1
|
Roy S, Ghosh MK. Ubiquitin proteasome system (UPS): a crucial determinant of the epigenetic landscape in cancer. Epigenomics 2025:1-20. [PMID: 40337853 DOI: 10.1080/17501911.2025.2501524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/29/2025] [Indexed: 05/09/2025] Open
Abstract
The ubiquitin proteasome system (UPS), comprising of ubiquitinases, deubiquitinases and 26S proteasome plays a significant role in directly or indirectly regulating epigenetic players. DNA-templated processes like replication, repair and transcription require chromatin decondensation to allow access to specific DNA sequence. A thorough survey of literary articles in PubMed database revealed that the UPS functions as a key regulator, determining the precise state of open and closed chromatin by influencing histones and histone modifiers through proteolytic or non-proteolytic means. However, a comprehensive understanding of how specific UPS components affect particular epigenetic pathways in response to environmental cues remains underexplored. This axis holds substantial potential for deciphering mechanisms of tumorigenesis. Although our current knowledge is limited, it can still guide the development of novel therapeutic strategies that can potentially bridge the gap between cancer chemotherapeutics in bench and bedside.
Collapse
Affiliation(s)
- Srija Roy
- Academy of Scientific and Innovative Research, Ghaziabad, India
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), Kolkata, India
| |
Collapse
|
2
|
Afthab M, Hambo S, Kim H, Alhamad A, Harb H. Particulate matter-induced epigenetic modifications and lung complications. Eur Respir Rev 2024; 33:240129. [PMID: 39537244 PMCID: PMC11558539 DOI: 10.1183/16000617.0129-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/27/2024] [Indexed: 11/16/2024] Open
Abstract
Air pollution is one of the leading causes of early deaths worldwide, with particulate matter (PM) as an emerging factor contributing to this trend. PM is classified based on its physical size, which ranges from PM10 (diameter ≤10 μm) to PM2.5 (≤2.5 μm) and PM0.5 (≤0.5 μm). Smaller-sized PM can move freely through the air and readily infiltrate deep into the lungs, intensifying existing health issues and exacerbating complications. Lung complications are the most common issues arising from PM exposure due to the primary site of deposition in the respiratory system. Conditions such as asthma, COPD, idiopathic pulmonary fibrosis, lung cancer and various lung infections are all susceptible to worsening due to PM exposure. PM can epigenetically modify specific target sites, further complicating its impact on these conditions. Understanding these epigenetic mechanisms holds promise for addressing these complications in cases of PM exposure. This involves studying the effect of PM on different gene expressions and regulation through epigenetic modifications, including DNA methylation, histone modifications and microRNAs. Targeting and manipulating these epigenetic modifications and their mechanisms could be promising strategies for future treatments of lung complications. This review mainly focuses on different epigenetic modifications due to PM2.5 exposure in the various lung complications mentioned above.
Collapse
Affiliation(s)
- Muhammed Afthab
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Shadi Hambo
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hyunji Kim
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Ali Alhamad
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| | - Hani Harb
- Institute for Medical Microbiology and Virology, University Hospital Dresden, TU Dresden, Dresden, Germany
| |
Collapse
|
3
|
Yadav P, Tanweer S, Garg M, Verma M, Khan AS, Rahman SS, Ali A, Grover S, Kumar P, Kamthan M. Structural inscrutabilities of Histone (H2BK123) monoubiquitination: A systematic review. Int J Biol Macromol 2024; 280:135977. [PMID: 39322127 DOI: 10.1016/j.ijbiomac.2024.135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Histone H2B monoubiquitination in budding yeast is a highly conserved post-translational modification. It is involved in normal functions of the cells like DNA Repair, RNA Pol II activation, trans-histone H3K and H79K methylation, meiosis, vesicle budding, etc. Deregulation of H2BK123ub can lead to the activation of proto-oncogenes and is also linked to neurodegenerative and heart diseases. Recent discoveries have enhanced the mechanistic underpinnings of H2BK123ub. For the first time, the Rad6's acidic tail has been implicated in histone recognition and interaction with Bre1's RBD domain. The non-canonical backside of Rad6 showed inhibition in polyubiquitination activity. Bre1 domains RBD and RING play a role in site-specific ubiquitination. The role of single Alaline residue in Rad6 activity. Understanding the mechanism of ubiquitination before moving to therapeutic applications is important. Current advancements in this field indicate the creation of novel therapeutic approaches and a foundation for further study.
Collapse
Affiliation(s)
- Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sana Tanweer
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Sonam Grover
- Department of Molecular Medicine, School of Interdisciplinary Sciences and Technology, Jamia Hamdard, New Delhi 110062, India
| | - Pankaj Kumar
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
Dasgupta A, Nandi S, Gupta S, Roy S, Das C. To Ub or not to Ub: The epic dilemma of histones that regulate gene expression and epigenetic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195033. [PMID: 38750882 DOI: 10.1016/j.bbagrm.2024.195033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 01/04/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024]
Abstract
A dynamic array of histone post-translational modifications (PTMs) regulate diverse cellular processes in the eukaryotic chromatin. Among them, histone ubiquitination is particularly complex as it alters nucleosome surface area fostering intricate cross-talk with other chromatin modifications. Ubiquitin signaling profoundly impacts DNA replication, repair, and transcription. Histones can undergo varied extent of ubiquitination such as mono, multi-mono, and polyubiquitination, which brings about distinct cellular fates. Mechanistic studies of the ubiquitin landscape in chromatin have unveiled a fascinating tapestry of events that orchestrate gene regulation. In this review, we summarize the key contributors involved in mediating different histone ubiquitination and deubiquitination events, and discuss their mechanism which impacts cell transcriptional identity and DNA damage response. We also focus on the proteins bearing epigenetic reader modules critical in discerning site-specific histone ubiquitination, pivotal for establishing complex epigenetic crosstalk. Moreover, we highlight the role of histone ubiquitination in different human diseases including neurodevelopmental disorders and cancer. Overall the review elucidates the intricate orchestration of histone ubiquitination impacting diverse cellular functions and disease pathogenesis, and provides insights into the current challenges of targeting them for therapeutic interventions.
Collapse
Affiliation(s)
- Anirban Dasgupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India; Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Sandhik Nandi
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Sayan Gupta
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, Kolkata, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
5
|
Fetian T, Grover A, Arndt KM. Histone H2B ubiquitylation: Connections to transcription and effects on chromatin structure. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195018. [PMID: 38331024 PMCID: PMC11098702 DOI: 10.1016/j.bbagrm.2024.195018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
Nucleosomes are major determinants of eukaryotic genome organization and regulation. Many studies, incorporating a diversity of experimental approaches, have been focused on identifying and discerning the contributions of histone post-translational modifications to DNA-centered processes. Among these, monoubiquitylation of H2B (H2Bub) on K120 in humans or K123 in budding yeast is a critical histone modification that has been implicated in a wide array of DNA transactions. H2B is co-transcriptionally ubiquitylated and deubiquitylated via the concerted action of an extensive network of proteins. In addition to altering the chemical and physical properties of the nucleosome, H2Bub is important for the proper control of gene expression and for the deposition of other histone modifications. In this review, we discuss the molecular mechanisms underlying the ubiquitylation cycle of H2B and how it connects to the regulation of transcription and chromatin structure.
Collapse
Affiliation(s)
- Tasniem Fetian
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Aakash Grover
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, United States of America.
| |
Collapse
|
6
|
Onishi S, Uchiyama K, Sato K, Okada C, Kobayashi S, Hamada K, Nishizawa T, Nureki O, Ogata K, Sengoku T. Structure of the human Bre1 complex bound to the nucleosome. Nat Commun 2024; 15:2580. [PMID: 38519511 PMCID: PMC10959955 DOI: 10.1038/s41467-024-46910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 03/10/2024] [Indexed: 03/25/2024] Open
Abstract
Histone H2B monoubiquitination (at Lys120 in humans) regulates transcription elongation and DNA repair. In humans, H2B monoubiquitination is catalyzed by the heterodimeric Bre1 complex composed of Bre1A/RNF20 and Bre1B/RNF40. The Bre1 proteins generally function as tumor suppressors, while in certain cancers, they facilitate cancer cell proliferation. To obtain structural insights of H2BK120 ubiquitination and its regulation, we report the cryo-electron microscopy structure of the human Bre1 complex bound to the nucleosome. The two RING domains of Bre1A and Bre1B recognize the acidic patch and the nucleosomal DNA phosphates around SHL 6.0-6.5, which are ideally located to recruit the E2 enzyme and ubiquitin for H2BK120-specific ubiquitination. Mutational experiments suggest that the two RING domains bind in two orientations and that ubiquitination occurs when Bre1A binds to the acidic patch. Our results provide insights into the H2BK120-specific ubiquitination by the Bre1 proteins and suggest that H2B monoubiquitination can be regulated by nuclesomal DNA flexibility.
Collapse
Affiliation(s)
- Shuhei Onishi
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kotone Uchiyama
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ko Sato
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Chikako Okada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunsuke Kobayashi
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Ogata
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| | - Toru Sengoku
- Department of Biochemistry, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
7
|
Korenfeld HT, Avram-Shperling A, Zukerman Y, Iluz A, Boocholez H, Ben-Shimon L, Ben-Aroya S. Reversal of histone H2B mono-ubiquitination is required for replication stress recovery. DNA Repair (Amst) 2022; 119:103387. [DOI: 10.1016/j.dnarep.2022.103387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 07/11/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022]
|
8
|
Characterizing and exploiting the many roles of aberrant H2B monoubiquitination in cancer pathogenesis. Semin Cancer Biol 2022; 86:782-798. [PMID: 34953650 DOI: 10.1016/j.semcancer.2021.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/08/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023]
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is implicated in the control of multiple essential processes, including transcription, DNA damage repair and mitotic chromosome segregation. Accordingly, aberrant regulation of H2Bub1 can induce transcriptional reprogramming and genome instability that may promote oncogenesis. Remarkably, alterations of the ubiquitin ligases and deubiquitinating enzymes regulating H2Bub1 are emerging as ubiquitous features in cancer, further supporting the possibility that the misregulation of H2Bub1 is an underlying mechanism contributing to cancer pathogenesis. To date, aberrant H2Bub1 dynamics have been reported in multiple cancer types and are associated with transcriptional changes that promote oncogenesis in a cancer type-specific manner. Owing to the multi-functional nature of H2Bub1, misregulation of its writers and erasers may drive disease initiation and progression through additional synergistic processes. Accordingly, understanding the molecular determinants and pathogenic impacts associated with aberrant H2Bub1 regulation may reveal novel drug targets and therapeutic vulnerabilities that can be exploited to develop innovative precision medicine strategies that better combat cancer. In this review, we present the normal functions of H2Bub1 in the control of DNA-associated processes and describe the pathogenic implications associated with its misregulation in cancer. We further discuss the challenges coupled with the development of therapeutic strategies targeting H2Bub1 misregulation and expose the potential benefits of designing treatments that synergistically exploit the multiple functionalities of H2Bub1 to improve treatment selectivity and efficacy.
Collapse
|
9
|
Zheng HC, Xue H, Zhang CY. The roles of the tumor suppressor parafibromin in cancer. Front Cell Dev Biol 2022; 10:1006400. [PMID: 36211470 PMCID: PMC9532749 DOI: 10.3389/fcell.2022.1006400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
In this review, we discuss parafibromin protein, which is encoded by CDC73. A mutation in this gene causes hyperparathyroidism-jaw tumor (HPT-JT) syndrome, an autosomal dominant disease. CDC73 is transcriptionally downregulated by the Wilms’ tumor suppressor gene WT1 and translationally targeted by miR-182-3p and miR-155. In the nucleus, parafibromin binds to RNA polymerase II and PAF1 complex for transcription. Parafibromin transcriptionally increases the expression of c-Myc, decreases CPEB1 expression by interacting with H3M4, and reduces cyclin D1 expression by binding to H3K9. The RNF20/RNF40/parafibromin complex induces monoubiquitination of H2B-K120, and SHP2-mediated dephosphorylation of parafibromin promotes the parafibromin/β-catenin interaction and induces the expression of Wnt target genes, which is blocked by PTK6-medidated phosphorylation. Parafibromin physically associates with the CPSF and CstF complexes that are essential for INTS6 mRNA maturation. In the cytosol, parafibromin binds to hSki8 and eEF1Bγ for the destabilization of p53 mRNA, to JAK1/2-STAT1 for STAT1 phosphorylation, and to actinin-2/3 to bundle/cross-link actin filaments. Mice with CDC73 knockout in the parathyroid develop parathyroid and uterine tumors and are used as a model for HPT-JT syndrome. Conditional deletion of CDC73 in mesenchymal progenitors results in embryos with agenesis of the heart and liver while its abrogation in mature osteoblasts and osteocytes increases cortical and trabecular bone. Heterozygous germline mutations in CDC73 are associated with parathyroid carcinogenesis. The rates of CDC73 mutation and parafibromin loss decrease from parathyroid adenoma to atypical adenoma to carcinoma. In addition, down-regulated parafibromin is closely linked to the tumorigenesis, subsequent progression, or poor prognosis of head and neck, gastric, lung, colorectal, and ovarian cancers, and its overexpression might reverse the aggressiveness of these cancer cells. Therefore, parafibromin might be useful as a biological marker of malignancies and a target for their gene therapy.
Collapse
Affiliation(s)
- Hua-chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
- *Correspondence: Hua-chuan Zheng,
| | - Hang Xue
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Cong-yu Zhang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
10
|
Oss-Ronen L, Sarusi T, Cohen I. Histone Mono-Ubiquitination in Transcriptional Regulation and Its Mark on Life: Emerging Roles in Tissue Development and Disease. Cells 2022; 11:cells11152404. [PMID: 35954248 PMCID: PMC9368181 DOI: 10.3390/cells11152404] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/06/2023] Open
Abstract
Epigenetic regulation plays an essential role in driving precise transcriptional programs during development and homeostasis. Among epigenetic mechanisms, histone mono-ubiquitination has emerged as an important post-transcriptional modification. Two major histone mono-ubiquitination events are the mono-ubiquitination of histone H2A at lysine 119 (H2AK119ub), placed by Polycomb repressive complex 1 (PRC1), and histone H2B lysine 120 mono-ubiquitination (H2BK120ub), placed by the heteromeric RNF20/RNF40 complex. Both of these events play fundamental roles in shaping the chromatin epigenetic landscape and cellular identity. In this review we summarize the current understandings of molecular concepts behind histone mono-ubiquitination, focusing on their recently identified roles in tissue development and pathologies.
Collapse
Affiliation(s)
| | | | - Idan Cohen
- Correspondence: ; Tel.: +972-8-6477593; Fax: +972-8-6477626
| |
Collapse
|
11
|
Morgan M, Ikenoue T, Suga H, Wolberger C. Potent macrocycle inhibitors of the human SAGA deubiquitinating module. Cell Chem Biol 2022; 29:544-554.e4. [PMID: 34936860 PMCID: PMC9035043 DOI: 10.1016/j.chembiol.2021.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/08/2021] [Accepted: 11/29/2021] [Indexed: 12/31/2022]
Abstract
The Spt-Ada-Gcn5 acetyltransferase (SAGA) transcriptional coactivator contains a four-protein subcomplex called the deubiquitinating enzyme (DUB) module that removes ubiquitin from histone H2B-K120. The human DUB module contains the catalytic subunit ubiquitin-specific protease 22 (USP22), which is overexpressed in a number of cancers that are resistant to available therapies. We screened a massive combinatorial library of cyclic peptides and identified potent inhibitors of USP22. The top hit was highly specific for USP22 compared with a panel of 44 other human DUBs. Cells treated with peptide had increased levels of H2B monoubiquitination, demonstrating the ability of the cyclic peptides to enter human cells and inhibit H2B deubiquitination. These macrocycle inhibitors are, to our knowledge, the first reported inhibitors of USP22/SAGA DUB module and show promise for development.
Collapse
Affiliation(s)
- Michael Morgan
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tatsuya Ikenoue
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
Yang Q, Chen Y, Guo R, Dai Y, Tang L, Zhao Y, Wu X, Li M, Du F, Shen J, Yi T, Xiao Z, Wen Q. Interaction of ncRNA and Epigenetic Modifications in Gastric Cancer: Focus on Histone Modification. Front Oncol 2022; 11:822745. [PMID: 35155211 PMCID: PMC8826423 DOI: 10.3389/fonc.2021.822745] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 12/28/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer has developed as a very common gastrointestinal tumors, with recent effective advancements in the diagnosis and treatment of early gastric cancer. However, the prognosis for gastric cancer remains poor. As a result, there is in sore need of better understanding the mechanisms of gastric cancer development and progression to improve existing diagnostic and treatment options. In recent years, epigenetics has been recognized as an important contributor on tumor progression. Epigenetic changes in cancer include chromatin remodeling, DNA methylation and histone modifications. An increasing number of studies demonstrated that noncoding RNAs (ncRNAs) are associated with epigenetic changes in gastric cancer. Herein, we describe the molecular interactions of histone modifications and ncRNAs in epigenetics. We focus on ncRNA-mediated histone modifications of gene expression associated with tumorigenesis and progression in gastric cancer. This molecular mechanism will contribute to our deeper understanding of gastric carcinogenesis and progression, thus providing innovations in gastric cancer diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Rui Guo
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Liyao Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Yueshui Zhao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Xu Wu
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Mingxing Li
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Fukuan Du
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Jing Shen
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Zhangang Xiao
- South Sichuan Institute of Translational Medicine, Luzhou, China.,Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| |
Collapse
|
13
|
USP49-mediated histone H2B deubiquitination regulates HCT116 cell proliferation through MDM2-p53 axis. Mol Cell Biol 2022; 42:e0043421. [PMID: 35072515 DOI: 10.1128/mcb.00434-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Post-translational histone modifications play important roles in regulating chromatin structure and transcriptional regulation. Histone H2B monoubiquitination (H2Bub) is an essential regulator for transcriptional elongation and ongoing transcription. Here we reported that USP49, as a histone H2B deubiquitinase, is involved in HCT116 cell proliferation through modulating MDM2-p53 pathway genes. USP49 knockout contributes to increased HCT116 cell proliferation and migration. Importantly, USP49 knockout stimulated MDM2 transcriptional level and then inhibited the mRNA levels of TP53 target genes. Conversely, overexpression of USP49 suppressed MDM2 gene expression and then promoted TP53 target genes. Moreover, chromatin immunoprecipitation revealed that USP49 directly bound to the promoter of MDM2 gene. USP49 knockout increased the H2Bub enrichment at MDM2 gene whereas USP49 overexpression downregulated the H2Bub level at MDM2 gene. Therefore, our findings indicated that USP49-mediated H2B deubiquitination controls the transcription of MDM2-p53 axis genes in the process of HCT116 cell proliferation.
Collapse
|
14
|
Tang SY, Zhou PJ, Meng Y, Zeng FR, Deng GT. Gastric cancer: An epigenetic view. World J Gastrointest Oncol 2022; 14:90-109. [PMID: 35116105 PMCID: PMC8790429 DOI: 10.4251/wjgo.v14.i1.90] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/17/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer (GC) poses a serious threat worldwide with unfavorable prognosis mainly due to late diagnosis and limited therapies. Therefore, precise molecular classification and search for potential targets are required for diagnosis and treatment, as GC is complicated and heterogeneous in nature. Accumulating evidence indicates that epigenetics plays a vital role in gastric carcinogenesis and progression, including histone modifications, DNA methylation and non-coding RNAs. Epigenetic biomarkers and drugs are currently under intensive evaluations to ensure efficient clinical utility in GC. In this review, key epigenetic alterations and related functions and mechanisms are summarized in GC. We focus on integration of existing epigenetic findings in GC for the bench-to-bedside translation of some pivotal epigenetic alterations into clinical practice and also describe the vacant field waiting for investigation.
Collapse
Affiliation(s)
- Si-Yuan Tang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Pei-Jun Zhou
- Cancer Research Institute, School of Basic Medicine Science, Central South University, School of Basic Medicine Science, Central South University 410008, Hunan Province, China
| | - Yu Meng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Fu-Rong Zeng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| | - Guang-Tong Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, China
| |
Collapse
|
15
|
Cai H, Chen H, Huang Q, Zhu JM, Ke ZB, Lin YZ, Zheng QS, Wei Y, Xu N, Xue XY. Ubiquitination-Related Molecular Subtypes and a Novel Prognostic Index for Bladder Cancer Patients. Pathol Oncol Res 2021; 27:1609941. [PMID: 34776794 PMCID: PMC8585742 DOI: 10.3389/pore.2021.1609941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/11/2021] [Indexed: 11/14/2022]
Abstract
Objective: To develop and validate ubiquitination-related molecular subtypes and a novel prognostic index using ubiquitination-related genes (URGs) for patients with bladder cancer (BCa). Materials and Methods: We downloaded the clinical data and transcriptome data of BCa from TCGA and GEO database. Consensus clustering analysis was conducted to identify ubiquitination-related molecular subtypes for BCa. Besides, we performed univariate and multivariate Cox regression analysis to develop a novel prognostic URGs-related index for BCa. We conducted internal and external verification in TCGA cohort and GEO cohort, respectively. Furthermore, the associations of ubiquitination-related molecular subtypes and prognostic index with tumor immune environment were also investigated. Results: A total of four ubiquitination-related molecular subtypes of BCa were finally identified. These four molecular subtypes had significantly different clinical characteristics, prognosis, PD-L1 expression level and tumor microenvironment. Besides, we developed a novel prognostic index using six URGs (including HLA-A, TMEM129, UBE2D1, UBE2N, UBE2T and USP5). The difference in OS between high and low-risk group was statistically significant in training cohort, testing cohort, and validating cohort. The area under ROC curve (AUC) for OS prediction was 0.736, 0.723, and 0.683 in training cohort, testing cohort, and validating cohort, respectively. Multivariate survival analysis showed that this index was an independent predictor for OS. This prognostic index was especially suitable for subtype 1 and 3, older, male, high grade, AJCC stage III-IV, stage N0, stage T3-4 BCa patients. Conclusions: This study identified a total of four ubiquitination-related molecular subtypes with significantly different tumor microenvironment, prognosis, clinical characteristics and PD-L1 expression level. Besides, a novel ubiquitination-related prognostic index for BCa patients was developed and successfully verified, which performed well in predicting prognosis of BCa.
Collapse
Affiliation(s)
- Hai Cai
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hang Chen
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qi Huang
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jun-Ming Zhu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yun-Zhi Lin
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Qing-Shui Zheng
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yong Wei
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ning Xu
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Fujian Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
16
|
Biochemical insights into Paf1 complex-induced stimulation of Rad6/Bre1-mediated H2B monoubiquitination. Proc Natl Acad Sci U S A 2021; 118:2025291118. [PMID: 34385316 DOI: 10.1073/pnas.2025291118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The highly conserved multifunctional polymerase-associated factor 1 (Paf1) complex (PAF1C), composed of five core subunits Paf1, Leo1, Ctr9, Cdc73, and Rtf1, participates in all stages of transcription and is required for the Rad6/Bre1-mediated monoubiquitination of histone H2B (H2Bub). However, the molecular mechanisms underlying the contributions of the PAF1C subunits to H2Bub are not fully understood. Here, we report that Ctr9, acting as a hub, interacts with the carboxyl-terminal acidic tail of Rad6, which is required for PAF1C-induced stimulation of H2Bub. Importantly, we found that the Ras-like domain of Cdc73 has the potential to accelerate ubiquitin discharge from Rad6 and thus facilitates H2Bub, a process that might be conserved from yeast to humans. Moreover, we found that Rtf1 HMD stimulates H2Bub, probably through accelerating ubiquitin discharge from Rad6 alone or in cooperation with Cdc73 and Bre1, and that the Paf1/Leo1 heterodimer in PAF1C specifically recognizes the histone H3 tail of nucleosomal substrates, stimulating H2Bub. Collectively, our biochemical results indicate that intact PAF1C is required to efficiently stimulate Rad6/Bre1-mediated H2Bub.
Collapse
|
17
|
Zhou S, Cai Y, Liu X, Jin L, Wang X, Ma W, Zhang T. Role of H2B mono-ubiquitination in the initiation and progression of cancer. Bull Cancer 2021; 108:385-398. [PMID: 33685627 DOI: 10.1016/j.bulcan.2020.12.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Numerous epigenetic alterations are observed in cancer cells, and dysregulation of mono-ubiquitination of histone H2B (H2Bub1) has often been linked to tumorigenesis. H2Bub1 is a dynamic post-translational histone modification associated with transcriptional elongation and DNA damage response. Histone H2B monoubiquitination occurs in the site of lysine 120, written predominantly by E3 ubiquitin ligases RNF20/RNF40 and deubiquitinated by ubiquitin specific peptidase 22 (USP22). RNF20/40 is often altered in the primary tumors including colorectal cancer, breast cancer, ovarian cancer, prostate cancer, and lung cancer, and the loss of H2Bub1 is usually associated with poor prognosis in tumor patients. The purpose of this review is to summarize the current knowledge of H2Bub1 in transcription, DNA damage response and primary tumors. This review also provides novel options for exploiting the potential therapeutic target H2Bub1 in personalized cancer therapy.
Collapse
Affiliation(s)
- Sa Zhou
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Yuqiao Cai
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xinyi Liu
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Lijun Jin
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China
| | - Xiaoqin Wang
- Beijing University of Agriculture, Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, Beijing 102206, PR China
| | - Wenjian Ma
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Qilu Institute of Technology, Shandong 250200, PR China.
| | - Tongcun Zhang
- Tianjin University of Science and Technology, College of Biotechnology, Tianjin 300457, PR China; Wuhan University of Science and Technology, Institute of Biology and Medicine, Wuhan 430081, PR China.
| |
Collapse
|
18
|
Zhang L, Zhang W, Sun J, Liu KN, Gan ZX, Liu YZ, Chang JF, Yang XM, Sun F. Nucleotide variation in histone H2BL drives crossalk of histone modification and promotes tumour cell proliferation by upregulating c-Myc. Life Sci 2021; 271:119127. [PMID: 33515561 DOI: 10.1016/j.lfs.2021.119127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Gene mutations play important roles in tumour development. In this study, we identified a functional histone H2B mutation H2BL-T11C, causing an amino acid variation from Leu to Pro (L3P, H2BL-L3P). Cells overexpressing H2BL-L3P showed stronger proliferation, colony formation, tumourigenic abilities, and a different cell cycle distribution. Meanwhile, the c-Myc expression was elevated as evident by RNA-seq. We further revealed that an H2BK5ac-H2BK120ubi crosstalk which regulates gene transcription. Moreover, EdU staining demonstrated an important role of c-Myc in accelerating cell cycle progression through the G1/S checkpoint, while treatment with 10058-F4, an inhibitor of the c-Myc/MAX interaction, alleviated the abnormal cell proliferation and cell cycle distribution in vitro and partially inhibited tumour growth in vivo. The mutation of amino acid L3P is associated with tumour progression, suggesting patients carrying this SNP may have higher risk of tumour development.
Collapse
Affiliation(s)
- Lei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kui-Nan Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhi-Xue Gan
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yu-Zhou Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Feng Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
19
|
Regulation of Treg Functions by the Ubiquitin Pathway. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:47-62. [PMID: 33523442 DOI: 10.1007/978-981-15-6407-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Regulatory T (Tregs) cells, required to maintain immune homeostasis, have significant power in disease outcomes. Treg dysfunction, predominantly characterized by the loss of the master transcription factor FoxP3 and the acquisition of Teff-like phenotypes, can promote autoimmunity as well as enhance anti-tumor immunity. As FoxP3 expression and stability are pinnacle for Treg suppressive functions, understanding the pathways that regulate FoxP3 is crucial to ascertain Treg-mediated therapies for autoimmune diseases and cancer. Mechanisms controlling FoxP3 expression and stability range from transcriptional to posttranslational, revealing multiple therapeutic opportunities. While many of the transcriptional pathways have been explored in detail, a recent surge in interest on the posttranslational mechanisms regulating FoxP3 has arisen. Particularly, the role of ubiquitination on Tregs both directly and indirectly involving FoxP3 has gained interest. Here, we summarize the current knowledge on ubiquitin-dependent, FoxP3-mediated control of Treg function as it pertains to human diseases.
Collapse
|
20
|
WDR82/PNUTS-PP1 Prevents Transcription-Replication Conflicts by Promoting RNA Polymerase II Degradation on Chromatin. Cell Rep 2020; 33:108469. [PMID: 33264625 DOI: 10.1016/j.celrep.2020.108469] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/05/2020] [Accepted: 11/10/2020] [Indexed: 02/08/2023] Open
Abstract
Transcription-replication (T-R) conflicts cause replication stress and loss of genome integrity. However, the transcription-related processes that restrain such conflicts are poorly understood. Here, we demonstrate that the RNA polymerase II (RNAPII) C-terminal domain (CTD) phosphatase protein phosphatase 1 (PP1) nuclear targeting subunit (PNUTS)-PP1 inhibits replication stress. Depletion of PNUTS causes lower EdU uptake, S phase accumulation, and slower replication fork rates. In addition, the PNUTS binding partner WDR82 also promotes RNAPII-CTD dephosphorylation and suppresses replication stress. RNAPII has a longer residence time on chromatin after depletion of PNUTS or WDR82. Furthermore, the RNAPII residence time is greatly enhanced by proteasome inhibition in control cells but less so in PNUTS- or WDR82-depleted cells, indicating that PNUTS and WDR82 promote degradation of RNAPII on chromatin. Notably, reduced replication is dependent on transcription and the phospho-CTD binding protein CDC73 after depletion of PNUTS/WDR82. Altogether, our results suggest that RNAPII-CTD dephosphorylation is required for the continuous turnover of RNAPII on chromatin, thereby preventing T-R conflicts.
Collapse
|
21
|
Marsh DJ, Ma Y, Dickson KA. Histone Monoubiquitination in Chromatin Remodelling: Focus on the Histone H2B Interactome and Cancer. Cancers (Basel) 2020; 12:E3462. [PMID: 33233707 PMCID: PMC7699835 DOI: 10.3390/cancers12113462] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Chromatin remodelling is a major mechanism by which cells control fundamental processes including gene expression, the DNA damage response (DDR) and ensuring the genomic plasticity required by stem cells to enable differentiation. The post-translational modification of histone H2B resulting in addition of a single ubiquitin, in humans at lysine 120 (K120; H2Bub1) and in yeast at K123, has key roles in transcriptional elongation associated with the RNA polymerase II-associated factor 1 complex (PAF1C) and in the DDR. H2Bub1 itself has been described as having tumour suppressive roles and a number of cancer-related proteins and/or complexes are recognised as part of the H2Bub1 interactome. These include the RING finger E3 ubiquitin ligases RNF20, RNF40 and BRCA1, the guardian of the genome p53, the PAF1C member CDC73, subunits of the switch/sucrose non-fermenting (SWI/SNF) chromatin remodelling complex and histone methyltransferase complexes DOT1L and COMPASS, as well as multiple deubiquitinases including USP22 and USP44. While globally depleted in many primary human malignancies, including breast, lung and colorectal cancer, H2Bub1 is selectively enriched at the coding region of certain highly expressed genes, including at p53 target genes in response to DNA damage, functioning to exercise transcriptional control of these loci. This review draws together extensive literature to cement a significant role for H2Bub1 in a range of human malignancies and discusses the interplay between key cancer-related proteins and H2Bub1-associated chromatin remodelling.
Collapse
Affiliation(s)
- Deborah J. Marsh
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
- Kolling Institute, Faculty of Medicine and Health, Northern Clinical School, University of Sydney, Camperdown, NSW 2006, Australia
| | - Yue Ma
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
| | - Kristie-Ann Dickson
- Translational Oncology Group, Faculty of Science, School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia; (Y.M.); (K.-A.D.)
| |
Collapse
|
22
|
Epigenetic modification and a role for the E3 ligase RNF40 in cancer development and metastasis. Oncogene 2020; 40:465-474. [PMID: 33199825 PMCID: PMC7819849 DOI: 10.1038/s41388-020-01556-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/15/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022]
Abstract
RNF40 (OMIM: 607700) is a really interesting new gene (RING) finger E3 ubiquitin ligase containing multiple coiled-coil domains and a C-terminal RING finger motif, which engage in protein–DNA and protein–protein interactions. RNF40 encodes a polypeptide of 1001 amino acids with a predicted molecular mass of 113,678 Da. RNF40 and its paralog RNF20 form a stable heterodimer complex that can monoubiquitylate histone H2B at lysine 120 as well as other nonhistone proteins. Cancer is a major public health problem and the second leading cause of death. Through its protein ubiquitylation activity, RNF40 acts as a tumor suppressor or oncogene to play major epigenetic roles in cancer development, progression, and metastasis, highlighting the essential function of RNF40 and the importance of studying it. In this review, we summarize current knowledge about RNF40 gene structure and the role of RNF40 in histone H2B monoubiquitylation, DNA damage repair, apoptosis, cancer development, and metastasis. We also underscore challenges in applying this information to cancer prognosis and prevention and highlight the urgent need for additional investigations of RNF40 as a potential target for cancer therapeutics.
Collapse
|
23
|
Deng ZH, Ai HS, Lu CP, Li JB. The Bre1/Rad6 machinery: writing the central histone ubiquitin mark on H2B and beyond. Chromosome Res 2020; 28:247-258. [PMID: 32895784 DOI: 10.1007/s10577-020-09640-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/20/2020] [Accepted: 08/30/2020] [Indexed: 01/10/2023]
Abstract
Mono-ubiquitination on H2B (H2Bub1) is an evolutionarily conserved histone post-translational modification implicated in various important physiological processes including DNA replication, transcription activation, and DNA damage repair. The Bre1/Rad6 ubiquitination machinery is currently considered to be the sole writer of H2Bub1, but the mechanistic basis by which it operates is unclear. Recently, the RING-type E3 ligase Bre1 was proposed to associate with the E2 enzyme Rad6 through a novel interaction between Bre1 RBD (Rad6 binding domain) and Rad6; and the RING domain of Bre1 that is responsible for the nucleosomal acidic patch binding also interacts with Rad6 to stimulate its catalytic activity. Recent discoveries have yielded evidence for the phenomenon of liquid-liquid phase separation in the context of H2Bub1, and its regulation by other histone post-translational modifications. This review summarizes current knowledge about Bre1/Rad6-mediated H2B ubiquitination, including the physiological functions and the molecular basis for writing and regulation of this central histone ubiquitin mark. Possible models for the Bre1/Rad6 machinery bound to nucleosomes bearing different modifications in the writing step are also disclosed.
Collapse
Affiliation(s)
- Zhi-Heng Deng
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.,Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua-Song Ai
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Cheng-Piao Lu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
24
|
Zhang K, Yang L, Wang J, Sun T, Guo Y, Nelson R, Tong TR, Pangeni R, Salgia R, Raz DJ. Ubiquitin-specific protease 22 is critical to in vivo angiogenesis, growth and metastasis of non-small cell lung cancer. Cell Commun Signal 2019; 17:167. [PMID: 31842906 PMCID: PMC6916027 DOI: 10.1186/s12964-019-0480-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Loss of monoubiquitination of histone H2B (H2Bub1) was found to be associated with poor differentiation, cancer stemness, and enhanced malignancy of non-small cell lung cancer (NSCLC). Herein, we investigated the biological significance and therapeutic implications of ubiquitin-specific protease 22 (USP22), an H2Bub1 deubiquitinase, in non-small cell lung cancer (NSCLC). METHODS USP22 expression and its clinical relevance were assessed in NSCLC patients. The effects of USP22 knockout on sensitivity to cisplatin and irradiation, and growth, metastasis of NSCLC xenografts, and survival of cancer-bearing mice were investigated. The underlying mechanisms of targeting USP22 were explored. RESULTS Overexpression of USP22 was observed in 49.0% (99/202) of NSCLC tissues; higher USP22 immunostaining was found to be associated with enhanced angiogenesis and recurrence of NSCLC. Notably, USP22 knockout dramatically suppressed in vitro proliferation, colony formation; and angiogenesis, growth, metastasis of A549 and H1299 in mouse xenograft model, and significantly prolonged survival of metastatic cancer-bearing mice. Furthermore, USP22 knockout significantly impaired non-homologous DNA damage repair capacity, enhanced cisplatin and irradiation-induced apoptosis in these cells. In terms of underlying mechanisms, RNA sequencing and gene ontology enrichment analysis demonstrated that USP22 knockout significantly suppressed angiogenesis, proliferation, EMT, RAS, c-Myc pathways, concurrently enhanced oxidative phosphorylation and tight junction pathways in A549 and H1299 NSCLC cells. Immunoblot analysis confirmed that USP22 knockout upregulated E-cadherin, p16; reduced ALDH1A3, Cyclin E1, c-Myc, and attenuated activation of AKT and ERK pathways in these cells. CONCLUSIONS Our findings suggest USP22 plays critical roles in the malignancy and progression of NSCLC and provide rationales for targeting USP22, which induces broad anti-cancer activities, as a novel therapeutic strategy for NSCLC patient.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/therapy
- Cell Proliferation/drug effects
- Cisplatin/pharmacology
- DNA Repair
- DNA, Neoplasm/analysis
- Disease Models, Animal
- Female
- Humans
- Interleukin Receptor Common gamma Subunit/deficiency
- Interleukin Receptor Common gamma Subunit/metabolism
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/secondary
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/therapy
- Male
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Middle Aged
- Neoplasm Metastasis
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/therapy
- Signal Transduction/drug effects
- Tumor Cells, Cultured
- Ubiquitin Thiolesterase/antagonists & inhibitors
- Ubiquitin Thiolesterase/deficiency
- Ubiquitin Thiolesterase/metabolism
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California USA
| | - Lu Yang
- Department of System Biology, City of Hope National Medical Center, Duarte, California USA
| | - Jinhui Wang
- The Integrative Genomics Core Laboratory of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California USA
| | - Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California USA
- Department of Surgery, the General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuming Guo
- Division of Comparative Medicine, City of Hope National Medical Center, Duarte, CA USA
| | - Rebecca Nelson
- Department of Pathology, City of Hope National Medical Center, Duarte, California USA
| | - Tommy R. Tong
- Division of Biostatistics, City of Hope National Medical Center, Duarte, California USA
| | - Rajendra Pangeni
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California USA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, California USA
| | - Dan J. Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, California USA
| |
Collapse
|
25
|
Wang Y, Yang L, Zhang X, Cui W, Liu Y, Sun Q, He Q, Zhao S, Zhang G, Wang Y, Chen S. Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep 2019; 20:e47563. [PMID: 31267712 PMCID: PMC6607012 DOI: 10.15252/embr.201847563] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/05/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Monoubiquitination of histone H2B on lysine 120 (H2Bub1) is an epigenetic mark generally associated with transcriptional activation, yet the global functions of H2Bub1 remain poorly understood. Ferroptosis is a form of non-apoptotic cell death characterized by the iron-dependent overproduction of lipid hydroperoxides, which can be inhibited by the antioxidant activity of the solute carrier family member 11 (SLC7A11/xCT), a component of the cystine/glutamate antiporter. Whether nuclear events participate in the regulation of ferroptosis is largely unknown. Here, we show that the levels of H2Bub1 are decreased during erastin-induced ferroptosis and that loss of H2Bub1 increases the cellular sensitivity to ferroptosis. H2Bub1 epigenetically activates the expression of SLC7A11. Additionally, we show that the tumor suppressor p53 negatively regulates H2Bub1 levels independently of p53's transcription factor activity by promoting the nuclear translocation of the deubiquitinase USP7. Moreover, our studies reveal that p53 decreases H2Bub1 occupancy on the SLC7A11 gene regulatory region and represses the expression of SLC7A11 during erastin treatment. These data not only suggest a noncanonical role of p53 in chromatin regulation but also link p53 to ferroptosis via an H2Bub1-mediated epigenetic pathway. Overall, our work uncovers a previously unappreciated epigenetic mechanism for the regulation of ferroptosis.
Collapse
Affiliation(s)
- Yufei Wang
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Lu Yang
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Xiaojun Zhang
- Department of Science and EducationPeople's Hospital of ZunhuaTangshanHebeiChina
| | - Wen Cui
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| | - Yanping Liu
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Qin‐Ru Sun
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Qing He
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
| | - Shiyan Zhao
- Community Health Service Center of YaoqiangJinanShandongChina
| | - Guo‐An Zhang
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| | - Yequan Wang
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| | - Su Chen
- Laboratory of Molecular and Cellular BiologySchool of Forensic SciencesCenter for Translational Medicine at The First Affiliated HospitalXi'an Jiao Tong University Health Science CenterXi'anShaanxiChina
- Department of Science and EducationPeople's Hospital of ZunhuaTangshanHebeiChina
- School of Forensic Sciences and Laboratory MedicineJining Medical UniversityJiningShandongChina
| |
Collapse
|
26
|
Nune M, Morgan MT, Connell Z, McCullough L, Jbara M, Sun H, Brik A, Formosa T, Wolberger C. FACT and Ubp10 collaborate to modulate H2B deubiquitination and nucleosome dynamics. eLife 2019; 8:40988. [PMID: 30681413 PMCID: PMC6372288 DOI: 10.7554/elife.40988] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/24/2019] [Indexed: 12/21/2022] Open
Abstract
Monoubiquitination of histone H2B (H2B-Ub) plays a role in transcription and DNA replication, and is required for normal localization of the histone chaperone, FACT. In yeast, H2B-Ub is deubiquitinated by Ubp8, a subunit of SAGA, and Ubp10. Although they target the same substrate, loss of Ubp8 and Ubp10 cause different phenotypes and alter the transcription of different genes. We show that Ubp10 has poor activity on yeast nucleosomes, but that the addition of FACT stimulates Ubp10 activity on nucleosomes and not on other substrates. Consistent with a role for FACT in deubiquitinating H2B in vivo, a FACT mutant strain shows elevated levels of H2B-Ub. Combination of FACT mutants with deletion of Ubp10, but not Ubp8, confers increased sensitivity to hydroxyurea and activates a cryptic transcription reporter, suggesting that FACT and Ubp10 may coordinate nucleosome assembly during DNA replication and transcription. Our findings reveal unexpected interplay between H2B deubiquitination and nucleosome dynamics.
Collapse
Affiliation(s)
- Melesse Nune
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Michael T Morgan
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Zaily Connell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Laura McCullough
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Muhammad Jbara
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hao Sun
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tim Formosa
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Cynthia Wolberger
- Program in Molecular Biophysics, Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
27
|
Marsh DJ, Dickson KA. Writing Histone Monoubiquitination in Human Malignancy-The Role of RING Finger E3 Ubiquitin Ligases. Genes (Basel) 2019; 10:genes10010067. [PMID: 30669413 PMCID: PMC6356280 DOI: 10.3390/genes10010067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/09/2023] Open
Abstract
There is growing evidence highlighting the importance of monoubiquitination as part of the histone code. Monoubiquitination, the covalent attachment of a single ubiquitin molecule at specific lysines of histone tails, has been associated with transcriptional elongation and the DNA damage response. Sites function as scaffolds or docking platforms for proteins involved in transcription or DNA repair; however, not all sites are equal, with some sites resulting in actively transcribed chromatin and others associated with gene silencing. All events are written by E3 ubiquitin ligases, predominantly of the RING (really interesting new gene) finger type. One of the most well-studied events is monoubiquitination of histone H2B at lysine 120 (H2Bub1), written predominantly by the RING finger complex RNF20-RNF40 and generally associated with active transcription. Monoubiquitination of histone H2A at lysine 119 (H2AK119ub1) is also well-studied, its E3 ubiquitin ligase constituting part of the Polycomb Repressor Complex 1 (PRC1), RING1B-BMI1, associated with transcriptional silencing. Both modifications are activated as part of the DNA damage response. Histone monoubiquitination is a key epigenomic event shaping the chromatin landscape of malignancy and influencing how cells respond to DNA damage. This review discusses a number of these sites and the E3 RING finger ubiquitin ligases that write them.
Collapse
Affiliation(s)
- Deborah J Marsh
- University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.
| | - Kristie-Ann Dickson
- University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.
| |
Collapse
|
28
|
Spinal RNF20-Mediated Histone H2B Monoubiquitylation Regulates mGluR5 Transcription for Neuropathic Allodynia. J Neurosci 2018; 38:9160-9174. [PMID: 30201771 DOI: 10.1523/jneurosci.1069-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/16/2018] [Accepted: 08/30/2018] [Indexed: 12/13/2022] Open
Abstract
To date, histone H2B monoubiquitination (H2Bub), a mark associated with transcriptional elongation and ongoing transcription, has not been linked to the development or maintenance of neuropathic pain states. Here, using male Sprague Dawley rats, we demonstrated spinal nerve ligation (SNL) induced behavioral allodynia and provoked ring finger protein 20 (RNF20)-dependent H2Bub in dorsal horn. Moreover, SNL provoked RNF20-mediated H2Bub phosphorylated RNA polymerase II (RNAPII) in the promoter fragments of mGluR5, thereby enhancing mGluR5 transcription/expression in the dorsal horn. Conversely, focal knockdown of spinal RNF20 expression reversed not only SNL-induced allodynia but also RNF20/H2Bub/RNAPII phosphorylation-associated spinal mGluR5 transcription/expression. Notably, TNF-α injection into naive rats and specific neutralizing antibody injection into SNL-induced allodynia rats revealed that TNF-α-associated allodynia involves the RNF20/H2Bub/RNAPII transcriptional axis to upregulate mGluR5 expression in the dorsal horn. Collectively, our findings indicated TNF-α induces RNF20-drived H2B monoubiquitination, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in the dorsal horn for the development of neuropathic allodynia.SIGNIFICANCE STATEMENT Histone H2B monoubiquitination (H2Bub), an epigenetic post-translational modification, positively correlated with gene expression. Here, TNF-α participated in neuropathic pain development by enhancing RNF20-mediated H2Bub, which facilitates phosphorylated RNAPII-dependent mGluR5 transcription in dorsal horn. Our finding potentially identified neuropathic allodynia pathophysiological processes underpinning abnormal nociception processing and opens a new avenue for the development of novel analgesics.
Collapse
|
29
|
Role of RNF20 in cancer development and progression - a comprehensive review. Biosci Rep 2018; 38:BSR20171287. [PMID: 29934362 PMCID: PMC6043722 DOI: 10.1042/bsr20171287] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/20/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Evolving strategies to counter cancer initiation and progression rely on the identification of novel therapeutic targets that exploit the aberrant genetic changes driving oncogenesis. Several chromatin associated enzymes have been shown to influence post-translational modification (PTM) in DNA, histones, and non-histone proteins. Any deregulation of this core group of enzymes often leads to cancer development. Ubiquitylation of histone H2B in mammalian cells was identified over three decades ago. An exciting really interesting new gene (RING) family of E3 ubiquitin ligases, known as RNF20 and RNF40, monoubiquitinates histone H2A at K119 or H2B at K120, is known to function in transcriptional elongation, DNA double-strand break (DSB) repair processes, maintenance of chromatin differentiation, and exerting tumor suppressor activity. RNF20 is somatically altered in breast, lung, prostate cancer, clear cell renal cell carcinoma (ccRCC), and mixed lineage leukemia, and its reduced expression is a key factor in initiating genome instability; and it also functions as one of the significant driving factors of oncogenesis. Loss of RNF20/40 and H2B monoubiquitination (H2Bub1) is found in several cancers and is linked to an aggressive phenotype, and is also an indicator of poor prognosis. In this review, we summarized the current knowledge of RNF20 in chronic inflammation-driven cancers, DNA DSBs, and apoptosis, and its impact on chromatin structure beyond the single nucleosome level.
Collapse
|
30
|
Guarnieri V, Muscarella LA, Verdelli C, Corbetta S. Alterations of DNA methylation in parathyroid tumors. Mol Cell Endocrinol 2018; 469:60-69. [PMID: 28501573 DOI: 10.1016/j.mce.2017.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 05/01/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022]
Abstract
Parathyroid tumors are common endocrine neoplasias associated with primary hyperparathyroidism, a metabolic disorder characterized by parathormone hypersecretion. Parathyroid neoplasia are frequently benign adenomas or multiple glands hyperplasia, while malignancies are rare. The epigenetic scenario in parathyroid tumors has just begun to be decoded: DNA methylation, histones and chromatin modifiers expression have been investigated so far. The main findings suggest that DNA methylation and chromatin remodeling are active and deregulated in parathyroid tumors, cooperating with genetic alterations to drive the tumor phenotype: the tumor suppressors menin and parafibromin, involved in parathyroid tumorigenesis, interact with chromatin modifiers, defining distinct epigenetic derangements. Many epigenetic alterations identified in parathyroid tumors are common to those in human cancers; moreover, some aspects of the epigenetic profile resemble epigenetic features of embryonic stem cells. Epigenetic profile may contribute to define the heterogeneity of parathyroid tumors and to provide targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Vito Guarnieri
- Genetic Unit, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Lucia Anna Muscarella
- Laboratory of Oncology, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG, Italy
| | - Chiara Verdelli
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Sabrina Corbetta
- Endocrinology Service, Department of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy.
| |
Collapse
|
31
|
Ropa J, Saha N, Chen Z, Serio J, Chen W, Mellacheruvu D, Zhao L, Basrur V, Nesvizhskii AI, Muntean AG. PAF1 complex interactions with SETDB1 mediate promoter H3K9 methylation and transcriptional repression of Hoxa9 and Meis1 in acute myeloid leukemia. Oncotarget 2018; 9:22123-22136. [PMID: 29774127 PMCID: PMC5955148 DOI: 10.18632/oncotarget.25204] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/04/2018] [Indexed: 12/30/2022] Open
Abstract
The Polymerase Associated Factor 1 complex (PAF1c) is an epigenetic co-modifying complex that directly contacts RNA polymerase II (RNAPII) and several epigenetic regulating proteins. Mutations, overexpression and loss of expression of subunits of the PAF1c are observed in various forms of cancer suggesting proper regulation is needed for cellular development. However, the biochemical interactions with the PAF1c that allow dynamic gene regulation are unclear. We and others have shown that the PAF1c makes a direct interaction with MLL fusion proteins, which are potent oncogenic drivers of acute myeloid leukemia (AML). This interaction is critical for the maintenance of MLL translocation driven AML by targeting MLL fusion proteins to the target genes Meis1 and Hoxa9. Here, we use a proteomics approach to identify protein-protein interactions with the PAF1c subunit CDC73 that regulate the function of the PAF1c. We identified a novel interaction with a histone H3 lysine 9 (H3K9) methyltransferase protein, SETDB1. This interaction is stabilized with a mutant CDC73 that is incapable of supporting AML cell growth. Importantly, transcription of Meis1 and Hoxa9 is reduced and promoter H3K9 trimethylation (H3K9me3) increased by overexpression of SETDB1 or stabilization of the PAF1c-SETDB1 interaction in AML cells. These findings were corroborated in human AML patients where increased SETDB1 expression was associated with reduced HOXA9 and MEIS1. To our knowledge, this is the first proteomics approach to search for CDC73 protein-protein interactions in AML, and demonstrates that the PAF1c may play a role in H3K9me3-mediated transcriptional repression in AML.
Collapse
Affiliation(s)
- James Ropa
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Nirmalya Saha
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Zhiling Chen
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Justin Serio
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Wei Chen
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Dattatreya Mellacheruvu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Venkatesha Basrur
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Alexey I. Nesvizhskii
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew G. Muntean
- Department of Pathology and The University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
32
|
Shanmugam MK, Arfuso F, Arumugam S, Chinnathambi A, Jinsong B, Warrier S, Wang LZ, Kumar AP, Ahn KS, Sethi G, Lakshmanan M. Role of novel histone modifications in cancer. Oncotarget 2018; 9:11414-11426. [PMID: 29541423 PMCID: PMC5834259 DOI: 10.18632/oncotarget.23356] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/01/2017] [Indexed: 01/02/2023] Open
Abstract
Oncogenesis is a multistep process mediated by a variety of factors including epigenetic modifications. Global epigenetic post-translational modifications have been detected in almost all cancers types. Epigenetic changes appear briefly and do not involve permanent changes to the primary DNA sequence. These epigenetic modifications occur in key oncogenes, tumor suppressor genes, and transcription factors, leading to cancer initiation and progression. The most commonly observed epigenetic changes include DNA methylation, histone lysine methylation and demethylation, histone lysine acetylation and deacetylation. However, there are several other novel post-translational modifications that have been observed in recent times such as neddylation, sumoylation, glycosylation, phosphorylation, poly-ADP ribosylation, ubiquitination as well as transcriptional regulation and these have been briefly discussed in this article. We have also highlighted the diverse epigenetic changes that occur during the process of tumorigenesis and described the role of histone modifications that can occur on tumor suppressor genes as well as oncogenes, which regulate tumorigenesis and can thus form the basis of novel strategies for cancer therapy.
Collapse
Affiliation(s)
- Muthu K. Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Frank Arfuso
- Stem Cell and Cancer Biology Laboratory, School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| | - Surendar Arumugam
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Bian Jinsong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, India
| | - Ling Zhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, WA, Australia
- National University Cancer Institute, National University Health System, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Dongdaemun-gu, Seoul, Korea
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Lakshmanan
- Institute of Molecular and Cell Biology, A*STAR, Biopolis Drive, Proteos, Singapore, Singapore
- Department of Pathology, National University Hospital Singapore, Singapore, Singapore
| |
Collapse
|
33
|
Garrido Castro P, van Roon EHJ, Pinhanços SS, Trentin L, Schneider P, Kerstjens M, Te Kronnie G, Heidenreich O, Pieters R, Stam RW. The HDAC inhibitor panobinostat (LBH589) exerts in vivo anti-leukaemic activity against MLL-rearranged acute lymphoblastic leukaemia and involves the RNF20/RNF40/WAC-H2B ubiquitination axis. Leukemia 2018; 32:323-331. [PMID: 28690313 DOI: 10.1038/leu.2017.216] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 06/21/2017] [Accepted: 06/26/2017] [Indexed: 11/08/2022]
Abstract
MLL-rearranged acute lymphoblastic leukaemia (ALL) represents an aggressive malignancy in infants (<1 year of age), associated with poor outcome. Current treatment intensification is not further possible, and novel therapy strategies are needed. Notably, MLL-rearranged ALL is characterised by a strongly deregulated epigenome and shows sensitivity to epigenetic perturbators. Here we demonstrate the in vivo efficacy of the histone deacetylase inhibitor panobinostat (LBH589) using xenograft mouse models of MLL-rearranged ALL. Panobinostat monotherapy showed strong anti-leukaemic effects, extending survival and reducing overall disease burden. Comprehensive molecular analyses in vitro showed that this anti-leukaemic activity involves depletion of H2B ubiquitination via suppression of the RNF20/RNF40/WAC E3 ligase complex; a pivotal pathway for MLL-rearranged leukaemic maintenance. Knockdown of WAC phenocopied loss of H2B ubiquitination and concomitant cell death induction. These combined data demonstrate that panobinostat cross-inhibits multiple epigenetic pathways, ultimately contributing to its highly efficacious targeting of MLL-rearranged ALL.
Collapse
Affiliation(s)
- P Garrido Castro
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - E H J van Roon
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - S S Pinhanços
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - L Trentin
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - P Schneider
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - M Kerstjens
- Department of Pediatric Hematology/Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - G Te Kronnie
- Department of Women's and Children's Health, University of Padova, Padova, Italy
| | - O Heidenreich
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, UK
- North of England Stem Cell Institute, Newcastle and Durham Universities, Newcastle upon Tyne, UK
| | - R Pieters
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - R W Stam
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| |
Collapse
|
34
|
The clinicopathological and prognostic significances of CDC73 expression in cancers: a bioinformatics analysis. Oncotarget 2017; 8:95270-95279. [PMID: 29221126 PMCID: PMC5707020 DOI: 10.18632/oncotarget.20446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/12/2017] [Indexed: 11/26/2022] Open
Abstract
CDC73 interacts with human PAF1 complex, histone methyltransferase complex and RNA polymerase II for transcription elongation and 3’ end processing. Its down-regulated expression was immunohistochemically detected in gastric, colorectal, ovarian and head and neck cancers, and positively correlated with aggressive behaviors and unfavorable prognosis of malignancies. We performed a bioinformatics analysis by using Oncomine, TCGA and KM plotter databases. It was found that CDC73 mRNA was overexpressed in gastric, lung, breast and ovarian cancers, even stratified by histological subtypes (p<0.05). CDC73 mRNA expression was stronger in gastric intestinal- than diffuse-type carcinomas (p<0.05), and positively correlated with distant metastasis and TNM staging of lung cancer (p<0.05). CDC73 mRNA expression was positively related to both overall and progression-free survival rates of the patients with gastric cancer, even stratified by gender, lymph node involvement, or treatment (p<0.05), while versa for breast cancer (p<0.05). The prognostic significance of CDC73 mRNA was dependent on the datasets and pathological grouping in lung and ovarian cancers. These findings indicated the CDC73 mRNA overexpression was positively linked to carcinogenesis. It is cautious to employ CDC73 mRNA to evaluate the clinicopathological behaviors and prognosis of cancers.
Collapse
|
35
|
Dickson KA, Cole AJ, Gill AJ, Clarkson A, Gard GB, Chou A, Kennedy CJ, Henderson BR, Fereday S, Traficante N, Alsop K, Bowtell DD, deFazio A, Clifton-Bligh R, Marsh DJ. The RING finger domain E3 ubiquitin ligases BRCA1 and the RNF20/RNF40 complex in global loss of the chromatin mark histone H2B monoubiquitination (H2Bub1) in cell line models and primary high-grade serous ovarian cancer. Hum Mol Genet 2017; 25:5460-5471. [PMID: 27798111 DOI: 10.1093/hmg/ddw362] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023] Open
Abstract
Enzymatic factors driving cancer-associated chromatin remodelling are of increasing interest as the role of the cancer epigenome in gene expression and DNA repair processes becomes elucidated. Monoubiquitination of histone H2B at lysine 120 (H2Bub1) is a central histone modification that functions in histone cross-talk, transcriptional elongation, DNA repair, maintaining centromeric chromatin and replication-dependent histone mRNA 3'-end processing, as well as being required for the differentiation of stem cells. The loss of global H2Bub1 is seen in a number of aggressive malignancies and has been linked to tumour progression and/or a poorer prognosis in some cancers. Here, we analyse a large cohort of high-grade serous ovarian cancers (HGSOC) and show loss of global H2Bub1 in 77% (313 of 407) of tumours. Loss of H2Bub1 was seen at all stages (I-IV) of HGSOC, indicating it is a relatively early epigenomic event in this aggressive malignancy. Manipulation of key H2Bub1 E3 ubiquitin ligases, RNF20, RNF40 and BRCA1, in ovarian cancer cell line models modulated H2Bub1 levels, indicative of the role of these RING finger ligases in monoubiquitination of H2Bub1 in vitro. However, in primary HGSOC, loss of RNF20 protein expression was identified in just 6% of tumours (26 of 424) and did not correlate with global H2Bub1 loss. Similarly, germline mutation of BRCA1 did not show a correlation with the global H2Bub1 loss. We conclude that the regulation of tumour-associated H2Bub1 levels is complex. Aberrant expression of alternative histone-associated 'writer' or 'eraser' enzymes are likely responsible for the global loss of H2Bub1 seen in HGSOC.
Collapse
Affiliation(s)
- Kristie-Ann Dickson
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hosptial, University of Sydney, St Leonards, NSW, Australia
| | - Alexander J Cole
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hosptial, University of Sydney, St Leonards, NSW, Australia
| | - Anthony J Gill
- Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, Sydney NSW, and Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Adele Clarkson
- Department of Anatomical Pathology, Royal North Shore Hospital, University of Sydney, Sydney NSW, and Cancer Diagnosis and Pathology Research Group, Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Gregory B Gard
- Department of Obstetrics and Gynaecology, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Angela Chou
- Department of Anatomical Pathology, SYDPATH, St Vincents Hospitals, Darlinghurst, NSW, Australia
| | - Catherine J Kennedy
- Department of Gynaecological Oncology, Westmead Hospital, Westmead, NSW, Australia.,Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Beric R Henderson
- Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | | | - Sian Fereday
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Nadia Traficante
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kathryn Alsop
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David D Bowtell
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia and.,The Kinghorn Cancer Centre and Garvan Institute, Darlinghurst, NSW, Australia
| | - Anna deFazio
- Department of Gynaecological Oncology, Westmead Hospital, Westmead, NSW, Australia.,Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW, Australia
| | - Roderick Clifton-Bligh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hosptial, University of Sydney, St Leonards, NSW, Australia
| | - Deborah J Marsh
- Hormones and Cancer Group, Kolling Institute of Medical Research, Royal North Shore Hosptial, University of Sydney, St Leonards, NSW, Australia
| |
Collapse
|
36
|
Zhang K, Wang J, Tong TR, Wu X, Nelson R, Yuan YC, Reno T, Liu Z, Yun X, Kim JY, Salgia R, Raz DJ. Loss of H2B monoubiquitination is associated with poor-differentiation and enhanced malignancy of lung adenocarcinoma. Int J Cancer 2017; 141:766-777. [PMID: 28481029 DOI: 10.1002/ijc.30769] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/04/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023]
Abstract
Deregulated monoubiquitination of histone H2B (H2Bub1), mainly catalyzed by E3 ubiquitin-protein ligase RNF20/RNF40 complex, may play an important role in cancer. Here we investigate potential roles of H2Bub1 and the underlying mechanisms through which it contributes to cancer development and progression in lung adenocarcinoma. We show that downregulation of H2Bub1 through RNF20 knockdown dramatically decreases H3K79 and H3K4 trimethylation in both normal and malignant lung epithelial cell lines. Concurrently, global transcriptional profiling analysis reveals that multiple tumor-associated genes such as CCND3, E2F1/2, HOXA1, Bcl2 modifying factor (BMF), Met, and Myc; and signaling pathways of cellular dedifferentiation, proliferation, adhesion, survival including p53, cadherin, Myc, and anti-apoptotic pathways are differentially expressed or significantly altered in these lung epithelial cells upon downregulation of H2Bub1. Moreover, RNF20 knockdown dramatically suppresses terminal squamous differentiation of cultured bronchial epithelial cells, and significantly enhances proliferation, migration, invasion, and cisplatin resistance of lung cancer cells. Furthermore, immunohistochemistry analysis shows that H2Bub1 is extremely low or undetectable in >70% of 170 lung adenocarcinoma samples. Notably, statistical analysis demonstrates that loss of H2Bub1 is significantly correlated with poor differentiation in lung adenocarcinoma (p = 0.0134). In addition, patients with H2Bub1-negative cancers had a trend towards shorter survival compared with patients with H2Bub1-positive cancers. Taken together, our findings suggest that loss of H2Bub1 may enhance malignancy and promote disease progression in lung adenocarcinoma probably through modulating multiple cancer signaling pathways.
Collapse
Affiliation(s)
- Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA
| | - Jinhui Wang
- The Integrative Genomics Core Lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Tommy R Tong
- Department of Pathology, City of Hope National Medical Center, Duarte, CA
| | - Xiwei Wu
- The Integrative Genomics Core Lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Rebecca Nelson
- Division of Biostatistics, City of Hope National Medical Center, Duarte, CA
| | - Yate-Ching Yuan
- The Bioinformatics Core lab of Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA
| | - Theresa Reno
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA
| | - Zheng Liu
- Division of Biostatistics, City of Hope National Medical Center, Duarte, CA
| | - Xinwei Yun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA
| | - Jae Y Kim
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA
| | - Ravi Salgia
- Department of Medical Oncology & Therapeutics Research, City of Hope National Medical Center, Duarte, CA
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA
| |
Collapse
|
37
|
Chiara V, Sabrina C. Epigenetics of human parathyroid tumors. INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2017. [DOI: 10.2217/ije-2017-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Parathyroid tumors are common endocrine neoplasia associated with primary hyperparathyroidism, a metabolic disorder sustained by parathormone hypersecretion. The epigenetic scenario in parathyroid tumors is beginning to be decoded. Here, main findings are reviewed: hypermethylation of specific DNA CpG islands has been described, despite global DNA promoter hypomethylation was not detectable; embryonic-related miRNAs, belonging to the C19MC and miR‐371-373 clusters, and miR‐296, are deregulated; expression of histone H1.2 and H2B is increased; expression of histone methyltransferase EZH2, BMI1 and RIZ1 is impaired; the tumor suppressor HIC1, MEN1 and CDC73 gene products, key molecules in parathyroid tumorigenesis, may be involved in epigenetic aberrant changes. Epigenetic changes are more frequent and more consistent in parathyroid malignancies, and positively correlated with severity of primary hyperparathyroidism.
Collapse
Affiliation(s)
- Verdelli Chiara
- Laboratory of Experimental Endocrinology, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Corbetta Sabrina
- Endocrinology Unit, Department of Biomedical Sciences for Health, University of Milan, IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
38
|
Buneeva OA, Medvedev AE. The role of atypical ubiquitination in cell regulation. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Zheng HC, Liu JJ, Li J, Wu JC, Yang L, Zhao GF, Zhao X, Jiang HM, Huang KQ, Li ZJ. The in vitro and vivo effects of nuclear and cytosolic parafibromin expression on the aggressive phenotypes of colorectal cancer cells: a search of potential gene therapy target. Oncotarget 2017; 8:23603-23612. [PMID: 28223542 PMCID: PMC5410330 DOI: 10.18632/oncotarget.15377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
Down-regulated parafibromin is positively linked to the pathogenesis of parathyroid, lung, breast, ovarian, gastric and colorectal cancers. Here, we found that wild-type (WT) parafibromin overexpression suppressed proliferation, tumor growth, induced cell cycle arrest and apoptosis in colorectal cancer cells (p<0.05), but it was the converse for mutant-type (MT, mutation in nucleus localization sequence) parafibromin (p<0.05). Both WT and MT transfectants inhibited migration and invasion, and caused better differentiation (p<0.05) of cancer cells. WT parafibromin transfectants showed the overexpression of Cyclin B1, Cyclin D1, Cyclin E, p38, p53, and AIF in HCT-15 and HCT-116 cells, while MT parafibromin only up-regulated p38 expression. There was lower mRNA expression of bcl-2 in parafibromin transfectants than the control and mock, while higher expression of c-myc, Cyclin D1, mTOR, and Raptor. According to transcriptomic analysis, WT parafibromin suppressed PI3K-Akt and FoxO signaling pathways, while MT one promoted PI3K-Akt pathway, focal adhesion, and regulation of actin cytoskeleton. Parafibromin was less expressed in colorectal cancer than paired mucosa (p<0.05), and inversely correlated with its differentiation at both mRNA and protein levels (p<0.05). These findings indicated that WT parafibromin might reverse the aggressive phenotypes of colorectal cancer cells and be employed as a target for gene therapy. Down-regulated parafibromin expression might be closely linked to colorectal carcinogenesis and cancer differentiation.
Collapse
Affiliation(s)
- Hua-Chuan Zheng
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Jia-Jie Liu
- Jinzhou Medical University, Jinzhou 121001, China
| | - Jing Li
- Jinzhou Medical University, Jinzhou 121001, China
| | - Ji-Cheng Wu
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lei Yang
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Gui-Feng Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Zhao
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | | | | | - Zhi-Jie Li
- Department of Experimental Oncology and Animal Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
40
|
Buneeva OA, Medvedev AE. [Atypical ubiquitination of proteins]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:496-509. [PMID: 27797324 DOI: 10.18097/pbmc20166205496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ubiquitination is a type of posttranslational modification of intracellular proteins characterized by covalent attachment of one (monoubiquitination) or several (polyubiquitination) of ubiquitin molecules to target proteins. In the case of polyubiquitination, linear or branched polyubiquitin chains are formed. Their formation involves various lysine residues of monomeric ubiquitin. The best studied is Lys48-polyubiquitination, which targets proteins for proteasomal degradation. In this review we have considered examples of so-called atypical polyubiquitination, which mainly involves other lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys63) and also N-terminal methionine. The considered examples convincingly demonstrate that polyubiquitination of proteins not necessarily targets proteins for their proteolytic degradation in proteasomes. Atypically polyubiquitinated proteins are involved in regulation of various processes and altered polyubiquitination of certain proteins is crucial for development of serious diseases.
Collapse
Affiliation(s)
- O A Buneeva
- Institute of Biomedical Chemistry, Moscow, Russia
| | - A E Medvedev
- Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
41
|
Chen S, Jing Y, Kang X, Yang L, Wang DL, Zhang W, Zhang L, Chen P, Chang JF, Yang XM, Sun FL. Histone H2B monoubiquitination is a critical epigenetic switch for the regulation of autophagy. Nucleic Acids Res 2017; 45:1144-1158. [PMID: 28180298 PMCID: PMC5388390 DOI: 10.1093/nar/gkw1025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 10/08/2016] [Accepted: 10/19/2016] [Indexed: 12/16/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular process that primarily participates in lysosome-mediated protein degradation. Although autophagy is a cytoplasmic event, how epigenetic pathways are involved in the regulation of autophagy remains incompletely understood. Here, we found that H2B monoubiquitination (H2Bub1) is down-regulated in cells under starvation conditions and that the decrease in H2Bub1 results in the activation of autophagy. We also identified that the deubiquitinase USP44 is responsible for the starvation-induced decrease in H2Bub1. Furthermore, the changes in H2Bub1 affect the transcription of genes involved in the regulation of autophagy. Therefore, this study reveals a novel epigenetic pathway for the regulation of autophagy through H2Bub1.
Collapse
Affiliation(s)
- Su Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
- School of Forensic Sciences, Xi'an Jiao Tong University Health Science Center, Xi'an, Shaanxi 710061, PR China
- Department of Science and Education, People's Hospital of Zunhua, Tangshan, Hebei 064200, PR China
| | - Yuanya Jing
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Xuan Kang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Lu Yang
- Research Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiao Tong University, Shaanxi 710061, PR China
| | - Da-Liang Wang
- School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Wei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Lei Zhang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Ping Chen
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Jian-Feng Chang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Xiao-Mei Yang
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| | - Fang-Lin Sun
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
42
|
RNF20 and histone H2B ubiquitylation exert opposing effects in Basal-Like versus luminal breast cancer. Cell Death Differ 2017; 24:694-704. [PMID: 28157208 DOI: 10.1038/cdd.2016.126] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 11/09/2022] Open
Abstract
Breast cancer subtypes display distinct biological traits that influence their clinical behavior and response to therapy. Recent studies have highlighted the importance of chromatin structure regulators in tumorigenesis. The RNF20-RNF40 E3 ubiquitin ligase complex monoubiquitylates histone H2B to generate H2Bub1, while the deubiquitinase (DUB) USP44 can remove this modification. We found that RNF20 and RNF40 expression and global H2Bub1 are relatively low, and USP44 expression is relatively high, in basal-like breast tumors compared with luminal tumors. Consistent with a tumor-suppressive role, silencing of RNF20 in basal-like breast cancer cells increased their proliferation and migration, and their tumorigenicity and metastatic capacity, partly through upregulation of inflammatory cytokines. In contrast, in luminal breast cancer cells, RNF20 silencing reduced proliferation, migration and tumorigenic and metastatic capacity, and compromised estrogen receptor transcriptional activity, indicating a tumor-promoting role. Notably, the effects of USP44 silencing on proliferation and migration in both cancer subtypes were opposite to those of RNF20 silencing. Hence, RNF20 and H2Bub1 have contrasting roles in distinct breast cancer subtypes, through differential regulation of key transcriptional programs underpinning the distinctive traits of each subtype.
Collapse
|
43
|
Dwane L, Gallagher WM, Ní Chonghaile T, O'Connor DP. The Emerging Role of Non-traditional Ubiquitination in Oncogenic Pathways. J Biol Chem 2017; 292:3543-3551. [PMID: 28154183 DOI: 10.1074/jbc.r116.755694] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The addition of ubiquitin to a target protein has long been implicated in the process of degradation and is the primary mediator of protein turnover in the cell. Recently, however, many non-proteolytic functions of ubiquitination have emerged as key regulators of cellular homeostasis. In this review, we will describe the various non-traditional functions of ubiquitination, with particular focus on how they can be used as signaling entities in cancer formation and progression. Elaboration of this topic can lead to a better understanding of oncogenic mechanisms, as well as the discovery of novel druggable proteins within the ubiquitin pathway.
Collapse
Affiliation(s)
- Lisa Dwane
- From Molecular and Cellular Therapeutics and
| | - William M Gallagher
- the Cancer Biology and Therapeutics Laboratory, UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Tríona Ní Chonghaile
- the Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland and
| | | |
Collapse
|
44
|
Epigenetic Alterations in Parathyroid Cancers. Int J Mol Sci 2017; 18:ijms18020310. [PMID: 28157158 PMCID: PMC5343846 DOI: 10.3390/ijms18020310] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Parathyroid cancers (PCas) are rare malignancies representing approximately 0.005% of all cancers. PCas are a rare cause of primary hyperparathyroidism, which is the third most common endocrine disease, mainly related to parathyroid benign tumors. About 90% of PCas are hormonally active hypersecreting parathormone (PTH); consequently patients present with complications of severe hypercalcemia. Pre-operative diagnosis is often difficult due to clinical features shared with benign parathyroid lesions. Surgery provides the current best chance of cure, though persistent or recurrent disease occurs in about 50% of patients with PCas. Somatic inactivating mutations of CDC73/HRPT2 gene, encoding parafibromin, are the most frequent genetic anomalies occurring in PCas. Recently, the aberrant DNA methylation signature and microRNA expression profile have been identified in PCas, providing evidence that parathyroid malignancies are distinct entities from parathyroid benign lesions, showing an epigenetic signature resembling some embryonic aspects. The present paper reviews data about epigenetic alterations in PCas, up to now limited to DNA methylation, chromatin regulators and microRNA profile.
Collapse
|
45
|
Van Oss SB, Shirra MK, Bataille AR, Wier AD, Yen K, Vinayachandran V, Byeon IJL, Cucinotta CE, Héroux A, Jeon J, Kim J, VanDemark AP, Pugh BF, Arndt KM. The Histone Modification Domain of Paf1 Complex Subunit Rtf1 Directly Stimulates H2B Ubiquitylation through an Interaction with Rad6. Mol Cell 2016; 64:815-825. [PMID: 27840029 DOI: 10.1016/j.molcel.2016.10.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/09/2016] [Accepted: 10/05/2016] [Indexed: 10/24/2022]
Abstract
The five-subunit yeast Paf1 complex (Paf1C) regulates all stages of transcription and is critical for the monoubiquitylation of histone H2B (H2Bub), a modification that broadly influences chromatin structure and eukaryotic transcription. Here, we show that the histone modification domain (HMD) of Paf1C subunit Rtf1 directly interacts with the ubiquitin conjugase Rad6 and stimulates H2Bub independently of transcription. We present the crystal structure of the Rtf1 HMD and use site-specific, in vivo crosslinking to identify a conserved Rad6 interaction surface. Utilizing ChIP-exo analysis, we define the localization patterns of the H2Bub machinery at high resolution and demonstrate the importance of Paf1C in targeting the Rtf1 HMD, and thereby H2Bub, to its appropriate genomic locations. Finally, we observe HMD-dependent stimulation of H2Bub in a transcription-free, reconstituted in vitro system. Taken together, our results argue for an active role for Paf1C in promoting H2Bub and ensuring its proper localization in vivo.
Collapse
Affiliation(s)
- S Branden Van Oss
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Margaret K Shirra
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Alain R Bataille
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA 16802, USA
| | - Adam D Wier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kuangyu Yen
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA 16802, USA; Department of Developmental Biology, Southern Medical University, Guangzhou 510515, China
| | - Vinesh Vinayachandran
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA 16802, USA
| | - In-Ja L Byeon
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Christine E Cucinotta
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Annie Héroux
- Department of Biology, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jongcheol Jeon
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Andrew P VanDemark
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - B Franklin Pugh
- Center for Eukaryotic Gene Regulation, Pennsylvania State University, University Park, PA 16802, USA
| | - Karen M Arndt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
46
|
Chemo-Genetic Interactions Between Histone Modification and the Antiproliferation Drug AICAR Are Conserved in Yeast and Humans. Genetics 2016; 204:1447-1460. [PMID: 27707786 PMCID: PMC5161278 DOI: 10.1534/genetics.116.192518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022] Open
Abstract
Identifying synthetic lethal interactions has emerged as a promising new therapeutic approach aimed at targeting cancer cells directly. Here, we used the yeast Saccharomyces cerevisiae as a simple eukaryotic model to screen for mutations resulting in a synthetic lethality with 5-amino-4-imidazole carboxamide ribonucleoside (AICAR) treatment. Indeed, AICAR has been reported to inhibit the proliferation of multiple cancer cell lines. Here, we found that loss of several histone-modifying enzymes, including Bre1 (histone H2B ubiquitination) and Set1 (histone H3 lysine 4 methylation), greatly enhanced AICAR inhibition on growth via the combined effects of both the drug and mutations on G1 cyclins. Our results point to AICAR impacting on Cln3 subcellular localization and at the Cln1 protein level, while the bre1 or set1 deletion affected CLN1 and CLN2 expression. As a consequence, AICAR and bre1/set1 deletions jointly affected all three G1 cyclins (Cln1, Cln2, and Cln3), leading to a condition known to result in synthetic lethality. Significantly, these chemo-genetic synthetic interactions were conserved in human HCT116 cells. Indeed, knock-down of RNF40, ASH2L, and KMT2D/MLL2 induced a highly significant increase in AICAR sensitivity. Given that KMT2D/MLL2 is mutated at high frequency in a variety of cancers, this synthetic lethal interaction has an interesting therapeutic potential.
Collapse
|
47
|
Altered primary chromatin structures and their implications in cancer development. Cell Oncol (Dordr) 2016; 39:195-210. [PMID: 27007278 DOI: 10.1007/s13402-016-0276-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cancer development is a complex process involving both genetic and epigenetic changes. Genetic changes in oncogenes and tumor-suppressor genes are generally considered as primary causes, since these genes may directly regulate cellular growth. In addition, it has been found that changes in epigenetic factors, through mutation or altered gene expression, may contribute to cancer development. In the nucleus of eukaryotic cells DNA and histone proteins form a structure called chromatin which consists of nucleosomes that, like beads on a string, are aligned along the DNA strand. Modifications in chromatin structure are essential for cell type-specific activation or repression of gene transcription, as well as other processes such as DNA repair, DNA replication and chromosome segregation. Alterations in epigenetic factors involved in chromatin dynamics may accelerate cell cycle progression and, ultimately, result in malignant transformation. Abnormal expression of remodeler and modifier enzymes, as well as histone variants, may confer to cancer cells the ability to reprogram their genomes and to yield, maintain or exacerbate malignant hallmarks. At the end, genetic and epigenetic alterations that are encountered in cancer cells may culminate in chromatin changes that may, by altering the quantity and quality of gene expression, promote cancer development. METHODS During the last decade a vast number of studies has uncovered epigenetic abnormalities that are associated with the (anomalous) packaging and remodeling of chromatin in cancer genomes. In this review I will focus on recently published work dealing with alterations in the primary structure of chromatin resulting from imprecise arrangements of nucleosomes along DNA, and its functional implications for cancer development. CONCLUSIONS The primary chromatin structure is regulated by a variety of epigenetic mechanisms that may be deregulated through gene mutations and/or gene expression alterations. In recent years, it has become evident that changes in chromatin structure may coincide with the occurrence of cancer hallmarks. The functional interrelationships between such epigenetic alterations and cancer development are just becoming manifest and, therefore, the oncology community should continue to explore the molecular mechanisms governing the primary chromatin structure, both in normal and in cancer cells, in order to improve future approaches for cancer detection, prevention and therapy, as also for circumventing drug resistance.
Collapse
|
48
|
Tarcic O, Pateras IS, Cooks T, Shema E, Kanterman J, Ashkenazi H, Boocholez H, Hubert A, Rotkopf R, Baniyash M, Pikarsky E, Gorgoulis VG, Oren M. RNF20 Links Histone H2B Ubiquitylation with Inflammation and Inflammation-Associated Cancer. Cell Rep 2016; 14:1462-1476. [PMID: 26854224 PMCID: PMC4761112 DOI: 10.1016/j.celrep.2016.01.020] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/24/2015] [Accepted: 01/01/2016] [Indexed: 02/07/2023] Open
Abstract
Factors linking inflammation and cancer are of great interest. We now report that the chromatin-targeting E3 ubiquitin ligase RNF20/RNF40, driving histone H2B monoubiquitylation (H2Bub1), modulates inflammation and inflammation-associated cancer in mice and humans. Downregulation of RNF20 and H2Bub1 favors recruitment of p65-containing nuclear factor κB (NF-κB) dimers over repressive p50 homodimers and decreases the heterochromatin mark H3K9me3 on a subset of NF-κB target genes to augment their transcription. Concordantly, RNF20(+/-) mice are predisposed to acute and chronic colonic inflammation and inflammation-associated colorectal cancer, with excessive myeloid-derived suppressor cells (MDSCs) that may quench antitumoral T cell activity. Notably, colons of human ulcerative colitis patients, as well as colorectal tumors, reveal downregulation of RNF20/RNF40 and H2Bub1 in both epithelium and stroma, supporting the clinical relevance of our tissue culture and mouse model findings.
Collapse
Affiliation(s)
- Ohad Tarcic
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 7610001, Israel
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology-Embryology, School of Medicine, University of Athens, 11527 Athens, Greece
| | - Tomer Cooks
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 7610001, Israel
| | - Efrat Shema
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 7610001, Israel
| | - Julia Kanterman
- The Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Hadas Ashkenazi
- The Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Hana Boocholez
- The Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Ayala Hubert
- Sharett Institute of Oncology, Hebrew University-Hadassah Medical Center, Jerusalem 91120, Israel
| | - Ron Rotkopf
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Michal Baniyash
- The Lautenberg Center for General and Tumor Immunology, Israel-Canada Medical Research Institute, Faculty of Medicine, The Hebrew University, Jerusalem 91120, Israel
| | - Eli Pikarsky
- Department of Immunology and Cancer Research, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; Department of Pathology, Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology-Embryology, School of Medicine, University of Athens, 11527 Athens, Greece; Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece; Faculty Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot 7610001, Israel.
| |
Collapse
|
49
|
Herr P, Lundin C, Evers B, Ebner D, Bauerschmidt C, Kingham G, Palmai-Pallag T, Mortusewicz O, Frings O, Sonnhammer E, Helleday T. A genome-wide IR-induced RAD51 foci RNAi screen identifies CDC73 involved in chromatin remodeling for DNA repair. Cell Discov 2015; 1:15034. [PMID: 27462432 PMCID: PMC4860774 DOI: 10.1038/celldisc.2015.34] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 12/11/2022] Open
Abstract
To identify new regulators of homologous recombination repair, we carried out a genome-wide short-interfering RNA screen combined with ionizing irradiation using RAD51 foci formation as readout. All candidates were confirmed by independent short-interfering RNAs and validated in secondary assays like recombination repair activity and RPA foci formation. Network analysis of the top modifiers identified gene clusters involved in recombination repair as well as components of the ribosome, the proteasome and the spliceosome, which are known to be required for effective DNA repair. We identified and characterized the RNA polymerase II-associated protein CDC73/Parafibromin as a new player in recombination repair and show that it is critical for genomic stability. CDC73 interacts with components of the SCF/Cullin and INO80/NuA4 chromatin-remodeling complexes to promote Histone ubiquitination. Our findings indicate that CDC73 is involved in local chromatin decondensation at sites of DNA damage to promote DNA repair. This function of CDC73 is related to but independent of its role in transcriptional elongation.
Collapse
Affiliation(s)
- Patrick Herr
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Cecilia Lundin
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Bastiaan Evers
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Daniel Ebner
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Headington, UK
| | - Christina Bauerschmidt
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford , Headington, UK
| | - Guy Kingham
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford , Oxford, UK
| | | | - Oliver Mortusewicz
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| | - Oliver Frings
- Science for Life Laboratory, Bioinformatics Centre Stockholm, Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | - Erik Sonnhammer
- Science for Life Laboratory, Bioinformatics Centre Stockholm, Department of Biochemistry and Biophysics, Stockholm University , Stockholm, Sweden
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet , Stockholm, Sweden
| |
Collapse
|
50
|
Bohjanen PR, Moua ML, Guo L, Taye A, Vlasova-St Louis IA. Altered CELF1 binding to target transcripts in malignant T cells. RNA (NEW YORK, N.Y.) 2015; 21:1757-1769. [PMID: 26249002 PMCID: PMC4574752 DOI: 10.1261/rna.049940.115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The RNA-binding protein, CELF1, binds to a regulatory sequence known as the GU-rich element (GRE) and controls a network of mRNA transcripts that regulate cellular activation, proliferation, and apoptosis. We performed immunoprecipitation using an anti-CELF1 antibody, followed by identification of copurified transcripts using microarrays. We found that CELF1 is bound to a distinct set of target transcripts in the H9 and Jurkat malignant T-cell lines, compared with primary human T cells. CELF1 was not phosphorylated in resting normal T cells, but in malignant T cells, phosphorylation of CELF1 correlated with its inability to bind to GRE-containing mRNAs that served as CELF1 targets in normal T cells. Lack of binding by CELF1 to these mRNAs in malignant T cells correlated with stabilization and increased expression of these transcripts. Several of these GRE-containing transcripts that encode regulators of cell growth were also stabilized and up-regulated in primary tumor cells from patients with T-cell acute lymphoblastic leukemia. Interestingly, transcripts encoding numerous suppressors of cell proliferation that served as targets of CELF1 in malignant T cells, but not normal T cells, exhibited accelerated degradation and reduced expression in malignant compared with normal T cells, consistent with the known function of CELF1 to mediate degradation of bound transcripts. Overall, CELF1 dysfunction in malignant T cells led to the up-regulation of a subset of GRE-containing transcripts that promote cell growth and down-regulation of another subset that suppress cell growth, producing a net effect that would drive a malignant phenotype.
Collapse
Affiliation(s)
- Paul R Bohjanen
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Department of Microbiology, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Mai Lee Moua
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Liang Guo
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Ammanuel Taye
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Irina A Vlasova-St Louis
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|