1
|
Hernández-Hernández E, Petyuk VA, Valor-Blanquer J, Yáñez-Gómez F, Barr AM, De Jager PL, Chen EY, Leurgans SE, Schneider JA, Bennett DA, Honer WG, García-Fuster MJ, Ramos-Miguel A. Contributions of major tau kinase activation and phospho-tau accumulation to cortical and hippocampal tangle formation and cognition in older adults. Neurobiol Dis 2025; 210:106924. [PMID: 40254098 DOI: 10.1016/j.nbd.2025.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Aberrant activation of tau kinases (tauK) has been proposed as a major step in tau hyperphosphorylation and misfolding, and subsequent formation of neurofibrillary tangles (NFT) in Alzheimer's disease (AD). However, evidence of tauK hyperactivation in actual AD brains is scarce and inconsistent, and their role in age-related cognitive decline remains undocumented. We evaluated activated/inhibited species of CDK5/p35/p25, GSK3α/β, and ERK1/2 as well as ten tau/phospho-tau (ptau) peptides (mapping Ser202, Thr217, Ser262, Ser305, and Ser404 phospho-residues) by Western blot or selected reaction monitoring proteomics, respectively, in postmortem dorsolateral prefrontal cortex (DLPFC) and hippocampal samples of 150 participants from the Rush Memory and Aging Project (MAP). Regression models and mediation analyses assessed the contributions of these variables to tau phosphorylation, NFT deposition and antemortem cognitive status of MAP participants. Surprisingly, greater p25 and p35 (indices for CDK5 activation) and lower pSer21/9-GSK3α/β (inhibited species) immunodensities were associated with lower ptau peptide amounts. Individuals with higher p25 cortical densities displayed better cognitive outcomes, particularly working memory. Statistical mediation analyses indicated that the beneficial effect of CDK5/p25 on cognition was mediated by lower densities of phospho-Thr217-tau and NFT deposition in DLPFC, and also identified Thr217 and Ser262 as the ptau sites with greatest influence in both NFT accumulation and cognitive impairment. The present data suggest that tau hyperphosphorylation, tangle deposition, and the subsequent cognitive impairment do not rely on aberrant activation of major tauKs. Additionally, novel evidence was provided for the beneficial contribution of cortical CDK5/p25 to the maintenance of working memory.
Collapse
Affiliation(s)
- Elena Hernández-Hernández
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain; IUNICS, University of the Balearic Islands, Palma, Spain.
| | | | - Júlia Valor-Blanquer
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain.
| | - Fernando Yáñez-Gómez
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain.
| | - Alasdair M Barr
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and The Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| | - Er-Yun Chen
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - William G Honer
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada,.
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain.
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Leioa, Spain.
| |
Collapse
|
2
|
Wu G, Luo Y, Guo Q, Yang M, Mahaman YAR, Liu Y, Wang JZ, Liu R, Gao X, Wang X. Conformation pattern changes in R1-pS262 tau peptide induced endogenous tau aggregation, synaptic damage, and cognitive impairments. J Alzheimers Dis 2025; 103:951-965. [PMID: 39686621 DOI: 10.1177/13872877241307341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND To date, the effect of tau phosphorylation at different amino acid sites on the conformation and function of tau is still unclear in Alzheimer's disease (AD). Protein fingerprinting, also known as the protein folding shape code (PFSC) method, is a protein structure prediction technique based on protein sequence, which can reveal proteins' most likely spatial conformation. OBJECTIVE To investigate the effect of phosphorylation on tau protein conformation using PFSC technology and further analyze the differences in the effect of phosphorylation on tau aggregation at specific sites. METHODS We performed a conformational analysis of wild-type and simulated mutant hTau441 using the PFSC method and synthesized the phosphorylated and non-phosphorylated tau fragments by the chemical solid phase method. RESULTS We found that the number of Ser262 protein fingerprints increased from six in tau S262A to nine in tau S262E, together with increased conformational changes and enhanced flexibility. The in vitro Thioflavin S assay showed that phosphorylated tau fragments R1-pS262 possessed a stronger activity of inducing tau aggregation. In contrast to the non-phosphorylated tau fragment R1-nS262, R1-pS262 promoted endogenous tau aggregation and decreased synaptic proteins. In rats, R1-pS262 caused cognitive impairments and neuronal loss in addition to endogenous tau aggregation and synaptic damage. CONCLUSIONS Our study firstly reports that tau phosphorylation at Ser262 induces tau aggregation, and phosphorylated tau fragments R1-pS262 directly result in neuropathological changes. These provide new clues to the pathogenesis of tauopathy, such as AD, and a new molecular target for possible intervention.
Collapse
Affiliation(s)
- Gang Wu
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yong Luo
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Qian Guo
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingming Yang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yacoubou Abdoul Razak Mahaman
- Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Yi Liu
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| | - Rong Liu
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Gao
- Department of Pharmacy, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xiaochuan Wang
- School of Basic Medicine, Key Laboratory of Education Ministry/Hubei province of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Hubei Key Laboratory of Cognitive and Affective Disorders, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
3
|
Ahn EH, Park JB. Molecular Mechanisms of Alzheimer's Disease Induced by Amyloid-β and Tau Phosphorylation Along with RhoA Activity: Perspective of RhoA/Rho-Associated Protein Kinase Inhibitors for Neuronal Therapy. Cells 2025; 14:89. [PMID: 39851517 PMCID: PMC11764136 DOI: 10.3390/cells14020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/30/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025] Open
Abstract
Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli. Tau protein has also been identified as a significant factor in AD. In particular, Tau phosphorylation is crucial for neuronal impairment, as phosphorylated Tau detaches from microtubules, leading to the formation of neurofibrillary tangles and the destabilization of the microtubule structure. This instability in microtubules damages axons and dendrites, resulting in neuronal impairment. Notably, Aβ is linked to Tau phosphorylation. Another crucial factor in AD is neuroinflammation, primarily occurring in the microglia. Microglia possess several receptors that bind with Aβ, triggering the expression and release of an inflammatory factor, although their main physiological function is to phagocytose debris and pathogens in the brain. NF-κB activation plays a major role in neuroinflammation. Additionally, the production of reactive oxygen species (ROS) in the microglia contributes to this neuroinflammation. In microglia, superoxide is produced through NADPH oxidase, specifically NOX2. Rho GTPases play an essential role in regulating various cellular processes, including cytoskeletal rearrangement, morphology changes, migration, and transcription. The typical function of Rho GTPases involves regulating actin filament formation. Neurons, with their complex processes and synapse connections, rely on cytoskeletal dynamics for structural support. Other brain cells, such as astrocytes, microglia, and oligodendrocytes, also depend on specific cytoskeletal structures to maintain their unique cellular architectures. Thus, the aberrant regulation of Rho GTPases activity can disrupt actin filaments, leading to altered cell morphology, including changes in neuronal processes and synapses, and potentially contributing to brain diseases such as AD.
Collapse
Affiliation(s)
- Eun Hee Ahn
- Department of Physiology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea;
- Department of Neurology, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| | - Jae-Bong Park
- Department of Biochemistry, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- Institute of Cell Differentiation and Aging, Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
- ELMED Co., Hallym University College of Medicine, Chuncheon 24252, Kangwon-do, Republic of Korea
| |
Collapse
|
4
|
Ansari MM, Sahu SK, Singh TG, Singh SRJ, Kaur P. Evolving significance of kinase inhibitors in the management of Alzheimer's disease. Eur J Pharmacol 2024; 979:176816. [PMID: 39038637 DOI: 10.1016/j.ejphar.2024.176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease is a neurodegenerative problem with progressive loss of memory and other cognitive function disorders resulting in the imbalance of neurotransmitter activity and signaling progression, which poses the need of the potential therapeutic target to improve the intracellular signaling cascade brought by kinases. Protein kinase plays a significant and multifaceted role in the treatment of Alzheimer's disease, by targeting pathological mechanisms like tau hyperphosphorylation, neuroinflammation, amyloid-beta production and synaptic dysfunction. In this review, we thoroughly explore the essential protein kinases involved in Alzheimer's disease, detailing their physiological roles, regulatory impacts, and the newest inhibitors and compounds that are progressing into clinical trials. All the findings of studies exhibited the promising role of kinase inhibitors in the management of Alzheimer's disease. However, it still poses the need of addressing current challenges and opportunities involved with this disorder for the future perspective of kinase inhibitors in the management of Alzheimer's disease. Further study includes the development of biomarkers, combination therapy, and next-generation kinase inhibitors with increased potency and selectivity for its future prospects.
Collapse
Affiliation(s)
- Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | | | - Sovia R J Singh
- University Language Centre- Chitkara Business School, Chitkara University, Punjab, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
5
|
Daraban BS, Popa AS, Stan MS. Latest Perspectives on Alzheimer's Disease Treatment: The Role of Blood-Brain Barrier and Antioxidant-Based Drug Delivery Systems. Molecules 2024; 29:4056. [PMID: 39274904 PMCID: PMC11397357 DOI: 10.3390/molecules29174056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/16/2024] Open
Abstract
There has been a growing interest recently in exploring the role of the blood-brain barrier (BBB) in the treatment of Alzheimer's disease (AD), a neurodegenerative disorder characterized by cognitive decline and memory loss that affects millions of people worldwide. Research has shown that the BBB plays a crucial role in regulating the entry of therapeutics into the brain. Also, the potential benefits of using antioxidant molecules for drug delivery were highlighted in Alzheimer's treatment to enhance the therapeutic efficacy and reduce oxidative stress in affected patients. Antioxidant-based nanomedicine shows promise for treating AD by effectively crossing the BBB and targeting neuroinflammation, potentially slowing disease progression and improving cognitive function. Therefore, new drug delivery systems are being developed to overcome the BBB and improve the delivery of therapeutics to the brain, ultimately improving treatment outcomes for AD patients. In this context, the present review provides an in-depth analysis of recent advancements in AD treatment strategies, such as silica nanoparticles loaded with curcumin, selenium nanoparticles loaded with resveratrol, and many others, focusing on the critical role of the BBB and the use of antioxidant-based drug delivery systems.
Collapse
Affiliation(s)
- Bianca Sânziana Daraban
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Andrei Sabin Popa
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
| | - Miruna S Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050095 Bucharest, Romania
| |
Collapse
|
6
|
Sultanakhmetov G, Limlingan SJM, Fukuchi A, Tsuda K, Suzuki H, Kato I, Saito T, Weitemier AZ, Ando K. Mark4 ablation attenuates pathological phenotypes in a mouse model of tauopathy. Brain Commun 2024; 6:fcae136. [PMID: 38712317 PMCID: PMC11073748 DOI: 10.1093/braincomms/fcae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/20/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Accumulation of abnormally phosphorylated tau proteins is linked to various neurodegenerative diseases, including Alzheimer's disease and frontotemporal dementia. Microtubule affinity-regulating kinase 4 (MARK4) has been genetically and pathologically associated with Alzheimer's disease and reported to enhance tau phosphorylation and toxicity in Drosophila and mouse traumatic brain-injury models but not in mammalian tauopathy models. To investigate the role of MARK4 in tau-mediated neuropathology, we crossed P301S tauopathy model (PS19) and Mark4 knockout mice. We performed behaviour, biochemical and histology analyses to evaluate changes in PS19 pathological phenotype with and without Mark4. Here, we demonstrated that Mark4 deletion ameliorated the tau pathology in a mouse model of tauopathy. In particular, we found that PS19 with Mark4 knockout showed improved mortality and memory compared with those bearing an intact Mark4 gene. These phenotypes were accompanied by reduced neurodegeneration and astrogliosis in response to the reduction of pathological forms of tau, such as those phosphorylated at Ser356, AT8-positive tau and thioflavin S-positive tau. Our data indicate that MARK4 critically contributes to tau-mediated neuropathology, suggesting that MARK4 inhibition may serve as a therapeutic avenue for tauopathies.
Collapse
Affiliation(s)
- Grigorii Sultanakhmetov
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Sophia Jobien M Limlingan
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Aoi Fukuchi
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Keisuke Tsuda
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hirokazu Suzuki
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Iori Kato
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Adam Z Weitemier
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Kanae Ando
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
7
|
Banerjee S, Zhao Q, Wang B, Qin J, Yuan X, Lou Z, Zheng W, Li H, Wang X, Cheng X, Zhu Y, Lin F, Yang F, Xu J, Munshi A, Das P, Zhou Y, Mandal K, Wang Y, Ayub M, Hirokawa N, Xi Y, Chen G, Li C. A novel in-frame deletion in KIF5C gene causes infantile onset epilepsy and psychomotor retardation. MedComm (Beijing) 2024; 5:e469. [PMID: 38525108 PMCID: PMC10960728 DOI: 10.1002/mco2.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 03/26/2024] Open
Abstract
Motor proteins, encoded by Kinesin superfamily (KIF) genes, are critical for brain development and plasticity. Increasing studies reported KIF's roles in neurodevelopmental disorders. Here, a 6 years and 3 months-old Chinese boy with markedly symptomatic epilepsy, intellectual disability, brain atrophy, and psychomotor retardation was investigated. His parents and younger sister were phenotypically normal and had no disease-related family history. Whole exome sequencing identified a novel heterozygous in-frame deletion (c.265_267delTCA) in exon 3 of the KIF5C in the proband, resulting in the removal of evolutionarily highly conserved p.Ser90, located in its ATP-binding domain. Sanger sequencing excluded the proband's parents and family members from harboring this variant. The activity of ATP hydrolysis in vitro was significantly reduced as predicted. Immunofluorescence studies showed wild-type KIF5C was widely distributed throughout the cytoplasm, while mutant KIF5C was colocalized with microtubules. The live-cell imaging of the cargo-trafficking assay revealed that mutant KIF5C lost the peroxisome-transporting ability. Drosophila models also confirmed p.Ser90del's essential role in nervous system development. This study emphasized the importance of the KIF5C gene in intracellular cargo-transport as well as germline variants that lead to neurodevelopmental disorders and might enable clinicians for timely and accurate diagnosis and disease management in the future.
Collapse
Affiliation(s)
- Santasree Banerjee
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
- Department of GeneticsCollege of Basic Medical SciencesJilin UniversityChangchunChina
- Department of GeneticsUniversity of DelhiNew DelhiIndia
| | - Qiang Zhao
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Bo Wang
- Department of PediatricsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhenChina
| | - Jiale Qin
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Xin Yuan
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Ziwei Lou
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Weizeng Zheng
- Department of RadiologyWomen's HospitalZhejiang University School of MedicineHangzhouChina
| | - Huanguo Li
- Department of RadiologyHangzhou Hospital of Traditional Chinese MedicineHangzhouChina
| | - Xiaojun Wang
- Department of Neurobiology, Department of Rehabilitation and Department of Internal Medicine of the Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Xiawei Cheng
- School of PharmacyEast China University of Science and TechnologyShanghaiChina
| | - Yu Zhu
- Department of Neurobiology, Department of Rehabilitation and Department of Internal Medicine of the Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Fan Lin
- Department of Cell BiologySchool of Basic Medical SciencesNanjing Medical UniversityNanjingChina
| | - Fan Yang
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Junyu Xu
- Department of Neurobiology, Department of Rehabilitation and Department of Internal Medicine of the Children's Hospital, Zhejiang University School of MedicineNational Clinical Research Center for Child HealthHangzhouChina
| | - Anjana Munshi
- Department of Human Genetics and Molecular MedicineCentral University of PunjabBathindaIndia
| | - Parimal Das
- Centre for Genetic DisordersBanaras Hindu UniversityVaranasiIndia
| | - Yuanfeng Zhou
- Department of Neurology and Epilepsy CenterChildren's Hospital of Fudan UniversityShanghaiChina
| | - Kausik Mandal
- Department of Medical GeneticsSanjay Gandhi Postgraduate Institute of Medical SciencesLucknowUttar PradeshIndia
| | - Yi Wang
- Department of Neurology and Epilepsy CenterChildren's Hospital of Fudan UniversityShanghaiChina
| | - Muhammad Ayub
- Department of PsychiatryUniversity College LondonLondonUK
| | - Nobutaka Hirokawa
- Department of Cell Biology and AnatomyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Yongmei Xi
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
| | - Guangfu Chen
- Department of PediatricsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen University Health Science CenterShenzhenChina
| | - Chen Li
- Department of Human Genetics and Department of Ultrasound, Women's HospitalSchool of Basic Medical ScienceZhejiang Provincial Key Laboratory of Genetic and Developmental DisordersZhejiang University School of MedicineHangzhouChina
- Alibaba‐Zhejiang University Joint Research Center of Future Digital HealthcareHangzhouChina
| |
Collapse
|
8
|
Sultanakhmetov G, Kato I, Asada A, Saito T, Ando K. Microtubule-affinity regulating kinase family members distinctively affect tau phosphorylation and promote its toxicity in a Drosophila model. Genes Cells 2024; 29:337-346. [PMID: 38329182 PMCID: PMC11447834 DOI: 10.1111/gtc.13101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/09/2024]
Abstract
Accumulation of abnormally phosphorylated tau and its aggregation constitute a significant hallmark of Alzheimer's disease (AD). Tau phosphorylation at Ser262 and Ser356 in the KXGS motifs of microtubule-binding repeats plays a critical role in its physiological function and AD disease progression. Major tau kinases to phosphorylate tau at Ser262 and Ser356 belong to the Microtubule Affinity Regulating Kinase family (MARK1-4), which are considered one of the major contributors to tau abnormalities in AD. However, whether and how each member affects tau toxicity in vivo is unclear. We used transgenic Drosophila as a model to compare the effect on tau-induced neurodegeneration among MARKs in vivo. MARK4 specifically promotes tau accumulation and Ser396 phosphorylation, which yields more tau toxicity than was caused by other MARKs. Interestingly, MARK1, 2, and 4 increased tau phosphorylation at Ser262 and Ser356, but only MARK4 caused tau accumulation, indicating that these sites alone did not cause pathological tau accumulation. Our results revealed MARKs are different in their effect on tau toxicity, and also in tau phosphorylation at pathological sites other than Ser262 and Ser356. Understanding the implementation of each MARK into neurodegenerative disease helps to develop more target and safety therapies to overcome AD and related tauopathies.
Collapse
Affiliation(s)
- Grigorii Sultanakhmetov
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
| | - Iori Kato
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
| | - Akiko Asada
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Taro Saito
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| | - Kanae Ando
- Department of Biological SciencesGraduate School of Science, Tokyo Metropolitan UniversityTokyoJapan
- Department of Biological Sciences, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan
| |
Collapse
|
9
|
Rani N, Sahu M, Ambasta RK, Kumar P. Triaging between post-translational modification of cell cycle regulators and their therapeutics in neurodegenerative diseases. Ageing Res Rev 2024; 94:102174. [PMID: 38135008 DOI: 10.1016/j.arr.2023.102174] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, present challenges in healthcare because of their complicated etiologies and absence of healing remedies. Lately, the emerging role of post-translational modifications (PTMs), in the context of cell cycle regulators, has garnered big interest as a potential avenue for therapeutic intervention. The review explores the problematic panorama of PTMs on cell cycle regulators and their implications in neurodegenerative diseases. We delve into the dynamic phosphorylation, acetylation, ubiquitination, SUMOylation, Glycation, and Neddylation that modulate the key cell cycle regulators, consisting of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors. The dysregulation of these PTMs is related to aberrant cell cycle in neurons, which is one of the factors involved in neurodegenerative pathologies. Moreover, the effect of exogenous activation of CDKs and CDK inhibitors through PTMs on the signaling cascade was studied in postmitotic conditions of NDDs. Furthermore, the therapeutic implications of CDK inhibitors and associated alteration in PTMs were discussed. Lastly, we explored the putative mechanism of PTMs to restore normal neuronal function that might reverse NDDs.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042.
| |
Collapse
|
10
|
Zhang H, Chen W, Li Z, Huang Q, Wen J, Chang S, Pei H, Ma L, Li H. Huannao Yicong decoction ameliorates cognitive deficits in APP/PS1/tau triple transgenic mice by interfering with neurotoxic interaction of Aβ-tau. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116985. [PMID: 37532075 DOI: 10.1016/j.jep.2023.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huannao Yicong decoction (HYD) has been used in the study of AD for many years, which consists of Polygonum multiflorum Thunb., Panax ginseng C.A.Mey., Acorus gramineus Aiton, Coptis chinensis Franch., and Conioselinum acuminatum (Franch.) Lavrova. Previous studies have found that HYD could reduce β-Amyloid (Aβ) deposition and tau hyperphosphorylation which are the two critical pathological factors of AD. However, the mechanism of the neurotoxic interaction between Aβ and tau in AD remains unclear. Thus, the underlying mechanisms for HYD improving cognitive function of AD by interfering with the neurotoxic interaction between Aβ and tau remain to be explored. AIM OF THE STUDY The main objective of this study is to clarify the specific mechanisms of HYD on interfering with the neurotoxic interaction between Aβ and tau of AD both in vivo and in vitro. MATERIALS AND METHODS APP/PS1/tau triple transgenic mice were randomly divided into 4 groups, namely model group, memantine group, HYD low-dose group (HYD-L), and HYD high-dose group (HYD-H) with 28 mice in each group, while 28 C57BL/6J mice as the control group. Gavage was applied to all the mice daily for 24 weeks. SH-SY5Y model cells overexpressing Aβ and tau proteins as the intervention object in vitro experiments. Morris water maze was used to observe the learning and memory ability of APP/PS1/tau mice. Aβ deposition was detected by immunohistochemistry, and the levels of Aβ1-40 and Aβ1-42 were detected by enzyme-linked immunosorbent assay (ELISA). Neurofibrillary tangles (NFTs) were observed by silver staining and the levels of phosphorylated tau proteins were detected by Western blot. The GSK-3β and CDK-5 mRNA expression were detected by real-time polymerase chain reaction (RT-PCR). Besides, the levels of PSD95, GluR1, NR2A, and NR2B were detected by Western blot. Meanwhile, cell experiments were performed to further verify the effect of HYD on tau phosphorylation related kinases (GSK-3β, CDK-5, and PP2A), which further to clarify the mechanism of HYD intervention on the neurotoxic interaction between Aβ and tau. RESULTS HYD improved the learning and memory ability of APP/PS1/tau mice. HYD decreased the levels of Aβ1-40 and Aβ1-42 and inhibited tau hyperphosphorylation, which reduced Aβ deposition and NFTs forming. In addition, HYD inhibited the activity of kinases GSK-3β and CDK-5, and enhancing the activity of kinase PP2A. Moreover, HYD inhibited the overexpression of NR2A and NR2B, and increased the expression of GluR1 and postsynaptic density protein-95 (PSD95). CONCLUSIONS HYD can improve the cognitive deficits by interfering with the neurotoxic interaction between Aβ and tau. In addition, HYD can inhibit the overactivation of NMDARs and increase the levels of GluR1 and PSD95, which may play a role in alleviating neuronal excitotoxicity and improving synaptic function.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China
| | - Wenxuan Chen
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China
| | - Zehui Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China
| | - Qiaoyi Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Jiayu Wen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, No. 11 North Third Ring Road East, Chaoyang District, Beijing, 100029, China
| | - Surui Chang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China.
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, 1 Xiyuan Caochang Road, Haidian District, Beijing, 100091, China; Wangjing Hospital, China Academy of Chinese Medical Sciences, Hua Jia Di Jie, Chaoyang District, Beijing, 100102, China.
| |
Collapse
|
11
|
Oba T, Homma D, Limlingan SJM, Fukuchi A, Asada A, Saito T, Ando K. A cell-penetrating peptide derived from SARS-CoV-2 protein Orf9b allosterically inhibits MARK4 activity and mitigates tau toxicity. Neurobiol Dis 2023; 188:106334. [PMID: 37884211 DOI: 10.1016/j.nbd.2023.106334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
Abnormal activation of microtubule affinity-regulating kinase 4 (MARK4) and its phosphorylation of the microtubule-associated protein tau are believed to play a role in the pathogenesis of Alzheimer's disease, and MARK4 inhibition can be a strategy to develop disease-modifying therapy. Here we report the development of a membrane-permeable peptide that inhibits MARK4 activity in an allosteric manner. The SARS-CoV-2-derived protein Orf9b inhibited MARK4-mediated tau phosphorylation in primary neurons and Drosophila. Orf9b inhibited MARK4 activity in an allosteric manner and did not inhibit the activity of MARK2, which is another MARK family member and is closely related to MARK4. Co-expression of Orf9b in the fly retina expressing human tau and MARK4 suppressed phosphorylation of tau at the microtubule-binding repeats and tau-induced neurodegeneration. We identified the minimal sequence of Orf9b required to suppress MARK4 activity and fused it to a cell-permeable sequence (TAT-Orf9b10-18_78-95). Extracellular supplementation of TAT-Orf9b10-18_78-95 inhibited MARK4 activity in primary neurons, and feeding TAT-Orf9b10-18_78-95 to a fly model of tauopathy lowered phospho-tau levels and suppressed neurodegeneration. These results suggest that TAT-Orf9b10-18_78-95 is a unique class of MARK4 inhibitor and can be used to modify tau toxicity.
Collapse
Affiliation(s)
- Toshiya Oba
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Daiki Homma
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Sophia Jobien M Limlingan
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Aoi Fukuchi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Akiko Asada
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan; Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Japan
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan; Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Japan.
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Japan; Department of Biological Sciences, Faculty of Science, Tokyo Metropolitan University, Japan.
| |
Collapse
|
12
|
Liang F, Li M, Xu M, Zhang Y, Dong Y, Soriano SG, McCann ME, Yang G, Xie Z. Sevoflurane anaesthesia induces cognitive impairment in young mice through sequential tau phosphorylation. Br J Anaesth 2023; 131:726-738. [PMID: 37537117 PMCID: PMC10541551 DOI: 10.1016/j.bja.2023.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The volatile anaesthetic sevoflurane induces time (single or multiple exposures)-dependent effects on tau phosphorylation and cognitive function in young mice. The underlying mechanism for this remains largely undetermined. METHODS Mice received 3% sevoflurane for 0.5 h or 2 h daily for 3 days on postnatal day (P) 6, 9, and 12. Another group of mice received 3% sevoflurane for 0.5 h or 1.5 h (3 × 0.5) on P6. We investigated effects of sevoflurane anaesthesia on tau phosphorylation on P6 or P12 mice, on cognitive function from P31 to P37, and on protein interactions, using in vivo studies, in vitro phosphorylation assays, and nanobeam single-molecule level interactions in vitro. RESULTS An initial sevoflurane exposure induced CaMKIIα phosphorylation (132 [11]% vs 100 [6]%, P<0.01), leading to tau phosphorylation at serine 262 (164 [7]% vs 100 [26]%, P<0.01) and tau detachment from microtubules. Subsequent exposures to the sevoflurane induced GSK3β activation, which phosphorylated detached or free tau (tau phosphorylated at serine 262) at serine 202 and threonine 205, resulting in cognitive impairment in young mice. In vitro phosphorylation assays also demonstrated sequential tau phosphorylation. Nanobeam analysis of molecular interactions showed different interactions between tau or free tau and CaMKIIα or GSK3β, and between tau and tubulin at a single-molecule level. CONCLUSIONS Multiple exposures to sevoflurane can induce sequential tau phosphorylation, leading to cognitive impairment in young mice, highlighting the need to investigate the underlying mechanisms of anaesthesia-induced tau phosphorylation in developing brain.
Collapse
Affiliation(s)
- Feng Liang
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Mengzhu Li
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Anesthesiology, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Miao Xu
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA; Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yiying Zhang
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Yuanlin Dong
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sulpicio G Soriano
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Mary Ellen McCann
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Guang Yang
- Department of Anesthesiology, Columbia University Medical Center, New York, NY, USA
| | - Zhongcong Xie
- Department of Anaesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
13
|
Liu Y, Chen Y, Fukui K. Oxidative stress induces tau hyperphosphorylation via MARK activation in neuroblastoma N1E-115 cells. J Clin Biochem Nutr 2023; 73:24-33. [PMID: 37534088 PMCID: PMC10390814 DOI: 10.3164/jcbn.22-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/28/2022] [Indexed: 08/04/2023] Open
Abstract
Reactive oxygen species are considered a cause of neuronal cell death in Alzheimer's disease (AD). Abnormal tau phosphorylation is a proven pathological hallmark of AD. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neuronal survival. In this study, we hypothesized that oxidative stress increases the phosphorylation of Ser262 of tau protein through activation of MARKs, which is the main reason for the development of AD. We investigated the relationship between tau hyperphosphorylation on Ser262 and MARKs in N1E-115 cells subjected to oxidative stress by exposure to a low concentration of hydrogen peroxide. This work builds on the observation that hyperphosphorylation of tau is significantly increased by oxidative stress. MARKs activation correlated with tau hyperphosphorylation at Ser262, a site that is essential to maintain microtubule stability and is the initial phosphorylation site in AD. These results indicated that MARKs inhibitors might serve a role as therapeutic tools for the treatment of AD.
Collapse
Affiliation(s)
- Yuhong Liu
- Molecular Cell Biology Laboratory, Department of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Yunxi Chen
- Molecular Cell Biology Laboratory, Department of Systems Engineering and Science, School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| | - Koji Fukui
- Molecular Cell Biology Laboratory, Department of Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
- Molecular Cell Biology Laboratory, Department of Systems Engineering and Science, School of Engineering and Science, Shibaura Institute of Technology, Fukasaku 307, Minuma-ku, Saitama 337-8570, Japan
| |
Collapse
|
14
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
15
|
Xu X, Xu H, Zhang Z. Cerebral amyloid angiopathy-related cardiac injury: Focus on cardiac cell death. Front Cell Dev Biol 2023; 11:1156970. [PMID: 36910141 PMCID: PMC9998697 DOI: 10.3389/fcell.2023.1156970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Cerebral amyloid angiopathy (CAA) is a kind of disease in which amyloid β (Aβ) and other amyloid protein deposits in the cerebral cortex and the small blood vessels of the brain, causing cerebrovascular and brain parenchymal damage. CAA patients are often accompanied by cardiac injury, involving Aβ, tau and transthyroxine amyloid (ATTR). Aβ is the main injury factor of CAA, which can accelerate the formation of coronary artery atherosclerosis, aortic valve osteogenesis calcification and cardiomyocytes basophilic degeneration. In the early stage of CAA (pre-stroke), the accompanying locus coeruleus (LC) amyloidosis, vasculitis and circulating Aβ will induce first hit to the heart. When the CAA progresses to an advanced stage and causes a cerebral hemorrhage, the hemorrhage leads to autonomic nervous function disturbance, catecholamine surges, and systemic inflammation reaction, which can deal the second hit to the heart. Based on the brain-heart axis, CAA and its associated cardiac injury can create a vicious cycle that accelerates the progression of each other.
Collapse
Affiliation(s)
- Xiaofang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Huikang Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhaocai Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Key Laboratory of the Diagnosis and Treatment for Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Province Clinical Research Center for Emergency and Critical care medicine, Hangzhou, China
| |
Collapse
|
16
|
Nitta Y, Sugie A. Studies of neurodegenerative diseases using Drosophila and the development of novel approaches for their analysis. Fly (Austin) 2022; 16:275-298. [PMID: 35765969 PMCID: PMC9336468 DOI: 10.1080/19336934.2022.2087484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 02/09/2023] Open
Abstract
The use of Drosophila in neurodegenerative disease research has contributed to the identification of modifier genes for the pathology. The basis for neurodegenerative disease occurrence in Drosophila is the conservation of genes across species and the ability to perform rapid genetic analysis using a compact brain. Genetic findings previously discovered in Drosophila can reveal molecular pathologies involved in human neurological diseases in later years. Disease models using Drosophila began to be generated during the development of genetic engineering. In recent years, results of reverse translational research using Drosophila have been reported. In this review, we discuss research on neurodegenerative diseases; moreover, we introduce various methods for quantifying neurodegeneration in Drosophila.
Collapse
Affiliation(s)
- Yohei Nitta
- Brain Research Institute, Niigata University, Niigata, Japan
| | - Atsushi Sugie
- Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
17
|
López-Ornelas A, Jiménez A, Pérez-Sánchez G, Rodríguez-Pérez CE, Corzo-Cruz A, Velasco I, Estudillo E. The Impairment of Blood-Brain Barrier in Alzheimer's Disease: Challenges and Opportunities with Stem Cells. Int J Mol Sci 2022; 23:ijms231710136. [PMID: 36077533 PMCID: PMC9456198 DOI: 10.3390/ijms231710136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD. This review aims to analyze the main factors and the contribution of impaired BBB in AD development. Additionally, we describe the potential therapeutic strategies using stem cells for AD treatment.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Alejandro Corzo-Cruz
- Laboratorio Traslacional, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Correspondence:
| |
Collapse
|
18
|
Zhang S, Zhu Y, Lu J, Liu Z, Lobato AG, Zeng W, Liu J, Qiang J, Zeng S, Zhang Y, Liu C, Liu J, He Z, Zhai RG, Li D. Specific binding of Hsp27 and phosphorylated Tau mitigates abnormal Tau aggregation-induced pathology. eLife 2022; 11:79898. [PMID: 36048712 PMCID: PMC9436411 DOI: 10.7554/elife.79898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloid aggregation of phosphorylated Tau (pTau) into neurofibrillary tangles is closely associated with Alzheimer's disease (AD). Several molecular chaperones have been reported to bind Tau and impede its pathological aggregation. Recent findings of elevated levels of Hsp27 in the brains of patients with AD suggested its important role in pTau pathology. However, the molecular mechanism of Hsp27 in pTau aggregation remains poorly understood. Here, we show that Hsp27 partially co-localizes with pTau tangles in the brains of patients with AD. Notably, phosphorylation of Tau by microtubule affinity regulating kinase 2 (MARK2), dramatically enhances the binding affinity of Hsp27 to Tau. Moreover, Hsp27 efficiently prevents pTau fibrillation in vitro and mitigates neuropathology of pTau aggregation in a Drosophila tauopathy model. Further mechanistic study reveals that Hsp27 employs its N-terminal domain to directly interact with multiple phosphorylation sites of pTau for specific binding. Our work provides the structural basis for the specific recognition of Hsp27 to pathogenic pTau, and highlights the important role of Hsp27 in preventing abnormal aggregation and pathology of pTau in AD.
Collapse
Affiliation(s)
- Shengnan Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zhu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Jinxia Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zhenying Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Amanda G Lobato
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States.,Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, United States
| | - Wen Zeng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Liu
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States.,Graduate Program in Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Jiali Qiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Shuyi Zeng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuohao He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - R Grace Zhai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, United States
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.,Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Alipour M, Motavaf M, Abdolmaleki P, Zali A, Ashrafi F, Safari S, Hajipour-Verdom B. Structural Analysis and Conformational Dynamics of Short Helical Hyperphosphorylated Segments of Tau Protein (Sequence 254–290) in Alzheimer’s Disease: A Molecular Dynamics Simulation Study. Front Mol Biosci 2022; 9:884705. [PMID: 36003083 PMCID: PMC9393928 DOI: 10.3389/fmolb.2022.884705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder whose early diagnosis leads to a chance for successful treatment and decreases the side effects. Hyperphosphorylation of tau proteins is a pathological hallmark of AD that causes it to lose its attachment ability to the microtubules. Alteration of tau structure due to its hyperphosphorylation is an exciting challenge regarding AD treatments. Here, we aimed to examine the structural alterations of short helical segments of tau protein with one to three phosphorylated sites by molecular dynamics simulation. Results indicated that the interaction of two similar segments with three phosphorylated sites (P-Ser262, 285, and 289) formed a compact and more stable structure than the one phosphorylated site complex (P-Ser262). Moreover, due to the high dynamics of the P-Ser262 complex, several structures were made with different conformational dynamics, but there was only one stable cluster of the P-Ser262, 285, and 289 complex during simulation. It seems that the P-Ser262, 285, and 289 complex plays an important role in the formation of paired helical filaments (PHFs) by forming a stable dimer. Generally, it is important to identify how structural features of segments in tau protein change when the phosphorylated sites increase from one to three sites and their effects on the formation of PHFs for drug design and diagnostic biomarkers.
Collapse
Affiliation(s)
- Mozhgan Alipour
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahsa Motavaf
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parviz Abdolmaleki
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzad Ashrafi
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Safari
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Saeid Safari, ; Behnam Hajipour-Verdom,
| | - Behnam Hajipour-Verdom
- Functional Neurosurgery Research Center, Shohada Tajrish Comprehensive Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- *Correspondence: Saeid Safari, ; Behnam Hajipour-Verdom,
| |
Collapse
|
20
|
Pradhan LK, Sahoo PK, Chauhan S, Das SK. Recent Advances Towards Diagnosis and Therapeutic Fingerprinting for Alzheimer's Disease. J Mol Neurosci 2022; 72:1143-1165. [PMID: 35553375 DOI: 10.1007/s12031-022-02009-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/02/2022] [Indexed: 12/12/2022]
Abstract
Since the report of "a peculiar severe disease process of the cerebral cortex" by Alois Alzheimer in 1906, it was considered to be a rare condition characterized by loss of cognition, memory impairment, and pathological markers such as senile plaques or neurofibrillary tangles (NFTs). Later on, the report was published in the textbook "Psychiatrie" and the disease was named as Alzheimer's disease (AD) and was known to be the consequences of aging; however, owing to its complex etiology, there is no cure for the progressive neurodegenerative disorder. Our current understanding of the mechanisms involved in the pathogenesis of AD is still at the mechanistic level. The treatment strategies applied currently only alleviate the symptoms and co-morbidities. For instance, the available treatments such as the usage of acetylcholinesterase inhibitors and N-methyl D-aspartate antagonists have minimal impact on the disease progression and target the later aspects of the disease. The recent advancements in the last two decades have made us more clearly understand the pathophysiology of the disease which has led to the development of novel therapeutic strategies. This review gives a brief idea about the various facets of AD pathophysiology and its management through modern investigational therapies to give a new direction for development of targeted therapeutic measures.
Collapse
Affiliation(s)
- Lilesh Kumar Pradhan
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Pradyumna Kumar Sahoo
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India
| | - Santosh Chauhan
- Autophagy Laboratory, Infectious Disease Biology Division, Institute of Life Sciences, Bhubaneswar-751023, India.
| | - Saroj Kumar Das
- Neurobiology Laboratory, Centre for Biotechnology, Siksha 'O' Anusandhan (Deemed to Be University), Kalinga Nagar, Bhubaneswar-751003, India.
| |
Collapse
|
21
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
22
|
Zhang H, Wei W, Zhao M, Ma L, Jiang X, Pei H, Cao Y, Li H. Interaction between Aβ and Tau in the Pathogenesis of Alzheimer's Disease. Int J Biol Sci 2021; 17:2181-2192. [PMID: 34239348 PMCID: PMC8241728 DOI: 10.7150/ijbs.57078] [Citation(s) in RCA: 247] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular neuritic plaques composed of amyloid‑β (Aβ) protein and intracellular neurofibrillary tangles containing phosphorylated tau protein are the two hallmark proteins of Alzheimer's disease (AD), and the separate neurotoxicity of these proteins in AD has been extensively studied. However, interventions that target Aβ or tau individually have not yielded substantial breakthroughs. The interest in the interactions between Aβ and tau in AD is increasing, but related drug investigations are in their infancy. This review discusses how Aβ accelerates tau phosphorylation and the possible mechanisms and pathways by which tau mediates Aβ toxicity. This review also describes the possible synergistic effects between Aβ and tau on microglial cells and astrocytes. Studies suggest that the coexistence of Aβ plaques and phosphorylated tau is related to the mechanism by which Aβ facilitates the propagation of tau aggregation in neuritic plaques. The interactions between Aβ and tau mediate cognitive dysfunction in patients with AD. In summary, this review summarizes recent data on the interplay between Aβ and tau to promote a better understanding of the roles of these proteins in the pathological process of AD and provide new insights into interventions against AD.
Collapse
Affiliation(s)
- Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Wei Wei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ming Zhao
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Xuefan Jiang
- Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hao Li
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
23
|
Pakzad D, Akbari V, Sepand MR, Aliomrani M. Risk of neurodegenerative disease due to tau phosphorylation changes and arsenic exposure via drinking water. Toxicol Res (Camb) 2021; 10:325-333. [PMID: 33884182 PMCID: PMC8045564 DOI: 10.1093/toxres/tfab011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/28/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022] Open
Abstract
It is estimated that around 140 million people are drinking highly contaminated water with arsenic (As) as a natural earth's crust component. On the other hand, the prevalence of neurodegenerative disorders, especially Alzheimer's disease, is constantly increasing. The aim of the present study was to investigate the correlation between oral arsenic trioxide exposure and its impact on tau protein phosphorylation at Ser262. Fifty-four male mice were randomly divided into three groups and were freely accessed to food and contaminated water of 1 and 10 ppm arsenic trioxide for 3 months, except for control subjects. At the end of each month, As concentration and tau phosphorylation were checked with graphite furnace atomic absorption spectrometer and western blot analysis, respectively. Surprisingly, it was observed that the amount of measured brain arsenic in 10 ppm-exposed subjects was significantly increased after 3 months (P-value ˂ 0.0001). The significant changes in tau phosphorylation were not seen in the 1 ppm-exposed subjects, and it was observed that Ser262 phosphorylation significantly increased after 2 and 3 months in the 10 ppm group (P-value < 0.05). Our results demonstrated that arsenic accumulated in the brain time-dependently and increased Ser262 tau phosphorylation, which is very important in several tauopathies. In conclusion, it could be inferred that environmental arsenic exposure even at very low concentrations could be considered as a reason for increasing the risk of developing neurodegenerative disease.
Collapse
Affiliation(s)
- Davoud Pakzad
- Isfahan University of Medical Sciences and Health Services, Isfahan 81746-73461, Iran
| | - Vajihe Akbari
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan 81746-73461, Iran
| | - Mohammad Reza Sepand
- Department of Toxicology and Pharmacology, School of Pharmacy and Pharmaceutical Sciences, Tehran University of Medical Sciences and Health Services, Tehran 81746-73461, Iran
| | - Mehdi Aliomrani
- Department of Toxicology and Pharmacology, Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences and Health Services, Isfahan 81746-73461, Iran
| |
Collapse
|
24
|
Chang Y, Yao Y, Ma R, Wang Z, Hu J, Wu Y, Jiang X, Li L, Li G. Dl-3-n-Butylphthalide Reduces Cognitive Deficits and Alleviates Neuropathology in P301S Tau Transgenic Mice. Front Neurosci 2021; 15:620176. [PMID: 33642981 PMCID: PMC7902884 DOI: 10.3389/fnins.2021.620176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD) is a destructive and burdensome neurodegenerative disease, one of the most common characteristics of which are neurofibrillary tangles (NFTs) that are composed of abnormal tau protein. Animal studies have suggested that dl-3-n-butylphthalide (dl-NBP) alleviates cognitive impairment in mouse models of APP/PS1 and SAMP8. However, the underlying mechanisms related to this remain unclear. In this study, we examined the effects of dl-NBP on learning and memory in P301S transgenic mice, which carry the human tau gene with the P301S mutation. We found that dl-NBP supplementation effectively improved behavioral deficits and rescued synaptic loss in P301S tau transgenic mice, compared with vehicle-treated P301S mice. Furthermore, we also found that it markedly inhibited the hyperphosphorylated tau at the Ser262 site and decreased the activity of MARK4, which was associated with tau at the Ser262 site. Finally, dl-NBP treatment exerted anti-inflammatory effects and reduced inflammatory responses in P301S mice. In conclusion, our results provide evidence that dl-NBP has a promising potential for the therapy of tauopathies, including AD.
Collapse
Affiliation(s)
- Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Yao
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Ma
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zemin Wang
- Harvard Medical School, Boston, MA, United States
| | - Junjie Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Wu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingjun Jiang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lulu Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Oba T, Saito T, Asada A, Shimizu S, Iijima KM, Ando K. Microtubule affinity-regulating kinase 4 with an Alzheimer's disease-related mutation promotes tau accumulation and exacerbates neurodegeneration. J Biol Chem 2020; 295:17138-17147. [PMID: 33020179 PMCID: PMC7863894 DOI: 10.1074/jbc.ra120.014420] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/19/2020] [Indexed: 12/21/2022] Open
Abstract
Accumulation of the microtubule-associated protein tau is associated with Alzheimer's disease (AD). In AD brain, tau is abnormally phosphorylated at many sites, and phosphorylation at Ser-262 and Ser-356 plays critical roles in tau accumulation and toxicity. Microtubule affinity-regulating kinase 4 (MARK4) phosphorylates tau at those sites, and a double de novo mutation in the linker region of MARK4, ΔG316E317D, is associated with an elevated risk of AD. However, it remains unclear how this mutation affects phosphorylation, aggregation, and accumulation of tau and tau-induced neurodegeneration. Here, we report that MARK4ΔG316E317D increases the abundance of highly phosphorylated, insoluble tau species and exacerbates neurodegeneration via Ser-262/356-dependent and -independent mechanisms. Using transgenic Drosophila expressing human MARK4 (MARK4wt) or a mutant version of MARK4 (MARK4ΔG316E317D), we found that coexpression of MARK4wt and MARK4ΔG316E317D increased total tau levels and enhanced tau-induced neurodegeneration and that MARK4ΔG316E317D had more potent effects than MARK4wt Interestingly, the in vitro kinase activities of MARK4wt and MARK4ΔG316E317D were similar. When tau phosphorylation at Ser-262 and Ser-356 was blocked by alanine substitutions, MARK4wt did not promote tau accumulation or exacerbate neurodegeneration, whereas coexpression of MARK4ΔG316E317D did. Both MARK4wt and MARK4ΔG316E317D increased the levels of oligomeric forms of tau; however, only MARK4ΔG316E317D further increased the detergent insolubility of tau in vivo Together, these findings suggest that MARK4ΔG316E317D increases tau levels and exacerbates tau toxicity via a novel gain-of-function mechanism and that modification in this region of MARK4 may affect disease pathogenesis.
Collapse
Affiliation(s)
- Toshiya Oba
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Taro Saito
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akiko Asada
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Sawako Shimizu
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Koichi M Iijima
- Department of Alzheimer's Disease Research, National Center for Geriatrics and Gerontology, Obu, Japan; Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kanae Ando
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan; Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
26
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 524] [Impact Index Per Article: 104.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
27
|
Pharmacological Treatment of Alzheimer's Disease: Insights from Drosophila melanogaster. Int J Mol Sci 2020; 21:ijms21134621. [PMID: 32610577 PMCID: PMC7370071 DOI: 10.3390/ijms21134621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Aging is an ineluctable law of life. During the process of aging, the occurrence of neurodegenerative disorders is prevalent in the elderly population and the predominant type of dementia is Alzheimer’s disease (AD). The clinical symptoms of AD include progressive memory loss and impairment of cognitive functions that interfere with daily life activities. The predominant neuropathological features in AD are extracellular β-amyloid (Aβ) plaque deposition and intracellular neurofibrillary tangles (NFTs) of hyperphosphorylated Tau. Because of its complex pathobiology, some tangible treatment can only ameliorate the symptoms, but not prevent the disease altogether. Numerous drugs during pre-clinical or clinical studies have shown no positive effect on the disease outcome. Therefore, understanding the basic pathophysiological mechanism of AD is imperative for the rational design of drugs that can be used to prevent this disease. Drosophilamelanogaster has emerged as a highly efficient model system to explore the pathogenesis and treatment of AD. In this review we have summarized recent advancements in the pharmacological research on AD using Drosophila as a model species, discussed feasible treatment strategies and provided further reference for the mechanistic study and treatment of age-related AD.
Collapse
|
28
|
Sathe G, Mangalaparthi KK, Jain A, Darrow J, Troncoso J, Albert M, Moghekar A, Pandey A. Multiplexed Phosphoproteomic Study of Brain in Patients with Alzheimer's Disease and Age-Matched Cognitively Healthy Controls. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:216-227. [PMID: 32182160 DOI: 10.1089/omi.2019.0191] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder caused by neuronal loss that results in cognitive and functional impairment. Formation of neurofibrillary tangles composed of abnormal hyperphosphorylation of tau protein is one of the major pathological hallmarks of AD. Importantly, several neurodegenerative disorders, including AD, are associated with abnormal protein phosphorylation events. However, little is known thus far on global protein phosphorylation changes in AD. We report a phosphoproteomics study examining the frontal gyrus of people with AD and age-matched cognitively normal subjects, using tandem mass tag (TMT) multiplexing technology along with immobilized metal affinity chromatography to enrich phosphopeptides. We identified 4631 phosphopeptides corresponding to 1821 proteins with liquid chromatography-mass spectrometry (MS)/MS analysis on an Orbitrap Fusion Lumos Tribrid mass spectrometer. Of these, 504 phosphopeptides corresponding to 350 proteins were significantly altered in the AD brain: 389 phosphopeptides increased whereas 115 phosphopeptides decreased phosphorylation. We observed significant changes in phosphorylation of known as well as novel molecules. Using targeted parallel reaction monitoring experiments, we validated the phosphorylation of microtubule-associated protein tau and myristoylated alanine-rich protein kinase C substrate (MARCKS) in control and AD (Control = 6, AD = 11) brain samples. In conclusion, our study provides new evidence on alteration of RNA processing and splicing, neurogenesis and neuronal development, and metabotropic glutamate receptor 5 (GRM5) calcium signaling pathways in the AD brain, and it thus offers new insights to accelerate diagnostics and therapeutics innovation in AD.
Collapse
Affiliation(s)
- Gajanan Sathe
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Institute of Bioinformatics, Bangalore, India.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Manipal Academy of Higher Education (MAHE), Manipal, India
| | | | - Ankit Jain
- Institute of Bioinformatics, Bangalore, India
| | - Jacqueline Darrow
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Juan Troncoso
- Department of Pathology and Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Akhilesh Pandey
- Center for Molecular Medicine, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India.,Institute of Bioinformatics, Bangalore, India.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Manipal Academy of Higher Education (MAHE), Manipal, India.,Department of Biological Chemistry, Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
29
|
Wei H, Zhang HL, Xie JZ, Meng DL, Wang XC, Ke D, Zeng J, Liu R. Protein Phosphatase 2A as a Drug Target in the Treatment of Cancer and Alzheimer's Disease. Curr Med Sci 2020; 40:1-8. [PMID: 32166659 DOI: 10.1007/s11596-020-2140-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/10/2019] [Indexed: 01/22/2023]
Abstract
Protein phosphatase 2A (PP2A) is a major serine/threonine phosphatase which participates in the regulation of multiple cellular processes. As a confirmed tumor suppressor, PP2A activity is downregulated in tumors and its re-activation can induce apoptosis of cancer cells. In the brains of Alzheimer's disease (AD) patients, decreased PP2A activity also plays a key role in promoting tau hyperphosphorylation and Aβ generation. In this review, we discussed compounds aiming at modulating PP2A activity in the treatment of cancer or AD. The upstream factors that inactivate PP2A in diseases have not been fully elucidated and further studies are needed. It will help for the refinement and development of novel and clinically tractable PP2A-targeted compounds or therapies for the treatment of tumor and AD.
Collapse
Affiliation(s)
- Hui Wei
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Liang Zhang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia-Zhao Xie
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dong-Li Meng
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-Chuan Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ji Zeng
- Department of Clinic Laboratory, Wuhan Fourth Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Rong Liu
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
30
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
31
|
Higham JP, Malik BR, Buhl E, Dawson JM, Ogier AS, Lunnon K, Hodge JJL. Alzheimer's Disease Associated Genes Ankyrin and Tau Cause Shortened Lifespan and Memory Loss in Drosophila. Front Cell Neurosci 2019; 13:260. [PMID: 31244615 PMCID: PMC6581016 DOI: 10.3389/fncel.2019.00260] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia and is characterized by intracellular neurofibrillary tangles of hyperphosphorylated Tau, including the 0N4R isoform and accumulation of extracellular amyloid beta (Aβ) plaques. However, less than 5% of AD cases are familial, with many additional risk factors contributing to AD including aging, lifestyle, the environment and epigenetics. Recent epigenome-wide association studies (EWAS) of AD have identified a number of loci that are differentially methylated in the AD cortex. Indeed, hypermethylation and reduced expression of the Ankyrin 1 (ANK1) gene in AD has been reported in the cortex in numerous different post-mortem brain cohorts. Little is known about the normal function of ANK1 in the healthy brain, nor the role it may play in AD. We have generated Drosophila models to allow us to functionally characterize Drosophila Ank2, the ortholog of human ANK1 and to determine its interaction with human Tau and Aβ. We show expression of human Tau 0N4R or the oligomerizing Aβ 42 amino acid peptide caused shortened lifespan, degeneration, disrupted movement, memory loss, and decreased excitability of memory neurons with co-expression tending to make the pathology worse. We find that Drosophila with reduced neuronal Ank2 expression have shortened lifespan, reduced locomotion, reduced memory and reduced neuronal excitability similar to flies overexpressing either human Tau 0N4R or Aβ42. Therefore, we show that the mis-expression of Ank2 can drive disease relevant processes and phenocopy some features of AD. Therefore, we propose targeting human ANK1 may have therapeutic potential. This represents the first study to characterize an AD-relevant gene nominated from EWAS.
Collapse
Affiliation(s)
- James P. Higham
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bilal R. Malik
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Edgar Buhl
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Jennifer M. Dawson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Anna S. Ogier
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - James J. L. Hodge
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
32
|
Saito T, Oba T, Shimizu S, Asada A, Iijima KM, Ando K. Cdk5 increases MARK4 activity and augments pathological tau accumulation and toxicity through tau phosphorylation at Ser262. Hum Mol Genet 2019; 28:3062-3071. [DOI: 10.1093/hmg/ddz120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/29/2019] [Accepted: 06/03/2019] [Indexed: 01/05/2023] Open
Abstract
Abstract
Hyperphosphorylation of the microtubule-associated protein tau is associated with many neurodegenerative diseases, including Alzheimer’s disease. Microtubule affinity-regulating kinases (MARK) 1–4 and cyclin-dependent kinase 5 (Cdk5) are tau kinases under physiological and pathological conditions. However, their functional relationship remains elusive. Here, we report a novel mechanism by which Cdk5 activates MARK4 and augments tau phosphorylation, accumulation and toxicity. MARK4 is highly phosphorylated at multiple sites in the brain and in cultured neurons, and inhibition of Cdk5 activity reduces phosphorylation levels of MARK4. MARK4 is known to be activated by phosphorylation at its activation loop by liver kinase B1 (LKB1). In contrast, Cdk5 increased phosphorylation of MARK4 in the spacer domain, but not in the activation loop, and enhanced its kinase activity, suggesting a novel mechanism by which Cdk5 regulates MARK4 activity. We also demonstrated that co-expression of Cdk5 and MARK4 in mammalian cultured cells significantly increased the levels of tau phosphorylation at both Cdk5 target sites (SP/TP sites) and MARK target sites (Ser262), as well as the levels of total tau. Furthermore, using a Drosophila model of tau toxicity, we demonstrated that Cdk5 promoted tau accumulation and tau-induced neurodegeneration via increasing tau phosphorylation levels at Ser262 by a fly ortholog of MARK, Par-1. This study suggests a novel mechanism by which Cdk5 and MARK4 synergistically increase tau phosphorylation and accumulation, consequently promoting neurodegeneration in disease pathogenesis.
Collapse
Affiliation(s)
- Taro Saito
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Toshiya Oba
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Sawako Shimizu
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Akiko Asada
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| | - Koichi M Iijima
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Kanae Ando
- Department of Biological Sciences, School of Science, Tokyo Metropolitan University, Tokyo, Japan
- Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
33
|
Li S, Li W, Wu X, Li J, Yang J, Tu C, Ye X, Ling S. Olfactory deficit is associated with mitral cell dysfunction in the olfactory bulb of P301S tau transgenic mice. Brain Res Bull 2019; 148:34-45. [PMID: 30902575 DOI: 10.1016/j.brainresbull.2019.03.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/09/2019] [Accepted: 03/14/2019] [Indexed: 01/24/2023]
Abstract
Neurofibrillary tangles consisting of hyperphosphorylated tau (P-tau) are the neuropathological hallmark of Alzheimer's disease (AD), and olfaction disorder is an early symptom of AD. However, the link between P-tau aggregation and olfaction disorder remains unclear. In this study, the expression of P-tau in the olfactory bulb (OB), particularly in the mitral cell layer (MCL), external plexiform layer (EPL), and granule cell layer (GCL), of AD patients was found to be significantly higher than that in the OB of normal aging subjects, which suggested that these layers in the OB were susceptible to P-tau. The P301S tau transgenic mice (P301S mice) exhibit AD-like features, which can be characterized by olfactory dysfunction that precedes cognitive disorder. Importantly, the excessive P-tau expression in the OB of P301S mice, particularly in MCs, was associated with MC loss at 9 months of age, and decreased MC firing activities started to be observed at 2 months of age. Our results revealed that MCs might contribute to olfactory dysfunction in P301S mice. Furthermore, we described an aberrant dendro-dendritic synaptic structure between granule cells (GCs) and MCs and abnormal gamma oscillations in the EPL of the OB, and these findings indicated that P-tau might disrupt the regulation of MCs by GCs in P301S mice starting at 5 months of age. These data showed that the reduction in the MC firing frequency at 2 months of age might not be caused by GC suppression. Based on these findings, we speculated that MCs are a putative target for the treatment of P-tau-induced early olfactory dysfunction, and thus, an exploration of the specific causes and mechanisms of MC functional changes in P301S mice is crucial.
Collapse
Affiliation(s)
- Shanshan Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weiyun Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China; Department of Clinical Medicine, Zhejiang University City College, Hangzhou, China
| | - Xuewei Wu
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Li
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chunlong Tu
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, China
| | - Xuesong Ye
- Biosensor National Special Laboratory, Key Laboratory of BME of the Ministry of Education, Zhejiang University, Hangzhou, China.
| | - Shucai Ling
- Institute of Neuroscience and Anatomy, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
34
|
Chiku T, Hayashishita M, Saito T, Oka M, Shinno K, Ohtake Y, Shimizu S, Asada A, Hisanaga SI, Iijima KM, Ando K. S6K/p70S6K1 protects against tau-mediated neurodegeneration by decreasing the level of tau phosphorylated at Ser262 in a Drosophila model of tauopathy. Neurobiol Aging 2018; 71:255-264. [DOI: 10.1016/j.neurobiolaging.2018.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 02/08/2023]
|
35
|
Compound C enhances tau phosphorylation at Serine396 via PI3K activation in an AMPK and rapamycin independent way in differentiated SH-SY5Y cells. Neurosci Lett 2018; 670:53-61. [DOI: 10.1016/j.neulet.2018.01.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 11/21/2022]
|
36
|
Li M, Zhang W, Wang W, He Q, Yin M, Qin X, Zhang T, Wu T. Imidazole improves cognition and balances Alzheimer's-like intracellular calcium homeostasis in transgenic Drosophila model. Neurourol Urodyn 2017; 37:1250-1257. [PMID: 29106759 DOI: 10.1002/nau.23448] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/03/2017] [Indexed: 01/17/2023]
Abstract
AIMS The characteristic of Alzheimer's disease (AD) is the accumulation and aggregation of amyloid-β (Aβ). So far, we already know that the dysregulation of intracellular calcium homeostasis is considered to be associated with Aβ neurotoxicity. Meantime, we also found that the channels formed by Aβ are electronegative as calcium channels. Base on this hypothesis, the formation of Aβ channels will provide us with a new therapeutic direction for AD. Aβ channel hypothesis is proposed that the axis of Aβ channel's pore was encompasses by the His13 -His14 diad. Imidazole especially the imidazole ring was supposed binding to the side chains of Aβ peptides. METHODS In our study, we adopted Gal4/UAS system to establish transgenic drosophila model which lay a good foundation to explore the imidazole's function and mechanism of action. RESULTS The results suggested that Imidazole could not only improve the cognition of Aβ42-expressing flies, but also decreases p-JNK activation in whole brain of Aβ42-expressing flies. CONCLUSIONS Furthermore, freshly prepared oligomeric Aβ42 peptide ascended primary pupal neuronal calcium concentration and this phenomenon was alleviated by Imidazole and Zn2+ .
Collapse
Affiliation(s)
- Min Li
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wanrong Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Wang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qing He
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Neurology, The First People's Hospital of Xuzhou, Nanjing, China
| | - Mengmei Yin
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xue Qin
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tongyu Zhang
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ting Wu
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
37
|
Galasso A, Cameron CS, Frenguelli BG, Moffat KG. An AMPK-dependent regulatory pathway in tau-mediated toxicity. Biol Open 2017; 6:1434-1444. [PMID: 28808138 PMCID: PMC5665459 DOI: 10.1242/bio.022863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Neurodegenerative tauopathies are characterised by accumulation of hyperphosphorylated tau aggregates primarily degraded by autophagy. The 5′AMP-activated protein kinase (AMPK) is expressed in most cells, including neurons. Alongside its metabolic functions, it is also known to be activated in Alzheimer's brains, phosphorylate tau, and be a critical autophagy activator. Whether it plays a neurotoxic or neuroprotective role remains unclear. In tauopathies stress conditions can result in AMPK activation, enhancing tau-mediated toxicity. Paradoxically, in these cases AMPK activation does not always lead to protective autophagic responses. Using a Drosophila in vivo quantitative approach, we have analysed the impact of AMPK and autophagy on tau-mediated toxicity, recapitulating the AMPK-mediated tauopathy condition: increased tau phosphorylation, without corresponding autophagy activation. We have demonstrated that AMPK binding to and phosphorylating tau at Ser-262, a site reported to facilitate soluble tau accumulation, affects its degradation. This phosphorylation results in exacerbation of tau toxicity and is ameliorated via rapamycin-induced autophagy stimulation. Our findings support the development of combinatorial therapies effective at reducing tau toxicity targeting tau phosphorylation and AMPK-independent autophagic induction. The proposed in vivo tool represents an ideal readout to perform preliminary screening for drugs promoting this process. Summary: Dissection of the impact of AMPK and autophagy on tau-mediated toxicity by using an in vivo Drosophila tool as readout to perform preliminary drug screening supported by quantitative analyses.
Collapse
Affiliation(s)
- Alessia Galasso
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Charles S Cameron
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Kevin G Moffat
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
38
|
Shedding Light on Alzheimer's β-Amyloidosis: Photosensitized Methylene Blue Inhibits Self-Assembly of β-Amyloid Peptides and Disintegrates Their Aggregates. Sci Rep 2017; 7:7523. [PMID: 28790398 PMCID: PMC5548810 DOI: 10.1038/s41598-017-07581-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/27/2017] [Indexed: 02/06/2023] Open
Abstract
Abnormal aggregation of β-amyloid (Aβ) peptides is a major hallmark of Alzheimer’s disease (AD). In spite of numerous attempts to prevent the β-amyloidosis, no effective drugs for treating AD have been developed to date. Among many candidate chemicals, methylene blue (MB) has proved its therapeutic potential for AD in a number of in vitro and in vivo studies; but the result of recent clinical trials performed with MB and its derivative was negative. Here, with the aid of multiple photochemical analyses, we first report that photoexcited MB molecules can block Aβ42 aggregation in vitro. Furthermore, our in vivo study using Drosophila AD model demonstrates that photoexcited MB is highly effective in suppressing synaptic toxicity, resulting in a reduced damage to the neuromuscular junction (NMJ), an enhanced locomotion, and decreased vacuole in the brain. The hindrance effect is attributed to Aβ42 oxidation by singlet oxygen (1O2) generated from photoexcited MB. Finally, we show that photoexcited MB possess a capability to disaggregate the pre-existing Aβ42 aggregates and reduce Aβ-induced cytotoxicity. Our work suggests that light illumination can provide an opportunity to boost the efficacies of MB toward photodynamic therapy of AD in future.
Collapse
|
39
|
Jeon Y, Lee S, Shin M, Lee JH, Suh YS, Hwang S, Yun HS, Cho KS. Phenotypic differences between Drosophila Alzheimer's disease models expressing human Aβ42 in the developing eye and brain. Anim Cells Syst (Seoul) 2017; 21:160-168. [PMID: 30460065 PMCID: PMC6138326 DOI: 10.1080/19768354.2017.1313777] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/06/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster expressing amyloid-β42 (Aβ42) transgenes have been used as models to study Alzheimer's disease. Various Aβ42 transgenes with different structures induce different phenotypes, which make it difficult to compare data among studies which use different transgenic lines. In this study, we compared the phenotypes of four frequently used Aβ42 transgenic lines, UAS-Aβ422X , UAS-Aβ42BL33770 , UAS-Aβ4211C39 , and UAS-Aβ42H29.3 . Among the four transgenic lines, only UAS-Aβ422X has two copies of the upstream activation sequence-amyloid-β42 (UAS-Aβ42) transgene, while remaining three have one copy. UAS-Aβ42BL33770 has the 3' untranslated region of Drosophila α-tubulin, while the others have that of SV40. UAS-Aβ4211C39 and UAS-Aβ42H29.3 have the rat pre-proenkephalin signal peptide, while UAS-Aβ422X and UAS-Aβ42BL33770 have that of the fly argos protein. When the transgenes were expressed ectopically in the developing eyes of the flies, UAS-Aβ422X transgene resulted in a strongly reduced and rough eye phenotype, while UAS-Aβ42BL33770 only showed a strong rough eye phenotype; UAS-Aβ42H29.3 and UAS-Aβ4211C39 had mild rough eyes. The levels of cell death and reactive oxygen species (ROS) in the eye imaginal discs were consistently the highest in UAS-Aβ422X , followed by UAS-Aβ42BL33770 , UAS-Aβ4211C39 , and UAS-Aβ42H29.3 . Surprisingly, the reduction in survival during the development of these lines did not correlate with cell death or ROS levels. The flies which expressed UAS-Aβ4211C39 or UAS-Aβ42H29.3 experienced greatly reduced survival rates, although low levels of ROS or cell death were detected. Collectively, our results demonstrated that different Drosophila AD models show different phenotypic severity, and suggested that different transgenes may have different modes of cytotoxicity. Abbreviations: Aβ42: amyloid-β42; AD: Alzheimer's disease; UAS: upstream activation sequence.
Collapse
Affiliation(s)
- Youngjae Jeon
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Soojin Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Myoungchul Shin
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jang Ho Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Yoon Seok Suh
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Soojin Hwang
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Kyoung Sang Cho
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
40
|
Tan FHP, Azzam G. Drosophila melanogaster: Deciphering Alzheimer's Disease. Malays J Med Sci 2017; 24:6-20. [PMID: 28894399 PMCID: PMC5566057 DOI: 10.21315/mjms2017.24.2.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/21/2017] [Indexed: 09/29/2022] Open
Abstract
Alzheimer's disease (AD) is the most widespread neurodegenerative disorder worldwide. Its pathogenesis involves two hallmarks: aggregation of amyloid beta (Aβ) and occurrence of neurofibrillary tangles (NFTs). The mechanism behind the disease is still unknown. This has prompted the use of animal models to mirror the disease. The fruit fly, Drosophila melanogaster has garnered considerable attention as an organism to recapitulate human disorders. With the ability to monopolise a multitude of traditional and novel genetic tools, Drosophila is ideal for studying not only cellular aspects but also physiological and behavioural traits of human neurodegenerative diseases. Here, we discuss the use of the Drosophila model in understanding AD pathology and the insights gained in discovering drug therapies for AD.
Collapse
Affiliation(s)
- Florence Hui Ping Tan
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
| |
Collapse
|
41
|
St-Cyr Giguère F, Attiori Essis S, Chagniel L, Germain M, Cyr M, Massicotte G. The sphingosine-1-phosphate receptor 1 agonist SEW2871 reduces Tau-Ser262 phosphorylation in rat hippocampal slices. Brain Res 2017; 1658:51-59. [DOI: 10.1016/j.brainres.2017.01.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/13/2022]
|
42
|
|
43
|
Majd S, Power JHT, Koblar SA, Grantham HJM. The impact of tau hyperphosphorylation at Ser 262 on memory and learning after global brain ischaemia in a rat model of reversible cardiac arrest. IBRO Rep 2016; 2:1-13. [PMID: 30135928 PMCID: PMC6084925 DOI: 10.1016/j.ibror.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/12/2016] [Accepted: 12/21/2016] [Indexed: 01/12/2023] Open
Abstract
An increase in phosphorylated tau (p-tau) is associated with Alzheimer's disease (AD), and brain hypoxia. Investigation of the association of residue-specific tau hyperphosphorylation and changes in cognition, leads to greater understanding of its potential role in the pathology of memory impairment. The aims of this study are to investigate the involvement of the main metabolic kinases, Liver Kinase B1 (LKB1) and Adenosine Monophosphate Kinase Protein Kinase (AMPK), in tau phosphorylation-derived memory impairment, and to study the potential contribution of the other tau kinases and phosphatases including Glycogen Synthase Kinase (GSK-3β), Protein kinase A (PKA) and Protein Phosphatase 2A (PP2A). Spatial memory and learning were tested in a rat global brain ischemic model of reversible cardiac arrest (CA). The phosphorylation levels of LKB1, AMPK, GSK-3β, PP2A, PKA and tau-specific phosphorylation were assessed in rats, subjected to ischaemia/reperfusion and in clinically diagnosed AD and normal human brains. LKB1 and AMPK phosphorylation increased 4 weeks after CA as did AMPK related p-tau (Ser262). The animals showed unchanged levels of GSK-3β specific p-tau (Ser202/Thr205), phospho-PP2A (Tyr307), total GSK-3β, PP2A, phospho-cAMP response element-binding protein (CREB) which is an indicator of PKA activity, and no memory deficits. AD brains had hyperphosphorylated tau in all the residues of Ser262, Ser202 and Thr205, with increased phosphorylation of both AMPK (Thr172) and GSK-3β (Ser9), and reduced PP2A levels. Our data suggests a crucial role for a combined activation of tau kinases and phosphatases in adversely affecting memory and that hyperphosphorylation of tau in more than one specific site may be required to create memory deficits. Short-term brain ischaemia causes AMPK activation and tau phosphorylation at its AMPK-sensitive site (Ser262). Activation of GSK-3β, PP2A and PKA are remained unchanged in short-term brain ischaemia/reperfusion. In clinical cases of AD, activation of AMPK, GSK-3β, PP2A and multiple site hyperphosphorylation of tau are observed. Hyperphosphorylation of tau (Ser262) alone without involving the other tau kinases/phosphatase does not affect memory.
Collapse
Affiliation(s)
- Shohreh Majd
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, Australia
| | - John H T Power
- Department of Human Physiology, School of Medicine, Flinders University, Adelaide, Australia
| | - Simon A Koblar
- School of Medicine, The Queen Elizabeth Hospital (TQEH) Campus, University of Adelaide, Australia
| | - Hugh J M Grantham
- Neuronal Injury and Repair Laboratory, Centre for Neuroscience, School of Medicine, Flinders University, Adelaide, Australia
| |
Collapse
|
44
|
Zhang B, Li Q, Chu X, Sun S, Chen S. Salidroside reduces tau hyperphosphorylation via up-regulating GSK-3β phosphorylation in a tau transgenic Drosophila model of Alzheimer's disease. Transl Neurodegener 2016; 5:21. [PMID: 27933142 PMCID: PMC5126879 DOI: 10.1186/s40035-016-0068-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 11/18/2016] [Indexed: 01/08/2023] Open
Abstract
Background Alzheimer’s disease (AD) is an age-related and progressive neurodegenerative disease that causes substantial public health care burdens. Intensive efforts have been made to find effective and safe treatment against AD. Salidroside (Sal) is the main effective component of Rhodiola rosea L., which has several pharmacological activities. The objective of this study was to investigate the efficacy of Sal in the treatment of AD transgenic Drosophila and the associated mechanisms. Methods We used tau transgenic Drosophila line (TAU) in which tau protein is expressed in the central nervous system and eyes by the Gal4/UAS system. After feeding flies with Sal, the lifespan and locomotor activity were recorded. We further examined the appearance of vacuoles in the mushroom body using immunohistochemistry, and detected the levels of total glycogen synthase kinase 3β (t-GSK-3β), phosphorylated GSK-3β (p-GSK-3β), t-tau and p-tau in the brain by western blot analysis. Results Our results showed that the longevity was improved in salidroside-fed Drosophila groups as well as the locomotor activity. We also observed less vacuoles in the mushroom body, upregulated level of p-GSK-3β and downregulated p-tau following Sal treatment. Conclusion Our data presented the evidence that Sal was capable of reducing the neurodegeneration in tau transgenic Drosophila and inhibiting neuronal loss. The neuroprotective effects of Sal were associated with its up-regulation of the p-GSK-3β and down-regulation of the p-tau.
Collapse
Affiliation(s)
- Bei Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,Laboratory of Neurodegenerative Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025 China
| | - Qiongqiong Li
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Xingkun Chu
- Laboratory of Neurodegenerative Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025 China
| | - Suya Sun
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai, 200025 China.,Laboratory of Neurodegenerative Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) & Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025 China
| |
Collapse
|
45
|
Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated. Biochem Biophys Res Commun 2016; 478:929-34. [PMID: 27520376 DOI: 10.1016/j.bbrc.2016.08.053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 02/08/2023]
Abstract
Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer's disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains.
Collapse
|
46
|
Majd S, Power JHT, Koblar SA, Grantham HJM. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway. Eur J Neurosci 2016; 44:1987-97. [PMID: 27177932 PMCID: PMC5089632 DOI: 10.1111/ejn.13277] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 12/13/2022]
Abstract
Abnormal tau phosphorylation (p‐tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p‐tau is controlled by Glycogen Synthase Kinase (GSK)‐3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p‐tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser396 and Ser262after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK‐3β sensitive but AMPK insensitive residues, Ser202/Thr205 (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK‐3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p‐AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p‐tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK‐3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation.
Collapse
Affiliation(s)
- Shohreh Majd
- Centre for Neuroscience, Neuronal Injury and Repair Laboratory, School of Medicine, Flinders University of South Australia, Adelaide, SA, 5042, Australia
| | - John H T Power
- Department of Human Physiology, School of Medicine, Flinders University of South Australia, Adelaide, SA, Australia
| | - Simon A Koblar
- School of Medicine, The Queen Elizabeth Hospital (TQEH) Campus, University of Adelaide, Adelaide, SA, Australia
| | - Hugh J M Grantham
- Centre for Neuroscience, Neuronal Injury and Repair Laboratory, School of Medicine, Flinders University of South Australia, Adelaide, SA, 5042, Australia
| |
Collapse
|
47
|
Ando K, Maruko-Otake A, Ohtake Y, Hayashishita M, Sekiya M, Iijima KM. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity. PLoS Genet 2016; 12:e1005917. [PMID: 27023670 PMCID: PMC4811436 DOI: 10.1371/journal.pgen.1005917] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
Abnormal accumulation of the microtubule-interacting protein tau is associated with neurodegenerative diseases including Alzheimer’s disease (AD). β-amyloid (Aβ) lies upstream of abnormal tau behavior, including detachment from microtubules, phosphorylation at several disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the mechanisms underlying the initial events of tau mismetabolism. Currently, however, these mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing human tau and Aβ, we found that tau phosphorylation at AD-related Ser262/356 stabilized microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegeneration. Aβ increased the level of tau detached from microtubules, independent of the phosphorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-1/MARK. Levels of Ser262 phosphorylation were increased by Aβ42, and blocking this stabilization of tau suppressed Aβ42-mediated augmentation of tau toxicity and an increase in the levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocalization to the cytosol, or diminish Aβ-mediated augmentation of tau toxicity. These results suggest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the PAR-1/MARK may act in the initial steps of tau mismetabolism in AD pathogenesis, and that such tau species may represent a potential therapeutic target for AD. Alzheimer’s disease (AD) is the most common cause of dementia resulting from progressive neuron loss. Two proteins, β-amyloid (Aβ) and tau, accumulate in AD brains and are involved in AD pathogenesis. In healthy neurons, tau binds to microtubules to regulate its stability; in AD brains, however, tau is detached from microtubules and phosphorylated at multiple sites. Such abnormal tau behavior, which is likely to be triggered by Aβ, results in generation of pathological tau species that mediate neuron loss. However, the detailed mechanisms underlying this event remain incompletely understood. Using transgenic flies expressing human tau and Aβ as a model system, we found that tau phosphorylation at specific AD-related sites stabilized microtubule-unbound tau in the early phase of tau mismetabolism to generate toxic tau species. Moreover, this process is critical for Aβ to promote subsequent tau phosphorylation and neurodegeneration. Our results reveal a critical step in the initiation of tau mismetabolism, and this process may represent a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Kanae Ando
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
- * E-mail: (KA); (KMI)
| | - Akiko Maruko-Otake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Yosuke Ohtake
- Department of Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| | - Motoki Hayashishita
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Michiko Sekiya
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Koichi M. Iijima
- Department of Alzheimer’s Disease Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- * E-mail: (KA); (KMI)
| |
Collapse
|
48
|
Kwon KJ, Lee EJ, Cho KS, Cho DH, Shin CY, Han SH. Ginkgo biloba extract (Egb761) attenuates zinc-induced tau phosphorylation at Ser262 by regulating GSK3β activity in rat primary cortical neurons. Food Funct 2016; 6:2058-67. [PMID: 26032477 DOI: 10.1039/c5fo00219b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In the brain, an excessive amount of zinc promotes the deposition of β-amyloid proteins and the intraneuronal accumulation of neurofibrillary tangles composed of hyperphosphorylated tau proteins. These consequences are key neuropathological traits that reflect Alzheimer's disease. Egb761, a standardized Ginkgo biloba extract, is a powerful antioxidant known to exhibit neuroprotective actions. In this study, we investigated whether Egb761 can counteract the zinc-induced tau phosphorylation in rat primary cortical neurons. To determine the modification of tau phosphorylation by Egb761 treatment, we conducted Western blot analyses, MTT assay, ROS measurements and immunocytochemistry. We found that zinc-induced tau phosphorylation occurred at Ser262 in a time- and dose-dependent manner while other tau sites were not phosphorylated. Tau phosphorylation at Ser262 was increased 30 min after zinc treatment and peaked 3 h after zinc treatment (control: 100 ± 1.2%, 30 min: 253 ± 2.24%, 3 h: 373 ± 1.3%). Interestingly, Egb761 treatment attenuated the zinc-induced tau hyperphosphorylation at Ser262 in a concentration-dependent manner while the antioxidant N-acetylcysteine showed a similar effect. Furthermore, Egb761 prevented the zinc-induced activation of p38 MAPK and GSK3β, as well as the zinc-induced increase in ROS production and neuronal cell death. Lithium chloride also inhibited the zinc-induced tau phosphorylation but did not affect ROS levels. These results suggest the potential of Egb761 for inhibiting the zinc-induced tau phosphorylation at Ser262 through its anti-oxidative actions involving the regulation of GSK3β. Therefore, Egb761 may be a candidate for the treatment of tauopathy present in neurological disorders such as Alzheimer's disease.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Department of Neuroscience, Center for Neuroscience Research, Institute of Biomedical Science and Technology, Konkuk University School of Medicine, 120 Neungdong-ro Gwangjin-gu, Seoul 143-701, Korea.
| | | | | | | | | | | |
Collapse
|
49
|
Hannan SB, Dräger NM, Rasse TM, Voigt A, Jahn TR. Cellular and molecular modifier pathways in tauopathies: the big picture from screening invertebrate models. J Neurochem 2016; 137:12-25. [PMID: 26756400 DOI: 10.1111/jnc.13532] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/14/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
Abnormal tau accumulations were observed and documented in post-mortem brains of patients affected by Alzheimer's disease (AD) long before the identification of mutations in the Microtubule-associated protein tau (MAPT) gene, encoding the tau protein, in a different neurodegenerative disease called Frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). The discovery of mutations in the MAPT gene associated with FTDP-17 highlighted that dysfunctions in tau alone are sufficient to cause neurodegeneration. Invertebrate models have been diligently utilized in investigating tauopathies, contributing to the understanding of cellular and molecular pathways involved in disease etiology. An important discovery came with the demonstration that over-expression of human tau in Drosophila leads to premature mortality and neuronal dysfunction including neurodegeneration, recapitulating some key neuropathological features of the human disease. The simplicity of handling invertebrate models combined with the availability of a diverse range of experimental resources make these models, in particular Drosophila a powerful invertebrate screening tool. Consequently, several large-scale screens have been performed using Drosophila, to identify modifiers of tau toxicity. The screens have revealed not only common cellular and molecular pathways, but in some instances the same modifier has been independently identified in two or more screens suggesting a possible role for these modifiers in regulating tau toxicity. The purpose of this review is to discuss the genetic modifier screens on tauopathies performed in Drosophila and C. elegans models, and to highlight the common cellular and molecular pathways that have emerged from these studies. Here, we summarize results of tau toxicity screens providing mechanistic insights into pathological alterations in tauopathies. Key pathways or modifiers that have been identified are associated with a broad range of processes including, but not limited to, phosphorylation, cytoskeleton organization, axonal transport, regulation of cellular proteostasis, transcription, RNA metabolism, cell cycle regulation, and apoptosis. We discuss the utility and application of invertebrate models in elucidating the cellular and molecular functions of novel and uncharacterized disease modifiers identified in large-scale screens as well as for investigating the function of genes identified as risk factors in genome-wide association studies from human patients in the post-genomic era. In this review, we combined and summarized several large-scale modifier screens performed in invertebrate models to identify modifiers of tau toxicity. A summary of the screens show that diverse cellular processes are implicated in the modification of tau toxicity. Kinases and phosphatases are the most predominant class of modifiers followed by components required for cellular proteostasis and axonal transport and cytoskeleton elements.
Collapse
Affiliation(s)
- Shabab B Hannan
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany.,Graduate School of Cellular and Molecular Neuroscience, Graduate Training Center of Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nina M Dräger
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Tobias M Rasse
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| | - Aaron Voigt
- Department of Neurology at University Clinic Aachen, RWTH Aachen, Germany
| | - Thomas R Jahn
- Schaller Research Group at the University of Heidelberg and DKFZ, Proteostasis in Neurodegenerative Disease (B180), German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
50
|
Huang Y, Wu Z, Zhou B. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity. Cell Mol Life Sci 2016; 73:1-21. [PMID: 26403791 PMCID: PMC11108533 DOI: 10.1007/s00018-015-2042-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/22/2015] [Accepted: 09/08/2015] [Indexed: 12/24/2022]
Abstract
tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future.
Collapse
Affiliation(s)
- Yunpeng Huang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihao Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|