1
|
Chen Q, Wisman M, Nwozor KO, Sin DD, Joubert P, Nickle DC, Brandsma CA, de Vries M, Heijink IH. COPD susceptibility gene HHIP regulates repair genes in airway epithelial cells and repair within the epithelial-mesenchymal trophic unit. Am J Physiol Lung Cell Mol Physiol 2025; 328:L772-L784. [PMID: 40192657 DOI: 10.1152/ajplung.00220.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/24/2024] [Accepted: 03/20/2025] [Indexed: 05/14/2025] Open
Abstract
The role of the chronic obstructive pulmonary disease (COPD) susceptibility gene hedgehog (Hh) interacting protein (HHIP) in lung tissue damage and abnormal repair in COPD is incompletely understood. We hypothesized that dysregulated HHIP expression affects cigarette smoke-induced epithelial damage and repair within the epithelial-mesenchymal trophic unit. HHIP expression was assessed in lung tissue and airway epithelial cells (AECs) from patients with COPD and non-COPD controls. The effect of HHIP overexpression was assessed on cigarette smoke extract (CSE)-induced changes in epithelial plasticity genes, for example, cadherin 1 (CDH1, encoding E-cadherin) in human bronchial epithelial cells (16HBE) cells, and on epithelial-mesenchymal interactions during alveolar repair as modeled by organoid formation using distal lung-derived mesenchymal stromal cells (LMSCs) and EpCAM+ epithelial cells. We observed no abnormalities in HHIP protein levels in the lung tissue of patients with COPD, whereas the expression of HHIP was significantly lower in COPD-derived AECs compared with the control. HHIP overexpression in 16HBE cells attenuated the CSE-induced reduction in CDH1 expression. Furthermore, overexpression of HHIP significantly suppressed Sonic hedgehog-induced GLI1 expression in control but not COPD-derived LMSCs and resulted in the formation of more and larger organoids, which was not observed for COPD-derived LMSCs. This defect was accompanied by lower expression of the growth factor FGF10 upon HHIP overexpression in COPD compared with control-derived LMSCs. Together, our data suggest a protective role of HHIP in CSE-induced airway epithelial responses and a supportive role in alveolar epithelial regeneration, which may be impaired in COPD.NEW & NOTEWORTHY We show that overexpression of HHIP protected from cigarette smoke-induced epithelial-to-mesenchymal transition and promoted epithelial regeneration via epithelial-mesenchymal cross talk in non-COPD controls. Thus, the lower expression of HHIP in airway epithelial cells from patients with COPD may contribute to abnormal epithelial repair in both proximal and distal parts of the lungs of patients with COPD.
Collapse
Affiliation(s)
- Qing Chen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marissa Wisman
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Kingsley Okechukwu Nwozor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Colombia, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Colombia, Canada
- Respiratory Division, University of British Colombia, Vancouver, British Colombia, Canada
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Laval University, Quebec City, Quebec, Canada
- Department of Molecular Medicine, Laval University, Quebec City, Quebec, Canada
| | - David C Nickle
- Merck Research Laboratories, Boston, Massachusetts, United States
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Maaike de Vries
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonology Disease, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
2
|
Ye D, Feng S, Yang X, Su Y, Zhang J, Feng H, Zhou M, Zhou B, Duan L, Peng T, Wang C. Hedgehog-interacting protein orchestrates alveologenesis and protects against bronchopulmonary dysplasia and emphysema. SCIENCE ADVANCES 2025; 11:eadu2958. [PMID: 40333979 PMCID: PMC12057671 DOI: 10.1126/sciadv.adu2958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
Most of the lung's gas-exchange surface forms during alveologenesis and its disruption causes bronchopulmonary dysplasia (BPD) in infants, characterized by alveolar simplification and myofibroblast accumulation. BPD also increases the risk of adult emphysema, marked by alveolar loss. Despite this connection, mechanisms linking these conditions and effective treatments are still lacking. We identify hedgehog-interacting protein (HHIP), associated with both BPD and emphysema, as a critical regulator of alveologenesis. During this process, Hhip-expressing cells expanded, accompanied by hedgehog (Hh) signaling inhibition and myofibroblast transition. Stromal-specific Hhip deletion led to hyperactivation of Hh-IGF1 signaling axis, causing persistent SMA+ myofibroblasts and epithelial stem/progenitor cell senescence. Hyperactivation of this pathway was also observed in human BPD and hyperoxia-induced BPD models. Early Hhip deficiency resulted in adult emphysema with myofibroblast accumulation. We developed a therapeutic Fc-fused HHIP protein that mitigated BPD in neonatal mice and prevented adult emphysema. These findings establish HHIP as a critical regulator of alveologenesis and a therapeutic target for BPD and emphysema.
Collapse
Affiliation(s)
- Datian Ye
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Shiyun Feng
- Perfect Life Science Research Institute, Perfect (GuangDong) Co. Ltd., Zhongshan 528402, China
| | - Xinguo Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yanjing Su
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Jing Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Haixin Feng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Minqi Zhou
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Bin Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- New Cornerstone Science Laboratory, Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lihui Duan
- State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tien Peng
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chaoqun Wang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
3
|
Deritei D, Inuzuka H, Castaldi PJ, Yun JH, Xu Z, Anamika WJ, Asara JM, Guo F, Zhou X, Glass K, Wei W, Silverman EK. HHIP protein interactions in lung cells provide insight into COPD pathogenesis. Hum Mol Genet 2025; 34:777-789. [PMID: 39945347 PMCID: PMC12037150 DOI: 10.1093/hmg/ddaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/16/2025] [Accepted: 02/10/2025] [Indexed: 02/19/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The primary causes of COPD are environmental, including cigarette smoking; however, genetic susceptibility also contributes to COPD risk. Genome-Wide Association Studies (GWASes) have revealed more than 80 genetic loci associated with COPD, leading to the identification of multiple COPD GWAS genes. However, the biological relationships between the identified COPD susceptibility genes are largely unknown. Genes associated with a complex disease are often in close network proximity, i.e. their protein products often interact directly with each other and/or similar proteins. In this study, we use affinity purification mass spectrometry (AP-MS) to identify protein interactions with HHIP, a well-established COPD GWAS gene which is part of the sonic hedgehog pathway, in two disease-relevant lung cell lines (IMR90 and 16HBE). To better understand the network neighborhood of HHIP, its proximity to the protein products of other COPD GWAS genes, and its functional role in COPD pathogenesis, we create HUBRIS, a protein-protein interaction network compiled from 8 publicly available databases. We identified both common and cell type-specific protein-protein interactors of HHIP. We find that our newly identified interactions shorten the network distance between HHIP and the protein products of several COPD GWAS genes, including DSP, MFAP2, TET2, and FBLN5. These new shorter paths include proteins that are encoded by genes involved in extracellular matrix and tissue organization. We found and validated interactions to proteins that provide new insights into COPD pathobiology, including CAVIN1 (IMR90) and TP53 (16HBE). The newly discovered HHIP interactions with CAVIN1 and TP53 implicate HHIP in response to oxidative stress.
Collapse
Affiliation(s)
- Dávid Deritei
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - Jeong Hyun Yun
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - Zhonghui Xu
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - Wardatul Jannat Anamika
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - John M Asara
- Division of Signal Transduction, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Feng Guo
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Yunlong District, Xuzhou, Jiangsu 221004, China
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215, United States
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, United States
| |
Collapse
|
4
|
Hernández Cordero AI. How nephronectin gene splicing shapes the risk of COPD. Eur Respir J 2025; 65:2500066. [PMID: 40180357 DOI: 10.1183/13993003.00066-2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Ana I Hernández Cordero
- UBC Centre for Heart Lung Innovation at St. Paul's Hospital, Vancouver, BC, Canada
- Edwin S. H. Leong Healthy Aging Centre, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
5
|
Saferali A, Wienecke AN, Xu Z, Liu T, Sheynkman GM, Hersh CP, Cho MH, Silverman EK, Zhou X, Wilson CL, Schnapp LM, Randell SH, Ramos SBV, Laederach A, Vollmers C, Castaldi PJ. Characterisation of a COPD-associated nephronectin ( NPNT) functional splicing genetic variant in human lung tissue via long-read sequencing. Eur Respir J 2025; 65:2401407. [PMID: 39978861 PMCID: PMC11968218 DOI: 10.1183/13993003.01407-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/10/2024] [Indexed: 02/22/2025]
Abstract
BACKGROUND Identification of COPD disease-causing genes is an important tool for understanding why COPD develops, who is at highest COPD risk and how new COPD treatments can be developed. Previous COPD genetic studies have identified a highly significant genetic association near NPNT (nephronectin), a gene involved in tissue repair, but the biological mechanisms underlying this association are unknown. METHODS Splicing quantitative trait locus (sQTL) analysis was performed to identify common genetic variants that alter RNA splicing in lung tissues. These lung sQTL signals were compared to COPD genetic association results near the NPNT gene using colocalisation analysis to determine whether genetic risk for COPD in this region may act through altered splicing. Long-read sequencing characterised COPD-associated splicing events at isoform-level resolution and in silico protein structural analysis identified likely functional effects of this alternative splicing. RESULTS An established COPD genetic risk variant, rs34712979-A, creates a cryptic splice acceptor site that causes four separate splicing changes in NPNT. The only one of these splicing changes that was associated with COPD phenotypes involved a cassette exon (exon 3). Long-read RNA sequencing demonstrated that the COPD risk allele causes a shift in isoform usage away from the dominant NPNT isoform B precursor, which excludes exon 3, to the isoform A precursor, which splices-in exon 3. AlphaFold protein structural analysis reveals that inclusion of this exon disrupts an epidermal growth factor-like functional domain in NPNT. CONCLUSION Genetic variants in the NPNT gene increase COPD risk by changing RNA splicing of NPNT in the lung.
Collapse
Affiliation(s)
- Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Anastacia N Wienecke
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhonghui Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Tao Liu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Gloria M Sheynkman
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- UVA Cancer Center, University of Virginia, Charlottesville, VA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Carole L Wilson
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Lynn M Schnapp
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Silvia B V Ramos
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher Vollmers
- Department of Biomolecular Engineering, Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of General Medicine and Primary Care, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Petit LM, Saber Cherif L, Devilliers MA, Hatoum S, Ancel J, Delepine G, Durlach A, Dubernard X, Mérol JC, Ruaux C, Polette M, Deslée G, Perotin JM, Dormoy V. Glypican-3 is a key tuner of the Hedgehog pathway in COPD. Heliyon 2025; 11:e41564. [PMID: 39844999 PMCID: PMC11751517 DOI: 10.1016/j.heliyon.2024.e41564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/12/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025] Open
Abstract
Hedgehog (HH) pathway is involved in pulmonary development and lung homeostasis. It orchestrates airway epithelial cell (AEC) differentiation and contributes to respiratory pathogenesis. The core elements Gli2, Smo, and Shh were found altered in the bronchial epithelium of patients with chronic obstructive pulmonary disease (COPD). Here, we investigated the co-receptors to fully decipher the complex machinery of airway HH pathway activation in health and COPD. The core elements and co-receptors of HH signalling were investigated in lung cell populations using single-cell RNAseq analysis. The transcript levels of the principal co-receptor GPC3 were investigated on public RNAseq datasets and by RT-qPCR. The localisation of GPC3 was evaluated through immunofluorescent stainings on isolated bronchial AEC and tissues from non-COPD and COPD patients. GPC3 pharmacological modulation was achieved with Codrituzumab during AEC differentiation. We demonstrated that the core elements were not abundant in pulmonary cell populations. Focusing on co-receptors, GPC3 was the most expressed transcript in tracheobronchial epithelial cells. The decrease in GPC3 transcript levels correlated with the severity of airway obstrution in COPD patients. Finally, interfering with GPC3 signalling during AEC differentiation induced downregulation of the HH pathway attested by a decrease of Gli2 leading to reduced ciliogenesis and altered mucin production. GPC3 appears as a crucial co-receptor for the HH pathway in the respiratory context. The modulation of GPC3 may represent a novel experimental strategy to tune HH signalling in therapeutic perspectives.
Collapse
Affiliation(s)
- Laure M.G. Petit
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Lynda Saber Cherif
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Maëva A. Devilliers
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Sarah Hatoum
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Julien Ancel
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Gonzague Delepine
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Anne Durlach
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Xavier Dubernard
- Université de Reims Champagne-Ardenne, CHU de Reims, Reims, France
| | - Jean-Claude Mérol
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| | - Christophe Ruaux
- Clinique Mutualiste La Sagesse, Département d’Otorhinolaryngologie, Rennes, France
| | - Myriam Polette
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Gaëtan Deslée
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Jeanne-Marie Perotin
- Université de Reims Champagne-Ardenne, INSERM, CHU de Reims, P3Cell UMR-S1250, Reims, France
| | - Valérian Dormoy
- Université de Reims Champagne-Ardenne, INSERM, P3Cell UMR-S1250, Reims, France
| |
Collapse
|
7
|
Debban CL, Ambalavanan A, Ghosh A, Li Z, Buschur KL, Ma Y, George E, Pistenmaa C, Bertoni AG, Oelsner EC, Michos ED, Moraes TJ, Jacobs DR, Christenson S, Bhatt SP, Kaner RJ, Simons E, Turvey SE, Vameghestahbanati M, Engert JC, Kirby M, Bourbeau J, Tan WC, Gabriel SB, Gupta N, Woodruff PG, Subbarao P, Ortega VE, Bleecker ER, Meyers DA, Rich SS, Hoffman EA, Barr RG, Cho MH, Bossé Y, Duan Q, Manichaikul A, Smith BM. Dysanapsis Genetic Risk Predicts Lung Function Across the Lifespan. Am J Respir Crit Care Med 2024; 210:1421-1431. [PMID: 38935874 PMCID: PMC11716030 DOI: 10.1164/rccm.202401-0011oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
Rationale: Dysanapsis refers to a mismatch between airway tree caliber and lung size arising early in life. Dysanapsis assessed by computed tomography (CT) is evident by early adulthood and associated with chronic obstructive pulmonary disease (COPD) risk later in life. Objectives: By examining the genetic factors associated with CT-assessed dysanapsis, we aimed to elucidate its molecular underpinnings and physiological significance across the lifespan. Methods: We performed a genome-wide association study of CT-assessed dysanapsis in 11,951 adults, including individuals from two population-based and two COPD-enriched studies. We applied colocalization analysis to integrate genome-wide association study and gene expression data from whole blood and lung. Genetic variants associated with dysanapsis were combined into a genetic risk score that was applied to examine association with lung function in children from a population-based birth cohort (n = 1,278) and adults from the UKBiobank (n = 369,157). Measurements and Main Results: CT-assessed dysanapsis was associated with genetic variants from 21 independent signals in 19 gene regions, implicating HHIP (hedgehog interacting protein), DSP, and NPNT as potential molecular targets based on colocalization of their expression. A higher dysanapsis genetic risk score was associated with obstructive spirometry among 5-year-old children and among adults in the fifth, sixth, and seventh decades of life. Conclusions: CT-assessed dysanapsis is associated with variation in genes previously implicated in lung development, and dysanapsis genetic risk is associated with obstructive lung function from early life through older adulthood. Dysanapsis may represent an endophenotype link between the genetic variations associated with lung function and COPD.
Collapse
Affiliation(s)
- Catherine L. Debban
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Amirthagowri Ambalavanan
- Department of Biomedical and Molecular Sciences, School of Computing, Queen’s University, Kingston, Ontario, Canada
| | - Auyon Ghosh
- Division of Pulmonary, Critical Care, and Sleep Medicine, SUNY Upstate Medical University, Syracuse, New York
| | - Zhonglin Li
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | | | - Yanlin Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Elizabeth George
- Department of Biomedical and Molecular Sciences, School of Computing, Queen’s University, Kingston, Ontario, Canada
| | | | - Alain G. Bertoni
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Erin D. Michos
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Theo J. Moraes
- Program in Translational Medicine and
- Department of Pediatrics and
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Stephanie Christenson
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert J. Kaner
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Department of Genetic Medicine, Weill Cornell Medicine, New York, New York
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stuart E. Turvey
- Department of Pediatrics, British Columbia Children’s Hospital, and
| | - Motahareh Vameghestahbanati
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - James C. Engert
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Miranda Kirby
- Department of Physics, Toronto Metropolitan University, Ottawa, Ontario, Canada
| | - Jean Bourbeau
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| | - Wan C. Tan
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Stacey B. Gabriel
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Namrata Gupta
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Padmaja Subbarao
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
- Faculty of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Victor E. Ortega
- Division of Respiratory Medicine, Department of Medicine, Mayo Clinic, Scottsdale, Arizona; and
| | - Eugene R. Bleecker
- Division of Respiratory Medicine, Department of Medicine, Mayo Clinic, Scottsdale, Arizona; and
| | - Deborah A. Meyers
- Division of Respiratory Medicine, Department of Medicine, Mayo Clinic, Scottsdale, Arizona; and
| | - Stephen S. Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Eric A. Hoffman
- Department of Radiology
- Department of Internal Medicine, and
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - R. Graham Barr
- Division of General Medicine and
- Department of Epidemiology, Columbia University Irving Medical Center, New York, New York
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yohan Bossé
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Qingling Duan
- Department of Biomedical and Molecular Sciences, School of Computing, Queen’s University, Kingston, Ontario, Canada
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Benjamin M. Smith
- Division of General Medicine and
- Department of Medicine, McGill University and McGill University Health Centre Research Institute, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Xu Y, Li M, Bai L. Pulmonary Epithelium Cell Fate Determination: Chronic Obstructive Pulmonary Disease, Lung Cancer, or Both. Am J Respir Cell Mol Biol 2024; 71:632-645. [PMID: 39078237 DOI: 10.1165/rcmb.2023-0448tr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/30/2024] [Indexed: 07/31/2024] Open
Abstract
The concurrence of chronic obstructive pulmonary disease (COPD) and lung cancer has been widely reported and extensively addressed by pulmonologists and oncologists. However, most studies have focused on shared risk factors, DNA damage pathways, immune microenvironments, inflammation, and imbalanced proteases/antiproteases. In the present review, we explore the association between COPD and lung cancer in terms of airway pluripotent cell fate determination and discuss the various cell types and signaling pathways involved in the maintenance of lung epithelium homeostasis and their involvement in the pathogenesis of co-occurring COPD and lung cancer.
Collapse
Affiliation(s)
- Yu Xu
- Department of Clinical Oncology, Army Medical Center, and
| | - Mengxia Li
- Department of Clinical Oncology, Army Medical Center, and
| | - Li Bai
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
9
|
Deritei D, Anamika WJ, Zhou X, Silverman EK, Regan ER, Glass K. HHIP's Dynamic Role in Epithelial Wound Healing Reveals a Potential Mechanism of COPD Susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611545. [PMID: 39416045 PMCID: PMC11482804 DOI: 10.1101/2024.09.05.611545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
A genetic variant near HHIP has been consistently identified as associated with increased risk for Chronic Obstructive Pulmonary Disease (COPD), the third leading cause of death worldwide. However HHIP's role in COPD pathogenesis remains elusive. Canonically, HHIP is a negative regulator of the hedgehog pathway and downstream GLI1 and GLI2 activation. The hedgehog pathway plays an important role in wound healing, specifically in activating transcription factors that drive the epithelial mesenchymal transition (EMT), which in its intermediate state (partial EMT) is necessary for the collective movement of cells closing the wound. Herein, we propose a mechanism to explain HHIP's role in faulty epithelial wound healing, which could contribute to the development of emphysema, a key feature of COPD. Using two different Boolean models compiled from the literature, we show dysfunctional HHIP results in a lack of negative feedback on GLI, triggering a full EMT, where cells become mesenchymal and do not properly close the wound. We validate these Boolean models with experimental evidence gathered from published scientific literature. We also experimentally test if low HHIP expression is associated with EMT at the edge of wounds by using a scratch assay in a human lung epithelial cell line. Finally, we show evidence supporting our hypothesis in bulk and single cell RNA-Seq data from different COPD cohorts. Overall, our analyses suggest that aberrant wound healing due to dysfunctional HHIP, combined with chronic epithelial damage through cigarette smoke exposure, may be a primary cause of COPD-associated emphysema.
Collapse
Affiliation(s)
- Dávid Deritei
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Wardatul Jannat Anamika
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| | | | - Kimberly Glass
- Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
10
|
Werder RB, Zhou X, Cho MH, Wilson AA. Breathing new life into the study of COPD with genes identified from genome-wide association studies. Eur Respir Rev 2024; 33:240019. [PMID: 38811034 PMCID: PMC11134200 DOI: 10.1183/16000617.0019-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/23/2024] [Indexed: 05/31/2024] Open
Abstract
COPD is a major cause of morbidity and mortality globally. While the significance of environmental exposures in disease pathogenesis is well established, the functional contribution of genetic factors has only in recent years drawn attention. Notably, many genes associated with COPD risk are also linked with lung function. Because reduced lung function precedes COPD onset, this association is consistent with the possibility that derangements leading to COPD could arise during lung development. In this review, we summarise the role of leading genes (HHIP, FAM13A, DSP, AGER and TGFB2) identified by genome-wide association studies in lung development and COPD. Because many COPD genome-wide association study genes are enriched in lung epithelial cells, we focus on the role of these genes in the lung epithelium in development, homeostasis and injury.
Collapse
Affiliation(s)
- Rhiannon B Werder
- Murdoch Children's Research Institute, Melbourne, Australia
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Lahmar Z, Bergougnoux A, Bourdin A. The HHIP gene: from a candidate to an established participant in COPD susceptibility. EBioMedicine 2024; 102:105059. [PMID: 38493541 PMCID: PMC10958057 DOI: 10.1016/j.ebiom.2024.105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/19/2024] Open
Affiliation(s)
- Zakaria Lahmar
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Hôpital Arnaud de Villeneuve, CHU Montpellier, France
| | - Anne Bergougnoux
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Hôpital Arnaud de Villeneuve, CHU Montpellier, France
| | - Arnaud Bourdin
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, Hôpital Arnaud de Villeneuve, CHU Montpellier, France.
| |
Collapse
|
12
|
Deritei D, Inuzuka H, Castaldi PJ, Yun JH, Xu Z, Anamika WJ, Asara JM, Guo F, Zhou X, Glass K, Wei W, Silverman EK. HHIP protein interactions in lung cells provide insight into COPD pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.586839. [PMID: 38617310 PMCID: PMC11014494 DOI: 10.1101/2024.04.01.586839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide. The primary causes of COPD are environmental, including cigarette smoking; however, genetic susceptibility also contributes to COPD risk. Genome-Wide Association Studies (GWASes) have revealed more than 80 genetic loci associated with COPD, leading to the identification of multiple COPD GWAS genes. However, the biological relationships between the identified COPD susceptibility genes are largely unknown. Genes associated with a complex disease are often in close network proximity, i.e. their protein products often interact directly with each other and/or similar proteins. In this study, we use affinity purification mass spectrometry (AP-MS) to identify protein interactions with HHIP , a well-established COPD GWAS gene which is part of the sonic hedgehog pathway, in two disease-relevant lung cell lines (IMR90 and 16HBE). To better understand the network neighborhood of HHIP , its proximity to the protein products of other COPD GWAS genes, and its functional role in COPD pathogenesis, we create HUBRIS, a protein-protein interaction network compiled from 8 publicly available databases. We identified both common and cell type-specific protein-protein interactors of HHIP. We find that our newly identified interactions shorten the network distance between HHIP and the protein products of several COPD GWAS genes, including DSP, MFAP2, TET2 , and FBLN5 . These new shorter paths include proteins that are encoded by genes involved in extracellular matrix and tissue organization. We found and validated interactions to proteins that provide new insights into COPD pathobiology, including CAVIN1 (IMR90) and TP53 (16HBE). The newly discovered HHIP interactions with CAVIN1 and TP53 implicate HHIP in response to oxidative stress.
Collapse
|
13
|
Guo F, Zhang L, Yu Y, Gong L, Tao S, Werder RB, Mishra S, Zhou Y, Anamika WJ, Lao T, Inuzuka H, Zhang Y, Pham B, Liu T, Tufenkjian TS, Richmond BW, Wei W, Mou H, Wilson AA, Hu M, Chen W, Zhou X. Identification of a distal enhancer regulating hedgehog interacting protein gene in human lung epithelial cells. EBioMedicine 2024; 101:105026. [PMID: 38417378 PMCID: PMC10944180 DOI: 10.1016/j.ebiom.2024.105026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND An intergenic region at chromosome 4q31 is one of the most significant regions associated with COPD susceptibility and lung function in GWAS. In this region, the implicated causal gene HHIP has a unique epithelial expression pattern in adult human lungs, in contrast to dominant expression in fibroblasts in murine lungs. However, the mechanism underlying the species-dependent cell type-specific regulation of HHIP remains largely unknown. METHODS We employed snATAC-seq analysis to identify open chromatin regions within the COPD GWAS region in various human lung cell types. ChIP-quantitative PCR, reporter assays, chromatin conformation capture assays and Hi-C assays were conducted to characterize the regulatory element in this region. CRISPR/Cas9-editing was performed in BEAS-2B cells to generate single colonies with stable knockout of the regulatory element. RT-PCR and Western blot assays were used to evaluate expression of HHIP and epithelial-mesenchymal transition (EMT)-related marker genes. FINDINGS We identified a distal enhancer within the COPD 4q31 GWAS locus that regulates HHIP transcription at baseline and after TGFβ treatment in a SMAD3-dependent, but Hedgehog-independent manner in human bronchial epithelial cells. The distal enhancer also maintains chromatin topological domains near 4q31 locus and HHIP gene. Reduced HHIP expression led to increased EMT induced by TGFβ in human bronchial epithelial cells. INTERPRETATION A distal enhancer regulates HHIP expression both under homeostatic condition and upon TGFβ treatment in human bronchial epithelial cells. The interaction between HHIP and TGFβ signalling possibly contributes to COPD pathogenesis. FUNDING Supported by NIH grants R01HL127200, R01HL148667 and R01HL162783 (to X. Z).
Collapse
Affiliation(s)
- Feng Guo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Li Zhang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuzhen Yu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Lu Gong
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Shiyue Tao
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Shreya Mishra
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Yihan Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Wardatul Jannat Anamika
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Taotao Lao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Yihan Zhang
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Betty Pham
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tao Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Tiffany S Tufenkjian
- Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA; Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bradley W Richmond
- Department of Veterans Affairs Medical Center, Nashville, TN 37232, USA; Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Hongmei Mou
- The Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ming Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Wei Chen
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15224, USA; Division of Pediatric Pulmonary Medicine, UPMC Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
14
|
Moll M, Silverman EK. Precision Approaches to Chronic Obstructive Pulmonary Disease Management. Annu Rev Med 2024; 75:247-262. [PMID: 37827193 DOI: 10.1146/annurev-med-060622-101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. COPD heterogeneity has hampered progress in developing pharmacotherapies that affect disease progression. This issue can be addressed by precision medicine approaches, which focus on understanding an individual's disease risk, and tailoring management based on pathobiology, environmental exposures, and psychosocial issues. There is an urgent need to identify COPD patients at high risk for poor outcomes and to understand at a mechanistic level why certain individuals are at high risk. Genetics, omics, and network analytic techniques have started to dissect COPD heterogeneity and identify patients with specific pathobiology. Drug repurposing approaches based on biomarkers of specific inflammatory processes (i.e., type 2 inflammation) are promising. As larger data sets, additional omics, and new analytical approaches become available, there will be enormous opportunities to identify high-risk individuals and treat COPD patients based on their specific pathophysiological derangements. These approaches show great promise for risk stratification, early intervention, drug repurposing, and developing novel therapeutic approaches for COPD.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Pulmonary, Critical Care, Sleep and Allergy, Veterans Affairs Boston Healthcare System, West Roxbury, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; ,
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Villaseñor-Altamirano AB, Jain D, Jeong Y, Menon JA, Kamiya M, Haider H, Manandhar R, Sheikh MDA, Athar H, Merriam LT, Ryu MH, Sasaki T, Castaldi PJ, Rao DA, Sholl LM, Vivero M, Hersh CP, Zhou X, Veerkamp J, Yun JH, Kim EY, the MGB-Bayer Pulmonary Drug Discovery Lab. Activation of CD8 + T Cells in Chronic Obstructive Pulmonary Disease Lung. Am J Respir Crit Care Med 2023; 208:1177-1195. [PMID: 37756440 PMCID: PMC10868372 DOI: 10.1164/rccm.202305-0924oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/27/2023] [Indexed: 09/29/2023] Open
Abstract
Rationale: Despite the importance of inflammation in chronic obstructive pulmonary disease (COPD), the immune cell landscape in the lung tissue of patients with mild-moderate disease has not been well characterized at the single-cell and molecular level. Objectives: To define the immune cell landscape in lung tissue from patients with mild-moderate COPD at single-cell resolution. Methods: We performed single-cell transcriptomic, proteomic, and T-cell receptor repertoire analyses on lung tissue from patients with mild-moderate COPD (n = 5, Global Initiative for Chronic Obstructive Lung Disease I or II), emphysema without airflow obstruction (n = 5), end-stage COPD (n = 2), control (n = 6), or donors (n = 4). We validated in an independent patient cohort (N = 929) and integrated with the Hhip+/- murine model of COPD. Measurements and Main Results: Mild-moderate COPD lungs have increased abundance of two CD8+ T cell subpopulations: cytotoxic KLRG1+TIGIT+CX3CR1+ TEMRA (T effector memory CD45RA+) cells, and DNAM-1+CCR5+ T resident memory (TRM) cells. These CD8+ T cells interact with myeloid and alveolar type II cells via IFNG and have hyperexpanded T-cell receptor clonotypes. In an independent cohort, the CD8+KLRG1+ TEMRA cells are increased in mild-moderate COPD lung compared with control or end-stage COPD lung. Human CD8+KLRG1+ TEMRA cells are similar to CD8+ T cells driving inflammation in an aging-related murine model of COPD. Conclusions: CD8+ TEMRA cells are increased in mild-moderate COPD lung and may contribute to inflammation that precedes severe disease. Further study of these CD8+ T cells may have therapeutic implications for preventing severe COPD.
Collapse
Affiliation(s)
| | - Dhawal Jain
- Pulmonary Drug Discovery Laboratory, Pharmaceuticals Research and Development, Bayer US LLC, Boston, Massachusetts; and
| | - Yunju Jeong
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | | | - Mari Kamiya
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | - Hibah Haider
- Division of Pulmonary and Critical Care Medicine
| | | | | | - Humra Athar
- Division of Pulmonary and Critical Care Medicine
- Pulmonary Drug Discovery Laboratory, Pharmaceuticals Research and Development, Bayer US LLC, Boston, Massachusetts; and
| | | | - Min Hyung Ryu
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Takanori Sasaki
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Peter J. Castaldi
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Deepak A. Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Lynette M. Sholl
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Marina Vivero
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Craig P. Hersh
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Xiaobo Zhou
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Justus Veerkamp
- Pharmaceuticals, Research & Early Development Precision Medicine RED (preMED), Pharmaceuticals Research and Development, Bayer AG, Wuppertal, Germany
| | - Jeong H. Yun
- Channing Division of Network Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Edy Y. Kim
- Division of Pulmonary and Critical Care Medicine
- Harvard Medical School, Boston, Massachusetts
| | - the MGB-Bayer Pulmonary Drug Discovery Lab
- Division of Pulmonary and Critical Care Medicine
- Channing Division of Network Medicine, and
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, and
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Pulmonary Drug Discovery Laboratory, Pharmaceuticals Research and Development, Bayer US LLC, Boston, Massachusetts; and
- Pharmaceuticals, Research & Early Development Precision Medicine RED (preMED), Pharmaceuticals Research and Development, Bayer AG, Wuppertal, Germany
| |
Collapse
|
16
|
Kapellos TS, Conlon TM, Yildirim AÖ, Lehmann M. The impact of the immune system on lung injury and regeneration in COPD. Eur Respir J 2023; 62:2300589. [PMID: 37652569 DOI: 10.1183/13993003.00589-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/17/2023] [Indexed: 09/02/2023]
Abstract
COPD is a devastating respiratory condition that manifests via persistent inflammation, emphysema development and small airway remodelling. Lung regeneration is defined as the ability of the lung to repair itself after injury by the proliferation and differentiation of progenitor cell populations, and becomes impaired in the COPD lung as a consequence of cell intrinsic epithelial stem cell defects and signals from the micro-environment. Although the loss of structural integrity and lung regenerative capacity are critical for disease progression, our understanding of the cellular players and molecular pathways that hamper regeneration in COPD remains limited. Intriguingly, despite being a key driver of COPD pathogenesis, the role of the immune system in regulating lung regenerative mechanisms is understudied. In this review, we summarise recent evidence on the contribution of immune cells to lung injury and regeneration. We focus on four main axes: 1) the mechanisms via which myeloid cells cause alveolar degradation; 2) the formation of tertiary lymphoid structures and the production of autoreactive antibodies; 3) the consequences of inefficient apoptotic cell removal; and 4) the effects of innate and adaptive immune cell signalling on alveolar epithelial proliferation and differentiation. We finally provide insight on how recent technological advances in omics technologies and human ex vivo lung models can delineate immune cell-epithelium cross-talk and expedite precision pro-regenerative approaches toward reprogramming the alveolar immune niche to treat COPD.
Collapse
Affiliation(s)
- Theodore S Kapellos
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Thomas M Conlon
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Ali Önder Yildirim
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute of Experimental Pneumology, University Hospital, Ludwig Maximilians University of Munich, Munich, Germany
| | - Mareike Lehmann
- Comprehensive Pneumology Center, Institute of Lung Health and Immunity, Helmholtz Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Institute for Lung Research, Philipps University of Marburg, Universities of Giessen and Marburg Lung Center, Member of the German Center for Lung Research (DZL), Marburg, Germany
| |
Collapse
|
17
|
Li JX, Huang XZ, Fu WP, Zhang XH, Mauki DH, Zhang J, Sun C, Dai LM, Zhong L, Yu L, Zhang YP. Remote regulation of rs80245547 and rs72673891 mediated by transcription factors C-Jun and CREB1 affect GSTCD expression. iScience 2023; 26:107383. [PMID: 37609638 PMCID: PMC10440715 DOI: 10.1016/j.isci.2023.107383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/30/2022] [Accepted: 07/11/2023] [Indexed: 08/24/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), the third leading cause of death worldwide, is influenced by genetic factors. The genetic signal rs10516526 in the glutathione S-transferase C-terminal domain containing (GSTCD) gene is a highly significant and reproducible signal associated with lung function and COPD on chromosome 4q24. In this study, comprehensive bioinformatics analyses and experimental verifications were detailly implemented to explore the regulation mechanism of rs10516526 and GSTCD in COPD. The results suggested that low expression of GSTCD was associated with COPD (p = 0.010). And C-Jun and CREB1 transcription factors were found to be essential for the regulation of GSTCD by rs80245547 and rs72673891. Moreover, rs80245547T and rs72673891G had a stronger binding ability to these transcription factors, which may promote the allele-specific long-range enhancer-promoter interactions on GSTCD, thus making COPD less susceptible. Our study provides a new insight into the relationship between rs10516526, GSTCD, and COPD.
Collapse
Affiliation(s)
- Jin-Xiu Li
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| | - Xue-Zhen Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
| | - Wei-ping Fu
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Xiao-hua Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
| | - David H. Mauki
- Faculty of Pharmaceutical Sciences, Institute of Biomedicine and Biotechnology, Center for Cancer Immunology, Chinese Academy of Sciences, Shenzhen Institute of Advanced Technology, Shenzhen 518000, Guangdong China
| | - Jing Zhang
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Chang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710000, China
| | - Lu-Ming Dai
- Department of Respiratory Critical Care Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Li Zhong
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- College of Life Sciences, Shaanxi Normal University, Xi’an 710000, China
- Provincial Demonstration Center for Experimental Biology Education, Shaanxi Normal University, Xi’an 710000, China
| | - Li Yu
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
| | - Ya-ping Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resource in Yunnan, School of Life Sciences, Yunnan University, Kunming 650000, China
- State Key Laboratory of Genetic Resources and Evolution, and Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650000, China
| |
Collapse
|
18
|
Hu Z, Liu Y, Tang J, Luo R, Qin J, Mo Z, Xie J, Jiang X, Wei S, Lin C. LncRNA HHIP-AS1 suppresses lung squamous cell carcinoma by stabilizing HHIP mRNA. Life Sci 2023; 321:121578. [PMID: 36958438 DOI: 10.1016/j.lfs.2023.121578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/25/2023]
Abstract
AIMS Lung squamous cell carcinoma (LUSC) causes over 400,000 deaths annually, yet it lacks targeted therapy. A major antagonist of Hedgehog pathway, HHIP (Hedgehog Interacting Protein) plays an important role in LUSC; however, the regulatory mechanism remains unclear. Long non-coding RNA HHIP-AS1 plays suppressive or promotive roles in different cancers, but its role in LUSC remains unknown. This manuscript is to investigate regulatory mechanism of HHIP and the role of HHIP-AS1 in LUSC. MAIN METHODS Precision-cut lung slices (PCLS) from human LUSC samples are cultured to mimic LUSC growth. Overexpression and knockdown in multiple LUSC cell lines and PCLS are achieved by lentivirus infection. Transcriptome profile and lung cancer activity are evaluated by RNA-sequencing, immunostaining and CCK8 assay etc. KEY FINDINGS: HHIP is regulated independently of Hh pathway in LUSC. Additionally, downregulation of HHIP-AS1 is associated with poor prognosis. Consistently, HHIP-AS1 inhibits LUSC growth by suppressing cell proliferation and migration. Transcriptome profiling of HHIP-AS1 knockdown (KD) cells uncovered HHIP downregulation. Interestingly, a comparison between the transcriptomes of HHIP-AS1 KD or HHIP KD cells manifested high similarity. Subsequently it's confirmed that HHIP-AS1 regulates HHIP in LUSC cells. Notably, HHIP-AS1 regulation on LUSC growth is achieved through stabilizing HHIP mRNA rather than regulating MIR-153-3P/PCDHGA9 or MIR-425-5P/DNYC1I2. Finally, it's confirmed in PCLS from human LUSC samples that HHIP-AS1 suppresses LUSC via regulating HHIP mRNA. SIGNIFICANCE This study uncovers HHIP-AS1 as a novel tumor suppressor in LUSC and provides new insights into the molecular regulation of LUSC, which will help developing new therapeutic strategies.
Collapse
Affiliation(s)
- Zheyu Hu
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 66 Gongchang Road, Shenzhen 518107, China
| | - Yixian Liu
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 66 Gongchang Road, Shenzhen 518107, China
| | - Jin Tang
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 66 Gongchang Road, Shenzhen 518107, China
| | - Renru Luo
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 66 Gongchang Road, Shenzhen 518107, China
| | - Jiajia Qin
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 66 Gongchang Road, Shenzhen 518107, China
| | - Zexun Mo
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Guangzhou 510180, China
| | - Jianjiang Xie
- Department of Thoracic Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China
| | - Xuan Jiang
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 66 Gongchang Road, Shenzhen 518107, China
| | - Shuquan Wei
- Department of Pulmonary and Critical Care Medicine, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, 1 Panfu Road, Guangzhou 510180, China.
| | - Chuwen Lin
- Department of histology and embryology, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 66 Gongchang Road, Shenzhen 518107, China.
| |
Collapse
|
19
|
De Man R, McDonough JE, Adams TS, Manning EP, Myers G, Vos R, Ceulemans L, Dupont L, Vanaudenaerde BM, Wuyts WA, Rosas IO, Hagood JS, Ambalavanan N, Niklason L, Hansen KC, Yan X, Kaminski N. A Multi-omic Analysis of the Human Lung Reveals Distinct Cell Specific Aging and Senescence Molecular Programs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.536722. [PMID: 37131739 PMCID: PMC10153177 DOI: 10.1101/2023.04.19.536722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Age is a major risk factor for lung disease. To understand the mechanisms underlying this association, we characterized the changing cellular, genomic, transcriptional, and epigenetic landscape of lung aging using bulk and single-cell RNAseq (scRNAseq) data. Our analysis revealed age-associated gene networks that reflected hallmarks of aging, including mitochondrial dysfunction, inflammation, and cellular senescence. Cell type deconvolution revealed age-associated changes in the cellular composition of the lung: decreased alveolar epithelial cells and increased fibroblasts and endothelial cells. In the alveolar microenvironment, aging is characterized by decreased AT2B cells and reduced surfactant production, a finding that was validated by scRNAseq and IHC. We showed that a previously reported senescence signature, SenMayo, captures cells expressing canonical senescence markers. SenMayo signature also identified cell-type specific senescence-associated co-expression modules that have distinct molecular functions, including ECM regulation, cell signaling, and damage response pathways. Analysis of somatic mutations showed that burden was highest in lymphocytes and endothelial cells and was associated with high expression of senescence signature. Finally, aging and senescence gene expression modules were associated with differentially methylated regions, with inflammatory markers such as IL1B, IL6R, and TNF being significantly regulated with age. Our findings provide new insights into the mechanisms underlying lung aging and may have implications for the development of interventions to prevent or treat age-related lung diseases.
Collapse
Affiliation(s)
- Ruben De Man
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - John E McDonough
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Taylor S Adams
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Edward P Manning
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
- VA Connecticut Healthcare System, West Haven, CT, USA
| | - Greg Myers
- Department of Pediatrics (Division of Pulmonology) and Marsico Lung Institute, University of North Carolina at Chapel Hill
| | - Robin Vos
- Department of Respiratory Medicine, KU Leuven, Leuven, Belgium
| | | | - Lieven Dupont
- Department of Respiratory Medicine, KU Leuven, Leuven, Belgium
| | | | - Wim A Wuyts
- Department of Respiratory Medicine, KU Leuven, Leuven, Belgium
| | - Ivan O Rosas
- Section of Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - James S. Hagood
- Department of Pediatrics (Division of Pulmonology) and Marsico Lung Institute, University of North Carolina at Chapel Hill
| | | | - Laura Niklason
- Department of Anesthesiology, Yale School of Medicine; and Humacyte Global Inc
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Xiting Yan
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
20
|
Zhao XP, Chang SY, Pang Y, Liao MC, Peng J, Ingelfinger JR, Chan JSD, Zhang SL. Hedgehog interacting protein activates sodium-glucose cotransporter 2 expression and promotes renal tubular epithelial cell senescence in a mouse model of type 1 diabetes. Diabetologia 2023; 66:223-240. [PMID: 36260124 DOI: 10.1007/s00125-022-05810-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2022] [Indexed: 12/13/2022]
Abstract
AIMS/HYPOTHESIS Senescent renal tubular cells may be linked to diabetic kidney disease (DKD)-related tubulopathy. We studied mice with or without diabetes in which hedgehog interacting protein (HHIP) was present or specifically knocked out in renal tubules (HhipRT-KO), hypothesising that local deficiency of HHIP in the renal tubules would attenuate tubular cell senescence, thereby preventing DKD tubulopathy. METHODS Low-dose streptozotocin was employed to induce diabetes in both HhipRT-KO and control (Hhipfl/fl) mice. Transgenic mice overexpressing Hhip in renal proximal tubular cells (RPTC) (HhipRPTC-Tg) were used for validation, and primary RPTCs and human RPTCs (HK2) were used for in vitro studies. Kidney morphology/function, tubular senescence and the relevant molecular measurements were assessed. RESULTS Compared with Hhipfl/fl mice with diabetes, HhipRT-KO mice with diabetes displayed lower blood glucose levels, normalised GFR, ameliorated urinary albumin/creatinine ratio and less severe DKD, including tubulopathy. Sodium-glucose cotransporter 2 (SGLT2) expression was attenuated in RPTCs of HhipRT-KO mice with diabetes compared with Hhipfl/fl mice with diabetes. In parallel, an increased tubular senescence-associated secretory phenotype involving release of inflammatory cytokines (IL-1β, IL-6 and monocyte chemoattractant protein-1) and activation of senescence markers (p16, p21, p53) in Hhipfl/fl mice with diabetes was attenuated in HhipRT-KO mice with diabetes. In contrast, HhipRPTC-Tg mice had increased tubular senescence, which was inhibited by canagliflozin in primary RPTCs. In HK2 cells, HHIP overexpression or recombinant HHIP increased SGLT2 protein expression and promoted cellular senescence by targeting both ataxia-telangiectasia mutated and ataxia-telangiectasia and Rad3-related-mediated cell arrest. CONCLUSIONS/INTERPRETATION Tubular HHIP deficiency prevented DKD-related tubulopathy, possibly via the inhibition of SGLT2 expression and cellular senescence.
Collapse
Affiliation(s)
- Xin-Ping Zhao
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Shiao-Ying Chang
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Yuchao Pang
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Min-Chun Liao
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Junzheng Peng
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Julie R Ingelfinger
- Harvard Medical School, Pediatric Nephrology Unit, Massachusetts General Hospital, Boston, MA, USA
| | - John S D Chan
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Shao-Ling Zhang
- Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
21
|
Lau CI, Yánez DC, Papaioannou E, Ross S, Crompton T. Sonic Hedgehog signalling in the regulation of barrier tissue homeostasis and inflammation. FEBS J 2022; 289:8050-8061. [PMID: 34614300 DOI: 10.1111/febs.16222] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/10/2021] [Accepted: 10/05/2021] [Indexed: 01/14/2023]
Abstract
Epithelial barrier tissues such as the skin and airway form an essential interface between the mammalian host and its external environment. These physical barriers are crucial to prevent damage and disease from environmental insults and allergens. Failure to maintain barrier function against such risks can lead to severe inflammatory disorders, including atopic dermatitis and asthma. Here, we discuss the role of the morphogen Sonic Hedgehog in postnatal skin and lung and the impact of Shh signalling on repair, inflammation, and atopic disease in these tissues.
Collapse
Affiliation(s)
- Ching-In Lau
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Diana C Yánez
- UCL Great Ormond Street Institute of Child Health, London, UK.,School of Medicine, Universidad San Francisco de Quito, Ecuador
| | - Eleftheria Papaioannou
- UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Biochemistry, Universidad Autónoma de Madrid and Instituto de Investigaciones Biomédicas Alberto Sols, Madrid, Spain
| | - Susan Ross
- UCL Great Ormond Street Institute of Child Health, London, UK
| | - Tessa Crompton
- UCL Great Ormond Street Institute of Child Health, London, UK
| |
Collapse
|
22
|
Lahmar Z, Ahmed E, Fort A, Vachier I, Bourdin A, Bergougnoux A. Hedgehog pathway and its inhibitors in chronic obstructive pulmonary disease (COPD). Pharmacol Ther 2022; 240:108295. [PMID: 36191777 DOI: 10.1016/j.pharmthera.2022.108295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
COPD affects millions of people and is now ranked as the third leading cause of death worldwide. This largely untreatable chronic airway disease results in irreversible destruction of lung architecture. The small lung hypothesis is now supported by epidemiological, physiological and clinical studies. Accordingly, the early and severe COPD phenotype carries the most dreadful prognosis and finds its roots during lung growth. Pathophysiological mechanisms remain poorly understood and implicate individual susceptibility (genetics), a large part of environmental factors (viral infections, tobacco consumption, air pollution) and the combined effects of those triggers on gene expression. Genetic susceptibility is most likely involved as the disease is severe and starts early in life. The latter observation led to the identification of Mendelian inheritance via disease-causing variants of SERPINA1 - known as the basis for alpha-1 anti-trypsin deficiency, and TERT. In the last two decades multiple genome wide association studies (GWAS) identified many single nucleotide polymorphisms (SNPs) associated with COPD. High significance SNPs are located in 4q31 near HHIP which encodes an evolutionarily highly conserved physiological inhibitor of the Hedgehog signaling pathway (HH). HHIP is critical to several in utero developmental lung processes. It is also implicated in homeostasis, injury response, epithelial-mesenchymal transition and tumor resistance to apoptosis. A few studies have reported decreased HHIP RNA and protein levels in human adult COPD lungs. HHIP+/- murine models led to emphysema. HH pathway inhibitors, such as vismodegib and sonidegib, are already validated in oncology, whereas other drugs have evidenced in vitro effects. Targeting the Hedgehog pathway could lead to a new therapeutic avenue in COPD. In this review, we focused on the early and severe COPD phenotype and the small lung hypothesis by exploring genetic susceptibility traits that are potentially treatable, thus summarizing promising therapeutics for the future.
Collapse
Affiliation(s)
- Z Lahmar
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France
| | - E Ahmed
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Fort
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - I Vachier
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bourdin
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bergougnoux
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France; Laboratoire de Génétique Moléculaire et de Cytogénomique, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
23
|
Caligiuri SPB, Howe WM, Wills L, Smith ACW, Lei Y, Bali P, Heyer MP, Moen JK, Ables JL, Elayouby KS, Williams M, Fillinger C, Oketokoun Z, Lehmann VE, DiFeliceantonio AG, Johnson PM, Beaumont K, Sebra RP, Ibanez-Tallon I, Kenny PJ. Hedgehog-interacting protein acts in the habenula to regulate nicotine intake. Proc Natl Acad Sci U S A 2022; 119:e2209870119. [PMID: 36346845 PMCID: PMC9674224 DOI: 10.1073/pnas.2209870119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/28/2022] [Indexed: 11/10/2023] Open
Abstract
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Collapse
Affiliation(s)
- Stephanie P B Caligiuri
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - William M Howe
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Lauren Wills
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Alexander C W Smith
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ye Lei
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Purva Bali
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Mary P Heyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Janna K Moen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jessica L Ables
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Karim S Elayouby
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Maya Williams
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Clementine Fillinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Zainab Oketokoun
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Vanessa E Lehmann
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | | | - Paul M Johnson
- Department of Information Technology and Electrical Engineering, ETH Zürich, 8092 Zürich, Switzerland
| | - Kristin Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ines Ibanez-Tallon
- Laboratory of Molecular Biology, The Rockefeller University, New York, NY 10065
| | - Paul J Kenny
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
24
|
Genetic Variants Associated with Chronic Obstructive Pulmonary Disease Risk: Cumulative Epidemiological Evidence from Meta-Analyses and Genome-Wide Association Studies. Can Respir J 2022; 2022:3982335. [PMID: 35721789 PMCID: PMC9203202 DOI: 10.1155/2022/3982335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Background Last two decades, many association studies on genetic variants and chronic obstructive pulmonary disease (COPD) risk have been published. But results from different studies are inconsistent. Therefore, we performed this article to systematically evaluate results from previous meta-analyses and genome-wide association studies (GWASs). Material and Methods. Firstly, we retrieved meta-analyses in PubMed, Embase, and China National Knowledge Infrastructure and GWASs in PubMed and GWAS catalog on or before April 7th, 2022. Then, data were extracted and screened. Finally, two main methods—Venice criteria and false-positive report probability test—were used to evaluate significant associations. Results As a result, eighty-eight meta-analyses and 5 GWASs were deemed eligible for inclusion. Fifty variants in 26 genes obtained from meta-analyses were significantly associated with COPD risk. Cumulative epidemiological evidence of an association was graded as strong for 10 variants in 8 genes (GSTM1, CHRNA, ADAM33, SP-D, TNF-α, VDBP, HMOX1, and HHIP), moderate for 6 variants in 5 genes (PI, GSTM1, ADAM33, TNF-α, and VDBP), and weak for 40 variants in 23 genes. Five variants in 4 genes showed convincing evidence of no association with COPD risk in meta-analyses. Additionally, 29 SNPs identified in GWASs were proved to be noteworthy based on the FPRP test. Conclusion In summary, more than half (52.38%) of genetic variants reported in previous meta-analyses showed no association with COPD risk. However, 13 variants in 9 genes had moderate to strong evidence for an association. This article can serve as a useful reference for further studies.
Collapse
|
25
|
Zeng LH, Barkat MQ, Syed SK, Shah S, Abbas G, Xu C, Mahdy A, Hussain N, Hussain L, Majeed A, Khan KUR, Wu X, Hussain M. Hedgehog Signaling: Linking Embryonic Lung Development and Asthmatic Airway Remodeling. Cells 2022; 11:1774. [PMID: 35681469 PMCID: PMC9179967 DOI: 10.3390/cells11111774] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 12/28/2022] Open
Abstract
The development of the embryonic lung demands complex endodermal-mesodermal interactions, which are regulated by a variety of signaling proteins. Hedgehog (Hh) signaling is vital for lung development. It plays a key regulatory role during several morphogenic mechanisms, such as cell growth, differentiation, migration, and persistence of cells. On the other hand, abnormal expression or loss of regulation of Hh signaling leads to airway asthmatic remodeling, which is characterized by cellular matrix modification in the respiratory system, goblet cell hyperplasia, deposition of collagen, epithelial cell apoptosis, proliferation, and activation of fibroblasts. Hh also targets some of the pathogens and seems to have a significant function in tissue repairment and immune-related disorders. Similarly, aberrant Hh signaling expression is critically associated with the etiology of a variety of other airway lung diseases, mainly, bronchial or tissue fibrosis, lung cancer, and pulmonary arterial hypertension, suggesting that controlled regulation of Hh signaling is crucial to retain healthy lung functioning. Moreover, shreds of evidence imply that the Hh signaling pathway links to lung organogenesis and asthmatic airway remodeling. Here, we compiled all up-to-date investigations linked with the role of Hh signaling in the development of lungs as well as the attribution of Hh signaling in impairment of lung expansion, airway remodeling, and immune response. In addition, we included all current investigational and therapeutic approaches to treat airway asthmatic remodeling and immune system pathway diseases.
Collapse
Affiliation(s)
- Ling-Hui Zeng
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Muhammad Qasim Barkat
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology Lahore, Lahore 54000, Pakistan;
| | - Shahid Shah
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Ghulam Abbas
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Chengyun Xu
- Key Laboratory of CFDA for Respiratory Drug Research, Department of Pharmacology, School of Medicine, Zhejiang University, Hangzhou 310058, China; (M.Q.B.); (C.X.)
| | - Amina Mahdy
- Medical Pharmacology Department, International School of Medicine, Istanbul Medipol University, Istanbul 34000, Turkey;
| | - Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Liaqat Hussain
- Faculty of Pharmaceutical Sciences, Government College University, Faisalabad 38000, Pakistan; (S.S.); (G.A.); (L.H.)
| | - Abdul Majeed
- Faculty of Pharmacy, Bahauddin Zakariya University, Mulatn 60000, Pakistan;
| | - Kashif-ur-Rehman Khan
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University City College, 51 Huzhou Street, Hangzhou 310015, China;
| | - Musaddique Hussain
- Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| |
Collapse
|
26
|
Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. THE LANCET. RESPIRATORY MEDICINE 2022; 10:485-496. [PMID: 35427534 PMCID: PMC11197974 DOI: 10.1016/s2213-2600(21)00510-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deadly and highly morbid disease. Susceptibility to and heterogeneity of COPD are incompletely explained by environmental factors such as cigarette smoking. Family-based and population-based studies have shown that a substantial proportion of COPD risk is related to genetic variation. Genetic association studies have identified hundreds of genetic variants that affect risk for COPD, decreased lung function, and other COPD-related traits. These genetic variants are associated with other pulmonary and non-pulmonary traits, demonstrate a genetic basis for at least part of COPD heterogeneity, have a substantial effect on COPD risk in aggregate, implicate early-life events in COPD pathogenesis, and often involve genes not previously suspected to have a role in COPD. Additional progress will require larger genetic studies with more ancestral diversity, improved profiling of rare variants, and better statistical methods. Through integration of genetic data with other omics data and comprehensive COPD phenotypes, as well as functional description of causal mechanisms for genetic risk variants, COPD genetics will continue to inform novel approaches to understanding the pathobiology of COPD and developing new strategies for management and treatment.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
27
|
Alsheikh AJ, Wollenhaupt S, King EA, Reeb J, Ghosh S, Stolzenburg LR, Tamim S, Lazar J, Davis JW, Jacob HJ. The landscape of GWAS validation; systematic review identifying 309 validated non-coding variants across 130 human diseases. BMC Med Genomics 2022; 15:74. [PMID: 35365203 PMCID: PMC8973751 DOI: 10.1186/s12920-022-01216-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 02/08/2023] Open
Abstract
Background The remarkable growth of genome-wide association studies (GWAS) has created a critical need to experimentally validate the disease-associated variants, 90% of which involve non-coding variants. Methods To determine how the field is addressing this urgent need, we performed a comprehensive literature review identifying 36,676 articles. These were reduced to 1454 articles through a set of filters using natural language processing and ontology-based text-mining. This was followed by manual curation and cross-referencing against the GWAS catalog, yielding a final set of 286 articles. Results We identified 309 experimentally validated non-coding GWAS variants, regulating 252 genes across 130 human disease traits. These variants covered a variety of regulatory mechanisms. Interestingly, 70% (215/309) acted through cis-regulatory elements, with the remaining through promoters (22%, 70/309) or non-coding RNAs (8%, 24/309). Several validation approaches were utilized in these studies, including gene expression (n = 272), transcription factor binding (n = 175), reporter assays (n = 171), in vivo models (n = 104), genome editing (n = 96) and chromatin interaction (n = 33). Conclusions This review of the literature is the first to systematically evaluate the status and the landscape of experimentation being used to validate non-coding GWAS-identified variants. Our results clearly underscore the multifaceted approach needed for experimental validation, have practical implications on variant prioritization and considerations of target gene nomination. While the field has a long way to go to validate the thousands of GWAS associations, we show that progress is being made and provide exemplars of validation studies covering a wide variety of mechanisms, target genes, and disease areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01216-w.
Collapse
Affiliation(s)
- Ammar J Alsheikh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA.
| | - Sabrina Wollenhaupt
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Emily A King
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jonas Reeb
- Information Research, AbbVie Deutschland GmbH & Co. KG, 67061, Knollstrasse, Ludwigshafen, Germany
| | - Sujana Ghosh
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | | | - Saleh Tamim
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Jozef Lazar
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - J Wade Davis
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| | - Howard J Jacob
- Genomics Research Center, AbbVie Inc, North Chicago, Illinois, 60064, USA
| |
Collapse
|
28
|
Narvaez Del Pilar O, Gacha Garay MJ, Chen J. Three-axis classification of mouse lung mesenchymal cells reveals two populations of myofibroblasts. Development 2022; 149:274755. [PMID: 35302583 PMCID: PMC8977099 DOI: 10.1242/dev.200081] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
Abstract
The mesenchyme consists of heterogeneous cell populations that support neighboring structures and are integral to intercellular signaling, but are poorly defined morphologically and molecularly. Leveraging single-cell RNA-sequencing, 3D imaging and lineage tracing, we classify the mouse lung mesenchyme into three proximal-distal axes that are associated with the endothelium, epithelium and interstitium, respectively. From proximal to distal: the vascular axis includes vascular smooth muscle cells and pericytes that transition as arterioles and venules ramify into capillaries; the epithelial axis includes airway smooth muscle cells and two populations of myofibroblasts - ductal myofibroblasts, surrounding alveolar ducts and marked by CDH4, HHIP and LGR6, which persist post-alveologenesis, and alveolar myofibroblasts, surrounding alveoli and marked by high expression of PDGFRA, which undergo developmental apoptosis; and the interstitial axis, residing between the epithelial and vascular trees and sharing the marker MEOX2, includes fibroblasts in the bronchovascular bundle and the alveolar interstitium, which are marked by IL33/DNER/PI16 and Wnt2, respectively. Single-cell imaging reveals a distinct morphology of mesenchymal cell populations. This classification provides a conceptual and experimental framework applicable to other organs.
Collapse
Affiliation(s)
- Odemaris Narvaez Del Pilar
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences , The University of Texas MD Anderson Cancer Center UTHealth, Houston, Texas 77030, USA.,University of Puerto Rico - Medical Sciences Campus, San Juan, Puerto Rico 00927
| | - Maria Jose Gacha Garay
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Graduate School of Biomedical Sciences , The University of Texas MD Anderson Cancer Center UTHealth, Houston, Texas 77030, USA
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
29
|
Sauler M, McDonough JE, Adams TS, Kothapalli N, Barnthaler T, Werder RB, Schupp JC, Nouws J, Robertson MJ, Coarfa C, Yang T, Chioccioli M, Omote N, Cosme C, Poli S, Ayaub EA, Chu SG, Jensen KH, Gomez JL, Britto CJ, Raredon MSB, Niklason LE, Wilson AA, Timshel PN, Kaminski N, Rosas IO. Characterization of the COPD alveolar niche using single-cell RNA sequencing. Nat Commun 2022; 13:494. [PMID: 35078977 PMCID: PMC8789871 DOI: 10.1038/s41467-022-28062-9] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide, however our understanding of cell specific mechanisms underlying COPD pathobiology remains incomplete. Here, we analyze single-cell RNA sequencing profiles of explanted lung tissue from subjects with advanced COPD or control lungs, and we validate findings using single-cell RNA sequencing of lungs from mice exposed to 10 months of cigarette smoke, RNA sequencing of isolated human alveolar epithelial cells, functional in vitro models, and in situ hybridization and immunostaining of human lung tissue samples. We identify a subpopulation of alveolar epithelial type II cells with transcriptional evidence for aberrant cellular metabolism and reduced cellular stress tolerance in COPD. Using transcriptomic network analyses, we predict capillary endothelial cells are inflamed in COPD, particularly through increased CXCL-motif chemokine signaling. Finally, we detect a high-metallothionein expressing macrophage subpopulation enriched in advanced COPD. Collectively, these findings highlight cell-specific mechanisms involved in the pathobiology of advanced COPD.
Collapse
Affiliation(s)
- Maor Sauler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - John E McDonough
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA.
| | - Taylor S Adams
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Neeharika Kothapalli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Thomas Barnthaler
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Rhiannon B Werder
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
- QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Jonas C Schupp
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Jessica Nouws
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Matthew J Robertson
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Tao Yang
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Thoracic and Cardiovascular Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Maurizio Chioccioli
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Norihito Omote
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Carlos Cosme
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Sergio Poli
- Department of Internal Medicine, Mount Sinai Medical Center, Miami, FL, USA
| | - Ehab A Ayaub
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah G Chu
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Jose L Gomez
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Micha Sam B Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Medical Scientist Training Program, Yale School of Medicine, New Haven, CT, USA
| | - Laura E Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, 02118, USA
- The Pulmonary Center and Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | | | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ivan O Rosas
- Pulmonary, Critical Care and Sleep Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Liao Y, Liao Y, Wen F. Association of Human Hedgehog Interacting Protein Gene Polymorphisms with the Risk of Chronic Obstructive Pulmonary Disease: a Meta-Analysis. Expert Rev Respir Med 2022; 16:447-459. [PMID: 35037818 DOI: 10.1080/17476348.2022.2030226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To date, some studies revealed that HHIP gene polymorphisms may be associated with the risk of chronic obstructive pulmonary disease (COPD). Therefore, this meta-analysis explored the association between single-nucleotide polymorphisms (SNPs) of the human hedgehog interacting protein (HHIP) gene and susceptibility to COPD. METHODS Seven Chinese and English electronic databases were searched for eligible studies up to May 30, 2020. After the inclusion criteria were strictly followed, the Newcastle-Ottawa Scale (NOS) was used to evaluate the quality of the included studies. The pooled odds ratio (OR) of the 95% confidence interval (CI) under four different genetic models was calculated to evaluate the association strength between the SNPs and COPD. Egger's test was used to evaluate publication bias. RESULTS This meta-analysis was registered at PROSPERO (CRD42021235708). In total, 12 studies involving 6623 COPD patients and 11373 healthy controls were included. Regarding rs13118928 and rs1828591, an A>G mutation increased the risk of COPD in Asian and Caucasian individuals, and the rs13147758 A>G mutation and rs10519717 C>T mutation increased the risk of COPD only in Asian people. No significant publication bias was observed. CONCLUSION This meta-analysis provides a theoretical basis suggesting that HHIP gene polymorphisms may be associated with the risk of COPD.
Collapse
Affiliation(s)
- Yi Liao
- State Key Laboratory of Biotherapy of China, Division of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yue Liao
- State Key Laboratory of Biotherapy of China, Division of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Fuqiang Wen
- State Key Laboratory of Biotherapy of China, Division of Pulmonary Diseases, Department of Respiratory and Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Yun JH, Lee C, Liu T, Liu S, Kim EY, Xu S, Curtis JL, Pinello L, Bowler RP, Silverman EK, Hersh CP, Zhou X. Hedgehog interacting protein-expressing lung fibroblasts suppress lymphocytic inflammation in mice. JCI Insight 2021; 6:e144575. [PMID: 34375314 PMCID: PMC8492352 DOI: 10.1172/jci.insight.144575] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/21/2021] [Indexed: 11/30/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is mainly caused by cigarette smoking and characterized by chronic inflammation in vulnerable individuals. However, it is unknown how genetic factors may shape chronic inflammation in COPD. To understand how hedgehog interacting protein, encoded by HHIP gene identified in the genome-wide association study in COPD, plays a role in inflammation, we utilized Hhip+/– mice that present persistent inflammation and emphysema upon aging similar to that observed in human COPD. By performing single-cell RNA sequencing of the whole lung from mice at different ages, we found that Hhip+/– mice developed a cytotoxic immune response with a specific increase in killer cell lectin-like receptor G1–positive CD8+ T cells with upregulated Ifnγ expression recapitulating human COPD. Hhip expression was restricted to a lung fibroblast subpopulation that had increased interaction with CD8+ T lymphocytes in Hhip+/– compared with Hhip+/+ during aging. Hhip-expressing lung fibroblasts had upregulated IL-18 pathway genes in Hhip+/– lung fibroblasts, which was sufficient to drive increased levels of IFN-γ in CD8+ T cells ex vivo. Our finding provides insight into how a common genetic variation contributes to the amplified lymphocytic inflammation in COPD.
Collapse
Affiliation(s)
- Jeong H Yun
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - ChangHee Lee
- Department of Genetics, Harvard Medical School, Boston, United States of America
| | - Tao Liu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Siqi Liu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Edy Y Kim
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Shuang Xu
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Jeffrey L Curtis
- VA Center, University of Michigan Medical School, Ann Arbor, United States of America
| | - Luca Pinello
- Department of Pathology, Massachusetts General Hospital, Boston, United States of America
| | - Russell P Bowler
- Department of Medicine, National Jewish Health, Denver, United States of America
| | - Edwin K Silverman
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Craig P Hersh
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| | - Xiaobo Zhou
- Department of Medicine, Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, United States of America
| |
Collapse
|
32
|
Moll M, Jackson VE, Yu B, Grove ML, London SJ, Gharib SA, Bartz TM, Sitlani CM, Dupuis J, O'Connor GT, Xu H, Cassano PA, Patchen BK, Kim WJ, Park J, Kim KH, Han B, Barr RG, Manichaikul A, Nguyen JN, Rich SS, Lahousse L, Terzikhan N, Brusselle G, Sakornsakolpat P, Liu J, Benway CJ, Hall IP, Tobin MD, Wain LV, Silverman EK, Cho MH, Hobbs BD. A systematic analysis of protein-altering exonic variants in chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol 2021; 321:L130-L143. [PMID: 33909500 PMCID: PMC8321852 DOI: 10.1152/ajplung.00009.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/15/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Genome-wide association studies (GWASs) have identified regions associated with chronic obstructive pulmonary disease (COPD). GWASs of other diseases have shown an approximately 10-fold overrepresentation of nonsynonymous variants, despite limited exonic coverage on genotyping arrays. We hypothesized that a large-scale analysis of coding variants could discover novel genetic associations with COPD, including rare variants with large effect sizes. We performed a meta-analysis of exome arrays from 218,399 controls and 33,851 moderate-to-severe COPD cases. All exome-wide significant associations were present in regions previously identified by GWAS. We did not identify any novel rare coding variants with large effect sizes. Within GWAS regions on chromosomes 5q, 6p, and 15q, four coding variants were conditionally significant (P < 0.00015) when adjusting for lead GWAS single-nucleotide polymorphisms A common gasdermin B (GSDMB) splice variant (rs11078928) previously associated with a decreased risk for asthma was nominally associated with a decreased risk for COPD [minor allele frequency (MAF) = 0.46, P = 1.8e-4]. Two stop variants in coiled-coil α-helical rod protein 1 (CCHCR1), a gene involved in regulating cell proliferation, were associated with COPD (both P < 0.0001). The SERPINA1 Z allele was associated with a random-effects odds ratio of 1.43 for COPD (95% confidence interval = 1.17-1.74), though with marked heterogeneity across studies. Overall, COPD-associated exonic variants were identified in genes involved in DNA methylation, cell-matrix interactions, cell proliferation, and cell death. In conclusion, we performed the largest exome array meta-analysis of COPD to date and identified potential functional coding variants. Future studies are needed to identify rarer variants and further define the role of coding variants in COPD pathogenesis.
Collapse
Affiliation(s)
- Matthew Moll
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Victoria E Jackson
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Bing Yu
- School of Public Health, University of Texas Health Science Center, Houston, Texas
| | - Megan L Grove
- School of Public Health, University of Texas Health Science Center, Houston, Texas
| | - Stephanie J London
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services Research, Research Triangle Park, Durham, North Carolina
| | - Sina A Gharib
- Center for Lung Biology, Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Washington, Seattle, Washington
| | - Traci M Bartz
- Department of Biostatistics, University of Washington, Seattle, Washington
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Colleen M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - George T O'Connor
- Division of Pulmonary, Allergy, Sleep, and Critical Care Medicine, Department of Medicine, Pulmonary Center, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts
| | - Hanfei Xu
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Patricia A Cassano
- Division of Nutritional Sciences, Cornell University, Ithaca, New York
- Division of Epidemiology, Department of Population Health Sciences, Weill Cornell Medicine, New York, New York
| | | | - Woo Jin Kim
- Department of Internal Medicine, Kangwon National University, Chuncheon, South Korea
| | - Jinkyeong Park
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang-Si, Gyeonggi-do, South Korea
| | - Kun Hee Kim
- Department of Convergence Medicine and Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Buhm Han
- Department of Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - R Graham Barr
- Department of Medicine, Columbia University Medical Center, New York, New York
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Jennifer N Nguyen
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Lies Lahousse
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Natalie Terzikhan
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Guy Brusselle
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Phuwanat Sakornsakolpat
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jiangyuan Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Christopher J Benway
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Ian P Hall
- NIHR Nottingham Biomedical Research Centre, Queen's Medical Centre, Nottingham, United Kingdom
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
- National Institute for Health Research Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Edwin K Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Michael H Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Brian D Hobbs
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
33
|
Benway CJ, Liu J, Guo F, Du F, Randell SH, Cho MH, Silverman EK, Zhou X. Chromatin Landscapes of Human Lung Cells Predict Potentially Functional Chronic Obstructive Pulmonary Disease Genome-Wide Association Study Variants. Am J Respir Cell Mol Biol 2021; 65:92-102. [PMID: 33788674 DOI: 10.1165/rcmb.2020-0475oc] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified dozens of loci associated with risk of chronic obstructive pulmonary disease (COPD). However, identifying the causal variants and their functional role in the appropriate cell type remains a major challenge. We aimed to identify putative causal variants in 82 GWAS loci associated with COPD susceptibility and predict the regulatory impact of these variants in lung-cell types. We used an integrated approach featuring statistical fine mapping, open chromatin profiling, and machine learning to identify functional variants. We generated chromatin accessibility data using the Assay for Transposase-Accessible Chromatin with High-Throughput Sequencing (ATAC-seq) for human primary lung-cell types implicated in COPD pathobiology. We then evaluated the enrichment of COPD risk variants in lung-specific open chromatin regions and generated cell type-specific regulatory predictions for >6,500 variants corresponding to 82 COPD GWAS loci. Integration of the fine-mapped variants with lung open chromatin regions helped prioritize 22 variants in putative regulatory elements with potential functional effects. Comparison with functional predictions from 222 Encyclopedia of DNA Elements (ENCODE) cell samples revealed cell type-specific regulatory effects of COPD variants in the lung epithelium, endothelium, and immune cells. We identified potential causal variants for COPD risk by integrating fine mapping in GWAS loci with cell-specific regulatory profiling, highlighting the importance of leveraging the chromatin status in relevant cell types to predict the molecular effects of risk variants in lung disease.
Collapse
Affiliation(s)
| | | | - Feng Guo
- Channing Division of Network Medicine and
| | - Fei Du
- Channing Division of Network Medicine and
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael H Cho
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Edwin K Silverman
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Xiaobo Zhou
- Channing Division of Network Medicine and.,Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | | |
Collapse
|
34
|
Amatya S, Rajbhandari S, Pradhan S, Trinh V, Paudel U, Parton LA. Hedgehog signaling pathway gene variant influences bronchopulmonary dysplasia in extremely low birth weight infants. World J Pediatr 2021; 17:298-304. [PMID: 33860472 DOI: 10.1007/s12519-021-00427-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Genome wide association study identified hedgehog interacting protein gene (HHIP) variants with chronic obstructive pulmonary disease and asthma. Loss of HHIP, a key regulator of the hedgehog signaling pathway, leads to impaired lung morphogenesis and lethality in animal models, through unimpeded sonic hedgehog expression blocking mesenchymal-expressed fibroblast growth factor 10 (FGF10). Since bronchopulmonary dysplasia (BPD) is also associated with altered lung development and worsens with stimuli including mechanical ventilation, reactive oxygen species, and inflammation, HHIP and FGF10 may be candidate genes. METHODS This was an observational, cohort study including extremely low birth weight infants that who developed BPD and those who did not. DNA was isolated from buccal swabs and subjected to allelic discrimination, using specific HHIP and FGF10 probes. Protein levels were measured in tracheal aspirates. Student's t test, Chi-square, Z test and logistic regression were used. RESULTS Demographic characteristics did not differ except that birth weight (715 ± 153 vs. 835 ± 132 g) and gestational age (25 vs. 26 weeks) were less in babies with BPD. HHIP variant rs13147758 (GG genotype) was found to be independently protective for BPD (odds ratio 0.35, 95% confidence interval 0.15-0.82, P = - 0.02). Early airway HHIP protein levels were increased in infants with BPD compared to those without [median (interquartile range) 130.6 (55.6-297.0) and 41.2 (22.1-145.6) pg/mL, respectively; P = 0.05]. The FGF10 single nucleotide polymorphisms were not associated with BPD. CONCLUSION HHIP, as a regulator of lung bud formation, affects BPD susceptibility, and may be valuable in understanding the specific mechanisms for this disease as well as for identifying therapeutic targets in the era of personalized medicine.
Collapse
Affiliation(s)
- Shaili Amatya
- Newborn Medicine Division, The Regional Neonatal Intensive Care Unit, Maria Fareri Children's Hospital At Westchester Medical Center, Valhalla, NY, USA.,Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Department of Pediatrics, Penn State Children's Hospital, Hershey, PA, USA
| | - Sharina Rajbhandari
- Newborn Medicine Division, The Regional Neonatal Intensive Care Unit, Maria Fareri Children's Hospital At Westchester Medical Center, Valhalla, NY, USA.,Department of Pediatrics, New York Medical College, Valhalla, NY, USA.,Novant Health Presbyterian Medical Center, Charlotte, NC, USA
| | - Sandeep Pradhan
- Department of Public Health, Penn State University, Hershey, PA, USA
| | - Van Trinh
- Newborn Medicine Division, The Regional Neonatal Intensive Care Unit, Maria Fareri Children's Hospital At Westchester Medical Center, Valhalla, NY, USA.,Department of Pediatrics, New York Medical College, Valhalla, NY, USA
| | - Umesh Paudel
- Department of Pediatrics, Harlem Hospital-Columbia University Irving Medical Center, New York, NY, USA
| | - Lance A Parton
- Newborn Medicine Division, The Regional Neonatal Intensive Care Unit, Maria Fareri Children's Hospital At Westchester Medical Center, Valhalla, NY, USA. .,Department of Pediatrics, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
35
|
Fawcett KA, Obeidat M, Melbourne C, Shrine N, Guyatt AL, John C, Luan J, Richmond A, Moksnes MR, Granell R, Weiss S, Imboden M, May-Wilson S, Hysi P, Boutin TS, Portas L, Flexeder C, Harris SE, Wang CA, Lyytikäinen LP, Palviainen T, Foong RE, Keidel D, Minelli C, Langenberg C, Bossé Y, Van den Berge M, Sin DD, Hao K, Campbell A, Porteous D, Padmanabhan S, Smith BH, Evans DM, Ring S, Langhammer A, Hveem K, Willer C, Ewert R, Stubbe B, Pirastu N, Klaric L, Joshi PK, Patasova K, Massimo M, Polasek O, Starr JM, Karrasch S, Strauch K, Meitinger T, Rudan I, Rantanen T, Pietiläinen K, Kähönen M, Raitakari OT, Hall GL, Sly PD, Pennell CE, Kaprio J, Lehtimäki T, Vitart V, Deary IJ, Jarvis D, Wilson JF, Spector T, Probst-Hensch N, Wareham NJ, Völzke H, Henderson J, Strachan DP, Brumpton BM, Hayward C, Hall IP, Tobin MD, Wain LV. Variants associated with HHIP expression have sex-differential effects on lung function. Wellcome Open Res 2021; 5:111. [PMID: 33728380 PMCID: PMC7938335 DOI: 10.12688/wellcomeopenres.15846.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females. Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium. Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P<5x10 -8) interactions with sex on lung function, and 21 showed suggestive interactions (P<1x10 -6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV 1) (P=3.15x10 -15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV 1 more in males (untransformed FEV 1 β=0.028 [SE 0.0022] litres) than females (β=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein ( HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10 -6), but we could not detect sex differential effects of rs7697189 on expression. Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.
Collapse
Affiliation(s)
| | - Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Carl Melbourne
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Anna L. Guyatt
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Catherine John
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Marta R. Moksnes
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Raquel Granell
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Pirro Hysi
- The Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas’ Campus, Lambeth Palace Road, London, UK
| | - Thibaud S. Boutin
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Laura Portas
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Carol A. Wang
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Callaghan, Australia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, 33521, Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, FI-00014, Finland
| | - Rachel E. Foong
- Telethon Kids Institute, Perth, Australia
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Dirk Keidel
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Cosetta Minelli
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Maarten Van den Berge
- University Medical Center Groningen, Department of Pulmonology, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Don D. Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - David Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Blair H. Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - David M. Evans
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4072, Australia
| | - Sue Ring
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Arnulf Langhammer
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Cristen Willer
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, USA
| | - Ralf Ewert
- Department of Internal Medicine B, Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Beate Stubbe
- Department of Internal Medicine B, Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Karina Patasova
- The Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas’ Campus, Lambeth Palace Road, London, UK
| | - Mangino Massimo
- The Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas’ Campus, Lambeth Palace Road, London, UK
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Stefan Karrasch
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, 80336, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, 81377, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, 81377, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Human Genetics, Klinikum rechts der Isar der TU Muenchen, Muenchen, 81675, Germany
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Taina Rantanen
- Faculty of Sport and Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Kirsi Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, FI-00014, Finland
- Obesity Centre, Abdominal Centre, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Olli T. Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Graham L. Hall
- Telethon Kids Institute, Perth, Australia
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Peter D. Sly
- Children's Health and Environment Program, The University of Queensland, Brisbane, Australia
| | - Craig E. Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Callaghan, Australia
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Public Health, University of Helsinki, Helsinki, FI-00014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Debbie Jarvis
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-PHE Centre for the Environment and Health, London, UK
| | - James F. Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Tim Spector
- The Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas’ Campus, Lambeth Palace Road, London, UK
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Henry Völzke
- Intitute for Community Medicine, University Medicine Greifswald, Greifswald, 17487, Germany
| | - John Henderson
- Population Health Sciences Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - David P. Strachan
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Ben M. Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ian P. Hall
- Division of Respiratory Medicine and NIHR-Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| |
Collapse
|
36
|
Li Y, Zhang L, Polverino F, Guo F, Hao Y, Lao T, Xu S, Li L, Pham B, Owen CA, Zhou X. Hedgehog interacting protein (HHIP) represses airway remodeling and metabolic reprogramming in COPD-derived airway smooth muscle cells. Sci Rep 2021; 11:9074. [PMID: 33907231 PMCID: PMC8079715 DOI: 10.1038/s41598-021-88434-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 04/07/2021] [Indexed: 02/05/2023] Open
Abstract
Although HHIP locus has been consistently associated with the susceptibility to COPD including airway remodeling and emphysema in genome-wide association studies, the molecular mechanism underlying this genetic association remains incompletely understood. By utilizing Hhip+/- mice and primary human airway smooth muscle cells (ASMCs), here we aim to determine whether HHIP haploinsufficiency increases airway smooth muscle mass by reprogramming glucose metabolism, thus contributing to airway remodeling in COPD pathogenesis. The mRNA levels of HHIP were compared in normal and COPD-derived ASMCs. Mitochondrial oxygen consumption rate and lactate levels in the medium were measured in COPD-derived ASMCs with or without HHIP overexpression as readouts of glucose oxidative phosphorylation and aerobic glycolysis rates. The proliferation rate was measured in healthy and COPD-derived ASMCs treated with or without 2-DG. Smooth muscle mass around airways was measured by immunofluorescence staining for α-smooth muscle actin (α-SMA) in lung sections from Hhip+/- mice and their wild type littermates, Hhip+/+ mice. Airway remodeling was assessed in Hhip+/- and Hhip+/- mice exposed to 6 months of cigarette smoke. Our results show HHIP inhibited aerobic glycolysis and represses cell proliferation in COPD-derived ASMCs. Notably, knockdown of HHIP in normal ASMCs increased PKM2 activity. Importantly, Hhip+/- mice demonstrated increased airway remodeling and increased intensity of α-SMA staining around airways compared to Hhip+/+ mice. In conclusion, our findings suggest that HHIP represses aerobic glycolysis and ASMCs hyperplasia, which may contribute to the increased airway remodeling in Hhip+/- mice.
Collapse
Affiliation(s)
- Yan Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong Province, China.
| | - Li Zhang
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Francesca Polverino
- Asthma and Airway Disease Research Center, University of Arizona, Medicine, Tucson, AZ, 85724, USA
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Yuan Hao
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Taotao Lao
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, 02129, USA
| | - Shuang Xu
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Lijia Li
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Betty Pham
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Han G, Sinjab A, Hara K, Treekitkarnmongkol W, Brennan P, Chang K, Bogatenkova E, Sanchez-Espiridion B, Behrens C, Solis LM, Gao B, Girard L, Zhang J, Sepesi B, Cascone T, Byers LA, Gibbons DL, Chen J, Moghaddam SJ, Ostrin EJ, Scheet P, Fujimoto J, Shay J, Heymach JV, Minna JD, Dubinett S, Wistuba II, Stevenson CS, Spira AE, Wang L, Kadara H. Single-Cell Expression Landscape of SARS-CoV-2 Receptor ACE2 and Host Proteases in Normal and Malignant Lung Tissues from Pulmonary Adenocarcinoma Patients. Cancers (Basel) 2021; 13:cancers13061250. [PMID: 33809063 PMCID: PMC7998226 DOI: 10.3390/cancers13061250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The coronavirus disease 2019 (COVID-19) pandemic continues to spread rapidly on a global scale. When presenting with severe respiratory complications, COVID-19 results in markedly high death rates, particularly among patients with comorbidities such as cancer. Motivated by the ongoing global health crisis, we leveraged a growing in-house cohort of pulmonary tissues from lung cancer patients to analyze, at high resolution, the expression of host proteins implicated in the entryway of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into lung epithelial cells. Our results identify key pathways in lung pathobiology and inflammation that offer the potential to identify novel markers and therapeutic targets that can be repurposed for clinical management of COVID-19, particularly among lung cancer patients, a population that represents over half a million individuals in the United States alone. Abstract The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Severely symptomatic COVID-19 is associated with lung inflammation, pneumonia, and respiratory failure, thereby raising concerns of elevated risk of COVID-19-associated mortality among lung cancer patients. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV-2 entry into lung cells. The single-cell expression landscape of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung cancer patients remains unknown. We sought to delineate single-cell expression profiles of ACE2 and other SARS-CoV-2-related genes in pulmonary tissues of lung adenocarcinoma (LUAD) patients. We examined the expression levels and cellular distribution of ACE2 and SARS-CoV-2-priming proteases TMPRSS2 and TMPRSS4 in 5 LUADs and 14 matched normal tissues by single-cell RNA-sequencing (scRNA-seq) analysis. scRNA-seq of 186,916 cells revealed epithelial-specific expression of ACE2, TMPRSS2, and TMPRSS4. Analysis of 70,030 LUAD- and normal-derived epithelial cells showed that ACE2 levels were highest in normal alveolar type 2 (AT2) cells and that TMPRSS2 was expressed in 65% of normal AT2 cells. Conversely, the expression of TMPRSS4 was highest and most frequently detected (75%) in lung cells with malignant features. ACE2-positive cells co-expressed genes implicated in lung pathobiology, including COPD-associated HHIP, and the scavengers CD36 and DMBT1. Notably, the viral scavenger DMBT1 was significantly positively correlated with ACE2 expression in AT2 cells. We describe normal and tumor lung epithelial populations that express SARS-CoV-2 receptor and proteases, as well as major host defense genes, thus comprising potential treatment targets for COVID-19 particularly among lung cancer patients.
Collapse
Affiliation(s)
- Guangchun Han
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Ansam Sinjab
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Kieko Hara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Patrick Brennan
- Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.B.); (E.B.)
| | - Kyle Chang
- Guardant Health, Redwood City, CA 94063, USA;
| | - Elena Bogatenkova
- Pathology Department, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (P.B.); (E.B.)
| | - Beatriz Sanchez-Espiridion
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Carmen Behrens
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - Luisa M. Solis
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Boning Gao
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX 75390, USA; (B.G.); (L.G.); (J.D.M.)
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX 75390, USA; (B.G.); (L.G.); (J.D.M.)
| | - Jianjun Zhang
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - Boris Sepesi
- Department of Cardiovascular and Thoracic Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77005, USA;
| | - Tina Cascone
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - Lauren A. Byers
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - Don L. Gibbons
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - Jichao Chen
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.); (S.J.M.)
| | - Seyed Javad Moghaddam
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.C.); (S.J.M.)
| | - Edwin J. Ostrin
- Department of General Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Paul Scheet
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA;
| | - Junya Fujimoto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | - Jerry Shay
- Department of Cell Biology, University of Texas Southwestern, Dallas, TX 75390, USA;
| | - John V. Heymach
- Department of Thoracic, Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (C.B.); (J.Z.); (T.C.); (L.A.B.); (D.L.G.); (J.V.H.)
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, TX 75390, USA; (B.G.); (L.G.); (J.D.M.)
| | - Steven Dubinett
- Department of Medicine, The University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
| | | | - Avrum E. Spira
- Lung Cancer Initiative at Johnson and Johnson, Cambridge, MA 02142, USA; (C.S.S.); (A.E.S.)
- Section of Computational Biomedicine, Boston University, Boston, MA 02215, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
- Correspondence: (L.W.); (H.K.)
| | - Humam Kadara
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (A.S.); (K.H.); (W.T.); (B.S.-E.); (L.M.S.); (J.F.); (I.I.W.)
- Correspondence: (L.W.); (H.K.)
| |
Collapse
|
38
|
Chou HW, Hung HC, Lin CH, Lin AC, Du YF, Cheng KP, Li CH, Chang CJ, Wu HT, Ou HY. The Serum Concentrations of Hedgehog-Interacting Protein, a Novel Biomarker, Were Decreased in Overweight or Obese Subjects. J Clin Med 2021; 10:jcm10040742. [PMID: 33673326 PMCID: PMC7917678 DOI: 10.3390/jcm10040742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 11/29/2022] Open
Abstract
Although it was known that obesity is an independent risk factor for metabolic disorders including diabetes, the factors that link these diseases were obscure. The Hedgehog-interacting protein (Hhip) is a negative regulator in tissue remodeling, and inhibits the proliferation of adipocytes, and promotes their differentiation. In addition, Hhip was positively associated with diabetes. However, the relationship between Hhip and obesity in the human body remains unclear. An analysis of the relationship between Hhip and normal weight, overweight, and obesity levels. Participants receiving a physical checkup were recruited. Anthropometric and biochemical data were collected. Serum Hhip levels were determined by enzyme-linked immunosorbent assay (ELISA). Subjects were classified into normal-weight, overweight, and obese groups based on their body mass index (BMI). The association between Hhip and obesity was examined by multivariate linear regression analysis. In total, 294 subjects who were either of a normal weight (n = 166), overweight (n = 90), or obese (n = 38) were enrolled. Hhip concentrations were 6.51 ± 4.86 ng/mL, 5.79 ± 4.33 ng/mL, and 3.97 ± 3.4 ng/mL in normal-weight, overweight, and obese groups, respectively (p for trend = 0.032). Moreover, the regression analysis showed that BMI (β = −0.144, 95% confidence interval (CI) = −0.397−0.046, p = 0.013) was negatively associated with Hhip concentrations after adjusting for sex and age. Being overweight (β = −0.181, 95% CI = −3.311−0.400, p = 0.013) and obese (β = −0.311, 95% CI = −6.393−2.384, p < 0.001) were independently associated with Hhip concentrations after adjusting for sex, age, fasting plasma glucose, the insulin level, and other cardiometabolic risk factors. Our results showed that overweight and obese subjects had lower Hhip concentrations than those of normal weight. Being overweight and obese were negatively associated with Hhip concentrations. Hhip might be a link between obesity and diabetes.
Collapse
Affiliation(s)
- Hsuan-Wen Chou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (H.-W.C.); (H.-C.H.); (C.-H.L.); (A.-C.L.); (Y.-F.D.); (K.-P.C.)
| | - Hao-Chang Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (H.-W.C.); (H.-C.H.); (C.-H.L.); (A.-C.L.); (Y.-F.D.); (K.-P.C.)
| | - Ching-Han Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (H.-W.C.); (H.-C.H.); (C.-H.L.); (A.-C.L.); (Y.-F.D.); (K.-P.C.)
| | - An-Chi Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (H.-W.C.); (H.-C.H.); (C.-H.L.); (A.-C.L.); (Y.-F.D.); (K.-P.C.)
| | - Ye-Fong Du
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (H.-W.C.); (H.-C.H.); (C.-H.L.); (A.-C.L.); (Y.-F.D.); (K.-P.C.)
| | - Kai-Pi Cheng
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (H.-W.C.); (H.-C.H.); (C.-H.L.); (A.-C.L.); (Y.-F.D.); (K.-P.C.)
| | - Chung-Hao Li
- Department of Health Management Center, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Chih-Jen Chang
- Department of Family Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Hung-Tsung Wu
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (H.-T.W.); (H.-Y.O.); Tel.: +886-2-26972035 (ext. 135) (H.-T.W.); +886-6-2353535 (ext. 4577) (H.-Y.O.); Fax: +886-2-26972133 (H.-T.W.); +886-6-3028130 (H.-Y.O.)
| | - Horng-Yih Ou
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan; (H.-W.C.); (H.-C.H.); (C.-H.L.); (A.-C.L.); (Y.-F.D.); (K.-P.C.)
- Correspondence: (H.-T.W.); (H.-Y.O.); Tel.: +886-2-26972035 (ext. 135) (H.-T.W.); +886-6-2353535 (ext. 4577) (H.-Y.O.); Fax: +886-2-26972133 (H.-T.W.); +886-6-3028130 (H.-Y.O.)
| |
Collapse
|
39
|
Saferali A, Xu Z, Sheynkman GM, Hersh CP, Cho MH, Silverman EK, Laederach A, Vollmers C, Castaldi PJ. Characterization of a COPD-Associated NPNT Functional Splicing Genetic Variant in Human Lung Tissue via Long-Read Sequencing. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.10.20.20203927. [PMID: 33173926 PMCID: PMC7654922 DOI: 10.1101/2020.10.20.20203927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death worldwide. Genome-wide association studies (GWAS) have identified over 80 loci that are associated with COPD and emphysema, however for most of these loci the causal variant and gene are unknown. Here, we utilize lung splice quantitative trait loci (sQTL) data from the Genotype-Tissue Expression project (GTEx) and short read sequencing data from the Lung Tissue Research Consortium (LTRC) to characterize a locus in nephronectin ( NPNT ) associated with COPD case-control status and lung function. We found that the rs34712979 variant is associated with alternative splice junction use in NPNT , specifically for the junction connecting the 2nd and 4th exons (chr4:105898001-105927336) (p=4.02×10 -38 ). This association colocalized with GWAS data for COPD and lung spirometry measures with a posterior probability of 94%, indicating that the same causal genetic variants in NPNT underlie the associations with COPD risk, spirometric measures of lung function, and splicing. Investigation of NPNT short read sequencing revealed that rs34712979 creates a cryptic splice acceptor site which results in the inclusion of a 3 nucleotide exon extension, coding for a serine residue near the N-terminus of the protein. Using Oxford Nanopore Technologies (ONT) long read sequencing we identified 13 NPNT isoforms, 6 of which are predicted to be protein coding. Two of these are full length isoforms which differ only in the 3 nucleotide exon extension whose occurrence differs by genotype. Overall, our data indicate that rs34712979 modulates COPD risk and lung function by creating a novel splice acceptor which results in the inclusion of a 3 nucelotide sequence coding for a serine in the nephronectin protein sequence. Our findings implicate NPNT splicing in contributing to COPD risk, and identify a novel serine insertion in the nephronectin protein that warrants further study.
Collapse
|
40
|
Ortega-Martínez A, Pérez-Rubio G, Ambrocio-Ortiz E, Nava-Quiroz KJ, Hernández-Zenteno RDJ, Abarca-Rojano E, Rodríguez-Llamazares S, Hernández-Pérez A, García-Gómez L, Ramírez-Venegas A, Falfán-Valencia R. The SNP rs13147758 in the HHIP Gene Is Associated With COPD Susceptibility, Serum, and Sputum Protein Levels in Smokers. Front Genet 2020; 11:882. [PMID: 33193570 PMCID: PMC7541950 DOI: 10.3389/fgene.2020.00882] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/17/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Genetic association studies have identified single nucleotide polymorphisms (SNPs) related to chronic obstructive pulmonary disease (COPD) susceptibility. The aim of this study was to identify HHIP genetic variants associated with COPD, pulmonary function, and serum and sputum HHIP protein levels in Mexican mestizo smokers. MATERIALS AND METHODS Association analysis was performed by carrying out a case-control study in Mexican mestizo smokers comprised of two groups: tobacco-smoking subjects with COPD (COPD-TS, n = 222) and smokers without COPD (SWOC, n = 333). We evaluated three SNPs (rs13147758, rs1828591, and rs13118928) in the HHIP gene. Allele discrimination was accomplished by qPCR using TaqMan probes, and determination of protein levels in the serum and sputum supernatants (SS) was performed using ELISA. RESULTS Statistically significant differences were observed in the rs13147758 GG genotype (adjusted p = 0.014, OR = 1.95) and the rs13147758-rs1828591 GA haplotype (p = 6.6E-06, OR = 2.65) in the case-control comparison. HHIP protein levels were elevated in SS samples from the COPD-TS group compared to those from the SWOC group (p = 0.03). Based on genotype analysis, HHIP protein levels were lower in the serum samples of rs13147758 GG genotype carriers in the COPD-TS group than in the serum samples of rs13147758 GG genotype carriers from the SWOC group (p < 0.05), but there were no differences in the sputum samples. CONCLUSION The rs13147758 GG genotype and the rs13147758-rs1828591 GA haplotype are associated with susceptibility to COPD. Furthermore, an association in protein levels was observed between the HHIP rs13147758 genotype and COPD in Mexican mestizo smokers.
Collapse
Affiliation(s)
- Alejandro Ortega-Martínez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Enrique Ambrocio-Ortiz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Karol J. Nava-Quiroz
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Rafael de Jesus Hernández-Zenteno
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Edgar Abarca-Rojano
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Sebastián Rodríguez-Llamazares
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Andrea Hernández-Pérez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Leonor García-Gómez
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alejandra Ramírez-Venegas
- Tobacco Smoking and COPD Research Department, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
41
|
Fawcett KA, Obeidat M, Melbourne C, Shrine N, Guyatt AL, John C, Luan J, Richmond A, Moksnes MR, Granell R, Weiss S, Imboden M, May-Wilson S, Hysi P, Boutin TS, Portas L, Flexeder C, Harris SE, Wang CA, Lyytikäinen LP, Palviainen T, Foong RE, Keidel D, Minelli C, Langenberg C, Bossé Y, Van den Berge M, Sin DD, Hao K, Campbell A, Porteous D, Padmanabhan S, Smith BH, Evans DM, Ring S, Langhammer A, Hveem K, Willer C, Ewert R, Stubbe B, Pirastu N, Klaric L, Joshi PK, Patasova K, Massimo M, Polasek O, Starr JM, Karrasch S, Strauch K, Meitinger T, Rudan I, Rantanen T, Pietiläinen K, Kähönen M, Raitakari OT, Hall GL, Sly PD, Pennell CE, Kaprio J, Lehtimäki T, Vitart V, Deary IJ, Jarvis D, Wilson JF, Spector T, Probst-Hensch N, Wareham NJ, Völzke H, Henderson J, Strachan DP, Brumpton BM, Hayward C, Hall IP, Tobin MD, Wain LV. Variants associated with HHIP expression have sex-differential effects on lung function. Wellcome Open Res 2020; 5:111. [PMID: 33728380 PMCID: PMC7938335 DOI: 10.12688/wellcomeopenres.15846.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2020] [Indexed: 02/02/2023] Open
Abstract
Background: Lung function is highly heritable and differs between the sexes throughout life. However, little is known about sex-differential genetic effects on lung function. We aimed to conduct the first genome-wide genotype-by-sex interaction study on lung function to identify genetic effects that differ between males and females. Methods: We tested for interactions between 7,745,864 variants and sex on spirometry-based measures of lung function in UK Biobank (N=303,612), and sought replication in 75,696 independent individuals from the SpiroMeta consortium. Results: Five independent single-nucleotide polymorphisms (SNPs) showed genome-wide significant (P<5x10 -8) interactions with sex on lung function, and 21 showed suggestive interactions (P<1x10 -6). The strongest signal, from rs7697189 (chr4:145436894) on forced expiratory volume in 1 second (FEV 1) (P=3.15x10 -15), was replicated (P=0.016) in SpiroMeta. The C allele increased FEV 1 more in males (untransformed FEV 1 β=0.028 [SE 0.0022] litres) than females (β=0.009 [SE 0.0014] litres), and this effect was not accounted for by differential effects on height, smoking or pubertal age. rs7697189 resides upstream of the hedgehog-interacting protein ( HHIP) gene and was previously associated with lung function and HHIP lung expression. We found HHIP expression was significantly different between the sexes (P=6.90x10 -6), but we could not detect sex differential effects of rs7697189 on expression. Conclusions: We identified a novel genotype-by-sex interaction at a putative enhancer region upstream of the HHIP gene. Establishing the mechanism by which HHIP SNPs have different effects on lung function in males and females will be important for our understanding of lung health and diseases in both sexes.
Collapse
Affiliation(s)
| | - Ma'en Obeidat
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
| | - Carl Melbourne
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Anna L. Guyatt
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Catherine John
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
| | - Jian'an Luan
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Marta R. Moksnes
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Raquel Granell
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
| | - Stefan Weiss
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Medea Imboden
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastian May-Wilson
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Pirro Hysi
- The Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas’ Campus, Lambeth Palace Road, London, UK
| | - Thibaud S. Boutin
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Laura Portas
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
| | - Sarah E. Harris
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Carol A. Wang
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Callaghan, Australia
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, 33521, Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, FI-00014, Finland
| | - Rachel E. Foong
- Telethon Kids Institute, Perth, Australia
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Dirk Keidel
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Cosetta Minelli
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Maarten Van den Berge
- University Medical Center Groningen, Department of Pulmonology, GRIAC Research Institute, University of Groningen, Groningen, The Netherlands
| | - Don D. Sin
- The University of British Columbia Centre for Heart Lung Innovation, St Paul’s Hospital, Vancouver, BC, Canada
- Respiratory Division, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - David Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - Sandosh Padmanabhan
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Blair H. Smith
- Division of Population Health Sciences, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - David M. Evans
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, QLD 4072, Australia
| | - Sue Ring
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, BS8 2BN, UK
- Population Health Sciences Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - Arnulf Langhammer
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Cristen Willer
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, USA
| | - Ralf Ewert
- Department of Internal Medicine B, Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Beate Stubbe
- Department of Internal Medicine B, Cardiology, Pneumology, Infectious Diseases, Intensive Care Medicine, University Medicine Greifswald, Greifswald, 17475, Germany
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Peter K. Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Karina Patasova
- The Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas’ Campus, Lambeth Palace Road, London, UK
| | - Mangino Massimo
- The Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas’ Campus, Lambeth Palace Road, London, UK
| | - Ozren Polasek
- University of Split School of Medicine, Split, Croatia
| | - John M. Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Alzheimer Scotland Research Centre, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Stefan Karrasch
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Ludwig-Maximilians-Universität, Munich, 80336, Germany
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research (DZL), Munich, 81377, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, 81377, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, 85764, Germany
- Institute of Human Genetics, Klinikum rechts der Isar der TU Muenchen, Muenchen, 81675, Germany
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Taina Rantanen
- Faculty of Sport and Health Sciences, Gerontology Research Center, University of Jyväskylä, Jyväskylä, Finland
| | - Kirsi Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, FI-00014, Finland
- Obesity Centre, Abdominal Centre, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, 33521, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Olli T. Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Graham L. Hall
- Telethon Kids Institute, Perth, Australia
- School of Physiotherapy and Exercise Science, Faculty of Health Sciences, Curtin University, Perth, Australia
| | - Peter D. Sly
- Children's Health and Environment Program, The University of Queensland, Brisbane, Australia
| | - Craig E. Pennell
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Callaghan, Australia
| | - Jaakko Kaprio
- Institute for Molecular Medicine FIMM, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Public Health, University of Helsinki, Helsinki, FI-00014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, 33520, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center - Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33014, Finland
| | - Veronique Vitart
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ian J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Debbie Jarvis
- Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College London, London, UK
- MRC-PHE Centre for the Environment and Health, London, UK
| | - James F. Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Tim Spector
- The Department of Twin Research & Genetic Epidemiology, King’s College London, St Thomas’ Campus, Lambeth Palace Road, London, UK
| | - Nicole Probst-Hensch
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Nicholas J. Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge, CB2 0QQ, UK
| | - Henry Völzke
- Intitute for Community Medicine, University Medicine Greifswald, Greifswald, 17487, Germany
| | - John Henderson
- Population Health Sciences Bristol Medical School, University of Bristol, Bristol, BS8 2BN, UK
| | - David P. Strachan
- Population Health Research Institute, St George's, University of London, London, SW17 0RE, UK
| | - Ben M. Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ian P. Hall
- Division of Respiratory Medicine and NIHR-Nottingham Biomedical Research Centre, University of Nottingham, Nottingham, UK
| | - Martin D. Tobin
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| | - Louise V. Wain
- Department of Health Sciences, University of Leicester, Leicester, LE1 7RH, UK
- National Institute for Health Research, Leicester Respiratory Biomedical Research Centre, Glenfield Hospital, Leicester, LE3 9QP, UK
| |
Collapse
|
42
|
Ma X, Wu Y, Zhang L, Yuan W, Yan L, Fan S, Lian Y, Zhu X, Gao J, Zhao J, Zhang P, Tang H, Jia W. Comparison and development of machine learning tools for the prediction of chronic obstructive pulmonary disease in the Chinese population. J Transl Med 2020; 18:146. [PMID: 32234053 PMCID: PMC7110698 DOI: 10.1186/s12967-020-02312-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a major public health problem and cause of mortality worldwide. However, COPD in the early stage is usually not recognized and diagnosed. It is necessary to establish a risk model to predict COPD development. Methods A total of 441 COPD patients and 192 control subjects were recruited, and 101 single-nucleotide polymorphisms (SNPs) were determined using the MassArray assay. With 5 clinical features as well as SNPs, 6 predictive models were established and evaluated in the training set and test set by the confusion matrix AU-ROC, AU-PRC, sensitivity (recall), specificity, accuracy, F1 score, MCC, PPV (precision) and NPV. The selected features were ranked. Results Nine SNPs were significantly associated with COPD. Among them, 6 SNPs (rs1007052, OR = 1.671, P = 0.010; rs2910164, OR = 1.416, P < 0.037; rs473892, OR = 1.473, P < 0.044; rs161976, OR = 1.594, P < 0.044; rs159497, OR = 1.445, P < 0.045; and rs9296092, OR = 1.832, P < 0.045) were risk factors for COPD, while 3 SNPs (rs8192288, OR = 0.593, P < 0.015; rs20541, OR = 0.669, P < 0.018; and rs12922394, OR = 0.651, P < 0.022) were protective factors for COPD development. In the training set, KNN, LR, SVM, DT and XGboost obtained AU-ROC values above 0.82 and AU-PRC values above 0.92. Among these models, XGboost obtained the highest AU-ROC (0.94), AU-PRC (0.97), accuracy (0.91), precision (0.95), F1 score (0.94), MCC (0.77) and specificity (0.85), while MLP obtained the highest sensitivity (recall) (0.99) and NPV (0.87). In the validation set, KNN, LR and XGboost obtained AU-ROC and AU-PRC values above 0.80 and 0.85, respectively. KNN had the highest precision (0.82), both KNN and LR obtained the same highest accuracy (0.81), and KNN and LR had the same highest F1 score (0.86). Both DT and MLP obtained sensitivity (recall) and NPV values above 0.94 and 0.84, respectively. In the feature importance analyses, we identified that AQCI, age, and BMI had the greatest impact on the predictive abilities of the models, while SNPs, sex and smoking were less important. Conclusions The KNN, LR and XGboost models showed excellent overall predictive power, and the use of machine learning tools combining both clinical and SNP features was suitable for predicting the risk of COPD development.
Collapse
Affiliation(s)
- Xia Ma
- Department of Pulmonary and Critical Care Medicine, General Hospital of Datong Coal Mine Group Co., Ltd., Datong, 037000, China.,Department of Pulmonary and Critical Care Medicine, The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yanping Wu
- Department of Respiratory, General Hospital of Tisco (Sixth Hospital of Shanxi Medical University), 2 Yingxin Street, Jiancaoping District, Taiyuan, 030008, Shanxi Province, China
| | - Ling Zhang
- Department of Respiratory, Linfen People's Hospital, Linfen, 041000, China
| | - Weilan Yuan
- Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Li Yan
- Department of Respiratory Medicine, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Sha Fan
- Department of Respiratory Medicine, Heji Hospital Affiliated with Changzhi Medical College, Changzhi, 046011, China
| | - Yunzhi Lian
- Department of Clinical Laboratory, JinCheng People's Hospital, Jincheng, 048000, China
| | - Xia Zhu
- Department of Respiratory, General Hospital of Tisco (Sixth Hospital of Shanxi Medical University), 2 Yingxin Street, Jiancaoping District, Taiyuan, 030008, Shanxi Province, China
| | - Junhui Gao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Jiangman Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China.,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China
| | - Ping Zhang
- Department of Clinical Laboratory, Linfen People's Hospital, West of Rainbow Bridge, West Binhe Road, Yaodu District, Linfen, 041000, Shanxi Province, China.
| | - Hui Tang
- Shanghai Biotecan Pharmaceuticals Co., Ltd., 180 Zhangheng Road, Shanghai, 201204, China. .,Shanghai Zhangjiang Institute of Medical Innovation, Shanghai, 201204, China.
| | - Weihua Jia
- Department of Respiratory, General Hospital of Tisco (Sixth Hospital of Shanxi Medical University), 2 Yingxin Street, Jiancaoping District, Taiyuan, 030008, Shanxi Province, China.
| |
Collapse
|
43
|
Maiorino E, Baek SH, Guo F, Zhou X, Kothari PH, Silverman EK, Barabási AL, Weiss ST, Raby BA, Sharma A. Discovering the genes mediating the interactions between chronic respiratory diseases in the human interactome. Nat Commun 2020; 11:811. [PMID: 32041952 PMCID: PMC7010776 DOI: 10.1038/s41467-020-14600-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 01/17/2020] [Indexed: 12/21/2022] Open
Abstract
The molecular and clinical features of a complex disease can be influenced by other diseases affecting the same individual. Understanding disease-disease interactions is therefore crucial for revealing shared molecular mechanisms among diseases and designing effective treatments. Here we introduce Flow Centrality (FC), a network-based approach to identify the genes mediating the interaction between two diseases in a protein-protein interaction network. We focus on asthma and COPD, two chronic respiratory diseases that have been long hypothesized to share common genetic determinants and mechanisms. We show that FC highlights potential mediator genes between the two diseases, and observe similar outcomes when applying FC to 66 additional pairs of related diseases. Further, we perform in vitro perturbation experiments on a widely replicated asthma gene, GSDMB, showing that FC identifies candidate mediators of the interactions between GSDMB and COPD-associated genes. Our results indicate that FC predicts promising gene candidates for further study of disease-disease interactions.
Collapse
Affiliation(s)
- Enrico Maiorino
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Network Science Institute, Center for Complex Network Research, Department of Physics, Northeastern University, Boston, MA, USA.
| | - Seung Han Baek
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Feng Guo
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaobo Zhou
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Parul H Kothari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Albert-László Barabási
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Network Science Institute, Center for Complex Network Research, Department of Physics, Northeastern University, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin A Raby
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Amitabh Sharma
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
44
|
Abstract
Chronic Obstructive Pulmonary Disease (COPD) and Idiopathic Pulmonary Fibrosis (IPF) have contrasting clinical and pathological characteristics and interesting whole-genome transcriptomic profiles. However, data from public repositories are difficult to reprocess and reanalyze. Here, we present PulmonDB, a web-based database (http://pulmondb.liigh.unam.mx/) and R library that facilitates exploration of gene expression profiles for these diseases by integrating transcriptomic data and curated annotation from different sources. We demonstrated the value of this resource by presenting the expression of already well-known genes of COPD and IPF across multiple experiments and the results of two differential expression analyses in which we successfully identified differences and similarities. With this first version of PulmonDB, we create a new hypothesis and compare the two diseases from a transcriptomics perspective.
Collapse
|
45
|
Abstract
Genome-wide association studies (GWAS) have identified more than 20 genomic regions associated with chronic obstructive pulmonary disease (COPD) susceptibility. However, the functional genetic variants within these COPD GWAS loci remain largely unidentified, thus limiting translation of these GWAS discoveries to new disease insights. Whole-exome and whole-genome sequencing studies have the potential to identify rare genetic determinants of COPD. Efforts to understand the biological effects of novel COPD genetic loci include gene-targeted murine models, integration of additional omics data (including transcriptomics and epigenetics), and functional variant identification. COPD genetic determinants likely act through biological networks, and a variety of network-based approaches have been used to gain insights into COPD susceptibility and heterogeneity.
Collapse
|
46
|
Abstract
Although chronic obstructive pulmonary disease (COPD) risk is strongly influenced by cigarette smoking, genetic factors are also important determinants of COPD. In addition to Mendelian syndromes such as alpha-1 antitrypsin deficiency, many genomic regions that influence COPD susceptibility have been identified in genome-wide association studies. Similarly, multiple genomic regions associated with COPD-related phenotypes, such as quantitative emphysema measures, have been found. Identifying the functional variants and key genes within these association regions remains a major challenge. However, newly identified COPD susceptibility genes are already providing novel insights into COPD pathogenesis. Network-based approaches that leverage these genetic discoveries have the potential to assist in decoding the complex genetic architecture of COPD.
Collapse
Affiliation(s)
- Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
47
|
Sasai N, Toriyama M, Kondo T. Hedgehog Signal and Genetic Disorders. Front Genet 2019; 10:1103. [PMID: 31781166 PMCID: PMC6856222 DOI: 10.3389/fgene.2019.01103] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
The hedgehog (Hh) family comprises sonic hedgehog (Shh), Indian hedgehog (Ihh), and desert hedgehog (Dhh), which are versatile signaling molecules involved in a wide spectrum of biological events including cell differentiation, proliferation, and survival; establishment of the vertebrate body plan; and aging. These molecules play critical roles from embryogenesis to adult stages; therefore, alterations such as abnormal expression or mutations of the genes involved and their downstream factors cause a variety of genetic disorders at different stages. The Hh family involves many signaling mediators and functions through complex mechanisms, and achieving a comprehensive understanding of the entire signaling system is challenging. This review discusses the signaling mediators of the Hh pathway and their functions at the cellular and organismal levels. We first focus on the roles of Hh signaling mediators in signal transduction at the cellular level and the networks formed by these factors. Then, we analyze the spatiotemporal pattern of expression of Hh pathway molecules in tissues and organs, and describe the phenotypes of mutant mice. Finally, we discuss the genetic disorders caused by malfunction of Hh signaling-related molecules in humans.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Michinori Toriyama
- Systems Neurobiology and Medicine, Division of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
48
|
Bártholo TP, Porto LC, Pozzan R, Nascimento A, Da Costa CH. Evaluation Of HHIP Polymorphisms And Their Relationship With Chronic Obstructive Pulmonary Disease Phenotypes. Int J Chron Obstruct Pulmon Dis 2019; 14:2267-2272. [PMID: 31631996 PMCID: PMC6781601 DOI: 10.2147/copd.s213519] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/16/2019] [Indexed: 01/01/2023] Open
Abstract
Purpose We aimed to correlate three polymorphisms of the Hedgehog Interacting Protein (HHIP) gene with the three main phenotypes of the chronic obstructive pulmonary disease (frequent exacerbator (FE), asthma/COPD overlap (ACO), and emphysema with hyperinflation). Patients and methods A cross-sectional study was carried out in the Department of Pulmonology at the Rio de Janeiro State University from February 2015 to July 2018. A total of 81 patients diagnosed with COPD according to the criteria of the Global Initiative for Chronic Obstructive Lung Disease (GOLD) were enrolled. The subjects were divided into three distinct groups according to their phenotypes (FE, ACO and emphysema-hyperinflation). Three polymorphisms of the HHIP gene that are often reported as allegedly involved in the pathogenesis of COPD were analysed: rs1828591, rs13118928, and rs6537296. Real-time PCR - TAQMAN SNP Genotyping Assay was performed. The statistical analysis was carried out with the SPSS program with a multivariate analysis with a 95% confidence interval. Results An increase in the frequency of the A allele of the rs13118928 HHIP gene polymorphism was observed in the group of subjects with COPD and emphysema-hyperinflation phenotype when compared with those in the FE phenotype (p=0.019) and subjects with ACO (p=0.04). However, the subjects with emphysema-hyperinflation phenotype presented more often the A allele (p=0.04). The genotypic analysis confirmed the difference between the emphysema-hyperinflation and ACO phenotypes, with a higher prevalence of the AA genotype in the emphysema-hyperinflation group (p=0.04). The ACO and FE phenotype subjects showed no difference in these polymorphisms. No difference was found in the frequency of the polymorphisms rs1828591 (p= 0.552) and rs6537296 (p=0.296) in the three phenotypes evaluated. Conclusion The presence of the A allele in the rs13118928 polymorphism of the HHIP gene may be related to the emphysema-hyperinflation phenotype.
Collapse
Affiliation(s)
- Thiago Prudente Bártholo
- Department of Pulmonology and Tisiology, Rio De Janeiro State University (UERJ), Rio De Janeiro, Brazil
| | - Luis Cristovão Porto
- Laboratory of Histocompatibility and Cryopreservation, UERJ, Rio De Janeiro, Brazil
| | - Roberto Pozzan
- Department of Cardiology, Piquet Carneiro Polyclinic, UERJ, Rio De Janeiro, Brazil
| | - Adriana Nascimento
- Laboratory of Histocompatibility and Cryopreservation, UERJ, Rio De Janeiro, Brazil
| | - Claudia Henrique Da Costa
- Coordinator of the Department of Pulmonology and Tisiology, Faculty of Medical Sciences, UERJ, Rio De Janeiro, Brazil
| |
Collapse
|
49
|
Ranjan A, Singh A, Walia GK, Sachdeva MP, Gupta V. Genetic underpinnings of lung function and COPD. J Genet 2019; 98:76. [PMID: 31544798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spirometry based measurement of lung function is a global initiative for chronic obstructive lung disease (GOLD) standard to diagnose chronic obstructive pulmonary disease (COPD), one of the leading causes of mortality worldwide. The environmental and behavioural risk factors for COPD includes tobacco smoking, air pollutants and biomass fuel exposure, which can induce one or more abnormal lung function patterns. While smoking remains the primary risk factor, only 15-20% smokers develop COPD, indicating that the genetic factors are also likely to play a role. According to the study of Global Burden of Disease 2015, ∼174 million people across the world have COPD. From a comprehensive literature search conducted using the 'PubMed' and 'GWAS Catalogue' databases, and reviewing the literature available, only a limited number of studies were identified which had attempted to investigate the genetics of COPD and lung volumes, implying a huge research gap. With the advent of genomewide association studies several genetic variants linked to lung function and COPD, like HHIP, HTR4, ADAM19 and GSTCD etc., have been found and validated in different population groups, suggesting their potential role in determining lung volume and risk for COPD. This article aims at reviewing the present knowledge of the genetics of lung function and COPD.
Collapse
Affiliation(s)
- Astha Ranjan
- Department of Anthropology, University of Delhi, Delhi 110 007, India.
| | | | | | | | | |
Collapse
|
50
|
Ranjan A, Singh A, Walia GK, Sachdeva MP, Gupta V. Genetic underpinnings of lung function and COPD. J Genet 2019. [DOI: 10.1007/s12041-019-1119-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|