398 (N.B.) and (858) 246-2397 (S.M.S.), (N.B.) and (S.M.S.)
| |
Collapse
|
14
|
Lobo-Alves SC, de Oliveira LA, Petzl-Erler ML. Region 1p13.2 including the RSBN1, PTPN22, AP4B1 and long non-coding RNA genes does not bear risk factors for endemic pemphigus foliaceus (fogo selvagem). Int J Immunogenet 2019; 46:139-145. [PMID: 30884100 DOI: 10.1111/iji.12423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/30/2019] [Accepted: 02/18/2019] [Indexed: 12/27/2022]
Abstract
Pemphigus foliaceus (PF) is an autoimmune skin disease characterized by autoantibodies directed mainly against desmoglein-1. The purpose of this study was to determine whether differential susceptibility to endemic PF in Brazil (fogo selvagem) is associated with polymorphisms at the cytogenetic location 1p13.2. Four single nucleotide polymorphisms that together tag 28 SNPs on a segment of approximately 312,000 bp encompassing the protein-coding genes MAGI3, PHTF1, RSBN1, PTPN22, BCL2L15, AP4B1, DCLRE1B, the pseudogenes MTND5P20, RPS2P14 (AL133517.1) and the long non-coding RNA genes AL137856.1, and AP4B1-AS1 were used as markers for association analysis in a case-control study. Allele, genotype and haplotype frequencies of rs33996649, rs2476601, rs3789604 and rs3195954 were compared between patient and control samples. No significant association was found. Lack of association with rs2476601 of the PTPN22 gene agrees with previous results for pemphigus vulgaris and the Tunisian form of endemic pemphigus foliaceus. The other three SNPs had never been analysed before in any form of pemphigus. We conclude that variants in structural and regulatory sites of region 1p13.2 are not susceptibility factors for fogo selvagem. We suggest careful investigation of this genomic region in diseases that had been previously associated with PTPN22, since there are several other genes relevant for immune-mediated diseases located in 1p13.2.
Collapse
Affiliation(s)
- Sara Cristina Lobo-Alves
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Liana Alves de Oliveira
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| | - Maria Luiza Petzl-Erler
- Laboratório de Genética Molecular Humana, Departamento de Genética, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
15
|
Association of PTPN22 1858C/T Polymorphism with Autoimmune Diseases: A Systematic Review and Bayesian Approach. J Clin Med 2019; 8:jcm8030347. [PMID: 30871019 PMCID: PMC6462981 DOI: 10.3390/jcm8030347] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/16/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022] Open
Abstract
The 1858T allele in the protein tyrosine phosphatase non-receptor type 22 (PTPN22) locus shows one of the strongest and most consistent genetic associations with autoimmune diseases. We synthesized all meta-analyses reporting a genetic association of the PTPN22 1858T C/T polymorphism with autoimmune diseases. This work examined their validity to discover false positive results under Bayesian methods. We conducted a PubMed search to identify relevant publications and extracted the respective results, published until 30 November 2018. In observational studies, the associations of 1858 C/T genetic variant were noteworthy for 12 autoimmune or autoimmunity-related diseases (rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes mellitus, juvenile idiopathic arthritis, Crohn's disease, anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis, vitiligo, Graves' disease, myasthenia gravis, Addison's disease, giant cell arteritis, and endometriosis). In contrast, we could not confirm the noteworthiness for eight diseases (systemic sclerosis, psoriasis, Behçet's disease, autoimmune thyroid disease, alopecia areata, Sjögren's syndrome, inflammatory bowel disease, and ankylosing spondylitis). From the meta-analysis of genome-wide association studies (GWAS) with a p-value < 5 × 10-8, findings verified noteworthiness for all autoimmune diseases (psoriatic arthritis, myasthenia gravis, juvenile idiopathic arthritis and rheumatoid arthritis). The results from meta-analysis of GWAS showing a p-value ranging between 0.05 and 5 × 10-8 were noteworthy under both Bayesian approaches (ANCA-associated vasculitis, type 1 diabetes mellitus, giant cell arteritis and juvenile idiopathic arthritis). Re-analysis of observational studies and GWAS by Bayesian approaches revealed the noteworthiness of all significant associations observed by GWAS, but noteworthiness could not be confirmed for all associations found in observational studies.
Collapse
|
16
|
Budding K, van Setten J, van de Graaf EA, van Rossum OA, Kardol-Hoefnagel T, Kwakkel-van Erp JM, Oudijk EJD, Hack CE, Otten HG. The Autoimmune-Associated Single Nucleotide Polymorphism Within PTPN22 Correlates With Clinical Outcome After Lung Transplantation. Front Immunol 2019; 9:3105. [PMID: 30705675 PMCID: PMC6344400 DOI: 10.3389/fimmu.2018.03105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Obstructive chronic lung allograft dysfunction (BOS) is the major limiting factor for lung transplantation (LTx) outcome. PTPN22 is described as the hallmark autoimmunity gene, and one specific single nucleotide polymorphism (SNP), rs2476601, is associated with multiple autoimmune diseases, impaired T cell regulation, and autoantibody formation. Taking into consideration the contribution of autoimmunity to LTx outcome, we hypothesized that polymorphisms in the PTPN22 gene could be associated with BOS incidence. We selected six SNPs within PTPN22 and analyzed both patient and donor genotypes on BOS development post-LTx. A total of 144 patients and matched donors were included, and individual SNPs and haplotype configurations were analyzed. We found a significant association between patients carrying the heterozygous configuration of rs2476601 and a higher risk for BOS development (p = 0.005, OR: 4.400, 95%CI: 1.563–12.390). Kaplan-Meier analysis showed that heterozygous patients exhibit a lower BOS-free survival compared to patients homozygous for rs2476601 (p = 0.0047). One haplotype, which solely contained the heterozygous risk variant, was associated with BOS development (p = 0.015, OR: 7.029, 95%CI: 1.352–36.543). Our results show that LTx patients heterozygous for rs2476601 are more susceptible for BOS development and indicate a deleterious effect of the autoimmune-related risk factor of PTPN22 in patients on LTx outcome.
Collapse
Affiliation(s)
- Kevin Budding
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Eduard A van de Graaf
- Department of Respiratory Medicine, University Medical Center Utrecht, Utrecht, Netherlands
| | - Oliver A van Rossum
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Tineke Kardol-Hoefnagel
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Erik-Jan D Oudijk
- Center of Interstitial Lung Diseases, St. Antonius Hospital, Nieuwegein, Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands.,Departments of Rheumatology and Dermatology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Henderikus G Otten
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
17
|
An association study in PTPN22 suggests that is a risk factor to Takayasu's arteritis. Inflamm Res 2018; 68:195-201. [PMID: 30470857 DOI: 10.1007/s00011-018-1204-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVES Takayasu's arteritis (TA) represents a rare autoimmune disease (AD) characterized by systemic vasculitis that primarily affects large arteries, especially the aorta and the aortic arch and its main branches. Genetic components in TA are largely unknown. PTPN22 is a susceptibility loci for different ADs; however, the role of different PTPN22 single-nucleotide polymorphisms (SNPs) in the susceptibility to TA is not clear. METHODS We evaluated the PTPN22 R620W (C1858T), R263Q (G788A), and - 123G/C SNPs in a group of patients with TA and in healthy individuals from Mexico. Our study included 111 patients with TA and 314 healthy individuals. Genotyping was performed with the 5' exonuclease (TaqMan®) assay. RESULTS Our data showed that the PTPN22 R620W polymorphism is a risk factor for TA (CC vs. CT: OR 4.3, p = 0.002, and C vs. T: OR 4.1, p = 0.003); however, the PTPN22 R263Q and - 1123G/C polymorphisms are not associated with this AD. In addition, the PTPN22 CGT haplotype, which carries the minor allele of the PTPN22 C1858T variant, was also associated with TA susceptibility. CONCLUSION This is the first report documenting an association between PTPN22 R620W and TA.
Collapse
|
18
|
Kara S, Pirela-Morillo GA, Gilliam CT, Wilson GD. Identification of novel susceptibility genes associated with seven autoimmune disorders using whole genome molecular interaction networks. J Autoimmun 2018; 97:48-58. [PMID: 30391024 DOI: 10.1016/j.jaut.2018.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/08/2018] [Accepted: 10/11/2018] [Indexed: 12/20/2022]
Abstract
Convergent evidence from multiple and independent genetics studies implicate a small number of genes that predispose individuals to multiple autoimmune disorders (AuD). These intersecting loci reinforced the hypothesis that disorders with overlapping etiology group into a cluster of closely related genes within a whole genome molecular interaction network. We tested the hypothesis that "biological network proximity" within a whole genome molecular interaction network can be used to inform the search for multigene inheritance. Using a set of nine previously published genome wide association studies (GWAS) of AuD genes, we generated AuD-specific molecular interaction networks to identify networks of associated genes. We show that all nine "seed genes" can be connected within a 35-member network via interactions with 26 connecting genes. We show that this network is more connected than expected by chance, and 13 of the connecting genes showed association with multiple AuD upon GWAS reanalysis. Furthermore, we report association of SNPs in five new genes (IL10RA, DGKA, GRB2, STAT5A, and NFATC2) which were not previously considered as AuD candidates, and show significant association in novel disease samples of Crohn's disease and systemic lupus erythematosus. Furthermore, we show that the connecting genes show no association in four non-AuD GWAS. Finally, we test the connecting genes in psoriasis GWAS, and show association to previously identified loci and report new loci. These findings support the hypothesis that molecular interaction networks can be used to inform the search for multigene disease etiology, especially for disorders with overlapping etiology.
Collapse
Affiliation(s)
- Sam Kara
- University of Chicago, Departments of Human Genetics, 920 East 58 th St., Chicago, IL 60637, USA; Radiation Oncology Department, Beaumont Health, 3811 W Thirteen Mile Road, Royal Oak, MI, 48073, USA
| | - Gerardo A Pirela-Morillo
- La Universidad del Zulia, Computer Science Department, Laboratories for Computational Models & Languages, and Bioinformatics, Edif. Grano de Oro, Planta Baja, Departamento de Computación, Ave. Universidad con Ave. 22, Maracaibo, 4002, Venezuela
| | - Conrad T Gilliam
- University of Chicago, Departments of Human Genetics, 920 East 58 th St., Chicago, IL 60637, USA
| | - George D Wilson
- Radiation Oncology Department, Beaumont Health, 3811 W Thirteen Mile Road, Royal Oak, MI, 48073, USA.
| |
Collapse
|
19
|
Chaouali M, Fernandes V, Ghazouani E, Pereira L, Kochkar R. Association of STAT4, TGFβ1, SH2B3 and PTPN22 polymorphisms with autoimmune hepatitis. Exp Mol Pathol 2018; 105:279-284. [PMID: 30291855 DOI: 10.1016/j.yexmp.2018.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 09/09/2018] [Accepted: 10/01/2018] [Indexed: 12/19/2022]
Abstract
The physiopathology of autoimmune hepatitis (AIH) is complex and still not fully elucidated. The genes localized outside the histocompatibility complex involved in regulation and signal transduction of the immune system SH2B3, TGFβ1, STAT4 and PTPN22 could be associated to the susceptibility and hepatocyte lysis mechanism of this lethal autoimmune disorder. PATIENTS AND METHODS We investigated four polymorphic sites in SH2B3 (rs3184504), TGFβ1 (rs1800471), STAT4 (rs7574865) and PTPN22 (rs2476601) in 45 AIH patients and 150 healthy controls from Tunisia using real-time PCR. RESULTS Significant associations were found for SH2B3 T allele (OR = 1.861; p = 0.015, pc = 0.366) and PTPN22 A allele (OR = 7.070; p = 0.026; pc = 1.00) and AIH with opposite homozygous being protective against the disease (CC genotype with OR = 0.420, p = 0.025; GG genotype with OR = 0.136, p = 0.025, respectively). No statistically significant associations were found for the TGFβ1 and STAT4 polymorphisms with AIH susceptibility. CONCLUSION Our work enlarges information on non-HLA genes that are associated with AIH by focusing in a region of the world that was poorly molecularly characterized for this disease.
Collapse
Affiliation(s)
- Marwa Chaouali
- Department of Immunology, Military Hospital of Tunis, Montfleury 1008, Tunis, Tunisia; Laboratory of Mycology Pathologies and Biomarkers, El Manar University, Tunis 1092, Tunisia.
| | - Veronica Fernandes
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-135, Portugal
| | - Ezzedine Ghazouani
- Department of Immunology, Military Hospital of Tunis, Montfleury 1008, Tunis, Tunisia
| | - Luisa Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal; Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), Porto 4200-135, Portugal; Faculdade de Medicina da Universidade do Porto, Portugal
| | - Radhia Kochkar
- Department of Immunology, Military Hospital of Tunis, Montfleury 1008, Tunis, Tunisia
| |
Collapse
|
20
|
Carmona FD, Martín J. The potential of PTPN22 as a therapeutic target for rheumatoid arthritis. Expert Opin Ther Targets 2018; 22:879-891. [PMID: 30251905 DOI: 10.1080/14728222.2018.1526924] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION PTPN22 encodes a lymphoid-specific tyrosine phosphatase (LYP) that is a master regulator of the immune response. This gene is a major susceptibility factor for a wide range of autoimmune conditions, including rheumatoid arthritis (RA) for which it represents the strongest non-HLA contributor to disease risk. A missense PTPN22 allele (R620W) affecting the protein-protein interaction of LYP with other relevant players was described as the functional variant of the association. This review will focus on the role of PTPN22 in the pathogenic mechanisms underlying RA predisposition and discuss the possibility of developing LYP-based treatment strategies with a potential application in clinical practice. Areas covered: This review covers the literature showing how PTPN22 is implicated in signalling pathways involved in the autoimmune and autoinflammatory processes underlying RA. Insights obtained from studies aimed at developing novel selective LYP suppressors for treating RA are summarized. Expert opinion: Targeting key risk factors during the early steps of the disease may represent a good strategy to accomplish complete disease remission. As cumulating evidences suggest that PTPN22 R620W is a gain-of-function variant, a growing interest in developing LYP inhibitors has arisen. The potential efficacy and possible application of such compounds are discussed.
Collapse
Affiliation(s)
- F David Carmona
- a Departamento de Genética e Instituto de Biotecnología , Universidad de Granada , Granada , Spain
| | - Javier Martín
- b Instituto de Parasitología y Biomedicina López-Neyra , Consejo Superior de Investigaciones Científicas, IPBLN-CSIC , Granada , Spain
| |
Collapse
|
21
|
Shehjar F, Dil-Afroze, Misgar RA, Malik SA, Laway BA. PTPN22 1858 C/T Exon Polymorphism is not Associated with Graves' Disease in Kashmiri population. Indian J Endocrinol Metab 2018; 22:457-460. [PMID: 30148088 PMCID: PMC6085953 DOI: 10.4103/ijem.ijem_105_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Graves' disease (GD) is a multifactorial autoimmune disease with contribution from both genetic and epigenetic factors in its causation. Association of genetic factors and GD has been extensively studied. Gene "protein tyrosine phosphatase nonreceptor 22" (PTPN22) is an important immunoregulatory gene preventing hyper responsiveness of T cells by negatively regulating their signal transduction. Association of single-nucleotide polymorphism (SNP) 1858 C/T within PTPN22 with some autoimmune diseases has been described. Methods We aimed to analyze whether 1858 C/T SNP of PTPN22 gene has any association with GD in Kashmiri population. Polymerase chain reaction-restriction fragment length polymorphism was performed for genotyping 1858 C/T SNP in 135 patients with GD and 150 age- and gender-matched healthy controls. Results Among the patients with GD, the frequencies of PTPN22 1858 CC, CT, and TT genotypes were 97.7, 2.2, and 0%, respectively, whereas in healthy controls the frequencies of CC, CT genotypes were 100 and 0%, respectively. No significant association was found between PTPN22 1858 C/T SNP and patients with GD. Conclusion GD is not associated with PTPN22 1858 C/T SNP in Kashmiri population. Furthermore, 1858 C/T SNP in PTPN22 gene could be a part of variation in different ethnic populations across the globe.
Collapse
Affiliation(s)
- Faheem Shehjar
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Dil-Afroze
- Department of Immunology and Molecular Medicine, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Riaz A Misgar
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Sajad A Malik
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| | - Bashir A Laway
- Department of Endocrinology, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Srinagar, Jammu and Kashmir, India
| |
Collapse
|
22
|
Brownlie RJ, Zamoyska R, Salmond RJ. Regulation of autoimmune and anti-tumour T-cell responses by PTPN22. Immunology 2018; 154:377-382. [PMID: 29512901 PMCID: PMC6002233 DOI: 10.1111/imm.12919] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
A number of polymorphisms in immune-regulatory genes have been identified as risk factors for the development of autoimmune disease. PTPN22 (that encodes a tyrosine phosphatase) has been associated with the development of several autoimmune diseases, including type 1 diabetes, rheumatoid arthritis and systemic lupus erythematosus. PTPN22 regulates the activity and effector functions of multiple important immune cell types, including lymphocytes, granulocytes and myeloid cells. In this review, we describe the role of PTPN22 in regulating T-cell activation and effector responses. We discuss progress in our understanding of the impact of PTPN22 in autoimmune disease in humans and mouse models, as well as recent evidence suggesting that genetic manipulation of PTPN22 expression might enhance the efficacy of anti-tumour T-cell responses.
Collapse
Affiliation(s)
- Rebecca J. Brownlie
- Leeds Institute of Cancer and PathologySt James's University HospitalUniversity of LeedsLeedsUK
| | - Rose Zamoyska
- Ashworth LaboratoriesInstitute of Immunology and Infection ResearchUniversity of EdinburghEdinburghUK
| | - Robert J. Salmond
- Leeds Institute of Cancer and PathologySt James's University HospitalUniversity of LeedsLeedsUK
| |
Collapse
|
23
|
Heneberg P, Kocková L, Čecháková M, Daňková P, Černá M. Autoimmunity-Associated PTPN22 Polymorphisms in Latent Autoimmune Diabetes of the Adult Differ from Those of Type 1 Diabetes Patients. Int Arch Allergy Immunol 2018; 177:57-68. [DOI: 10.1159/000489225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022] Open
|
24
|
Spalinger MR, Lang S, Gottier C, Dai X, Rawlings DJ, Chan AC, Rogler G, Scharl M. PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy 2017; 13:1590-1601. [PMID: 28786745 PMCID: PMC5612532 DOI: 10.1080/15548627.2017.1341453] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A variant within the gene locus encoding PTPN22 (protein tyrosine phosphatase, non-receptor type 22) emerged as an important risk factor for auto-inflammatory disorders, including rheumatoid arthritis, systemic lupus erythematosus and type 1 diabetes, but at the same time protects from Crohn disease, one of the 2 main forms of inflammatory bowel diseases. We have previously shown that loss of PTPN22 results in decreased NLRP3 (NLR family pyrin domain containing 3) activation and that this effect is mediated via enhanced NLRP3 phosphorylation. However, it is unclear how phosphorylation of NLRP3 mediates its inhibition. Here, we demonstrate that loss of macroautophagy/autophagy abrogates the inhibitory effect on NLRP3 activation observed upon loss of PTPN22. Phosphorylated, but not nonphosphorylated NLRP3 is found in autophagosomes, indicating that NLRP3 phosphorylation mediates its inactivation via promoting sequestration into phagophores, the precursors to autophagosomes. This finding shows that autophagy and NLRP3 inflammasome activation are connected, and that PTPN22 plays a key role in the regulation of those 2 pathways. Given its role in inflammatory disorders, PTPN22 might be an attractive therapeutic target, and understanding the cellular mechanisms modulated by PTPN22 is of crucial importance.
Collapse
Affiliation(s)
- Marianne R Spalinger
- a Division of Gastroenterology and Hepatology , University Hospital Zurich, University of Zurich , Zurich , Switzerland
| | - Silvia Lang
- a Division of Gastroenterology and Hepatology , University Hospital Zurich, University of Zurich , Zurich , Switzerland
| | - Claudia Gottier
- a Division of Gastroenterology and Hepatology , University Hospital Zurich, University of Zurich , Zurich , Switzerland
| | - Xuezhi Dai
- b Department of Pediatrics , University of Washington School of Medicine, and Seattle Children's Research Institute , Seattle , WA , USA
| | - David J Rawlings
- b Department of Pediatrics , University of Washington School of Medicine, and Seattle Children's Research Institute , Seattle , WA , USA
| | - Andrew C Chan
- c Department of Immunology, Department of Translational Immunology, and Department of Pathology , Genentech, Inc. , South San Francisco , CA , USA
| | - Gerhard Rogler
- a Division of Gastroenterology and Hepatology , University Hospital Zurich, University of Zurich , Zurich , Switzerland.,d Zurich Center for Integrative Human Physiology , University of Zurich , Zurich , Switzerland
| | - Michael Scharl
- a Division of Gastroenterology and Hepatology , University Hospital Zurich, University of Zurich , Zurich , Switzerland.,d Zurich Center for Integrative Human Physiology , University of Zurich , Zurich , Switzerland
| |
Collapse
|
25
|
The PTPN22 R263Q polymorphism confers protection against systemic lupus erythematosus and rheumatoid arthritis, while PTPN22 R620W confers susceptibility to Graves' disease in a Mexican population. Inflamm Res 2017; 66:775-781. [PMID: 28500376 DOI: 10.1007/s00011-017-1056-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/06/2017] [Accepted: 05/08/2017] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE The functional PTPN22 R620W polymorphism (rs2476601) is clearly associated with susceptibility to several autoimmune diseases (ADs). However, the PTPN22 R263Q polymorphism (rs33996649) has been scarcely explored in different ADs. Here we aimed to examine the associations of the PTPN22 R620W and R263Q polymorphisms with susceptibility to or protection against rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and Graves' disease (GD) among Mexican patients. METHODS We conducted a case-control study including 876 patients (405 with SLE, 388 with RA, and 83 with GD) and 336 healthy control individuals. PTPN22 genotypes were determined using the TaqMan 5' allele discrimination assay. RESULTS PTPN22 R620W was associated with GD susceptibility (OR 4.3, p = 0.004), but was not associated with SLE (OR 1.8, p = 0.19). We previously demonstrated that this polymorphism is associated with RA susceptibility (OR 4.17, p = 0.00036). Moreover, PTPN22 R263Q was associated with protection against SLE (OR 0.09, p = 004) and RA (OR 0.28, p = 0.045), but was not associated with GD. CONCLUSIONS Our data provide the first demonstration that PTPN22 R620W confers GD susceptibility among Latin-American patients. Moreover, this is the second report documenting the association of PTPN22 R263Q with protection against SLE and RA.
Collapse
|
26
|
Association of STAT4 and PTPN22 polymorphisms and their interactions with type-1 autoimmune hepatitis susceptibility in Chinese Han children. Oncotarget 2017; 8:60933-60940. [PMID: 28977835 PMCID: PMC5617395 DOI: 10.18632/oncotarget.17458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/12/2017] [Indexed: 01/02/2023] Open
Abstract
AIMS To investigate the impact of signal transducer and activator of transcription 4 (STAT4) and the protein tyrosine phosphatase N22 (PTPN22) gene single nucleotide polymorphisms (SNPs), gene-gene interactions and haplotype on type-1 Autoimmune Hepatitis (AIH) risk. RESULTS Logistic regression analysis showed that type 1 AIH was significantly higher in carriers of T allele of rs7574865 than those with GG genotype (P- value less than 0.001), higher in carriers of C allele of rs7582694 than those with GG genotype (P- value < 0.001), and lower in carriers of T allele of rs2476601 than those with CC genotype (P- value < 0.001). GMDR model indicated a significant two-locus model (p = 0.0100) involving rs7582694 and rs2476601. Participants with GC or CC of rs7582694 and CC of rs2476601 genotype have the highest type 1 AIH risk (P- value < 0.001), after covariates adjustment. Haplotype containing the rs7582694-C and rs7574865-T alleles were associated with a statistically increased type 1 AIH risk (P < 0.001). MATERIALS AND METHODS Logistic regression was performed to investigate association between SNPs within STAT4 and PTPN22 gene and susceptibility to type 1 AIH. Generalized multifactor dimensionality reduction (GMDR) was used to screen the best interaction combinations among the 4 SNPs. CONCLUSIONS We conclude that rs7574865 and rs7582694 in STAT4 gene minor alleles, interaction between rs7582694 and rs2476601, and haplotype containing the rs7582694-C and rs7574865-T alleles are associated with increased type 1 AIH risk, but rs2476601 in PTPN22 gene minor allele is associated with decreased type 1 AIH risk.
Collapse
|
27
|
Ke X, Song S, Wang X, Shen Y, Kang H, Hong S. Associations of single nucleotide polymorphisms of PTPN22 and Ctla4 genes with the risk of allergic rhinitis in a Chinese Han population. Hum Immunol 2016; 78:227-231. [PMID: 27888068 DOI: 10.1016/j.humimm.2016.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 11/02/2016] [Accepted: 11/22/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allergic rhinitis (AR) is an inflammatory disorder of the upper airway. Protein tyrosine phosphatase non-receptor 22 encoded by PTPN22 gene and cytotoxic T-lymphocyte associated 4 encoded by Ctla4 gene are associated with autoimmune diseases. PURPOSE This study was performed to evaluate the potential association of PTPN22 and Ctla4 single nucleotide polymorphisms (SNPs) with AR in a Chinese Han population. METHODS A case-control study was performed in 783 Chinese AR patients and 811 healthy controls. Three SNPs in PTPN22 gene (rs2488457, rs1310182, and rs3789604) and 6 SNPs in Ctla4 gene (rs3087243, rs231779, rs11571302, rs11571315, rs231725, and rs35219727) were detected using a polymerase chain reaction-restriction fragment length polymorphism assay (PCR-RFLP). RESULTS For PTPN22 gene, a significantly decreased prevalence of the rs2488457 CC genotype and C allele was found in AR patients. The frequencies of the rs1310182 CC genotype, CT genotype, and C allele were significantly associated with the risk of AR. For Ctla4 gene, a significantly increased prevalence of the rs11571302 AA genotype, CA genotype and A allele was noted in AR patients. CONCLUSION SNPs of PTPN22 and Ctla4 genes are significantly associated with the risk of AR in the Chinese Han population.
Collapse
Affiliation(s)
- Xia Ke
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shanghua Song
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqiang Wang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Shen
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Houyong Kang
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Suling Hong
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Schickel JN, Kuhny M, Baldo A, Bannock JM, Massad C, Wang H, Katz N, Oe T, Menard L, Soulas-Sprauel P, Strowig T, Flavell R, Meffre E. PTPN22 inhibition resets defective human central B cell tolerance. Sci Immunol 2016; 1. [PMID: 27917411 PMCID: PMC5127630 DOI: 10.1126/sciimmunol.aaf7153] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The 1858T protein tyrosine phosphatase nonreceptor type 22 (PTPN22 T) allele is one of the main risk factors associated with many autoimmune diseases and correlates with a defective removal of developing autoreactive B cells in humans. To determine whether inhibiting PTPN22 favors the elimination of autoreactive B cells, we first demonstrated that the PTPN22 T allele interfered with the establishment of central B cell tolerance using NOD-scid-common γ chain knockout (NSG) mice engrafted with human hematopoietic stem cells expressing this allele. In contrast, the inhibition of either PTPN22 enzymatic activity or its expression by RNA interference restored defective central B cell tolerance in this model. Thus, PTPN22 blockade may represent a therapeutic strategy for the prevention or treatment of autoimmunity.
Collapse
Affiliation(s)
- Jean-Nicolas Schickel
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Marcel Kuhny
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Alessia Baldo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Jason M Bannock
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Christopher Massad
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Haowei Wang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Nathan Katz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Tyler Oe
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Laurence Menard
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Pauline Soulas-Sprauel
- CNRS UPR 3572, Laboratory of Immunopathology and Therapeutic Chemistry/Laboratory of Excellence Medalis, Molecular and Cellular Biology Institute (IBMC), Strasbourg, France
| | - Till Strowig
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Richard Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815-6789, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
29
|
Umemura T, Joshita S, Yamazaki T, Komatsu M, Katsuyama Y, Yoshizawa K, Tanaka E, Ota M. Genetic Association of PTPN22 Polymorphisms with Autoimmune Hepatitis and Primary Biliary Cholangitis in Japan. Sci Rep 2016; 6:29770. [PMID: 27406031 PMCID: PMC4942688 DOI: 10.1038/srep29770] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/23/2016] [Indexed: 12/25/2022] Open
Abstract
Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are liver-specific autoimmune conditions that are characterized by chronic hepatic damage and often lead to cirrhosis and hepatic failure. Specifically, the protein tyrosine phosphatase N22 (PTPN22) gene encodes the lymphoid protein tyrosine phosphatase, which acts as a negative regulator of T-cell receptor signaling. A missense single nucleotide polymorphism (SNP) (rs2476601) in PTPN22 has been linked to numerous autoimmune diseases in Caucasians. In the present series, nine SNPs in the PTPN22 gene were analyzed in 166 patients with AIH, 262 patients with PBC, and 322 healthy controls in the Japanese population using TaqMan assays. Although the functional rs3996649 and rs2476601 were non-polymorphic in all subject groups, the frequencies of the minor alleles at rs1217412, rs1217388, rs1217407, and rs2488458 were significantly decreased in AIH patients as compared with controls (all Pc < 0.05). There were no significant relationships with PTPN22 SNPs in PBC patients. Interestingly, the AAGTCCC haplotype was significantly associated with resistance to both AIH (odds ratio [OR] = 0.58, P = 0.0067) and PBC (OR = 0.58, P = 0.0048). SNPs in the PTPN22 gene may therefore play key roles in the genetic resistance to autoimmune liver disease in the Japanese.
Collapse
Affiliation(s)
- Takeji Umemura
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoru Joshita
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoo Yamazaki
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Michiharu Komatsu
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | | | - Kaname Yoshizawa
- Department of Gastroenterology, NHO Shinshu Ueda Medical Center, Ueda, Japan
| | - Eiji Tanaka
- Department of Medicine, Division of Hepatology and Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
30
|
Spalinger MR, Kasper S, Gottier C, Lang S, Atrott K, Vavricka SR, Scharl S, Gutte PM, Grütter MG, Beer HD, Contassot E, Chan AC, Dai X, Rawlings DJ, Mair F, Becher B, Falk W, Fried M, Rogler G, Scharl M. NLRP3 tyrosine phosphorylation is controlled by protein tyrosine phosphatase PTPN22. J Clin Invest 2016; 126:1783-800. [PMID: 27043286 PMCID: PMC4855944 DOI: 10.1172/jci83669] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/24/2016] [Indexed: 01/04/2023] Open
Abstract
Inflammasomes form as the result of the intracellular presence of danger-associated molecular patterns and mediate the release of active IL-1β, which influences a variety of inflammatory responses. Excessive inflammasome activation results in severe inflammatory conditions, but physiological IL-1β secretion is necessary for intestinal homeostasis. Here, we have described a mechanism of NLRP3 inflammasome regulation by tyrosine phosphorylation of NLRP3 at Tyr861. We demonstrated that protein tyrosine phosphatase non-receptor 22 (PTPN22), variants in which are associated with chronic inflammatory disorders, dephosphorylates NLRP3 upon inflammasome induction, allowing efficient NLRP3 activation and subsequent IL-1β release. In murine models, PTPN22 deficiency resulted in pronounced colitis, increased NLRP3 phosphorylation, but reduced levels of mature IL-1β. Conversely, patients with inflammatory bowel disease (IBD) that carried an autoimmunity-associated PTPN22 variant had increased IL-1β levels. Together, our results identify tyrosine phosphorylation as an important regulatory mechanism for NLRP3 that prevents aberrant inflammasome activation.
Collapse
Affiliation(s)
- Marianne R. Spalinger
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephanie Kasper
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Claudia Gottier
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Silvia Lang
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephan R. Vavricka
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology and
| | - Sylvie Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Petrus M. Gutte
- Institute of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Markus G. Grütter
- Institute of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Hans-Dietmar Beer
- Clinic for Dermatology, University Hospital Zurich, Zurich, Switzerland
| | | | - Andrew C. Chan
- Department of Immunology, Genentech, South San Francisco, California, USA
| | - Xuezhi Dai
- Seattle Children’s Research Institute, Division of Immunology, Seattle, Washington, USA
| | - David J. Rawlings
- Seattle Children’s Research Institute, Division of Immunology, Seattle, Washington, USA
| | - Florian Mair
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Werner Falk
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - Michael Fried
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology and
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology and
| | - Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology and
| |
Collapse
|
31
|
Kamada N, Rogler G. The Innate Immune System: A Trigger for Many Chronic Inflammatory Intestinal Diseases. Inflamm Intest Dis 2016; 1:70-77. [PMID: 29922660 DOI: 10.1159/000445261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 03/08/2016] [Indexed: 12/31/2022] Open
Abstract
Background Mononuclear phagocytes, such as monocytes, macrophages, and dendritic cells, are important cellular components of the innate immune system that contribute to the pathogenesis of many intestinal inflammatory diseases. Summary While mononuclear phagocytes play a key role in the induction of inflammation in many different tissues through production of pro-inflammatory cytokines and chemokines (such as IL-1, TNF, IL-6, IL-8 and MCP-1), free oxygen radicals (also termed 'oxidative burst'), proteases (such as cathepsins) and tissue-degrading enzymes (such as metalloproteinases), resident macrophages as well as dendritic cells in the intestine display an anergic and 'tolerogenic' phenotype mediating tolerance to commensal bacteria. In recent years many single nucleotide polymorphisms (SNPs) in genes mainly expressed in the above-mentioned cell types have been identified to convey an increased risk of autoimmune diseases. SNPs in the NOD2, ATG16L1 and TNFSF15 genes, which are involved in the function of the innate immune cells, are identified as risk factors for Crohn's disease (CD). Of note, these genes are involved in the different functions in the innate immune cells. For example, while NOD2 is required for intracellular recognition of microbial components, ATG16L1 is involved in autophagy responses against intracellular microbes. Likewise, TNFSF15 contributes to the induction of inflammatory responses by innate immune cells. Furthermore, the frequency of mutations in these genes differs by ethnicity. Genetic variations in the NOD2 and ATG16L1 genes are associated with CD in Caucasians but much less in Eastern Asian populations, whereas SNPs in TNFSF15 are dominated in Asian populations. Thus, different genetic risks may eventually lead to similar impairments in innate immune cells, thereby developing the same disease in Western and Asian patients with CD. Key Messages Despite differences in risk genes, similar mechanisms associated with the innate immune system may trigger autoimmune and chronic inflammatory intestinal diseases in East and West.
Collapse
Affiliation(s)
- Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Mich., USA
| | - Gerhard Rogler
- Division of Gastroenterology and Hepatology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Ghodke-Puranik Y, Niewold TB. Immunogenetics of systemic lupus erythematosus: A comprehensive review. J Autoimmun 2015; 64:125-36. [PMID: 26324017 DOI: 10.1016/j.jaut.2015.08.004] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 12/24/2022]
Abstract
Our understanding of the genetic basis of systemic lupus erythematosus has progressed rapidly in recent years. While many genetic polymorphisms have been associated with disease susceptibility, the next major step involves integrating these genetic polymorphisms into the molecular mechanisms and cellular immunology of the human disease. In this review, we summarize some recent work in this area, including the genetics of the type I IFN response in SLE, including polygenic and monogenic factors, as well as epigenetic influences. Contributions of both HLA and non-HLA polymorphisms to the complex genetics of SLE are reviewed. We also review recent reports of specific gene deficits leading to monogenic SLE-like syndromes. The molecular functions of common SLE-risk variants are reviewed in depth, including regulatory variations in promoter and enhancer elements and coding-change polymorphisms, and studies which are beginning to define the molecular and cellular functions of these polymorphisms in the immune system. We discuss epigenetic influences on lupus, with an emphasis on micro-RNA expression and binding, as well as epigenetic modifications that regulate the expression levels of various genes involved in SLE pathogenesis and the ways epigenetic marks modify SLE susceptibility genes. The work summarized in this review provides a fascinating window into the biology and molecular mechanisms of human SLE. Understanding the functional mechanisms of causal genetic variants underlying the human disease greatly facilitates our ability to translate genetic associations toward personalized care, and may identify new therapeutic targets relevant to human SLE disease mechanisms.
Collapse
Affiliation(s)
| | - Timothy B Niewold
- Division of Rheumatology, Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
33
|
Spalinger MR, Scharl M. The role for protein tyrosine phosphatase non-receptor type 22 in regulating intestinal homeostasis. United European Gastroenterol J 2015; 4:325-32. [PMID: 27403297 DOI: 10.1177/2050640615600115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/20/2015] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease represents a chronic intestinal inflammation. Recent knowledge suggests a crucial role for genetic, immunological and bacterial factors in inflammatory bowel disease pathogenesis. Variations within the gene locus encoding PTPN22 have been associated with inflammatory bowel disease. PTPN22 is critically involved in controlling immune cell activation and thereby plays an important role in maintaining intestinal homeostasis. Although in B and T cells the mechanism showing how PTPN22 affects cell signalling pathways is well studied, its role in myeloid cells remains less defined. Regulation of the innate immune system plays an essential role in the intestine, and levels of PTPN22 in myeloid cells are drastically reduced in the intestine of inflammatory bowel disease patients. Therefore, additional studies to define the role of PTPN22 in myeloid cells might clearly enhance our understanding of how PTPN22 contributes to intestinal homeostasis.
Collapse
Affiliation(s)
- Marianne R Spalinger
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Michael Scharl
- Division of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
34
|
Association between a gain-of-function variant of PTPN22 and rejection in liver transplantation. Transplantation 2015; 99:431-7. [PMID: 25073032 DOI: 10.1097/tp.0000000000000313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND The protein tyrosine phosphatase nonreceptor 22 gene (PTPN22) encodes a strong T-cell regulator called lymphoid protein tyrosine phosphatase. Previously, PTPN22 was described as a susceptibility gene for autoimmunity because it contains single nucleotide polymorphisms (SNPs) associated with several autoimmune diseases. One SNP (rs2476601; 1858G>A) has emerged as a particularly potent risk factor for autoimmunity. We address the question whether PTPN22 polymorphisms are also associated with acute rejection after liver transplantation. METHODS We investigated the influence of six PTPN22 SNPs on the susceptibility to acute liver allograft rejection. Consequently, we carried out a retrospective study genotyping 345 German liver recipients at six SNP loci, which include rs2488457 (-1123G>C), rs33996649 (788C>T), rs2476601 (1858G>A), rs1310182 (-852A>G), rs1217388 (-2200G>A), rs3789604 (64434T>G). Our study enrolled 165 recipients who did not develop rejection, 123 who showed one rejection episode, and 57 patients who suffered from multiple acute rejections after transplantation. RESULTS The 1858A allele containing genotypes (GA+AA) and the 1858A allele had a significantly higher frequency in the group of patients with multiple rejection episodes (35.1% and 18.4%) compared to rejection-free patients (15.8% and 7.9%; P=0.022 and 0.023). In contrast, we could not detect any association between rejection and the other tested SNPs. Additionally, we identified one haplotype contributing to risk of multiple rejections, however, exhibiting no stronger impact than the 1858A allele alone. CONCLUSION We conclude that the 1858G>A SNP may confer susceptibility to multiple acute liver transplant rejections in the German population.
Collapse
|
35
|
Machado-Contreras JR, Muñoz-Valle JF, Cruz A, Salazar-Camarena DC, Marín-Rosales M, Palafox-Sánchez CA. Distribution of PTPN22 polymorphisms in SLE from western Mexico: correlation with mRNA expression and disease activity. Clin Exp Med 2015; 16:399-406. [DOI: 10.1007/s10238-015-0359-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/11/2015] [Indexed: 01/14/2023]
|
36
|
Heneberg P, Mal� M, Yorifuji T, Gat-Yablonski G, Lebenthal Y, Tajima T, Nogaroto V, Ryp�ckov� B, Kockov� L, Urbanov� J, Andel M. Low Frequencies of Autoimmunity-Associated PTPN22 Polymorphisms in MODY Patients, Including Those Transiently Expressing Islet Cell Autoantibodies. Int Arch Allergy Immunol 2015; 166:189-98. [DOI: 10.1159/000380853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/09/2015] [Indexed: 11/19/2022] Open
|
37
|
Medici M, Visser WE, Visser TJ, Peeters RP. Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocr Rev 2015; 36:214-44. [PMID: 25751422 DOI: 10.1210/er.2014-1081] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
For a long time it has been known that both hypo- and hyperthyroidism are associated with an increased risk of morbidity and mortality. In recent years, it has also become clear that minor variations in thyroid function, including subclinical dysfunction and variation in thyroid function within the reference range, can have important effects on clinical endpoints, such as bone mineral density, depression, metabolic syndrome, and cardiovascular mortality. Serum thyroid parameters show substantial interindividual variability, whereas the intraindividual variability lies within a narrow range. This suggests that every individual has a unique hypothalamus-pituitary-thyroid axis setpoint that is mainly determined by genetic factors, and this heritability has been estimated to be 40-60%. Various mutations in thyroid hormone pathway genes have been identified in persons with thyroid dysfunction or altered thyroid function tests. Because these causes are rare, many candidate gene and linkage studies have been performed over the years to identify more common variants (polymorphisms) associated with thyroid (dys)function, but only a limited number of consistent associations have been found. However, in the past 5 years, advances in genetic research have led to the identification of a large number of new candidate genes. In this review, we provide an overview of the current knowledge about the polygenic basis of thyroid (dys)function. This includes new candidate genes identified by genome-wide approaches, what insights these genes provide into the genetic basis of thyroid (dys)function, and which new techniques will help to further decipher the genetic basis of thyroid (dys)function in the near future.
Collapse
Affiliation(s)
- Marco Medici
- Rotterdam Thyroid Center, Department of Internal Medicine, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Role of protein tyrosine phosphatases in regulating the immune system: implications for chronic intestinal inflammation. Inflamm Bowel Dis 2015; 21:645-55. [PMID: 25581833 PMCID: PMC4329025 DOI: 10.1097/mib.0000000000000297] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Current hypothesis suggests that genetic, immunological, and bacterial factors contribute essentially to the pathogenesis of inflammatory bowel disease. Variations within the gene loci encoding protein tyrosine phosphatases (PTPs) have been associated with the onset of inflammatory bowel disease. PTPs modulate the activity of their substrates by dephosphorylation of tyrosine residues and are critical for the regulation of fundamental cellular signaling processes. Evidence emerges that expression levels of PTPN2, PTPN11, and PTPN22 are altered in actively inflamed intestinal tissue. PTPN2 seems to be critical for protecting intestinal epithelial barrier function, regulating innate and adaptive immune responses and finally for maintaining intestinal homeostasis. These observations have been confirmed in PTPN2 knockout mice in vivo. Those animals are clearly more susceptible to intestinal and systemic inflammation and feature alterations in innate and adaptive immune responses. PTPN22 controls inflammatory signaling in lymphocytes and mononuclear cells resulting in aberrant cytokine secretion pattern and autophagosome formation. PTPN22 deficiency in vivo results in more severe colitis demonstrating the relevance of PTPN22 for intestinal homeostasis in vivo. Of note, loss of PTPN22 promotes mitogen-activated protein kinase-induced cytokine secretion but limits secretion of nuclear factor κB-associated cytokines and autophagy in mononuclear cells. Loss of PTPN11 is also associated with increased colitis severity in vivo. In summary, dysfunction of those PTPs results in aberrant and uncontrolled immune responses that result in chronic inflammatory conditions. This way, it becomes more and more evident that dysfunction of PTPs displays an important factor in the pathogenesis of chronic intestinal inflammation, in particular inflammatory bowel disease.
Collapse
|
39
|
Abstract
A major impetus to initiating the Human Genome Project was the belief that information encoded in the human genome would "accelerate progress in understanding disease pathogenesis and in developing new approaches to diagnosis, treatment, and prevention in many areas of medicine". Alopecia areata (AA) is a notable example of how understanding the genetic basis of a disease can have an impact on the care of patients in a relatively short time. Our first genome-wide association study in AA identified an initial set of common variants that increase risk of AA, some of which are shared with other autoimmune diseases. Thus, there has already been rapid progress in the translation of this information into new therapeutic strategies for patients, as drugs are already on the market for some of these disorders that can now be tested in AA. Informed by the progress achieved with genetic studies for mechanistically aligned autoimmune diseases, we are poised to carry this work forward and interrogate the underlying disease mechanisms in AA. Importantly, future genetic studies aimed at identifying additional susceptibility genes will further establish the foundation for the application of precision medicine in the care of AA patients.
Collapse
|
40
|
Abstract
PTPN22 encodes a tyrosine phosphatase that is expressed by haematopoietic cells and functions as a key regulator of immune homeostasis by inhibiting T-cell receptor signalling and by selectively promoting type I interferon responses after activation of myeloid-cell pattern-recognition receptors. A single nucleotide polymorphism of PTPN22, 1858C>T (rs2476601), disrupts an interaction motif in the protein, and is the most important non-HLA genetic risk factor for rheumatoid arthritis and the second most important for juvenile idiopathic arthritis. PTPN22 exemplifies a shared autoimmunity gene, affecting the pathogenesis of systemic lupus erythematosus, vasculitis and other autoimmune diseases. In this Review, we explore the role of PTPN22 in autoimmune connective tissue disease, with particular emphasis on candidate-gene and genome-wide association studies and clinical variability of disease. We also propose a number of PTPN22-dependent functional models of the pathogenesis of autoimmune diseases.
Collapse
|
41
|
A functional variant of PTPN22 confers risk for Vogt-Koyanagi-Harada syndrome but not for ankylosing spondylitis. PLoS One 2014; 9:e96943. [PMID: 24816862 PMCID: PMC4016172 DOI: 10.1371/journal.pone.0096943] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/13/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Protein tyrosine phosphatase non-receptor 22 (PTPN22) is a key negative regulator of T lymphocytes and has emerged as an important candidate susceptibility factor for a number of immune-related diseases. This study aimed to examine the predisposition of PTPN22 SNPs to Vogt-Koyanagi-Harada (VKH) syndrome and acute anterior uveitis (AAU) associated with ankylosing spondylitis (AS). METHODS A total of 1005 VKH syndrome, 302 AAU+AS+ patients and 2010 normal controls among the Chinese Han population were enrolled in the study. Genotyping, PTPN22 expression, cell proliferation, cytokine production and cell activation were examined by PCR-RFLP, Real-time PCR, CCK8, ELISA and Flow cytometry. RESULTS The results showed significantly increased frequencies of the rs2488457 CC genotype and C allele but a decreased frequency of the GG genotype in VKH syndrome patients (PBonferroni correction (Pc) = 3.47×10(-7), OR = 1.54; Pc = 3.83×10(-8), OR = 1.40; Pc = 6.35×10(-4), OR = 0.62; respectively). No significant association of the tested SNPs with AAU+AS+ patients was observed. Functional studies showed a decreased PTPN22 expression, impaired cell proliferation and lower production of IL-10 in rs2488457 CC cases compared to GG cases (Pc = 0.009, Pc = 0.015 and Pc = 0.048 respectively). No significant association was observed concerning T cell activation and rs2488457 genotype. CONCLUSIONS The study showed that a functional variant of PTPN22 confers risk for VKH syndrome but not for AAU+AS+ in a Chinese Han population, which may be due to a modulation of the PTPN22 expression, PBMC proliferation and IL-10 production.
Collapse
|
42
|
J DAS, C A, P SG, S C. Systemic Lupus Erythematosus: Old and New Susceptibility Genes versus Clinical Manifestations. Curr Genomics 2014; 15:52-65. [PMID: 24653663 PMCID: PMC3958959 DOI: 10.2174/138920291501140306113715] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/19/2022] Open
Abstract
Systemic Lupus Erythematosus (SLE) is one of the most relevant world-wide autoimmune disorders. The formation of autoantibodies and the deposition of antibody-containing immune complexes in blood vessels throughout the body is the main pathogenic mechanism of SLE leading to heterogeneous clinical manifestations and target tissue damage. The complexity of etiology and pathogenesis in SLE, enclosing genetic and environmental factors, apparently is one of the greatest challenges for both researchers and clinicians. Strong indications for a genetic background in SLE come from studies in families as well as in monozygotic and dizygotic twins, discovering several SLE-associated loci and genes (e.g. IRF5, PTPN22, CTLA4, STAT4 and BANK1). As SLE has a complex genetic background, none of these genes is likely to be entirely responsible for triggering autoimmune response in SLE even if they disclosure a potentially novel molecular mechanisms in the pathogenesis' disease. The clinical manifestations and disease severity varies greatly among patients, thus several studies try to associate clinical heterogeneity and prognosis with specific genetic polymorphisms in SLE associated genes. The continue effort to describe new predisposing or modulating genes in SLE is justified by the limited knowledge about the pathogenesis, assorted clinical manifestation and the possible prevention strategies. In this review we describe newly discovered, as well as the most studied genes associated to SLE susceptibility, and relate them to clinical manifestations of the disease.
Collapse
Affiliation(s)
- De Azevêdo Silva J
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Addobbati C
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil ; Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Sandrin-Garcia P
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil ; Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Crovella S
- Laboratory of Immunopathology Keizo Asami (LIKA), Federal University of Pernambuco, Recife, Pernambuco, Brazil ; Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| |
Collapse
|
43
|
Medici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA, Rawal R, Roef GL, Plantinga TS, Vermeulen SH, Lahti J, Simmonds MJ, Husemoen LLN, Freathy RM, Shields BM, Pietzner D, Nagy R, Broer L, Chaker L, Korevaar TIM, Plia MG, Sala C, Völker U, Richards JB, Sweep FC, Gieger C, Corre T, Kajantie E, Thuesen B, Taes YE, Visser WE, Hattersley AT, Kratzsch J, Hamilton A, Li W, Homuth G, Lobina M, Mariotti S, Soranzo N, Cocca M, Nauck M, Spielhagen C, Ross A, Arnold A, van de Bunt M, Liyanarachchi S, Heier M, Grabe HJ, Masciullo C, Galesloot TE, Lim EM, Reischl E, Leedman PJ, Lai S, Delitala A, Bremner AP, Philips DIW, Beilby JP, Mulas A, Vocale M, Abecasis G, Forsen T, James A, Widen E, Hui J, Prokisch H, Rietzschel EE, Palotie A, Feddema P, Fletcher SJ, Schramm K, Rotter JI, Kluttig A, Radke D, Traglia M, Surdulescu GL, He H, Franklyn JA, Tiller D, Vaidya B, de Meyer T, Jørgensen T, Eriksson JG, O'Leary PC, Wichmann E, Hermus AR, Psaty BM, Ittermann T, Hofman A, Bosi E, Schlessinger D, Wallaschofski H, Pirastu N, Aulchenko YS, de la Chapelle A, Netea-Maier RT, Gough SCL, Meyer zu Schwabedissen H, Frayling TM, Kaufman JM, et alMedici M, Porcu E, Pistis G, Teumer A, Brown SJ, Jensen RA, Rawal R, Roef GL, Plantinga TS, Vermeulen SH, Lahti J, Simmonds MJ, Husemoen LLN, Freathy RM, Shields BM, Pietzner D, Nagy R, Broer L, Chaker L, Korevaar TIM, Plia MG, Sala C, Völker U, Richards JB, Sweep FC, Gieger C, Corre T, Kajantie E, Thuesen B, Taes YE, Visser WE, Hattersley AT, Kratzsch J, Hamilton A, Li W, Homuth G, Lobina M, Mariotti S, Soranzo N, Cocca M, Nauck M, Spielhagen C, Ross A, Arnold A, van de Bunt M, Liyanarachchi S, Heier M, Grabe HJ, Masciullo C, Galesloot TE, Lim EM, Reischl E, Leedman PJ, Lai S, Delitala A, Bremner AP, Philips DIW, Beilby JP, Mulas A, Vocale M, Abecasis G, Forsen T, James A, Widen E, Hui J, Prokisch H, Rietzschel EE, Palotie A, Feddema P, Fletcher SJ, Schramm K, Rotter JI, Kluttig A, Radke D, Traglia M, Surdulescu GL, He H, Franklyn JA, Tiller D, Vaidya B, de Meyer T, Jørgensen T, Eriksson JG, O'Leary PC, Wichmann E, Hermus AR, Psaty BM, Ittermann T, Hofman A, Bosi E, Schlessinger D, Wallaschofski H, Pirastu N, Aulchenko YS, de la Chapelle A, Netea-Maier RT, Gough SCL, Meyer zu Schwabedissen H, Frayling TM, Kaufman JM, Linneberg A, Räikkönen K, Smit JWA, Kiemeney LA, Rivadeneira F, Uitterlinden AG, Walsh JP, Meisinger C, den Heijer M, Visser TJ, Spector TD, Wilson SG, Völzke H, Cappola A, Toniolo D, Sanna S, Naitza S, Peeters RP. Identification of novel genetic Loci associated with thyroid peroxidase antibodies and clinical thyroid disease. PLoS Genet 2014; 10:e1004123. [PMID: 24586183 PMCID: PMC3937134 DOI: 10.1371/journal.pgen.1004123] [Show More Authors] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/03/2013] [Indexed: 12/14/2022] Open
Abstract
Autoimmune thyroid diseases (AITD) are common, affecting 2-5% of the general population. Individuals with positive thyroid peroxidase antibodies (TPOAbs) have an increased risk of autoimmune hypothyroidism (Hashimoto's thyroiditis), as well as autoimmune hyperthyroidism (Graves' disease). As the possible causative genes of TPOAbs and AITD remain largely unknown, we performed GWAS meta-analyses in 18,297 individuals for TPOAb-positivity (1769 TPOAb-positives and 16,528 TPOAb-negatives) and in 12,353 individuals for TPOAb serum levels, with replication in 8,990 individuals. Significant associations (P<5×10(-8)) were detected at TPO-rs11675434, ATXN2-rs653178, and BACH2-rs10944479 for TPOAb-positivity, and at TPO-rs11675434, MAGI3-rs1230666, and KALRN-rs2010099 for TPOAb levels. Individual and combined effects (genetic risk scores) of these variants on (subclinical) hypo- and hyperthyroidism, goiter and thyroid cancer were studied. Individuals with a high genetic risk score had, besides an increased risk of TPOAb-positivity (OR: 2.18, 95% CI 1.68-2.81, P = 8.1×10(-8)), a higher risk of increased thyroid-stimulating hormone levels (OR: 1.51, 95% CI 1.26-1.82, P = 2.9×10(-6)), as well as a decreased risk of goiter (OR: 0.77, 95% CI 0.66-0.89, P = 6.5×10(-4)). The MAGI3 and BACH2 variants were associated with an increased risk of hyperthyroidism, which was replicated in an independent cohort of patients with Graves' disease (OR: 1.37, 95% CI 1.22-1.54, P = 1.2×10(-7) and OR: 1.25, 95% CI 1.12-1.39, P = 6.2×10(-5)). The MAGI3 variant was also associated with an increased risk of hypothyroidism (OR: 1.57, 95% CI 1.18-2.10, P = 1.9×10(-3)). This first GWAS meta-analysis for TPOAbs identified five newly associated loci, three of which were also associated with clinical thyroid disease. With these markers we identified a large subgroup in the general population with a substantially increased risk of TPOAbs. The results provide insight into why individuals with thyroid autoimmunity do or do not eventually develop thyroid disease, and these markers may therefore predict which TPOAb-positives are particularly at risk of developing clinical thyroid dysfunction.
Collapse
Affiliation(s)
- Marco Medici
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- * E-mail:
| | - Eleonora Porcu
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Dipartimento di Scienze Biomediche, Universita di Sassari, Sassari, Italy
| | - Giorgio Pistis
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Alexander Teumer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Suzanne J. Brown
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Richard A. Jensen
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, Washington, United States of America
| | - Rajesh Rawal
- Institute for Genetic Epidemiology, Helmholtz Zentrum Munich, Munich/Neuherberg, Germany
| | - Greet L. Roef
- Department of Endocrinology and Internal Medicine, University Hospital Ghent and Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Theo S. Plantinga
- Internal Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Sita H. Vermeulen
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jari Lahti
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Matthew J. Simmonds
- Oxford Centre for Diabetes, Endocrinology and Metabolism and NIHR Oxford Biomedical Research Centre, Oxford, UK Churchill Hospital, Headington, Oxford, United Kingdom
| | - Lise Lotte N. Husemoen
- Research Centre for Prevention and Health, Glostrup University Hospital, the Capital Region of Denmark, Glostrup, Denmark
| | - Rachel M. Freathy
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Beverley M. Shields
- Peninsula NIHR Clinical Research Facility, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Diana Pietzner
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Rebecca Nagy
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Linda Broer
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Layal Chaker
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tim I. M. Korevaar
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maria Grazia Plia
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Cinzia Sala
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - J. Brent Richards
- Departments of Medicine, Human Genetics, Epidemiology and Biostatistics, Lady Davis Institute, McGill University, Montreal, Canada
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Fred C. Sweep
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Christian Gieger
- Institute for Genetic Epidemiology, Helmholtz Zentrum Munich, Munich/Neuherberg, Germany
| | - Tanguy Corre
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Eero Kajantie
- National Institute for Health and Welfare, Helsinki, Finland
- Hospital for Children and Adolescents, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Betina Thuesen
- Research Centre for Prevention and Health, Glostrup University Hospital, the Capital Region of Denmark, Glostrup, Denmark
| | - Youri E. Taes
- Department of Endocrinology and Internal Medicine, University Hospital Ghent and Faculty of Medicine, Ghent University, Ghent, Belgium
| | - W. Edward Visser
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Andrew T. Hattersley
- Peninsula NIHR Clinical Research Facility, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Jürgen Kratzsch
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Alexander Hamilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism and NIHR Oxford Biomedical Research Centre, Oxford, UK Churchill Hospital, Headington, Oxford, United Kingdom
| | - Wei Li
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt-University Greifswald, Greifswald, Germany
| | - Monia Lobina
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Stefano Mariotti
- Dipartimento di Scienze Biomediche, Universita di Sassari, Sassari, Italy
| | | | - Massimiliano Cocca
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Christin Spielhagen
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Alec Ross
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alice Arnold
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Martijn van de Bunt
- Oxford Centre for Diabetes, Endocrinology and Metabolism and NIHR Oxford Biomedical Research Centre, Oxford, UK Churchill Hospital, Headington, Oxford, United Kingdom
| | - Sandya Liyanarachchi
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Margit Heier
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Hans Jörgen Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, HELIOS Hospital Stralsund, Greifswald, Germany
| | - Corrado Masciullo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Tessel E. Galesloot
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Ee M. Lim
- Pathwest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Eva Reischl
- Research Unit of Molecular Epidemiology Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Peter J. Leedman
- School of Medicine and Pharmacology, the University of Western Australia, Crawley, Western Australia, Australia
- UWA Centre for Medical Research, Western Australian Institute for Medical Research, Perth, Western Australia, Australia
| | - Sandra Lai
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | | | - Alexandra P. Bremner
- School of Population Health, University of Western Australia, Nedlands, Western Australia, Australia
| | - David I. W. Philips
- MRC Lifecourse Epidemiology Unit, Southampton General Hospital, Southampton, United Kingdom
| | - John P. Beilby
- Pathwest Laboratory Medicine WA, Nedlands, Western Australia, Australia
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Matteo Vocale
- High Performance Computing and Network, CRS4, Parco Tecnologico della Sardegna, Pula, Italy
| | - Goncalo Abecasis
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Tom Forsen
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Vaasa Health Care Centre, Diabetes Unit, Vaasa, Finland
| | - Alan James
- School of Medicine and Pharmacology, the University of Western Australia, Crawley, Western Australia, Australia
- Department of Respiratory Medicine, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Elisabeth Widen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Jennie Hui
- Pathwest Laboratory Medicine WA, Nedlands, Western Australia, Australia
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum Munich, Munich, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Ernst E. Rietzschel
- Department of Cardiology and Internal Medicine, University Hospital Ghent and Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Aarno Palotie
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
- Department of Medical Genetics, University of Helsinki and University Central Hospital, Helsinki, Finland
| | | | | | - Katharina Schramm
- Institute of Human Genetics, Helmholtz Zentrum Munich, Munich, Germany
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute, Torrance, California, United States of America
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Alexander Kluttig
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Dörte Radke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Michela Traglia
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | - Gabriela L. Surdulescu
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Huiling He
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Jayne A. Franklyn
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, Univeristy of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Daniel Tiller
- Institute of Medical Epidemiology, Biostatistics, and Informatics, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Bijay Vaidya
- Diabetes, Endocrinology and Vascular Health Centre, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - Tim de Meyer
- BIOBIX Lab. for Bioinformatics and Computational Genomics, Dept. of Mathematical Modelling, Statistics and Bioinformatics. Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Torben Jørgensen
- Research Centre for Prevention and Health, Glostrup University Hospital, the Capital Region of Denmark, Glostrup, Denmark
- Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
| | - Johan G. Eriksson
- National Institute for Health and Welfare, Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Helsinki University Central Hospital, Unit of General Practice, Helsinki, Finland
- Folkhalsan Research Centre, Helsinki, Finland
- Vasa Central Hospital, Vasa, Finland
| | - Peter C. O'Leary
- School of Pathology and Laboratory Medicine, University of Western Australia, Crawley, Western Australia, Australia
- Curtin Health Innovation Research Institute, Curtin University of Technology, Bentley, Western Australia, Australia
| | - Eric Wichmann
- Institute of Epidemiology I, Helmholtz Zentrum Munich, Munich, Germany
| | - Ad R. Hermus
- Internal Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology and Health Services, University of Washington, Seattle, Washington, United States of America
- Group Health Research Institute, Group Health Cooperative, Seattle, Washington, United States of America
| | - Till Ittermann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Albert Hofman
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Emanuele Bosi
- Department of Internal Medicine, Diabetes & Endocrinology Unit, San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Milan, Italy
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Henri Wallaschofski
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Nicola Pirastu
- Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy
- University of Trieste, Trieste, Italy
| | - Yurii S. Aulchenko
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Albert de la Chapelle
- Comprehensive Cancer Center, Ohio State University, Columbus, Ohio, United States of America
| | - Romana T. Netea-Maier
- Internal Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Stephen C. L. Gough
- Oxford Centre for Diabetes, Endocrinology and Metabolism and NIHR Oxford Biomedical Research Centre, Oxford, UK Churchill Hospital, Headington, Oxford, United Kingdom
| | | | - Timothy M. Frayling
- Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Jean-Marc Kaufman
- Department of Endocrinology and Internal Medicine, University Hospital Ghent and Faculty of Medicine, Ghent University, Ghent, Belgium
| | - Allan Linneberg
- Research Centre for Prevention and Health, Glostrup University Hospital, the Capital Region of Denmark, Glostrup, Denmark
| | - Katri Räikkönen
- Institute of Behavioural Sciences, University of Helsinki, Helsinki, Finland
| | - Johannes W. A. Smit
- Internal Medicine, Division of Endocrinology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Lambertus A. Kiemeney
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging, Netherlands Genomics Initiative, Leiden, The Netherlands
| | - André G. Uitterlinden
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
- Netherlands Consortium for Healthy Aging, Netherlands Genomics Initiative, Leiden, The Netherlands
| | - John P. Walsh
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, the University of Western Australia, Crawley, Western Australia, Australia
| | - Christa Meisinger
- Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Institute of Epidemiology II, Neuherberg, Germany
| | - Martin den Heijer
- Department of Internal Medicine, VU Medical Center, Amsterdam, The Netherlands
| | - Theo J. Visser
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Timothy D. Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Scott G. Wilson
- Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Medicine and Pharmacology, the University of Western Australia, Crawley, Western Australia, Australia
- Department of Twin Research and Genetic Epidemiology, King's College London, London, United Kingdom
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Anne Cappola
- Division of Endocrinology, Diabetes, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniela Toniolo
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
- Institute of Molecular Genetics-CNR, Pavia, Italy
| | - Serena Sanna
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Silvia Naitza
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerche, c/o Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Robin P. Peeters
- Department of Internal Medicine, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
44
|
Ahmed VF, Bottini N, Barrios AM. Covalent inhibition of the lymphoid tyrosine phosphatase. ChemMedChem 2014; 9:296-9. [PMID: 24403103 PMCID: PMC4096870 DOI: 10.1002/cmdc.201300404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Indexed: 01/14/2023]
Abstract
Covalent inhibitors of lymphoid tyrosine phosphatase (LYP) were identified from a screen of the NIH Molecular Libraries Small Molecules Repository (MLSMR). Both of the two lead compounds identified have phosphotyrosine-mimetic benzoic acid moieties as well as electrophilic acrylonitrile groups. Inhibition kinetics of both compounds are consistent with covalent modification of the enzyme, with nanomolar KI and reciprocal millisecond kinact values, representing the best efficiency ratios (kinact /KI ) among currently reported covalent LYP inhibitors. Covalent inhibitors can provide longer efficacy and better selectivity than more conventional noncovalent inhibitors, and these lead compounds are an important step toward the development of protein tyrosine phosphatase (PTP)-targeted covalent therapeutic compounds.
Collapse
Affiliation(s)
- Vanessa F. Ahmed
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
45
|
Bottini N, Peterson EJ. Tyrosine phosphatase PTPN22: multifunctional regulator of immune signaling, development, and disease. Annu Rev Immunol 2013; 32:83-119. [PMID: 24364806 DOI: 10.1146/annurev-immunol-032713-120249] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inheritance of a coding variant of the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is associated with increased susceptibility to autoimmunity and infection. Efforts to elucidate the mechanisms by which the PTPN22-C1858T variant modulates disease risk revealed that PTPN22 performs a signaling function in multiple biochemical pathways and cell types. Capable of both enzymatic activity and adaptor functions, PTPN22 modulates signaling through antigen and innate immune receptors. PTPN22 plays roles in lymphocyte development and activation, establishment of tolerance, and innate immune cell-mediated host defense and immunoregulation. The disease-associated PTPN22-R620W variant protein is likely involved in multiple stages of the pathogenesis of autoimmunity. Establishment of a tolerant B cell repertoire is disrupted by PTPN22-R620W action during immature B cell selection, and PTPN22-R620W alters mature T cell responsiveness. However, after autoimmune attack has initiated tissue injury, PTPN22-R620W may foster inflammation through modulating the balance of myeloid cell-produced cytokines.
Collapse
Affiliation(s)
- Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037;
| | | |
Collapse
|
46
|
Ghodke-Puranik Y, Niewold TB. Genetics of the type I interferon pathway in systemic lupus erythematosus. ACTA ACUST UNITED AC 2013; 8. [PMID: 24416080 DOI: 10.2217/ijr.13.58] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Genetic studies of systemic lupus erythematosus (SLE) have been successful, identifying numerous risk factors for human disease. While the list is not yet complete, it is clear that important immune system pathways are represented, one of which being type I interferon (IFN). Circulating type I IFN levels are high in SLE patients and this IFN pathway activation is heritable in families with SLE. We summarize our current understanding of the genetics of the type I IFN pathway in SLE, with an emphasis on studies that demonstrate an impact of the SLE-risk alleles upon type I IFN pathway activation in SLE patients. These studies illustrate that variations in type I IFN pathway genes represent a common genetic feature of SLE. By understanding the genetic regulation of type I IFN, we may be able to intervene in a more personalized fashion, based upon the molecular dysregulation present in a given individual.
Collapse
Affiliation(s)
- Yogita Ghodke-Puranik
- Division of Rheumatology, Department of Immunology, Mayo Clinic, 200 1st Street SW, Guggenheim Building 3-42, Rochester, MN 55905, USA
| | - Timothy B Niewold
- Division of Rheumatology, Department of Immunology, Mayo Clinic, 200 1st Street SW, Guggenheim Building 3-42, Rochester, MN 55905, USA
| |
Collapse
|
47
|
Chen Z, Zhang H, Xia B, Wang P, Jiang T, Song M, Wu J. Association of PTPN22 gene (rs2488457) polymorphism with ulcerative colitis and high levels of PTPN22 mRNA in ulcerative colitis. Int J Colorectal Dis 2013; 28:1351-8. [PMID: 23456301 DOI: 10.1007/s00384-013-1671-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2013] [Indexed: 02/04/2023]
Abstract
PURPOSE Our aims were to evaluate protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene polymorphisms in ulcerative colitis (UC) and explore PTPN22 mRNA levels in colonic biopsies of UC patients in central China. METHODS A total of 165 Chinese UC patients and 300 healthy controls were enrolled in this study. PTPN22 -1123G/C, +1858C/T, and +788G/A polymorphisms were genotyped by PCR-restriction fragment length polymorphism method. PTPN22 mRNA expressions in colonic biopsies and serum C-reactive protein (CRP) levels were determined by quantitative PCR and immunonephelometry, respectively. RESULTS The frequency of C carrier was higher in UC patients than in healthy controls (66.7 vs. 53.3%, P = 0.005, odds ratios = 1.75, 95% CI 1.18-2.60) and associated with extensive colitis (P = 0.029). PTPN22 mRNA levels were elevated in UC patients than in healthy controls (P < 0.001). Among UC patients, PTPN22 mRNA expression levels were higher in biopsies of inflamed colonic tissue compared with noninflamed tissue (P < 0.001) and were correlated with CRP levels (r = 0.578, P < 0.001). PTPN22 mRNA expression levels were elevated in extensive colitis compared to proctitis (P = 0.008) and to left-sided colitis (P = 0.029) and were higher in moderate and severe disease than in mild disease (P = 0.005). CONCLUSIONS Our study showed the potential association between PTPN22 -1123G/C polymorphism and UC in central China. PTPN22 mRNA levels were highly expressed in UC, especially in active disease, and were correlated with CRP levels, disease location, and disease severity in UC patients.
Collapse
Affiliation(s)
- Zhitao Chen
- Department of Gastroenterology and Central Laboratory, The Central Hospital of Wuhan, Sheng Li Street 26, Wuhan, 430014, Hubei Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Kulkarni RA, Vellore NA, Bliss MR, Stanford SM, Falk MD, Bottini N, Baron R, Barrios AM. Substrate selection influences molecular recognition in a screen for lymphoid tyrosine phosphatase inhibitors. Chembiochem 2013; 14:1640-7. [PMID: 23956195 PMCID: PMC3874405 DOI: 10.1002/cbic.201300273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Indexed: 11/09/2022]
Abstract
Assay design is an important variable that influences the outcome of an inhibitor screen. Here, we have investigated the hypothesis that protein tyrosine phosphatase inhibitors with improved biological activity could be identified from a screen by using a biologically relevant peptide substrate, rather than traditional phosphotyrosine mimetic substrates. A 2000-member library of drugs and drug-like compounds was screened for inhibitors of lymphoid tyrosine phosphatase (LYP) by using both a peptide substrate (Ac-ARLIEDNE-pCAP-TAREG-NH₂, peptide 1) and a small-molecule phosphotyrosine mimetic substrate (difluoromethyl umbelliferyl phosphate, DiFMUP). The results demonstrate that compounds that inhibited enzyme activity on the peptide substrate had greater biological activity than compounds that only inhibited enzyme activity on DiFMUP. Finally, epigallocatechin-3,5-digallate was identified as the most potent inhibitor of lymphoid tyrosine phosphatase activity to date, with an IC₅₀ of 50 nM and significant activity in T-cells. Molecular docking simulations provided a first model for binding of this potent inhibitor to LYP; this will constitute the platform for ongoing lead optimization efforts.
Collapse
Affiliation(s)
| | - Nadeem A. Vellore
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112
- Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, UT 84112
| | - Matthew R. Bliss
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Stephanie M. Stanford
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Matthew D. Falk
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Nunzio Bottini
- Division of Cellular Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Riccardo Baron
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112
- Henry Eyring Center for Theoretical Chemistry, University of Utah, Salt Lake City, UT 84112
| | - Amy M. Barrios
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
49
|
Kulkarni RA, Stanford SM, Vellore NA, Krishnamurthy D, Bliss MR, Baron R, Bottini N, Barrios AM. Thiuram disulfides as pseudo-irreversible inhibitors of lymphoid tyrosine phosphatase. ChemMedChem 2013; 8:1561-8. [PMID: 23873737 PMCID: PMC3863632 DOI: 10.1002/cmdc.201300215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/21/2013] [Indexed: 12/24/2022]
Abstract
We screened a small library of thiuram disulfides for inhibition of lymphoid tyrosine phosphatase (LYP) activity. The parent thiuram disulfide, disulfiram, inhibited LYP activity in vitro and in Jurkat T cells, whereas diethyldithiocarbamate failed to inhibit LYP at the concentrations tested. Compound 13, an N-(2-thioxothiazolidin-4-one) analogue, was found to be the most potent LYP inhibitor in this series, with an IC50 value of 3 μM. Compound 13 inhibits LYP pseudo-irreversibly, as evidenced by the time-dependence of inhibition, with a K(i) value of 1.1 μM and a k(inact) value of 0.004 s⁻¹. The inhibition of LYP by compound 13 could not be reversed significantly by incubation with glutathione or by prolonged dialysis, but could be partially reversed by incubation with dithiothreitol. Compound 13 also inhibited LYP activity in Jurkat T cells.
Collapse
Affiliation(s)
- Rhushikesh A Kulkarni
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Namjou B, Kim-Howard X, Sun C, Adler A, Chung SA, Kaufman KM, Kelly JA, Glenn SB, Guthridge JM, Scofield RH, Kimberly RP, Brown EE, Alarcón GS, Edberg JC, Kim JH, Choi J, Ramsey-Goldman R, Petri MA, Reveille JD, Vilá LM, Boackle SA, Freedman BI, Tsao BP, Langefeld CD, Vyse TJ, Jacob CO, Pons-Estel B, Niewold TB, Moser Sivils KL, Merrill JT, Anaya JM, Gilkeson GS, Gaffney PM, Bae SC, Alarcón-Riquelme ME, Harley JB, Criswell LA, James JA, Nath SK. PTPN22 association in systemic lupus erythematosus (SLE) with respect to individual ancestry and clinical sub-phenotypes. PLoS One 2013; 8:e69404. [PMID: 23950893 PMCID: PMC3737240 DOI: 10.1371/journal.pone.0069404] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 06/09/2013] [Indexed: 12/20/2022] Open
Abstract
Protein tyrosine phosphatase non-receptor type 22 (PTPN22) is a negative regulator of T-cell activation associated with several autoimmune diseases, including systemic lupus erythematosus (SLE). Missense rs2476601 is associated with SLE in individuals with European ancestry. Since the rs2476601 risk allele frequency differs dramatically across ethnicities, we assessed robustness of PTPN22 association with SLE and its clinical sub-phenotypes across four ethnically diverse populations. Ten SNPs were genotyped in 8220 SLE cases and 7369 controls from in European-Americans (EA), African-Americans (AA), Asians (AS), and Hispanics (HS). We performed imputation-based association followed by conditional analysis to identify independent associations. Significantly associated SNPs were tested for association with SLE clinical sub-phenotypes, including autoantibody profiles. Multiple testing was accounted for by using false discovery rate. We successfully imputed and tested allelic association for 107 SNPs within the PTPN22 region and detected evidence of ethnic-specific associations from EA and HS. In EA, the strongest association was at rs2476601 (P = 4.7 × 10(-9), OR = 1.40 (95% CI = 1.25-1.56)). Independent association with rs1217414 was also observed in EA, and both SNPs are correlated with increased European ancestry. For HS imputed intronic SNP, rs3765598, predicted to be a cis-eQTL, was associated (P = 0.007, OR = 0.79 and 95% CI = 0.67-0.94). No significant associations were observed in AA or AS. Case-only analysis using lupus-related clinical criteria revealed differences between EA SLE patients positive for moderate to high titers of IgG anti-cardiolipin (aCL IgG >20) versus negative aCL IgG at rs2476601 (P = 0.012, OR = 1.65). Association was reinforced when these cases were compared to controls (P = 2.7 × 10(-5), OR = 2.11). Our results validate that rs2476601 is the most significantly associated SNP in individuals with European ancestry. Additionally, rs1217414 and rs3765598 may be associated with SLE. Further studies are required to confirm the involvement of rs2476601 with aCL IgG.
Collapse
Affiliation(s)
- Bahram Namjou
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Xana Kim-Howard
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Celi Sun
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Adam Adler
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Sharon A. Chung
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Kenneth M. Kaufman
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Jennifer A. Kelly
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Stuart B. Glenn
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Joel M. Guthridge
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Robert H. Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Robert P. Kimberly
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth E. Brown
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Graciela S. Alarcón
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jeffrey C. Edberg
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jae-Hoon Kim
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Jiyoung Choi
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Rosalind Ramsey-Goldman
- Division of Rheumatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Michelle A. Petri
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - John D. Reveille
- Department of Internal Medicine, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Luis M. Vilá
- Department of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Susan A. Boackle
- Division of Rheumatology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Barry I. Freedman
- Center for Public Health Genomics and Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Betty P. Tsao
- Division of Rheumatology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Carl D. Langefeld
- Department of Biostatistical Sciences, Wake Forest University Health Sciences, Wake Forest, North Carolina, United States of America
| | - Timothy J. Vyse
- Divisions of Genetics and Molecular Medicine and Immunology, King's College London, London, United Kingdom
| | - Chaim O. Jacob
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | | | | | - Timothy B. Niewold
- Division of Rheumatology and Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kathy L. Moser Sivils
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Joan T. Merrill
- Clinical Pharmacology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Juan-Manuel Anaya
- Center for Autoimmune Diseases Research, Universidad del Rosario, Bogota, Colombia
| | - Gary S. Gilkeson
- Department of Medicine, Division of Rheumatology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Patrick M. Gaffney
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
| | - Marta E. Alarcón-Riquelme
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Centro de Genómica e Investigación Oncológica (GENYO) Pfizer-Universidad de Granada-Junta de Andalucía, Granada, Spain
| | | | - John B. Harley
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- US Department of Veterans Affairs Medical Center, Cincinnati, Ohio, United States of America
| | - Lindsey A. Criswell
- Rosalind Russell Medical Research Center for Arthritis, Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Judith A. James
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Swapan K. Nath
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|