1
|
Zhao Y, Fernández-Montoro A, Peeters G, Jatsenko T, De Coster T, Angel-Velez D, Lefevre T, Voet T, Tšuiko O, Kurg A, Smits K, Van Soom A, Vermeesch JR. Origin and development of uniparental and polyploid blastomeres. iScience 2025; 28:112337. [PMID: 40276758 PMCID: PMC12020880 DOI: 10.1016/j.isci.2025.112337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/03/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Whole-genome (WG) abnormalities, such as uniparental diploidy and triploidy, cause fetal death. Occasionally, they coexist with biparental diploid cells in live births. Understanding the origin and early development of WG abnormal blastomeres is crucial for explaining the formation of androgenotes, gynogenotes, triploidy, chimerism, and mixoploidy. By haplotyping 118 bovine blastomeres from the first cleavages, we identified that heterogoneic division occurs in both multipolar and bipolar cleaving zygotes. During heterogoneic division, parental genomes segregate into distinct blastomeres, resulting in the coexistence of uniparental and biparental diploid or polyploid cells. After culturing the totipotent blastomeres to three preimplantation stages and exploring transcriptomes of 446 cells, we discovered that stress responses contribute to developmental impairment in WG abnormal cells, resulting in either cell arrest or blastocyst formation. Their dominance in preimplantation embryos represents an overlooked cause of abnormal development. Haplotype-based screening could improve in vitro fertilization outcomes.
Collapse
Affiliation(s)
- Yan Zhao
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Andrea Fernández-Montoro
- Department of Internal Medicine, Reproduction, and Population Medicine - Ghent University, 9820 Merelbeke, Belgium
| | - Greet Peeters
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Tatjana Jatsenko
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Tine De Coster
- Department of Internal Medicine, Reproduction, and Population Medicine - Ghent University, 9820 Merelbeke, Belgium
| | - Daniel Angel-Velez
- Department of Internal Medicine, Reproduction, and Population Medicine - Ghent University, 9820 Merelbeke, Belgium
- Research Group in Animal Sciences – INCA-CES, Universidad CES, Medellin 050021, Colombia
| | - Thomas Lefevre
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
| | - Olga Tšuiko
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | - Ants Kurg
- Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia
| | - Katrien Smits
- Department of Internal Medicine, Reproduction, and Population Medicine - Ghent University, 9820 Merelbeke, Belgium
| | - Ann Van Soom
- Department of Internal Medicine, Reproduction, and Population Medicine - Ghent University, 9820 Merelbeke, Belgium
| | - Joris Robert Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Institute for Single Cell Omics (LISCO), University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Omoluabi T, Hasan Z, Piche JE, Flynn ARS, Doré JJE, Walling SG, Weeks ACW, Benoukraf T, Yuan Q. Locus coeruleus vulnerability to tau hyperphosphorylation in a rat model. Aging Cell 2025; 24:e14405. [PMID: 39520141 PMCID: PMC11896524 DOI: 10.1111/acel.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Post-mortem investigations indicate that the locus coeruleus (LC) is the initial site of hyperphosphorylated pretangle tau, a precursor to neurofibrillary tangles (NFTs) found in Alzheimer's disease (AD). The presence of pretangle tau and NFTs correlates with AD progression and symptomatology. LC neuron integrity and quantity are linked to cognitive performance, with degeneration strongly associated with AD. Despite their importance, the mechanisms of pretangle tau-induced LC degeneration are unclear. This study examined the transcriptomic and mitochondrial profiles of LC noradrenergic neurons after transduction with pseudophosphorylated human tau. Tau hyperphosphorylation increased the somatic expression of the L-type calcium channel (LTCC), impaired mitochondrial health, and led to deficits in spatial and olfactory learning. Sex-dependent alterations in gene expression were observed in rats transduced with pretangle tau. Chronic LTCC blockade prevented behavioral deficits and altered mitochondrial mRNA expression, suggesting a potential link between LTCC hyperactivity and mitochondrial dysfunction. Our research provides insights into the consequences of tau pathology in the originating structure of AD.
Collapse
Affiliation(s)
- Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Zia Hasan
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Jessie E. Piche
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Abeni R. S. Flynn
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Jules J. E. Doré
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Susan G. Walling
- Department of Psychology, Faculty of ScienceMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Andrew C. W. Weeks
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Touati Benoukraf
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Qi Yuan
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
3
|
Quah Y, Jung S, Chan JYL, Ham O, Jeong JS, Kim S, Kim W, Park SC, Lee SJ, Yu WJ. Predictive biomarkers for embryotoxicity: a machine learning approach to mitigating multicollinearity in RNA-Seq. Arch Toxicol 2024; 98:4093-4105. [PMID: 39242367 DOI: 10.1007/s00204-024-03852-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Multicollinearity, characterized by significant co-expression patterns among genes, often occurs in high-throughput expression data, potentially impacting the predictive model's reliability. This study examined multicollinearity among closely related genes, particularly in RNA-Seq data obtained from embryoid bodies (EB) exposed to 5-fluorouracil perturbation to identify genes associated with embryotoxicity. Six genes-Dppa5a, Gdf3, Zfp42, Meis1, Hoxa2, and Hoxb1-emerged as candidates based on domain knowledge and were validated using qPCR in EBs perturbed by 39 test substances. We conducted correlation studies and utilized the variance inflation factor (VIF) to examine the existence of multicollinearity among the genes. Recursive feature elimination with cross-validation (RFECV) ranked Zfp42 and Hoxb1 as the top two among the seven features considered, identifying them as potential early embryotoxicity assessment biomarkers. As a result, a t test assessing the statistical significance of this two-feature prediction model yielded a p value of 0.0044, confirming the successful reduction of redundancies and multicollinearity through RFECV. Our study presents a systematic methodology for using machine learning techniques in transcriptomics data analysis, enhancing the discovery of potential reporter gene candidates for embryotoxicity screening research, and improving the predictive model's predictive accuracy and feasibility while reducing financial and time constraints.
Collapse
Affiliation(s)
- Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Soontag Jung
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jireh Yi-Le Chan
- Institute for Advanced Studies, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Onju Ham
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ji-Seong Jeong
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Sangyun Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Woojin Kim
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| | - Wook-Joon Yu
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
4
|
Shen S, Zhang H, Qian Y, Zhou X, Li J, Zhang L, Sun Z, Wang W. Prognostic Analysis of Lactic Acid Metabolism Genes in Oral Squamous Cell Carcinoma. Int Dent J 2024; 74:1053-1063. [PMID: 38677972 PMCID: PMC11561504 DOI: 10.1016/j.identj.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/26/2024] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
OBJECTIVES Oral squamous cell carcinoma (OSCC) is the most common malignant tumour in the oral and maxillofacial region. Lactic acid accumulation in the tumour microenvironment (TME) has gained attention for its dual role as an energy source for cancer cells and an activator of signalling pathways crucial to tumour progression. This study aims to reveal the impact of lactate-related genes (LRGs) on the prognosis, TME, and immune characteristics of OSCC, with the ultimate goal of developing a novel prognostic model. METHODS Unsupervised clustering analysis of LRGs in OSCC patients from The Cancer Genome Atlas database was conducted to evaluate and compare TME, immune features, and clinical characteristics across various lactate subtypes. A refined prognostic model was developed through the application of Cox and Least absolute shrinkage and selection operator (LASSO) regression techniques. External validation sets were then utilised to improve model accuracy, along with a detailed correlation analysis of drug sensitivity. RESULTS The Cancer Genome Atlas-OSCC patients were categorised into 4 distinct lactate subtypes based on LRGs. Notably, patients in subtype 1 and subtype 2 exhibited the least and most favourable prognoses, respectively. Subtype 1 patients showed elevated expression levels of immune checkpoint genes. Further analysis identified 1086 genes with significant expression differences between cancer and noncancer tissues, as well as between subtype 1 and subtype 2 patients. Selected genes for the prognostic model included ZNF662, CGNL1, VWCE, and ZFP42. The high-risk group defined by this model had a significantly poorer prognosis (P < .0001) and functioned as an independent prognostic factor (P < .001), accurately predicting 1-, 3-, and 5-year survival rates. Additionally, individuals in the high-risk category exhibited heightened sensitivity to chemotherapy drugs such as AZ6102 and Venetoclax. CONCLUSIONS The predictive model based on the genes ZNF662, CGNL1, VWCE, and ZFP42 can serve as a reliable biomarker, providing accurate prognostic predictions for OSCC patients and potential opportunities for pharmaceutical interventions.
Collapse
Affiliation(s)
- Shiying Shen
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Hongrong Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Yemei Qian
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Xue Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Jingyi Li
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Liqin Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China
| | - Zheyi Sun
- Yunnan Key Laboratory of Stomatology, Kunming, China; Department of Operative Dentistry, Preventive Dentistry and Endodontics, School of Stomatology, The Affiliated Stomatology Hospital, Kunming Medical University, Kunming, China.
| | - Weihong Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatology Hospital of Kunming Medical University, Kunming, China; Yunnan Key Laboratory of Stomatology, Kunming, China.
| |
Collapse
|
5
|
Jaszczak RG, Zussman JW, Wagner DE, Laird DJ. Comprehensive profiling of migratory primordial germ cells reveals niche-specific differences in non-canonical Wnt and Nodal-Lefty signaling in anterior vs posterior migrants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610420. [PMID: 39257761 PMCID: PMC11383659 DOI: 10.1101/2024.08.29.610420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mammalian primordial germ cells (PGCs) migrate asynchronously through the embryonic hindgut and dorsal mesentery to reach the gonads. We previously found that interaction with different somatic niches regulates PGC proliferation along the migration route. To characterize transcriptional heterogeneity of migrating PGCs and their niches, we performed single-cell RNA sequencing of 13,262 mouse PGCs and 7,868 surrounding somatic cells during migration (E9.5, E10.5, E11.5) and in anterior versus posterior locations to enrich for leading and lagging migrants. Analysis of PGCs by position revealed dynamic gene expression changes between faster or earlier migrants in the anterior and slower or later migrants in the posterior at E9.5; these differences include migration-associated actin polymerization machinery and epigenetic reprogramming-associated genes. We furthermore identified changes in signaling with various somatic niches, notably strengthened interactions with hindgut epithelium via non-canonical WNT (ncWNT) in posterior PGCs compared to anterior. Reanalysis of a previously published dataset suggests that ncWNT signaling from the hindgut epithelium to early migratory PGCs is conserved in humans. Trajectory inference methods identified putative differentiation trajectories linking cell states across timepoints and from posterior to anterior in our mouse dataset. At E9.5, we mainly observed differences in cell adhesion and actin cytoskeletal dynamics between E9.5 posterior and anterior migrants. At E10.5, we observed divergent gene expression patterns between putative differentiation trajectories from posterior to anterior including Nodal signaling response genes Lefty1, Lefty2, and Pycr2 and reprogramming factors Dnmt1, Prc1, and Tet1. At E10.5, we experimentally validated anterior migrant-specific Lefty1/2 upregulation via whole-mount immunofluorescence staining for LEFTY1/2 proteins, suggesting that elevated autocrine Nodal signaling accompanies the late stages of PGC migration. Together, this positional and temporal atlas of mouse PGCs supports the idea that niche interactions along the migratory route elicit changes in proliferation, actin dynamics, pluripotency, and epigenetic reprogramming.
Collapse
Affiliation(s)
| | | | - Daniel E. Wagner
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| | - Diana J. Laird
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research and Department of Obstetrics, Gynecology and Reproductive Science, UCSF, San Francisco, CA 94143 USA
| |
Collapse
|
6
|
Frost JM, Amante SM, Okae H, Jones EM, Ashley B, Lewis RM, Cleal JK, Caley MP, Arima T, Maffucci T, Branco MR. Regulation of human trophoblast gene expression by endogenous retroviruses. Nat Struct Mol Biol 2023; 30:527-538. [PMID: 37012406 PMCID: PMC10113160 DOI: 10.1038/s41594-023-00960-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/02/2023] [Indexed: 04/05/2023]
Abstract
The placenta is a fast-evolving organ with large morphological and histological differences across eutherians, but the genetic changes driving placental evolution have not been fully elucidated. Transposable elements, through their capacity to quickly generate genetic variation and affect host gene regulation, may have helped to define species-specific trophoblast gene expression programs. Here we assess the contribution of transposable elements to human trophoblast gene expression as enhancers or promoters. Using epigenomic data from primary human trophoblast and trophoblast stem-cell lines, we identified multiple endogenous retrovirus families with regulatory potential that lie close to genes with preferential expression in trophoblast. These largely primate-specific elements are associated with inter-species gene expression differences and are bound by transcription factors with key roles in placental development. Using genetic editing, we demonstrate that several elements act as transcriptional enhancers of important placental genes, such as CSF1R and PSG5. We also identify an LTR10A element that regulates ENG expression, affecting secretion of soluble endoglin, with potential implications for preeclampsia. Our data show that transposons have made important contributions to human trophoblast gene regulation, and suggest that their activity may affect pregnancy outcomes.
Collapse
Affiliation(s)
- Jennifer M Frost
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Samuele M Amante
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hiroaki Okae
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Eleri M Jones
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Brogan Ashley
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rohan M Lewis
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jane K Cleal
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Matthew P Caley
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tania Maffucci
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Miguel R Branco
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
7
|
Ringel AR, Szabo Q, Chiariello AM, Chudzik K, Schöpflin R, Rothe P, Mattei AL, Zehnder T, Harnett D, Laupert V, Bianco S, Hetzel S, Glaser J, Phan MHQ, Schindler M, Ibrahim DM, Paliou C, Esposito A, Prada-Medina CA, Haas SA, Giere P, Vingron M, Wittler L, Meissner A, Nicodemi M, Cavalli G, Bantignies F, Mundlos S, Robson MI. Repression and 3D-restructuring resolves regulatory conflicts in evolutionarily rearranged genomes. Cell 2022; 185:3689-3704.e21. [PMID: 36179666 PMCID: PMC9567273 DOI: 10.1016/j.cell.2022.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 06/03/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
Regulatory landscapes drive complex developmental gene expression, but it remains unclear how their integrity is maintained when incorporating novel genes and functions during evolution. Here, we investigated how a placental mammal-specific gene, Zfp42, emerged in an ancient vertebrate topologically associated domain (TAD) without adopting or disrupting the conserved expression of its gene, Fat1. In ESCs, physical TAD partitioning separates Zfp42 and Fat1 with distinct local enhancers that drive their independent expression. This separation is driven by chromatin activity and not CTCF/cohesin. In contrast, in embryonic limbs, inactive Zfp42 shares Fat1's intact TAD without responding to active Fat1 enhancers. However, neither Fat1 enhancer-incompatibility nor nuclear envelope-attachment account for Zfp42's unresponsiveness. Rather, Zfp42's promoter is rendered inert to enhancers by context-dependent DNA methylation. Thus, diverse mechanisms enabled the integration of independent Zfp42 regulation in the Fat1 locus. Critically, such regulatory complexity appears common in evolution as, genome wide, most TADs contain multiple independently expressed genes.
Collapse
Affiliation(s)
- Alessa R Ringel
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Quentin Szabo
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Konrad Chudzik
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Schöpflin
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Patricia Rothe
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexandra L Mattei
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Tobias Zehnder
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Dermot Harnett
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Verena Laupert
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Sara Hetzel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Juliane Glaser
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Mai H Q Phan
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Magdalena Schindler
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel M Ibrahim
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Christina Paliou
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, Seville, Spain
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Cesar A Prada-Medina
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Stefan A Haas
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Peter Giere
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Martin Vingron
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Giacomo Cavalli
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, University of Montpellier, CNRS, Montpellier, France
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Charité-Universitätsmedizin Berlin, BCRT-Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany.
| | - Michael I Robson
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany; Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Zaletaev DV, Nemtsova MV, Strelnikov VV. Epigenetic Regulation Disturbances on Gene Expression in Imprinting Diseases. Mol Biol 2022. [DOI: 10.1134/s0026893321050149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
In Silico Analysis to Explore Lineage-Independent and -Dependent Transcriptional Programs Associated with the Process of Endothelial and Neural Differentiation of Human Induced Pluripotent Stem Cells. J Clin Med 2021; 10:jcm10184161. [PMID: 34575270 PMCID: PMC8471316 DOI: 10.3390/jcm10184161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Despite a major interest in understanding how the endothelial cell phenotype is established, the underlying molecular basis of this process is not yet fully understood. We have previously reported the generation of induced pluripotent stem cells (iPS) from human umbilical vein endothelial cells and differentiation of the resulting HiPS back to endothelial cells (Ec-Diff), as well as neural (Nn-Diff) cell lineage that contained both neurons and astrocytes. Furthermore, the identities of these cell lineages were established by gene array analysis. Here, we explored the same arrays to gain insight into the gene alteration processes that accompany the establishment of endothelial vs. non-endothelial neural cell phenotypes. We compared the expression of genes that code for transcription factors and epigenetic regulators when HiPS is differentiated into these endothelial and non-endothelial lineages. Our in silico analyses have identified cohorts of genes that are similarly up- or downregulated in both lineages, as well as those that exhibit lineage-specific alterations. Based on these results, we propose that genes that are similarly altered in both lineages participate in priming the stem cell for differentiation in a lineage-independent manner, whereas those that are differentially altered in endothelial compared to neural cells participate in a lineage-specific differentiation process. Specific GATA family members and their cofactors and epigenetic regulators (DNMT3B, PRDM14, HELLS) with a major role in regulating DNA methylation were among participants in priming HiPS for lineage-independent differentiation. In addition, we identified distinct cohorts of transcription factors and epigenetic regulators whose alterations correlated specifically with the establishment of endothelial vs. non-endothelial neural lineages.
Collapse
|
10
|
Exploring chromatin structural roles of non-coding RNAs at imprinted domains. Biochem Soc Trans 2021; 49:1867-1879. [PMID: 34338292 PMCID: PMC8421051 DOI: 10.1042/bst20210758] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Different classes of non-coding RNA (ncRNA) influence the organization of chromatin. Imprinted gene domains constitute a paradigm for exploring functional long ncRNAs (lncRNAs). Almost all express an lncRNA in a parent-of-origin dependent manner. The mono-allelic expression of these lncRNAs represses close by and distant protein-coding genes, through diverse mechanisms. Some control genes on other chromosomes as well. Interestingly, several imprinted chromosomal domains show a developmentally regulated, chromatin-based mechanism of imprinting with apparent similarities to X-chromosome inactivation. At these domains, the mono-allelic lncRNAs show a relatively stable, focal accumulation in cis. This facilitates the recruitment of Polycomb repressive complexes, lysine methyltranferases and other nuclear proteins — in part through direct RNA–protein interactions. Recent chromosome conformation capture and microscopy studies indicate that the focal aggregation of lncRNA and interacting proteins could play an architectural role as well, and correlates with close positioning of target genes. Higher-order chromatin structure is strongly influenced by CTCF/cohesin complexes, whose allelic association patterns and actions may be influenced by lncRNAs as well. Here, we review the gene-repressive roles of imprinted non-coding RNAs, particularly of lncRNAs, and discuss emerging links with chromatin architecture.
Collapse
|
11
|
Pérez-Palacios R, Climent M, Santiago-Arcos J, Macías-Redondo S, Klar M, Muniesa P, Schoorlemmer J. YY2 in Mouse Preimplantation Embryos and in Embryonic Stem Cells. Cells 2021; 10:cells10051123. [PMID: 34066930 PMCID: PMC8148602 DOI: 10.3390/cells10051123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Yin Yang 2 encodes a mammalian-specific transcription factor (YY2) that shares high homology in the zinc finger region with both YY1 and REX1/ZFP42, encoded by the Yin Yang 1 and Reduced Expression Protein 1/Zinc Finger Protein 42 gene, respectively. In contrast to the well-established roles of the latter two in gene regulation, X chromosome inactivation and binding to specific transposable elements (TEs), much less is known about YY2, and its presence during mouse preimplantation development has not been described. As it has been reported that mouse embryonic stem cells (mESC) cannot be propagated in the absence of Yy2, the mechanistic understanding of how Yy2 contributes to mESC maintenance remains only very partially characterized. We describe Yy2 expression studies using RT-PCR and staining with a high-affinity polyclonal serum in mouse embryos and mESC. Although YY2 is expressed during preimplantation development, its presence appears dispensable for developmental progress in vitro until formation of the blastocyst. Attenuation of Yy2 levels failed to alter either Zscan4 levels in two-cell embryos or IAP and MERVL levels at later preimplantation stages. In contrast to previous claims that constitutively expressed shRNA against Yy2 in mESC prohibited the propagation of mESC in culture, we obtained colonies generated from mESC with attenuated Yy2 levels. Concomitant with a decreased number of undifferentiated colonies, Yy2-depleted mESC expressed higher levels of Zscan4 but no differences in the expression of TEs or other pluripotency markers including Sox2, Oct4, Nanog and Esrrb were observed. These results confirm the contribution of Yy2 to the maintenance of mouse embryonic stem cells and show the preimplantation expression of YY2. These functions are discussed in relation to mammalian-specific functions of YY1 and REX1.
Collapse
Affiliation(s)
- Raquel Pérez-Palacios
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud, CIBA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain; (R.P.-P.); (S.M.-R.)
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
- Placental Pathophysiology and Fetal Programming Group, Fundación IISA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Javier Santiago-Arcos
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
| | - Sofía Macías-Redondo
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud, CIBA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain; (R.P.-P.); (S.M.-R.)
| | - Martin Klar
- Department of Neonatology, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany;
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/Miguel Servet 177, 50013 Zaragoza, Spain; (M.C.); (J.S.-A.); (P.M.)
- Placental Pathophysiology and Fetal Programming Group, Fundación IISA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain
| | - Jon Schoorlemmer
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud, CIBA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain; (R.P.-P.); (S.M.-R.)
- Placental Pathophysiology and Fetal Programming Group, Fundación IISA, Avenida San Juan Bosco 13, 50009 Zaragoza, Spain
- Fundación “Agencia Aragonesa para la Investigación y el Desarrollo” (ARAID), 50018 Zaragoza, Spain
- Correspondence: ; Tel.: +34-976-715-412 or +34-672-022-215
| |
Collapse
|
12
|
Cheon YP, Choi D, Lee SH, Kim CG. YY1 and CP2c in Unidirectional Spermatogenesis and Stemness. Dev Reprod 2021; 24:249-262. [PMID: 33537512 PMCID: PMC7837418 DOI: 10.12717/dr.2020.24.4.249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 11/21/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022]
Abstract
Spermatogonial stem cells (SSCs) have stemness characteristics, including germ cell-specific imprints that allow them to form gametes. Spermatogenesis involves changes in gene expression such as a transition from expression of somatic to germ cell-specific genes, global repression of gene expression, meiotic sex chromosome inactivation, highly condensed packing of the nucleus with protamines, and morphogenesis. These step-by-step processes finally generate spermatozoa that are fertilization competent. Dynamic epigenetic modifications also confer totipotency to germ cells after fertilization. Primordial germ cells (PGCs) in embryos do not enter meiosis, remain in the proliferative stage, and are referred to as gonocytes, before entering quiescence. Gonocytes develop into SSCs at about 6 days after birth in rodents. Although chromatin structural modification by Polycomb is essential for gene silencing in mammals, and epigenetic changes are critical in spermatogenesis, a comprehensive understanding of transcriptional regulation is lacking. Recently, we evaluated the expression profiles of Yin Yang 1 (YY1) and CP2c in the gonads of E14.5 and 12-week-old mice. YY1 localizes at the nucleus and/or cytoplasm at specific stages of spermatogenesis, possibly by interaction with CP2c and YY1-interacting transcription factor. In the present article, we discuss the possible roles of YY1 and CP2c in spermatogenesis and stemness based on our results and a review of the relevant literature.
Collapse
Affiliation(s)
- Yong-Pil Cheon
- Division of Developmental Biology and Physiology, Institute for Basic Sciences, Sungshin University, Seoul 02844, Korea
| | - Donchan Choi
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 17092, Korea
| | - Sung-Ho Lee
- Department of Biotechnology, Sangmyung University, Seoul 03016, Korea
| | - Chul Geun Kim
- Department of Life Science and Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
13
|
Luk ST, Ng KY, Zhou L, Tong M, Wong TL, Yu H, Lo CM, Man K, Guan XY, Lee TK, Ma S. Deficiency in Embryonic Stem Cell Marker Reduced Expression 1 Activates Mitogen-Activated Protein Kinase Kinase 6-Dependent p38 Mitogen-Activated Protein Kinase Signaling to Drive Hepatocarcinogenesis. Hepatology 2020; 72:183-197. [PMID: 31680287 DOI: 10.1002/hep.31020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND AIMS Embryonic stem-cell-related transcription factors are central to the establishment and maintenance of stemness and pluripotency, and their altered expression plays key roles in tumors, including hepatocellular carcinoma (HCC), a malignancy with no effective treatment. Here, we report on the embryonic stem cell marker, reduced expression 1 (REX1; also known as zinc finger protein 42), to be selectively down-regulated in HCC tumors. APPROACH AND RESULTS Deficiency of REX1 in HCC was attributed to a combination of hypermethylation at its promoter as well as histone modification by methylation and acetylation. Clinically, hypermethylation of REX1 was closely associated with neoplastic transition and advanced tumor stage in humans. Functionally, silencing of REX1 potentiated the tumor-initiating and metastasis potential of HCC cell lines and xenografted tumors. Lentivirus-mediated Rex1 ablation in liver of male immunocompetent mice with HCC, induced by hydrodynamic tail vein injection of proto-oncogenes, enhanced HCC development. Transcriptome profiling studies revealed REX1 deficiency in HCC cells to be enriched with genes implicated in focal adhesion and mitogen-activated protein kinase (MAPK) signaling. From this lead, we subsequently found REX1 to bind to the promoter region of mitogen-activated protein kinase kinase 6 (MKK6), thereby obstructing its transcription, resulting in altered p38 MAPK signaling. CONCLUSIONS Our work describes a critical repressive function of REX1 in maintenance of HCC cells by regulating MKK6 binding and p38 MAPK signaling. REX1 deficiency induced enhancement of p38 MAPK signaling, leading to F-actin reorganization and activation of nuclear factor erythroid 2-related factor 2-mediated oxidative stress response, which collectively contributed to enhanced stemness and metastatic capabilities of HCC cells.
Collapse
Affiliation(s)
- Steve T Luk
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Kai-Yu Ng
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Lei Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Man Tong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Tin-Lok Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Huajian Yu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Hong Kong
| | - Chung-Mau Lo
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Kwan Man
- Department of Surgery, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Xin-Yuan Guan
- State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,Department of Clinical Oncology, The University of Hong Kong, Queen Mary Hospital, Hong Kong
| | - Terence K Lee
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong.,State Key Laboratory of Chemical Biology and Drug Discovery, Hong Kong Polytechnic University, Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
14
|
Meek S, Wei J, Oh T, Watson T, Olavarrieta J, Sutherland L, Carlson DF, Salzano A, Chandra T, Joshi A, Burdon T. A Stem Cell Reporter for Investigating Pluripotency and Self-Renewal in the Rat. Stem Cell Reports 2020; 14:154-166. [PMID: 31902707 PMCID: PMC6962659 DOI: 10.1016/j.stemcr.2019.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/02/2022] Open
Abstract
Rat embryonic stem cells (rESCs) are capable of contributing to all differentiated tissues, including the germ line in chimeric animals, and represent a unique, authentic alternative to mouse embryonic stem cells for studying stem cell pluripotency and self-renewal. Here, we describe an EGFP reporter transgene that tracks expression of the benchmark naive pluripotency marker gene Rex1 (Zfp42) in the rat. Insertion of the EGFP reporter gene downstream of the Rex1 promoter disrupted Rex1 expression, but REX1-deficient rESCs and rats were viable and apparently normal, validating this targeted knockin transgene as a neutral reporter. The Rex1-EGFP gene responded to self-renewal/differentiation factors and validated the critical role of β-catenin/LEF1 signaling. The stem cell reporter also allowed the identification of functionally distinct sub-populations of cells within rESC cultures, thus demonstrating its utility in discriminating between cell states in rat stem cell cultures, as well as providing a tool for tracking Rex1 expression in the rat. Rex1-EGFP transgene is a neutral reporter of pluripotency and self-renewal in the rat Rex1-EGFP transgene responds appropriately to self-renewal and differentiation signaling Rex1-EGFP transgene allows the discrimination between rat ESC pluripotent states
Collapse
Affiliation(s)
- Stephen Meek
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jun Wei
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK; iRegene Therapeutics, C6-522, 666 Gaoxin Avenue, Wuhan, 430070, China
| | - Taeho Oh
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Tom Watson
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Jaime Olavarrieta
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Linda Sutherland
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Daniel F Carlson
- Recombinetics Inc., 1246 University Avenue W, St. Paul, MN 55125, USA
| | - Angela Salzano
- MRC Unit for Human Genetics, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Tamir Chandra
- MRC Unit for Human Genetics, Institute of Genetics and Molecular Medicine, The University of Edinburgh, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
| | - Anagha Joshi
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Tom Burdon
- The Roslin Institute and R(D)VS, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
15
|
Farhadova S, Gomez-Velazquez M, Feil R. Stability and Lability of Parental Methylation Imprints in Development and Disease. Genes (Basel) 2019; 10:genes10120999. [PMID: 31810366 PMCID: PMC6947649 DOI: 10.3390/genes10120999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/06/2023] Open
Abstract
DNA methylation plays essential roles in mammals. Of particular interest are parental methylation marks that originate from the oocyte or the sperm, and bring about mono-allelic gene expression at defined chromosomal regions. The remarkable somatic stability of these parental imprints in the pre-implantation embryo—where they resist global waves of DNA demethylation—is not fully understood despite the importance of this phenomenon. After implantation, some methylation imprints persist in the placenta only, a tissue in which many genes are imprinted. Again here, the underlying epigenetic mechanisms are not clear. Mouse studies have pinpointed the involvement of transcription factors, covalent histone modifications, and histone variants. These and other features linked to the stability of methylation imprints are instructive as concerns their conservation in humans, in which different congenital disorders are caused by perturbed parental imprints. Here, we discuss DNA and histone methylation imprints, and why unravelling maintenance mechanisms is important for understanding imprinting disorders in humans.
Collapse
|
16
|
Association of Single-Nucleotide Polymorphism REX1 rs6815391, OCT4 rs13409 or rs3130932, and CTBP2 rs3740535 with Primary Lung Cancer Susceptibility: A Case-Control Study in a Chinese Population. DISEASE MARKERS 2019. [DOI: 10.1155/2019/4150263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of the current study is to explore the contribution of single-nucleotide polymorphisms (SNPs) of REX1 rs6815391, OCT4 rs13409 or rs3130932, and CTBP2 rs3740535 to the risk of lung cancer. A questionnaire survey was used to obtain basic information of the included subjects. A case control study was performed in 1121 patients and 1121 controls. All subjects were subjected to blood sampling for genomic DNA extraction and genotyping of the cancer stem cell-associated gene SNPs, including REX1 rs6815391, OCT4 rs13409 or rs3130932, and CTBP2 rs3740535 by real-time PCR. The association with the risk of primary lung cancer and interaction with environmental factors were assessed using unconditional logistic regression for the odds ratios and corresponding 95% confidence intervals. The genotype frequency distribution of OCT4 rs13409 loci was statistically significant, but there was no significant difference in the rest of the loci between lung cancer patients and healthy controls. The OCT4 gene was also related with lung cancer susceptibility in the genetic model after adjusting for lung cancer-related factors. Despite the presence of the dominant or recessive model, the four loci polymorphisms were associated with pollution near the place of residence, house type, worse ventilation situation, smoking, passive smoking, cooking oil fumes (COF), and family history of cancer, which increased the risk of lung cancer. Nonmarried status, 18.5≤BMI, COF, smoking, passive smoking, family history of cancer, and history of lung disease were independent risk factors of lung cancer susceptibility. Additionally, college degree or above, no pollution near the place of residence, protective genotype 1 or 2, and well ventilation can reduce the occurrence of lung cancer. There is an interaction between the four loci and environmental factors, and OCT4 rs13409 is a risk factor of primary lung cancer.
Collapse
|
17
|
REX1 is the critical target of RNF12 in imprinted X chromosome inactivation in mice. Nat Commun 2018; 9:4752. [PMID: 30420655 PMCID: PMC6232137 DOI: 10.1038/s41467-018-07060-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/05/2018] [Indexed: 01/15/2023] Open
Abstract
In mice, imprinted X chromosome inactivation (iXCI) of the paternal X in the pre-implantation embryo and extraembryonic tissues is followed by X reactivation in the inner cell mass (ICM) of the blastocyst to facilitate initiation of random XCI (rXCI) in all embryonic tissues. RNF12 is an E3 ubiquitin ligase that plays a key role in XCI. RNF12 targets pluripotency protein REX1 for degradation to initiate rXCI in embryonic stem cells (ESCs) and loss of the maternal copy of Rnf12 leads to embryonic lethality due to iXCI failure. Here, we show that loss of Rex1 rescues the rXCI phenotype observed in Rnf12−/− ESCs, and that REX1 is the prime target of RNF12 in ESCs. Genetic ablation of Rex1 in Rnf12−/− mice rescues the Rnf12−/− iXCI phenotype, and results in viable and fertile Rnf12−/−:Rex1−/− female mice displaying normal iXCI and rXCI. Our results show that REX1 is the critical target of RNF12 in XCI. REX1 has been shown to regulate pluripotency of ESCs, genomic imprinting and preimplantation development in mice. Here the authors provide evidence that REX1 is the prime target of RNF12 E3 ubiquitin ligase and that Rex1 removal rescues the Rnf12 knockout phenotype in imprinted X chromosome inactivation in mice.
Collapse
|
18
|
Fontana L, Bedeschi MF, Maitz S, Cereda A, Faré C, Motta S, Seresini A, D'Ursi P, Orro A, Pecile V, Calvello M, Selicorni A, Lalatta F, Milani D, Sirchia SM, Miozzo M, Tabano S. Characterization of multi-locus imprinting disturbances and underlying genetic defects in patients with chromosome 11p15.5 related imprinting disorders. Epigenetics 2018; 13:897-909. [PMID: 30221575 PMCID: PMC6284780 DOI: 10.1080/15592294.2018.1514230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The identification of multilocus imprinting disturbances (MLID) appears fundamental to uncover molecular pathways underlying imprinting disorders (IDs) and to complete clinical diagnosis of patients. However, MLID genetic associated mechanisms remain largely unknown. To characterize MLID in Beckwith-Wiedemann (BWS) and Silver-Russell (SRS) syndromes, we profiled by MassARRAY the methylation of 12 imprinted differentially methylated regions (iDMRs) in 21 BWS and 7 SRS patients with chromosome 11p15.5 epimutations. MLID was identified in 50% of BWS and 29% of SRS patients as a maternal hypomethylation syndrome. By next-generation sequencing, we searched for putative MLID-causative mutations in genes involved in methylation establishment/maintenance and found two novel missense mutations possibly causative of MLID: one in NLRP2, affecting ADP binding and protein activity, and one in ZFP42, likely leading to loss of DNA binding specificity. Both variants were paternally inherited. In silico protein modelling allowed to define the functional effect of these mutations. We found that MLID is very frequent in BWS/SRS. In addition, since MLID-BWS patients in our cohort show a peculiar pattern of BWS-associated clinical signs, MLID test could be important for a comprehensive clinical assessment. Finally, we highlighted the possible involvement of ZFP42 variants in MLID development and confirmed NLRP2 as causative locus in BWS-MLID.
Collapse
Affiliation(s)
- L Fontana
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| | - M F Bedeschi
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Maitz
- c Clinical Pediatric, Genetics Unit , MBBM Foundation, San Gerardo Monza , Monza , Italy
| | - A Cereda
- d Medical Genetics Unit , Papa Giovanni XXIII Hospital , Bergamo , Italy
| | - C Faré
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Motta
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - A Seresini
- f Medical Genetics Laboratory , Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico , Milano , Italy.,g Fondazione Grigioni per il Morbo di Parkinson , Milano , Italy
| | - P D'Ursi
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - A Orro
- h Department of Biomedical Sciences National Research Council , Institute for Biomedical Technologies , Segrate , Italy
| | - V Pecile
- i Medical Genetics Division , Institute for maternal and child health IRCCS Burlo Garofolo , Trieste , Italy
| | - M Calvello
- e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy.,j Division of Cancer Prevention and Genetics, IEO , European Institute of Oncology IRCCS , Milano , Italy
| | - A Selicorni
- k UOC Pediatria , ASST Lariana , Como , Italy
| | - F Lalatta
- b Clinical Genetics Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - D Milani
- l Pediatric Highly Intensive Care Unit , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S M Sirchia
- m Medical Genetics, Department of Health Sciences , Università degli Studi di Milano , Milano , Italy
| | - M Miozzo
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy.,e Division of Pathology , Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico , Milano , Italy
| | - S Tabano
- a Laboratory of Molecular Pathology, Department of Pathophysiology and Transplantation , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
19
|
The International Stem Cell Initiative, Allison TF, Andrews PW, Avior Y, Barbaric I, Benvenisty N, Bock C, Brehm J, Brüstle O, Damjanov I, Elefanty A, Felkner D, Gokhale PJ, Halbritter F, Healy LE, Hu TX, Knowles BB, Loring JF, Ludwig TE, Mayberry R, Micallef S, Mohamed JS, Müller FJ, Mummery CL, Nakatsuji N, Ng ES, Oh SKW, O’Shea O, Pera MF, Reubinoff B, Robson P, Rossant J, Schuldt BM, Solter D, Sourris K, Stacey G, Stanley EG, Suemori H, Takahashi K, Yamanaka S. Assessment of established techniques to determine developmental and malignant potential of human pluripotent stem cells. Nat Commun 2018; 9:1925. [PMID: 29765017 PMCID: PMC5954055 DOI: 10.1038/s41467-018-04011-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/26/2018] [Indexed: 12/12/2022] Open
Abstract
The International Stem Cell Initiative compared several commonly used approaches to assess human pluripotent stem cells (PSC). PluriTest predicts pluripotency through bioinformatic analysis of the transcriptomes of undifferentiated cells, whereas, embryoid body (EB) formation in vitro and teratoma formation in vivo provide direct tests of differentiation. Here we report that EB assays, analyzed after differentiation under neutral conditions and under conditions promoting differentiation to ectoderm, mesoderm, or endoderm lineages, are sufficient to assess the differentiation potential of PSCs. However, teratoma analysis by histologic examination and by TeratoScore, which estimates differential gene expression in each tumor, not only measures differentiation but also allows insight into a PSC's malignant potential. Each of the assays can be used to predict pluripotent differentiation potential but, at this stage of assay development, only the teratoma assay provides an assessment of pluripotency and malignant potential, which are both relevant to the pre-clinical safety assessment of PSCs.
Collapse
|
20
|
Takahashi N, Gray D, Strogantsev R, Noon A, Delahaye C, Skarnes WC, Tate PH, Ferguson-Smith AC. ZFP57 and the Targeted Maintenance of Postfertilization Genomic Imprints. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 80:177-87. [PMID: 27325708 DOI: 10.1101/sqb.2015.80.027466] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epigenetic modifications play an important role in modulating genome function. In mammals, inappropriate epigenetic states can cause embryonic lethality and various acquired and inherited diseases; hence, it is important to understand how such states are formed and maintained in particular genomic contexts. Genomic imprinting is a process in which epigenetic states provide a sustained memory of parental origin and cause gene expression/repression from only one of the two parental chromosomes. Genomic imprinting is therefore a valuable model to decipher the principles and processes associated with the targeting and maintenance of epigenetic states in general. Krüppel-associated box zinc finger proteins (KRAB-ZFPs) are proteins that have the potential to mediate this. ZFP57, one of the best characterized proteins in this family, has been shown to target and maintain epigenetic states at imprinting control regions after fertilization. Its role in imprinting through the use of ZFP57 mutants in mouse and the wider implications of KRAB-ZFPs for the targeted maintenance of epigenetic states are discussed here.
Collapse
Affiliation(s)
- Nozomi Takahashi
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Dionne Gray
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | | | - Angela Noon
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - Celia Delahaye
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, United Kingdom
| | - William C Skarnes
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Peri H Tate
- Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
21
|
Sazhenova EA, Nikitina TV, Skryabin NA, Minaycheva LI, Ivanova TV, Nemtseva TN, Yuriev SY, Evtushenko ID, Lebedev IN. Epigenetic status of imprinted genes in placenta during recurrent pregnancy loss. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Kalkan T, Olova N, Roode M, Mulas C, Lee HJ, Nett I, Marks H, Walker R, Stunnenberg HG, Lilley KS, Nichols J, Reik W, Bertone P, Smith A. Tracking the embryonic stem cell transition from ground state pluripotency. Development 2017; 144:1221-1234. [PMID: 28174249 PMCID: PMC5399622 DOI: 10.1242/dev.142711] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 01/25/2017] [Indexed: 12/14/2022]
Abstract
Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naïve pluripotency. Here, we examine the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naïve status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of naïve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naïve cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.
Collapse
Affiliation(s)
- Tüzer Kalkan
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | | | - Mila Roode
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Heather J Lee
- Babraham Institute, Cambridge CB22 3AT, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Isabelle Nett
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Hendrik Marks
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen 6500HB, The Netherlands
| | - Rachael Walker
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK.,Babraham Institute, Cambridge CB22 3AT, UK
| | - Hendrik G Stunnenberg
- Radboud University, Faculty of Science, Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Nijmegen 6500HB, The Netherlands
| | - Kathryn S Lilley
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.,The Cambridge Centre for Proteomics, Cambridge System Biology Centre, University of Cambridge, Cambridge CB2 1QR, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 4BG, UK
| | - Wolf Reik
- Babraham Institute, Cambridge CB22 3AT, UK.,Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Paul Bertone
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK
| | - Austin Smith
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, Cambridge CB2 1QR, UK .,Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| |
Collapse
|
23
|
Pérez-Palacios R, Macías-Redondo S, Climent M, Contreras-Moreira B, Muniesa P, Schoorlemmer J. In Vivo Chromatin Targets of the Transcription Factor Yin Yang 2 in Trophoblast Stem Cells. PLoS One 2016; 11:e0154268. [PMID: 27191592 PMCID: PMC4871433 DOI: 10.1371/journal.pone.0154268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 04/11/2016] [Indexed: 12/27/2022] Open
Abstract
Background Yin Yang 2 (YY2) is a zinc finger protein closely related to the well-characterized Yin Yang 1 (YY1). YY1 is a DNA-binding transcription factor, with defined functions in multiple developmental processes, such as implantation, cell differentiation, X inactivation, imprinting and organogenesis. Yy2 has been treated as a largely immaterial duplication of Yy1, as they share high homology in the Zinc Finger-region and similar if not identical in vitro binding sites. In contrast to these similarities, gene expression alterations in HeLa cells with attenuated levels of either Yy1 or Yy2 were to some extent gene-specific. Moreover, the chromatin binding sites for YY2, except for its association with transposable retroviral elements (RE) and Endogenous Retroviral Elements (ERVs), remain to be identified. As a first step towards defining potential Yy2 functions matching or complementary to Yy1, we considered in vivo DNA binding sites of YY2 in trophoblast stem (TS) cells. Results We report the presence of YY2 protein in mouse-derived embryonic stem (ES) and TS cell lines. Following up on our previous report on ERV binding by YY2 in TS cells, we investigated the tissue-specificity of REX1 and YY2 binding and confirm binding to RE/ERV targets in both ES cells and TS cells. Because of the higher levels of expression, we chose TS cells to understand the role of Yy2 in gene and chromatin regulation. We used in vivo YY2 association as a measure to identify potential target genes. Sequencing of chromatin obtained in chromatin-immunoprecipitation (ChIP) assays carried out with αYY2 serum allowed us to identify a limited number of chromatin targets for YY2. Some putative binding sites were validated in regular ChIP assays and gene expression of genes nearby was altered in the absence of Yy2. Conclusions YY2 binding to ERVs is not confined to TS cells. In vivo binding sites share the presence of a consensus binding motif. Selected sites were uniquely bound by YY2 as opposed to YY1, suggesting that YY2 exerts unique contributions to gene regulation. YY2 binding was not generally associated with gene promoters. However, several YY2 binding sites are linked to long noncoding RNA (lncRNA) genes and we show that the expression levels of a few of those are Yy2-dependent.
Collapse
Affiliation(s)
- Raquel Pérez-Palacios
- Instituto Aragonés de Ciencias de la Salud and Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| | - Sofía Macías-Redondo
- Instituto Aragonés de Ciencias de la Salud and Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | - Bruno Contreras-Moreira
- ARAID Foundation, Zaragoza, Spain
- Estación Experimental de Aula Dei /CSIC, Av. Montañana 1.005, 50059 Zaragoza, Spain
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, C/ Miguel Servet 177, 50013 Zaragoza, Spain
| | - Jon Schoorlemmer
- Instituto Aragonés de Ciencias de la Salud and Instituto de Investigación Sanitaria de Aragón (IIS-Aragón), Zaragoza, Spain
- ARAID Foundation, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
24
|
Monk D. Germline-derived DNA methylation and early embryo epigenetic reprogramming: The selected survival of imprints. Int J Biochem Cell Biol 2015; 67:128-38. [PMID: 25966912 DOI: 10.1016/j.biocel.2015.04.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/27/2015] [Indexed: 12/27/2022]
Abstract
DNA methylation is an essential epigenetic mechanism involved in many essential cellular processes. During development epigenetic reprograming takes place during gametogenesis and then again in the pre-implantation embryo. These two reprograming windows ensure genome-wide removal of methylation in the primordial germ cells so that sex-specific signatures can be acquired in the sperm and oocyte. Following fertilization the majority of this epigenetic information is erased to give the developing embryo an epigenetic profile coherent with pluripotency. It is estimated that ∼65% of the genome is differentially methylated between the gametes, however following embryonic reprogramming only parent-of-origin methylation at known imprinted loci remains. This suggests that trans-acting factors such as Zfp57 can discriminate imprinted differentially methylated regions (DMRs) from the thousands of CpG rich regions that are differentially marked in the gametes. Recently transient imprinted DMRs have been identified suggesting that these loci are also protected from pre-implantation reprograming but succumb to de novo remethylation at the implantation stage. This highlights that "ubiquitous" imprinted loci are also resilient to gaining methylation by protecting their unmethylated alleles. In this review I examine the processes involved in epigenetic reprograming and the mechanisms that ensure allelic methylation at imprinted loci is retained throughout the life of the organism, discussing the critical differences between mouse and humans. This article is part of a Directed Issue entitled: Epigenetics Dynamics in development and disease.
Collapse
Affiliation(s)
- David Monk
- Imprinting and Cancer group, Cancer Epigenetic and Biology Program, Institut d'Investigació Biomedica de Bellvitge, Hospital Duran i Reynals, Barcelona 08908, Spain.
| |
Collapse
|
25
|
Son MY, Kwak JE, Kim YD, Cho YS. Proteomic and network analysis of proteins regulated by REX1 in human embryonic stem cells. Proteomics 2015; 15:2220-9. [PMID: 25736782 DOI: 10.1002/pmic.201400510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/19/2015] [Accepted: 02/26/2015] [Indexed: 01/09/2023]
Abstract
Recent studies have suggested that REX1 (reduced expression 1) plays an important role in pluripotency, proliferation, and differentiation. However, the molecular mechanisms involved in REX1-dependent regulation of diverse cellular processes remain unclear. To elucidate the regulatory functions of REX1 in human embryonic stem cells (hESCs), comparative proteomic analysis was performed on REX1 RNAi specifically silenced hESCs. Analysis of the proteome via nano-LC-MS/MS identified 140 differentially expressed proteins (DEPs) displaying a >2-fold difference in expression level between control and REX1 knockdown (KD) hESCs, which were then compared with transcriptome data and validated by quantitative real-time RT-PCR and Western blotting. These DEPs were analyzed by GO, pathway, and functional clustering analyses to determine the molecular functions of the proteins and pathways regulated by REX1. The REX1 KD-mediated DEPs mapped to major biological processes involved in the regulation of ribosome-mediated translation and mitochondrial function. Functional network analysis revealed a highly interconnected network among these DEPs and indicated that these interconnected proteins are predominantly involved in translation and the regulation of mitochondrial organization. These findings regarding REX1-mediated regulatory network have revealed the contributions of REX1 to maintaining the status of hESCs and have improved our understanding of the molecular events that underlie the fundamental properties of hESCs.
Collapse
Affiliation(s)
- Mi-Young Son
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahangno, Yuseong-gu, Daejeon, Republic of Korea.,Department of functional genomics, University of Science & Technology, Gajungro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jae Eun Kwak
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahangno, Yuseong-gu, Daejeon, Republic of Korea
| | - Young-Dae Kim
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahangno, Yuseong-gu, Daejeon, Republic of Korea
| | - Yee Sook Cho
- Stem Cell Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahangno, Yuseong-gu, Daejeon, Republic of Korea.,Department of functional genomics, University of Science & Technology, Gajungro, Yuseong-gu, Daejeon, Republic of Korea
| |
Collapse
|
26
|
Sanli I, Feil R. Chromatin mechanisms in the developmental control of imprinted gene expression. Int J Biochem Cell Biol 2015; 67:139-47. [PMID: 25908531 DOI: 10.1016/j.biocel.2015.04.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Hundreds of protein-coding genes and regulatory non-coding RNAs (ncRNAs) are subject to genomic imprinting. The mono-allelic DNA methylation marks that control imprinted gene expression are somatically maintained throughout development, and this process is linked to specific chromatin features. Yet, at many imprinted genes, the mono-allelic expression is lineage or tissue-specific. Recent studies provide mechanistic insights into the developmentally-restricted action of the 'imprinting control regions' (ICRs). At several imprinted domains, the ICR expresses a long ncRNA that mediates chromatin repression in cis (and probably in trans as well). ICRs at other imprinted domains mediate higher-order chromatin structuration that enhances, or prevents, transcription of close-by genes. Here, we present how chromatin and ncRNAs contribute to developmental control of imprinted gene expression and discuss implications for disease. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Ildem Sanli
- Institute of Molecular Genetics (IGMM), UMR-5535, CNRS, University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), UMR-5535, CNRS, University of Montpellier, 1919 route de Mende, 34293 Montpellier, France.
| |
Collapse
|
27
|
Uchiyama K, Watanabe D, Hayasaka M, Hanaoka K. A novel imprinted transgene located near a repetitive element that exhibits allelic imbalance in DNA methylation during early development. Dev Growth Differ 2014; 56:653-68. [PMID: 25389047 DOI: 10.1111/dgd.12182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/29/2014] [Accepted: 09/09/2014] [Indexed: 11/27/2022]
Abstract
A mouse line carrying a lacZ transgene driven by the human EEF1A1/EF1 alpha promoter was established. Although the promoter is known to show ubiquitous activity, only paternal transgene alleles were expressed, resulting in a transgene imprinting. At mid-gestation, the promoter sequence was differentially methylated, hypomethylated for paternal and hypermethylated for maternal alleles. In germline, the promoter was a typical differentially methylated region. After fertilization, however, both alleles were hypermethylated. Thus, the differential methylation of the promoter required for transgene imprinting was re-established during later embryonic development independently of the germline differential methylation. Furthermore, also a retroelement promoter closely-flanking imprinted transgene and its wild type counterpart displayed similar differential methylation during early development. The retroelement promoter was methylated differentially also in germline, but in an opposite pattern to the embryonic differential methylation. These results suggest that there might be an unknown epigenetic regulation inducing transgene imprinting independently of DNA methylation in the transgene insertion site. Then, besides CpG dinucleotides, non-CpG cytosines of the retroelement promoter were highly methylated especially in the transgene-active mid-gestational embryos, suggesting that an unusual epigenetic regulation might protect the active transgene against de novo methylation occurring generally in mid-gestational embryo.
Collapse
Affiliation(s)
- Koji Uchiyama
- Molecular Embryology, Department of Biosciences, School of Science, Kitasato University, Sagamihara-Shi, Japan
| | | | | | | |
Collapse
|
28
|
Schoorlemmer J, Pérez-Palacios R, Climent M, Guallar D, Muniesa P. Regulation of Mouse Retroelement MuERV-L/MERVL Expression by REX1 and Epigenetic Control of Stem Cell Potency. Front Oncol 2014; 4:14. [PMID: 24567914 PMCID: PMC3915180 DOI: 10.3389/fonc.2014.00014] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/21/2014] [Indexed: 11/17/2022] Open
Abstract
About half of the mammalian genome is occupied by DNA sequences that originate from transposable elements. Retrotransposons can modulate gene expression in different ways and, particularly retrotransposon-derived long terminal repeats, profoundly shape expression of both surrounding and distant genomic loci. This is especially important in pre-implantation development, during which extensive reprograming of the genome takes place and cells pass through totipotent and pluripotent states. At this stage, the main mechanism responsible for retrotransposon silencing, i.e., DNA methylation, is inoperative. A particular retrotransposon called muERV-L/MERVL is expressed during pre-implantation stages and contributes to the plasticity of mouse embryonic stem cells. This review will focus on the role of MERVL-derived sequences as controlling elements of gene expression specific for pre-implantation development, two-cell stage-specific gene expression, and stem cell pluripotency, the epigenetic mechanisms that control their expression, and the contributions of the pluripotency marker REX1 and the related Yin Yang 1 family of transcription factors to this regulation process.
Collapse
Affiliation(s)
- Jon Schoorlemmer
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain ; ARAID Foundation , Zaragoza , Spain
| | - Raquel Pérez-Palacios
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| | - Diana Guallar
- Regenerative Medicine Program, Instituto Aragonés de Ciencias de la Salud , Zaragoza , Spain
| | - Pedro Muniesa
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza , Zaragoza , Spain
| |
Collapse
|
29
|
Mahadevan S, Wen S, Wan YW, Peng HH, Otta S, Liu Z, Iacovino M, Mahen EM, Kyba M, Sadikovic B, Van den Veyver IB. NLRP7 affects trophoblast lineage differentiation, binds to overexpressed YY1 and alters CpG methylation. Hum Mol Genet 2014; 23:706-16. [PMID: 24105472 PMCID: PMC3888260 DOI: 10.1093/hmg/ddt457] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 08/12/2013] [Accepted: 09/13/2013] [Indexed: 11/14/2022] Open
Abstract
Maternal-effect mutations in NLRP7 cause rare biparentally inherited hydatidiform moles (BiHMs), abnormal pregnancies containing hypertrophic vesicular trophoblast but no embryo. BiHM trophoblasts display abnormal DNA methylation patterns affecting maternally methylated germline differentially methylated regions (gDMRs), suggesting that NLRP7 plays an important role in reprogramming imprinted gDMRs. How NLRP7-a component of the CATERPILLAR family of proteins involved in innate immunity and apoptosis-causes these specific DNA methylation and trophoblast defects is unknown. Because rodents lack NLRP7, we used human embryonic stem cells to study its function and demonstrate that NLRP7 interacts with YY1, an important chromatin-binding factor. Reduced NLRP7 levels alter DNA methylation and accelerate trophoblast lineage differentiation. NLRP7 thus appears to function in chromatin reprogramming and DNA methylation in the germline or early embryonic development, functions not previously associated with members of the NLRP family.
Collapse
Affiliation(s)
- Sangeetha Mahadevan
- Interdepartmental Program in Translational Biology and Molecular Medicine
- Department of Obstetrics and Gynecology
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA and
| | - Shu Wen
- Department of Obstetrics and Gynecology
- Department of Molecular and Human Genetics and
| | - Ying-Wooi Wan
- Department of Obstetrics and Gynecology
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA and
| | | | | | - Zhandong Liu
- Department of Obstetrics and Gynecology
- Department of Pediatrics (Neurology), Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA and
| | - Michelina Iacovino
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Elisabeth M. Mahen
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Michael Kyba
- Lillehei Heart Institute and Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | | | - Ignatia B. Van den Veyver
- Interdepartmental Program in Translational Biology and Molecular Medicine
- Department of Obstetrics and Gynecology
- Department of Molecular and Human Genetics and
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA and
| |
Collapse
|
30
|
Lee KC, Wong WK, Feng B. Decoding the Pluripotency Network: The Emergence of New Transcription Factors. Biomedicines 2013; 1:49-78. [PMID: 28548056 PMCID: PMC5423462 DOI: 10.3390/biomedicines1010049] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 12/25/2022] Open
Abstract
Since the successful isolation of mouse and human embryonic stem cells (ESCs) in the past decades, massive investigations have been conducted to dissect the pluripotency network that governs the ability of these cells to differentiate into all cell types. Beside the core Oct4-Sox2-Nanog circuitry, accumulating regulators, including transcription factors, epigenetic modifiers, microRNA and signaling molecules have also been found to play important roles in preserving pluripotency. Among the various regulations that orchestrate the cellular pluripotency program, transcriptional regulation is situated in the central position and appears to be dominant over other regulatory controls. In this review, we would like to summarize the recent advancements in the accumulating findings of new transcription factors that play a critical role in controlling both pluripotency network and ESC identity.
Collapse
Affiliation(s)
- Kai Chuen Lee
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Room 105A, 1/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T., Hong Kong, China.
| | - Wing Ki Wong
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Room 105A, 1/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T., Hong Kong, China.
| | - Bo Feng
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Room 105A, 1/F, Lo Kwee-Seong Integrated Biomedical Sciences Building, Area 39, Shatin, N.T., Hong Kong, China.
- SBS Core Laboratory, Shenzhen Research Institute, the Chinese University of Hong Kong, 4/F CUHK Shenzhen Research Institute Building, No.10, 2nd Yuexing Road, Nanshan District, Shenzhen 518057, China.
| |
Collapse
|
31
|
Girardot M, Feil R, Llères D. Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics 2013; 5:715-28. [DOI: 10.2217/epi.13.66] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mammalian genes controlled by genomic imprinting play important roles in development and diverse postnatal processes. A growing number of congenital disorders have been linked to genomic imprinting. Each of these is caused by perturbed gene expression at one principal imprinted domain. Some imprinting disorders, including the Prader–Willi and Angelman syndromes, are caused almost exclusively by genetic mutations. In several others, including the Beckwith–Wiedemann and Silver–Russell growth syndromes, and transient neonatal diabetes mellitus, imprinted expression is perturbed mostly by epigenetic alterations at ‘imprinting control regions’ and at other specific regulatory sequences. In a minority of these patients, DNA methylation is altered at multiple imprinted loci, suggesting that common trans-acting factors are affected. Here, we review the epimutations involved in congenital imprinting disorders and the associated clinical features. Trans-acting factors known to be causally involved are discussed and other trans-acting factors that are potentially implicated are also presented.
Collapse
Affiliation(s)
- Michael Girardot
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
| | - David Llères
- Institute of Molecular Genetics (IGMM), CNRS UMR-5535, 1919 Route de Mende, 34293 Montpellier, France
- Universities of Montpellier I & II, Montpellier, France
| |
Collapse
|
32
|
Payer B, Rosenberg M, Yamaji M, Yabuta Y, Koyanagi-Aoi M, Hayashi K, Yamanaka S, Saitou M, Lee JT. Tsix RNA and the germline factor, PRDM14, link X reactivation and stem cell reprogramming. Mol Cell 2013; 52:805-18. [PMID: 24268575 DOI: 10.1016/j.molcel.2013.10.023] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 09/05/2013] [Accepted: 10/16/2013] [Indexed: 10/26/2022]
Abstract
Transitions between pluripotent and differentiated states are marked by dramatic epigenetic changes. Cellular differentiation is tightly linked to X chromosome inactivation (XCI), whereas reprogramming to induced pluripotent stem cells (iPSCs) is associated with X chromosome reactivation (XCR). XCR reverses the silent state of the inactive X, occurring in mouse blastocysts and germ cells. In spite of its importance, little is known about underlying mechanisms. Here, we examine the role of the long noncoding Tsix RNA and the germline factor, PRDM14. In blastocysts, XCR is perturbed by mutation of either Tsix or Prdm14. In iPSCs, XCR is disrupted only by PRDM14 deficiency, which also affects iPSC derivation and maintenance. We show that Tsix and PRDM14 directly link XCR to pluripotency: first, PRDM14 represses Rnf12 by recruiting polycomb repressive complex 2; second, Tsix enables PRDM14 to bind Xist. Thus, our study provides functional and mechanistic links between cellular and X chromosome reprogramming.
Collapse
Affiliation(s)
- Bernhard Payer
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Michael Rosenberg
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Masashi Yamaji
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yukihiro Yabuta
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michiyo Koyanagi-Aoi
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan
| | - Katsuhiko Hayashi
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; JST, PRESTO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA
| | - Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; JST, ERATO, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin Yoshida, Sakyo-ku, Kyoto 606-8507, Japan; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Jeannie T Lee
- Howard Hughes Medical Institute, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02114, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
33
|
Kedia-Mokashi NA, Kadam L, Ankolkar M, Dumasia K, Balasinor NH. Aberrant methylation of multiple imprinted genes in embryos of tamoxifen-treated male rats. Reproduction 2013; 146:155-68. [DOI: 10.1530/rep-12-0439] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomic imprinting is an epigenetic phenomenon known to regulate fetal growth and development. Studies from our laboratory have demonstrated that treatment of adult male rats with tamoxifen increased postimplantation loss around mid gestation. Further studies demonstrated the aberrant expression of transcripts of several imprinted genes in the resorbing embryos at days 11 and 13 of gestation including IGF2. In addition, decreased methylation at theIgf2–H19imprint control region was observed in spermatozoa and in resorbing embryos sired by tamoxifen-treated males. In this study, methylation analysis of the imprinted genes, which were found to be differentially expressed, was done using EpiTYPER in the spermatozoa of tamoxifen-treated rats and in postimplantation embryos sired by tamoxifen-treated rats. Differentially methylated regions (DMRs) for most imprinted genes have not been identified in the rats. Hence, initial experiments were performed to identify the putative DMRs in the genes selected for the study. Increased methylation at CpG islands present in the putative DMRs of a number of imprinted genes was observed in the resorbing embryos sired by tamoxifen-treated male rats. This increase in methylation is associated with the downregulation of most of these genes at the transcript level in resorbing embryos. No change in the methylation status of these genes was observed in spermatozoa. These observations suggest that a deregulation of mechanisms protecting unmethylated alleles from a wave ofde novomethylation occurs following implantation.
Collapse
|
34
|
Kelsey G, Feil R. New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110336. [PMID: 23166397 DOI: 10.1098/rstb.2011.0336] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fundamental to genomic imprinting in mammals is the acquisition of epigenetic marks that differ in male and female gametes at 'imprinting control regions' (ICRs). These marks mediate the allelic expression of imprinted genes in the offspring. Much has been learnt about the nature of imprint marks, the times during gametogenesis at which they are laid down and some of the factors responsible especially for DNA methylation. Recent work has revealed that transcription and histone modifications are critically involved in DNA methylation acquisition, and these findings allow us to propose rational models for methylation establishment. A completely novel perspective on gametic DNA methylation has emerged from epigenomic profiling. Far more differentially methylated loci have been identified in gametes than known imprinted genes, which leads us to revise the notion that methylation of ICRs is a specifically targeted process. Instead, it seems to obey default processes in germ cells, giving rise to distinct patterns of DNA methylation in sperm and oocytes. This new insight, together with the identification of proteins that preserve DNA methylation after fertilization, emphasizes the key role played by mechanisms that selectively retain differential methylation at imprinted loci during early development. Addressing these mechanisms will be essential to understanding the specificity and evolution of genomic imprinting.
Collapse
Affiliation(s)
- Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.
| | | |
Collapse
|
35
|
Demarcation of stable subpopulations within the pluripotent hESC compartment. PLoS One 2013; 8:e57276. [PMID: 23437358 PMCID: PMC3578859 DOI: 10.1371/journal.pone.0057276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 01/20/2013] [Indexed: 11/19/2022] Open
Abstract
Heterogeneity is a feature of stem cell populations, resulting from innate cellular hierarchies that govern differentiation capability. How heterogeneity impacts human pluripotent stem cell populations is directly relevant to their efficacious use in regenerative medicine applications. The control of pluripotency is asserted by a core transcription factor network, of which Oct4 is a necessary member. In mouse embryonic stem cells (ESCs), the zinc finger transcription factor Rex1 (Zfp42) closely tracks the undifferentiated state and is capable of segregating Oct4 positive mESCs into metastable populations expressing or lacking Rex1 that are inter-convertible. However, little is currently understood about the extent or function of heterogeneous populations in the human pluripotent compartment. Human ESCs express REX1 transcripts but the distribution and properties of REX1 expressing cells have yet to be described. To address these questions, we used gene targeting in human ESCs to insert the fluorescent protein Venus and an antibiotic selection marker under the control of the endogenous REX1 transcription regulatory elements, generating a sensitive, selectable reporter of pluripotency. REX1 is co-expressed in OCT4 and TRA-1-60 positive hESCs and rapidly lost upon differentiation. Importantly, REX1 expression reveals significant heterogeneity within seemingly homogenous populations of OCT4 and TRA-1-60 hESCs. REX1 expression is extinguished before OCT4 during differentiation, but, in contrast to the mouse, loss of REX1 expression demarcates a stable, OCT4 positive lineage-primed state in pluripotent hESCs that does not revert back to REX1 positivity under normal conditions. We show that loss of REX1 expression correlates with altered patterns of DNA methylation at the REX1 locus, implying that epigenetic mechanisms may interfere with the metastable phenotype commonly found in murine pluripotency.
Collapse
|
36
|
Climent M, Alonso-Martin S, Pérez-Palacios R, Guallar D, Benito AA, Larraga A, Fernández-Juan M, Sanz M, de Diego A, Seisdedos MT, Muniesa P, Schoorlemmer J. Functional analysis of Rex1 during preimplantation development. Stem Cells Dev 2012; 22:459-72. [PMID: 22897771 DOI: 10.1089/scd.2012.0211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rex1/Zfp42 is a nuclear protein that is highly conserved in mammals, and widely used as an embryonic stem (ES) cell marker. Although Rex1 expression is associated with enhanced pluripotency, loss-of-function models recently described do not exhibit major phenotypes, and both preimplantation development and ES cell derivation appear normal in the absence of Rex1. To better understand the functional role of Rex1, we examined the expression and localization of Rex1 during preimplantation development. Our studies indicated that REX1 is expressed at all stages during mouse preimplantation development, with a mixed pattern of nuclear, perinuclear, and cytoplasmic localization. Chromatin association seemed to be altered in 8-cell embryos, and in the blastocyst, we found REX1 localized almost exclusively in the nucleus. A functional role for Rex1 in vivo was assessed by gain- and loss-of-function approaches. Embryos with attenuated levels of Rex1 after injection of zygotes with siRNAs did not exhibit defects in preimplantation development in vitro. In contrast, overexpression of Rex1 interfered with cleavage divisions and with proper blastocyst development, although we failed to detect alterations in the expression of lineage and pluripotency markers. Rex1 gain- and loss-of-function did alter the expression levels of Zscan4, an important regulator of preimplantation development and pluripotency. Our results suggest that Rex1 plays a role during preimplantation development. They are compatible with a role for Rex1 during acquisition of pluripotency in the blastocyst.
Collapse
Affiliation(s)
- María Climent
- Departamento de Anatomía, Embriología y Genética Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
HIV-1 Resistant CDK2-Knockdown Macrophage-Like Cells Generated from 293T Cell-Derived Human Induced Pluripotent Stem Cells. BIOLOGY 2012; 1:175-195. [PMID: 22934150 PMCID: PMC3427948 DOI: 10.3390/biology1020175] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A major challenge in studies of human diseases involving macrophages is low yield and heterogeneity of the primary cells and limited ability of these cells for transfections and genetic manipulations. To address this issue, we developed a simple and efficient three steps method for somatic 293T cells reprogramming into monocytes and macrophage-like cells. First, 293T cells were reprogrammed into induced pluripotent stem cells (iPSCs) through a transfection-mediated expression of two factors, Oct-4 and Sox2, resulting in a high yield of iPSC. Second, the obtained iPSC were differentiated into monocytes using IL-3 and M-CSF treatment. And third, monocytes were differentiated into macrophage-like cells in the presence of M-CSF. As an example, we developed HIV-1-resistant macrophage-like cells from 293T cells with knockdown of CDK2, a factor critical for HIV-1 transcription. Our study provides a proof-of-principle approach that can be used to study the role of host cell factors in HIV-1 infection of human macrophages.
Collapse
|
38
|
Guallar D, Pérez-Palacios R, Climent M, Martínez-Abadía I, Larraga A, Fernández-Juan M, Vallejo C, Muniesa P, Schoorlemmer J. Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42. Nucleic Acids Res 2012; 40:8993-9007. [PMID: 22844087 PMCID: PMC3467079 DOI: 10.1093/nar/gks686] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rex1/Zfp42 is a Yy1-related zinc-finger protein whose expression is frequently used to identify pluripotent stem cells. We show that depletion of Rex1 levels notably affected self-renewal of mouse embryonic stem (ES) cells in clonal assays, in the absence of evident differences in expression of marker genes for pluripotency or differentiation. By contrast, marked differences in expression of several endogenous retroviral elements (ERVs) were evident upon Rex1 depletion. We demonstrate association of REX1 to specific elements in chromatin-immunoprecipitation assays, most strongly to muERV-L and to a lower extent to IAP and musD elements. Rex1 regulates muERV-L expression in vivo, as we show altered levels upon transient gain-and-loss of Rex1 function in pre-implantation embryos. We also find REX1 can associate with the lysine-demethylase LSD1/KDM1A, suggesting they act in concert. Similar to REX1 binding to retrotransposable elements (REs) in ES cells, we also detected binding of the REX1 related proteins YY1 and YY2 to REs, although the binding preferences of the two proteins were slightly different. Altogether, we show that Rex1 regulates ERV expression in mouse ES cells and during pre-implantation development and suggest that Rex1 and its relatives have evolved as regulators of endogenous retroviral transcription.
Collapse
Affiliation(s)
- D Guallar
- Regenerative Medicine Programme, IIS Aragón, Instituto Aragonés de Ciencias de Salud, Zaragoza, Avda. Gómez Laguna, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
RNF12 initiates X-chromosome inactivation by targeting REX1 for degradation. Nature 2012; 485:386-90. [PMID: 22596162 DOI: 10.1038/nature11070] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 03/09/2012] [Indexed: 12/25/2022]
Abstract
Evolution of the mammalian sex chromosomes has resulted in a heterologous X and Y pair, where the Y chromosome has lost most of its genes. Hence, there is a need for X-linked gene dosage compensation between XY males and XX females. In placental mammals, this is achieved by random inactivation of one X chromosome in all female somatic cells. Upregulation of Xist transcription on the future inactive X chromosome acts against Tsix antisense transcription, and spreading of Xist RNA in cis triggers epigenetic changes leading to X-chromosome inactivation. Previously, we have shown that the X-encoded E3 ubiquitin ligase RNF12 is upregulated in differentiating mouse embryonic stem cells and activates Xist transcription and X-chromosome inactivation. Here we identify the pluripotency factor REX1 as a key target of RNF12 in the mechanism of X-chromosome inactivation. RNF12 causes ubiquitination and proteasomal degradation of REX1, and Rnf12 knockout embryonic stem cells show an increased level of REX1. Using chromatin immunoprecipitation sequencing, REX1 binding sites were detected in Xist and Tsix regulatory regions. Overexpression of REX1 in female embryonic stem cells was found to inhibit Xist transcription and X-chromosome inactivation, whereas male Rex1(+/-) embryonic stem cells showed ectopic X-chromosome inactivation. From this, we propose that RNF12 causes REX1 breakdown through dose-dependent catalysis, thereby representing an important pathway to initiate X-chromosome inactivation. Rex1 and Xist are present only in placental mammals, which points to co-evolution of these two genes and X-chromosome inactivation.
Collapse
|
40
|
Rezende N, Lee MY, Monette S, Mark W, Lu A, Gudas LJ. Rex1 (Zfp42) null mice show impaired testicular function, abnormal testis morphology, and aberrant gene expression. Dev Biol 2011; 356:370-82. [PMID: 21641340 PMCID: PMC3214085 DOI: 10.1016/j.ydbio.2011.05.664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/18/2011] [Accepted: 05/19/2011] [Indexed: 12/27/2022]
Abstract
Rex1 (Zfp42), GeneID 132625, is a gene whose expression is closely associated with pluripotency/multipotency in both mouse and human embryonic stem cells. To study the function of the murine Rex1 gene in vivo, we have used cre/lox technology to create Rex1(floxed) mice and mice deficient in Rex1 gene function. Rex1(-/-)males are characterized by an age-associated decrease in sperm counts, abnormal sperm morphology, and mild testicular atrophy. We characterized global patterns of gene expression in primary germ cells by microarray and identified the growth hormone responsive gene, GRTP1, as a transcript present at a 4.5 fold higher level in wild type (WT) compared to Rex1(-/-) mice. We analyzed immature germ cell (Dazl), proliferating (PCNA), and Sertoli cell populations, and quantitated levels of apoptosis in Rex1(-/-) as compared to WT testes. We evaluated the expression of proteins previously reported to correlate with Rex1 expression, such as STAT3, phospho-STAT3, p38, and phospho-p38 in the testis. We report a distinct cellular localization of total STAT3 protein in Rex1(-/-) affected testes. Our data suggest that loss of Rex1 leads to impaired testicular function.
Collapse
Affiliation(s)
- Naira Rezende
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue
- BCMB Graduate Program, Weill Cornell Medical College of Cornell University, 1300 York Avenue
| | - Mi-Young Lee
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue
| | - Sébastien Monette
- Center of Comparative Medicine and Pathology, Weill Cornell Medical College of Cornell University, 1300 York Avenue
| | - Willie Mark
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue New York, NY 10065, United States
| | - Ailan Lu
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue
- BCMB Graduate Program, Weill Cornell Medical College of Cornell University, 1300 York Avenue
| |
Collapse
|
41
|
Faulk C, Dolinoy DC. Timing is everything: the when and how of environmentally induced changes in the epigenome of animals. Epigenetics 2011; 6:791-7. [PMID: 21636976 PMCID: PMC3230539 DOI: 10.4161/epi.6.7.16209] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 05/23/2011] [Indexed: 01/23/2023] Open
Abstract
Environmental influence on developmental plasticity impacts a wide diversity of animal life from insects to humans. We now understand the epigenetic basis for many of these altered phenotypes. The five environmental factors of nutrition, behavior, stress, toxins, and stochasticity work individually and in concert to affect the developing epigenome. During early embryogenesis, epigenetic marks, such as DNA methylation, are reset at specific times. Two waves of global demethylation and reestablishment of methylation frame the sensitive times for early environmental influences and will be the focus of this review. Gene transcription, translation, and post-translational modification of chromatin remodeling complexes are three mechanisms affected by developmental exposure to environmental factors. To illustrate how changes in the early environment profoundly affect these mechanisms, we provide examples throughout the animal kingdom. Herein we review the history, time points, and mechanisms of epigenetic gene-environment interaction.
Collapse
Affiliation(s)
- Christopher Faulk
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|