1
|
Roig J. NEK8, a NIMA-family protein kinase at the core of the ciliary INV complex. Cell Commun Signal 2025; 23:170. [PMID: 40189576 PMCID: PMC11974183 DOI: 10.1186/s12964-025-02143-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Here we describe the current knowledge about the ciliary kinase NEK8, highlighting what we know and what we don't know about its regulation, substrates and potential functions. We also review the literature about the pathological consequences of different NEK8 variants in patients of nephronophthisis, renal-hepatic-pancreatic dysplasia and autosomal dominant polycystic kidney disease, three different types of ciliopathies. NEK8 belongs to the NIMA family of serine/threonine protein kinases. Like its closest relative, NEK9, it contains a protein kinase and an RCC1 domain, but lacks the C-terminal region that is key for NEK9's regulation as a G2/M kinase. Importantly, NEK8 localizes to cilia as part of a multimeric protein complex that assembles in a fibrillar fashion at the proximal half of this signaling organelle, defining what is known as the INV compartment. NEK8 and its INV compartment partners inversin, ANKS6 and NPHP3 are necessary for left-right determination and the correct development of different organs such as the kidney, the heart and the liver. But the kinase substrates, regulatory mechanism and activating cues and thus the molecular basis of NEK8 important physiological roles remain elusive. We present the current findings regarding NEK8 and also highlight what we miss in order to progress towards the understanding of the kinase and the function of the INV complex at the cilia.
Collapse
Affiliation(s)
- Joan Roig
- Department of Cells and Tissues, Cell Cycle and Signaling Research Group, Molecular Biology Institute of Barcelona (IBMB-CSIC), Baldiri I Reixac 10-12, Barcelona, 08028, Spain.
| |
Collapse
|
2
|
Scholes G, Prawer Y, Ryan J, Verma K, Jayasinghe K. Exploring new gene-disease associations in polycystic kidney disease: a case report highlighting the importance of a precise genomic diagnosis. J Nephrol 2025; 38:765-769. [PMID: 39382785 DOI: 10.1007/s40620-024-02113-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024]
Affiliation(s)
- Gemma Scholes
- Department of Nephrology, Monash Health, Clayton, VIC, Australia.
| | - Yael Prawer
- Department of Genetics, Monash Health, Clayton, VIC, Australia
| | - Jessica Ryan
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
| | - Kunal Verma
- Department of Genetics, Monash Health, Clayton, VIC, Australia
| | - Kushani Jayasinghe
- Department of Nephrology, Monash Health, Clayton, VIC, Australia
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
3
|
Turner JL, Moore G, McCraw TJ, Mason JM. Overexpression of the NEK8 kinase inhibits homologous recombination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637121. [PMID: 39975112 PMCID: PMC11839122 DOI: 10.1101/2025.02.07.637121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Homologous recombination maintains genome stability by repairing double strand breaks and protecting replication fork stability. Defects in homologous recombination results in cancer predisposition but can be exploited due to increased sensitivity to certain chemotherapeutics such as PARP inhibitors. The NEK8 kinase has roles in the replication response and homologous recombination. NEK8 is overexpressed in breast cancer, but the impact of NEK8 overexpression on homologous recombination has not been determined. Here, we demonstrate NEK8 overexpression inhibits RAD51 focus formation resulting in a defect in homologous recombination and degradation of stalled replication forks. Importantly, NEK8 overexpression sensitizes cells to the PARP inhibitor, Olaparib. Together, our results suggest NEK8 overexpressing tumors may be recombination-deficient and respond to chemotherapeutics that target defects in recombination such as Olaparib.
Collapse
Affiliation(s)
| | - Georgia Moore
- Department of Genetics and Biochemistry, Clemson University
| | | | | |
Collapse
|
4
|
Kim EN, Li FQ, Takemaru KI. ciBAR1 loss in mice causes laterality defects, pancreatic degeneration, and altered glucose tolerance. Life Sci Alliance 2025; 8:e202402916. [PMID: 39622622 PMCID: PMC11612972 DOI: 10.26508/lsa.202402916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
Bin/Amphiphysin/Rvs (BAR) domains are highly conserved domains found in all eukaryotes. BAR domain proteins form crescent-shaped dimers that sense and sculpt curved lipid membranes and play key roles in various cellular processes. However, their functions in mammalian development are poorly understood. We previously demonstrated that Chibby1-interacting BAR domain-containing 1 (ciBAR1, formerly known as FAM92A) localizes to the ciliary base and plays a critical role in ciliogenesis. Here, we report ciliopathy phenotypes of ciBAR1-KO mice. We found that ∼28% of ciBAR1-KO mice show embryonic lethality because of randomized left-right asymmetry; the rest survive into adulthood with no gross morphological abnormalities. Histological assessments of ciliated tissues revealed exocrine pancreatic lesions. Although overall endocrine islet morphology appeared to be normal, ciBAR1-KO mice showed impaired glucose tolerance. Examination of ductal and islet cilia revealed that cilia number and length were significantly reduced in ciBAR1-KO pancreata. ciBAR1-KO MEFs also exhibited ciliary defects. Our findings indicate that ciBAR1 plays a critical role in ciliogenesis depending on the tissue and cell type in mice.
Collapse
Affiliation(s)
- Eunice N Kim
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Feng-Qian Li
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Ken-Ichi Takemaru
- Molecular and Cellular Biology Graduate Program, Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
5
|
Beyrent E, Wei DT, Beacham GM, Park S, Zheng J, Paszek MJ, Hollopeter G. Dimerization activates the Inversin complex in C. elegans. Mol Biol Cell 2024; 35:ar127. [PMID: 39110529 PMCID: PMC11481705 DOI: 10.1091/mbc.e24-05-0218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 09/21/2024] Open
Abstract
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through the characterization of hyperactive alleles in C. elegans, we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologues of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states - an active dimer and an inactive monomer - gates the output of the Inversin complex.
Collapse
Affiliation(s)
- Erika Beyrent
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Derek T. Wei
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Gwendolyn M. Beacham
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| | - Sangwoo Park
- Field of Biophysics, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Jian Zheng
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Matthew J. Paszek
- Field of Biophysics, Cornell University, Ithaca, NY 14853
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
| | - Gunther Hollopeter
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
- Field of Biochemistry, Molecular, and Cell Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
Wolf MTF, Bonsib SM, Larsen CP, Hildebrandt F. Nephronophthisis: a pathological and genetic perspective. Pediatr Nephrol 2024; 39:1977-2000. [PMID: 37930417 DOI: 10.1007/s00467-023-06174-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 11/07/2023]
Abstract
Nephronophthisis (NPHP) is an autosomal recessive cystic kidney disease and is one of the most frequent genetic causes for kidney failure (KF) in children and adolescents. Over 20 genes cause NPHP and over 90 genes contribute to renal ciliopathies often involving multiple organs. About 15-20% of NPHP patients have additional extrarenal symptoms affecting other organs than the kidneys. The involvement of additional organ systems in syndromic forms of NPHP is explained by shared expression of most NPHP gene products in centrosomes and primary cilia, a sensory organelle present in most mammalian cells. This finding resulted in the classification of NPHP as a ciliopathy. If extrarenal symptoms are present in addition to NPHP, these disorders are defined as NPHP-related ciliopathies (NPHP-RC) and can involve the retina (e.g., with Senior-Løken syndrome), CNS (central nervous system) (e.g., with Joubert syndrome), liver (e.g., Boichis and Arima syndromes), or bone (e.g., Mainzer-Saldino and Sensenbrenner syndromes). This review focuses on the pathological findings and the recent genetic advances in NPHP and NPHP-RC. Different mechanisms and signaling pathways are involved in NPHP ranging from planar cell polarity, sonic hedgehog signaling (Shh), DNA damage response pathway, Hippo, mTOR, and cAMP signaling. A number of therapeutic interventions appear to be promising, ranging from vasopressin receptor 2 antagonists such as tolvaptan, cyclin-dependent kinase inhibitors such as roscovitine, Hh agonists such as purmorphamine, and mTOR inhibitors such as rapamycin.
Collapse
Affiliation(s)
- Matthias T F Wolf
- Division of Pediatric Nephrology, University of Texas, Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
- Division of Pediatric Nephrology, C.S. Mott Children's Hospital, University of Michigan, 1150 W. Medical Center Dr, Ann Arbor, MI, 48109, USA.
| | | | | | | |
Collapse
|
7
|
Tory K. The dominant findings of a recessive man: from Mendel's kid pea to kidney. Pediatr Nephrol 2024; 39:2049-2059. [PMID: 38051388 PMCID: PMC11147900 DOI: 10.1007/s00467-023-06238-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
The research of Mendel, born two centuries ago, still has many direct implications for our everyday clinical work. He introduced the terms "dominant" and "recessive" characters and determined their 3:1 ratio in the offspring of heterozygous "hybrid" plants. This distribution allowed calculation of the number of the phenotype-determining "elements," i.e., the alleles, and has been used ever since to prove the monogenic origin of a disorder. The Mendelian inheritance of monogenic kidney disorders is still of great help in distinguishing them from those with multifactorial origin in clinical practice. Inheritance of most monogenic kidney disorders fits to Mendel's observations: the equal contribution of the two parents and the complete penetrance or the direct correlation between the frequency of the recessive character and the degree of inbreeding. Nevertheless, beyond the truth of these basic concepts, several observations have expanded their genetic characteristics. The extreme genetic heterogeneity, the pleiotropy of the causal genes and the role of modifiers in ciliopathies, the digenic inheritance and parental imprinting in some tubulopathies, and the incomplete penetrance and eventual interallelic interactions in podocytopathies, reflect this expansion. For all these reasons, the transmission pattern in a natural setting may depend not only on the "character" but also on the causal gene and the variant. Mendel's passion for research combined with his modest personality and meticulous approach can still serve as an example in the work required to understand the non-Mendelian universe of genetics.
Collapse
Affiliation(s)
- Kálmán Tory
- MTA-SE Lendület Nephrogenetic Laboratory, Hungarian Academy of Sciences, Budapest, Hungary.
- Pediatric Center, MTA Center of Excellence, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
8
|
Beyrent E, Wei DT, Beacham GM, Park S, Zheng J, Paszek MJ, Hollopeter G. Dimerization activates the Inversin complex in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594761. [PMID: 38798613 PMCID: PMC11118560 DOI: 10.1101/2024.05.17.594761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Genetic, colocalization, and biochemical studies suggest that the ankyrin repeat-containing proteins Inversin (INVS) and ANKS6 function with the NEK8 kinase to control tissue patterning and maintain organ physiology. It is unknown whether these three proteins assemble into a static "Inversin complex" or one that adopts multiple bioactive forms. Through characterization of hyperactive alleles in C. elegans , we discovered that the Inversin complex is activated by dimerization. Genome engineering of an RFP tag onto the nematode homologs of INVS (MLT-4) and NEK8 (NEKL-2) induced a gain-of-function, cyst-like phenotype that was suppressed by monomerization of the fluorescent tag. Stimulated dimerization of MLT-4 or NEKL-2 using optogenetics was sufficient to recapitulate the phenotype of a constitutively active Inversin complex. Further, dimerization of NEKL-2 bypassed a lethal MLT-4 mutant, demonstrating that the dimeric form is required for function. We propose that dynamic switching between at least two functionally distinct states-an active dimer and an inactive monomer-gates the output of the Inversin complex.
Collapse
|
9
|
Wessels A. Molecular Pathways and Animal Models of Atrioventricular Septal Defect. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:573-583. [PMID: 38884733 DOI: 10.1007/978-3-031-44087-8_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The development of a fully functional four-chambered heart is critically dependent on the correct formation of the structures that separate the atrial and ventricular chambers. Perturbation of this process typically results in defects that allow mixing of oxygenated and deoxygenated blood. Atrioventricular septal defects (AVSD) form a class of congenital heart malformations that are characterized by the presence of a primary atrial septal defect (pASD), a common atrioventricular valve (cAVV), and frequently also a ventricular septal defect (VSD). While AVSD were historically considered to result from failure of the endocardial atrioventricular cushions to properly develop and fuse, more recent studies have determined that inhibition of the development of other components of the atrioventricular mesenchymal complex can lead to AVSDs as well. The role of the dorsal mesenchymal protrusion (DMP) in AVSD pathogenesis has been well-documented in studies using animal models for AVSDs, and in addition, preliminary data suggest that the mesenchymal cap situated on the leading edge of the primary atrial septum may be involved in certain situations as well. In this chapter, we review what is currently known about the molecular mechanisms and animal models that are associated with the pathogenesis of AVSD.
Collapse
Affiliation(s)
- Andy Wessels
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
10
|
Yamagishi H. Human Genetics of Truncus Arteriosus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:841-852. [PMID: 38884753 DOI: 10.1007/978-3-031-44087-8_51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Integrated human genetics and molecular/developmental biology studies have revealed that truncus arteriosus is highly associated with 22q11.2 deletion syndrome. Other congenital malformation syndromes and variants in genes encoding TBX, GATA, and NKX transcription factors and some signaling proteins have also been reported as its etiology.
Collapse
Affiliation(s)
- Hiroyuki Yamagishi
- Division of Pediatric Cardiology, Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Liu K, Chen R, Wang X, Gong Y, Shi J, Gu B, Zhou Y, Cai W. Biallelic ANKS6 null variants cause notable extrarenal phenotypes in a nephronophthisis patient and lead to hepatobiliary abnormalities by YAP1 deficiency. Clin Genet 2023; 104:625-636. [PMID: 37525964 DOI: 10.1111/cge.14412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023]
Abstract
The ankyrin repeat and sterile alpha motif domain containing 6 (ANKS6) gene, encoding an inversin compartment protein of the primary cilium, was recently reported as a pathogenic gene of nephronophthisis (MIM PS256100). Extrarenal manifestations are frequently observed in this disease, however, potential genotype-phenotype correlations and the underlying mechanisms remain poorly understood. Here we described an infant with kidney failure, hepatobiliary abnormalities, and heart disease, in whom whole exome sequencing identified compound heterozygous variants in ANKS6, including a novel nonsense variant p.Trp458* and a recurrent splicing variant c.2394+1G > A. mRNA expression studies showed that the splicing variant caused aberrant mRNA splicing with exon 13 skipping and the biallelic variants were predicted to cause loss of ANKS6 function. We systematically characterized the clinical and genetic spectra of the disease and revealed that biallelic null variants in ANKS6 cause more severe kidney disease and more extrarenal manifestations, thus establishing a clear genotype-phenotype correlation for the disease. Further evaluations showed that ANKS6 deficiency reduced YAP1 expression in the patient's bile duct epithelium and ANKS6 promotes YAP1 transcriptional activity in a dose-dependent manner, indicating that loss of ANKS6 function causes hepatobiliary abnormalities through YAP1 deficiency during biliary morphogenesis and development, which may offer new therapeutic targets.
Collapse
Affiliation(s)
- Keqiang Liu
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ru Chen
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoying Wang
- Department of Pathology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Gong
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Shi
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beilin Gu
- Shanghai Institute for Pediatric Research, Shanghai, China
| | - Ying Zhou
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
- Shanghai Institute for Pediatric Research, Shanghai, China
| |
Collapse
|
12
|
Gopalakrishnan J, Feistel K, Friedrich BM, Grapin‐Botton A, Jurisch‐Yaksi N, Mass E, Mick DU, Müller R, May‐Simera H, Schermer B, Schmidts M, Walentek P, Wachten D. Emerging principles of primary cilia dynamics in controlling tissue organization and function. EMBO J 2023; 42:e113891. [PMID: 37743763 PMCID: PMC10620770 DOI: 10.15252/embj.2023113891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/07/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023] Open
Abstract
Primary cilia project from the surface of most vertebrate cells and are key in sensing extracellular signals and locally transducing this information into a cellular response. Recent findings show that primary cilia are not merely static organelles with a distinct lipid and protein composition. Instead, the function of primary cilia relies on the dynamic composition of molecules within the cilium, the context-dependent sensing and processing of extracellular stimuli, and cycles of assembly and disassembly in a cell- and tissue-specific manner. Thereby, primary cilia dynamically integrate different cellular inputs and control cell fate and function during tissue development. Here, we review the recently emerging concept of primary cilia dynamics in tissue development, organization, remodeling, and function.
Collapse
Affiliation(s)
- Jay Gopalakrishnan
- Institute for Human Genetics, Heinrich‐Heine‐UniversitätUniversitätsklinikum DüsseldorfDüsseldorfGermany
| | - Kerstin Feistel
- Department of Zoology, Institute of BiologyUniversity of HohenheimStuttgartGermany
| | | | - Anne Grapin‐Botton
- Cluster of Excellence Physics of Life, TU DresdenDresdenGermany
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU DresdenDresdenGermany
| | - Nathalie Jurisch‐Yaksi
- Department of Clinical and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
| | - Elvira Mass
- Life and Medical Sciences Institute, Developmental Biology of the Immune SystemUniversity of BonnBonnGermany
| | - David U Mick
- Center for Molecular Signaling (PZMS), Center of Human and Molecular Biology (ZHMB)Saarland School of MedicineHomburgGermany
| | - Roman‐Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Helen May‐Simera
- Institute of Molecular PhysiologyJohannes Gutenberg‐UniversityMainzGermany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging‐Associated Diseases (CECAD), Faculty of Medicine and University Hospital CologneUniversity of CologneCologneGermany
| | - Miriam Schmidts
- Pediatric Genetics Division, Center for Pediatrics and Adolescent MedicineUniversity Hospital FreiburgFreiburgGermany
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
| | - Peter Walentek
- CIBSS‐Centre for Integrative Biological Signalling StudiesUniversity of FreiburgFreiburgGermany
- Renal Division, Internal Medicine IV, Medical CenterUniversity of FreiburgFreiburgGermany
| | - Dagmar Wachten
- Institute of Innate Immunity, Biophysical Imaging, Medical FacultyUniversity of BonnBonnGermany
| |
Collapse
|
13
|
Claus LR, Chen C, Stallworth J, Turner JL, Slaats GG, Hawks AL, Mabillard H, Senum SR, Srikanth S, Flanagan-Steet H, Louie RJ, Silver J, Lerner-Ellis J, Morel C, Mighton C, Sleutels F, van Slegtenhorst M, van Ham T, Brooks AS, Dorresteijn EM, Barakat TS, Dahan K, Demoulin N, Goffin EJ, Olinger E, Larsen M, Hertz JM, Lilien MR, Obeidová L, Seeman T, Stone HK, Kerecuk L, Gurgu M, Yousef Yengej FA, Ammerlaan CME, Rookmaaker MB, Hanna C, Rogers RC, Duran K, Peters E, Sayer JA, van Haaften G, Harris PC, Ling K, Mason JM, van Eerde AM, Steet R. Certain heterozygous variants in the kinase domain of the serine/threonine kinase NEK8 can cause an autosomal dominant form of polycystic kidney disease. Kidney Int 2023; 104:995-1007. [PMID: 37598857 PMCID: PMC10592035 DOI: 10.1016/j.kint.2023.07.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/22/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) resulting from pathogenic variants in PKD1 and PKD2 is the most common form of PKD, but other genetic causes tied to primary cilia function have been identified. Biallelic pathogenic variants in the serine/threonine kinase NEK8 cause a syndromic ciliopathy with extra-kidney manifestations. Here we identify NEK8 as a disease gene for ADPKD in 12 families. Clinical evaluation was combined with functional studies using fibroblasts and tubuloids from affected individuals. Nek8 knockout mouse kidney epithelial (IMCD3) cells transfected with wild type or variant NEK8 were further used to study ciliogenesis, ciliary trafficking, kinase function, and DNA damage responses. Twenty-one affected monoallelic individuals uniformly exhibited cystic kidney disease (mostly neonatal) without consistent extra-kidney manifestations. Recurrent de novo mutations of the NEK8 missense variant p.Arg45Trp, including mosaicism, were seen in ten families. Missense variants elsewhere within the kinase domain (p.Ile150Met and p.Lys157Gln) were also identified. Functional studies demonstrated normal localization of the NEK8 protein to the proximal cilium and no consistent cilia formation defects in patient-derived cells. NEK8-wild type protein and all variant forms of the protein expressed in Nek8 knockout IMCD3 cells were localized to cilia and supported ciliogenesis. However, Nek8 knockout IMCD3 cells expressing NEK8-p.Arg45Trp and NEK8-p.Lys157Gln showed significantly decreased polycystin-2 but normal ANKS6 localization in cilia. Moreover, p.Arg45Trp NEK8 exhibited reduced kinase activity in vitro. In patient derived tubuloids and IMCD3 cells expressing NEK8-p.Arg45Trp, DNA damage signaling was increased compared to healthy passage-matched controls. Thus, we propose a dominant-negative effect for specific heterozygous missense variants in the NEK8 kinase domain as a new cause of PKD.
Collapse
Affiliation(s)
- Laura R Claus
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Chuan Chen
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Joshua L Turner
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Gisela G Slaats
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alexandra L Hawks
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA
| | - Holly Mabillard
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Sarah R Senum
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Sujata Srikanth
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | - Raymond J Louie
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Josh Silver
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jordan Lerner-Ellis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada; Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Chantal Morel
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network and Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Mighton
- Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada; Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Frank Sleutels
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tjakko van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Eiske M Dorresteijn
- Department of Pediatric Nephrology, Erasmus University Medical Center, Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Karin Dahan
- Institute Pathology and Genetic, Center of Human Genetics, Charleroi, Belgium
| | - Nathalie Demoulin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eric Jean Goffin
- Division of Nephrology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Eric Olinger
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Martin Larsen
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Jens Michael Hertz
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Marc R Lilien
- Department of Pediatric Nephrology, Wilhelmina Children's Hospital, Utrecht, the Netherlands
| | - Lena Obeidová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Seeman
- Department of Pediatrics, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Pediatrics, University Hospital Ostrava, Ostrava, Czech Republic; Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Hillarey K Stone
- Division of Nephrology and Hypertension, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Larissa Kerecuk
- Birmingham Women's and Children's National Health Services (NHS) Foundation Trust, National Institute for Health Care and Research (NIHR) Clinical Research Network (CRN) West Midlands, Birmingham, UK
| | - Mihai Gurgu
- Fundeni Clinical Institute, Bucharest, Romania
| | - Fjodor A Yousef Yengej
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands; Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, Utrecht, the Netherlands
| | - Carola M E Ammerlaan
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands; Hubrecht Institute for Developmental Biology and Stem Cell Research-KNAW, Utrecht, the Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Christian Hanna
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA; Division of Pediatric Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - R Curtis Rogers
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA
| | - Karen Duran
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edith Peters
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John A Sayer
- Newcastle University, Translational and Clinical Research Institute, Newcastle upon Tyne, UK; Renal Services, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, UK; National Institute for Health and Care Research (NIHR) Biomedical Research Centre, Newcastle, UK
| | - Gijs van Haaften
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Peter C Harris
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA
| | - Kun Ling
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA; Division of Nephrology and Hypertension, Mayo Clinic, Rochester, Minnesota, USA.
| | - Jennifer M Mason
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, USA.
| | - Albertien M van Eerde
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands.
| | - Richard Steet
- Research Division, Greenwood Genetic Center, Greenwood, South Carolina, USA.
| |
Collapse
|
14
|
Cao B, Zhang K, Pan C, Dong Y, Lu F. NEK8 regulates colorectal cancer progression via phosphorylating MYC. Cell Commun Signal 2023; 21:209. [PMID: 37596667 PMCID: PMC10436496 DOI: 10.1186/s12964-023-01215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/04/2023] [Indexed: 08/20/2023] Open
Abstract
Radiotherapy and chemotherapy remain the mainstay of treatment for colorectal cancer (CRC), although their efficacy is limited. A detailed understanding of the molecular mechanisms underlying CRC progression could lead to the development of new therapeutic strategies. Although it has been established that MYC signaling is dysregulated in various human cancers, direct targeting MYC remains challenging due to its "undruggable" protein structure. Post-translational modification of proteins can affect their stability, activation, and subcellular localization. Hence, targeting the post-translational modification of MYC represents a promising approach to disrupting MYC signaling. Herein, we revealed that NEK8 positively regulates CRC progression by phosphorylating c-MYC protein at serine 405, which exhibited enhanced stability via polyubiquitination. Our findings shed light on the role of NEK8/MYC signaling in CRC progression, offering a novel and helpful target for colorectal cancer treatment. Video Abstract.
Collapse
Affiliation(s)
- Beibei Cao
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou City, China
| | - Kailun Zhang
- Zhengzhou University People's Hospital, Zhengzhou City, China
| | - Changjie Pan
- Zhengzhou University People's Hospital, Zhengzhou City, China
| | - Yifei Dong
- Zhengzhou University People's Hospital, Zhengzhou City, China
| | - Feng Lu
- Department of Breast Surgery, Henan Provincial People's Hospital, Zhengzhou City, China.
| |
Collapse
|
15
|
Tong L, Rao J, Yang C, Xu J, Lu Y, Zhang Y, Cang X, Xie S, Mao J, Jiang P. Mutational burden of XPNPEP3 leads to defects in mitochondrial complex I and cilia in NPHPL1. iScience 2023; 26:107446. [PMID: 37599822 PMCID: PMC10432713 DOI: 10.1016/j.isci.2023.107446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/29/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Nephronophthisis-like nephropathy-1 (NPHPL1) is a rare ciliopathy, caused by mutations of XPNPEP3. Despite a well-described monogenic etiology, the pathogenesis of XPNPEP3 associated with mitochondrial and ciliary function remains elusive. Here, we identified novel compound heterozygous mutations in NPHPL1 patients with renal lesion only or with extra bone cysts together. Patient-derived lymphoblasts carrying c.634G>A and c.761G>T together exhibit elevated mitochondrial XPNPEP3 levels via the reduction of mRNA degradation, leading to mitochondrial dysfunction in both urine tubular epithelial cells and lymphoblasts from patient. Mitochondrial XPNPEP3 was co-immunoprecipitated with respiratory chain complex I and was required for the stability and activity of complex I. Deletion of Xpnpep3 in mice resulted in lower activity of complex I, elongated primary cilium, and predisposition to tubular dilation and fibrosis under stress. Our findings provide valuable insights into the mitochondrial functions involved in the pathogenesis of NPHP.
Collapse
Affiliation(s)
- Lingxiao Tong
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jia Rao
- Department of Nephrology, Children’s Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| | - Chenxi Yang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Xu
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Yijun Lu
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuchen Zhang
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohui Cang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Xie
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
| | - Jianhua Mao
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Zhejiang Key Laboratory for Neonatal Diseases, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Pingping Jiang
- Department of Nephrology, The Children’s Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou, China
- Department of Human Genetics, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
16
|
Guan YT, Zhang C, Zhang HY, Wei WL, Yue W, Zhao W, Zhang DH. Primary cilia: Structure, dynamics, and roles in cancer cells and tumor microenvironment. J Cell Physiol 2023; 238:1788-1807. [PMID: 37565630 DOI: 10.1002/jcp.31092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
Despite the initiation of tumor arises from tumorigenic transformation signaling in cancer cells, cancer cell survival, invasion, and metastasis also require a dynamic and reciprocal association with extracellular signaling from tumor microenvironment (TME). Primary cilia are the antenna-like structure that mediate signaling sensation and transduction in different tissues and cells. Recent studies have started to uncover that the heterogeneous ciliation in cancer cells and cells from the TME in tumor growth impels asymmetric paracellular signaling in the TME, indicating the essential functions of primary cilia in homeostasis maintenance of both cancer cells and the TME. In this review, we discussed recent advances in the structure and assembly of primary cilia, and the role of primary cilia in tumor and TME formation, as well as the therapeutic potentials that target ciliary dynamics and signaling from the cells in different tumors and the TME.
Collapse
Affiliation(s)
- Yi-Ting Guan
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Chong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Hong-Yong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Wen-Lu Wei
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| | - Wei Yue
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhao
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
- Department of Posthodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, P. R. China
| | - Dong-Hui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang, P. R. China
| |
Collapse
|
17
|
Lee EY, Hughes JW. Rediscovering Primary Cilia in Pancreatic Islets. Diabetes Metab J 2023; 47:454-469. [PMID: 37105527 PMCID: PMC10404530 DOI: 10.4093/dmj.2022.0442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Primary cilia are microtubule-based sensory and signaling organelles on the surfaces of most eukaryotic cells. Despite their early description by microscopy studies, islet cilia had not been examined in the functional context until recent decades. In pancreatic islets as in other tissues, primary cilia facilitate crucial developmental and signaling pathways in response to extracellular stimuli. Many human developmental and genetic disorders are associated with ciliary dysfunction, some manifesting as obesity and diabetes. Understanding the basis for metabolic diseases in human ciliopathies has been aided by close examination of cilia action in pancreatic islets at cellular and molecular levels. In this article, we review the evidence for ciliary expression on islet cells, known roles of cilia in pancreas development and islet hormone secretion, and summarize metabolic manifestations of human ciliopathy syndromes. We discuss emerging data on primary cilia regulation of islet cell signaling and the structural basis of cilia-mediated cell crosstalk, and offer our interpretation on the role of cilia in glucose homeostasis and human diseases.
Collapse
Affiliation(s)
- Eun Young Lee
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jing W. Hughes
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Kang E, Kim HK, Lee HB, Han W. Never in mitosis gene A-related kinase-8 promotes proliferation, migration, invasion, and stemness of breast cancer cells via β-catenin signalling activation. Sci Rep 2023; 13:6829. [PMID: 37100815 PMCID: PMC10133229 DOI: 10.1038/s41598-023-32631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/30/2023] [Indexed: 04/28/2023] Open
Abstract
Never in mitosis gene A (NIMA)-related kinase-8 (NEK8) is involved in cell cycle progression, cytoskeleton development, and DNA damage repair. However, its role in breast cancer has not yet been explored. To investigate this, NEK8 was knocked down in MDA-MB-231, BT549, and HCC38 breast cancer cell lines. We observed a decrease in cell proliferation and colony formation owing to regulation of the G1/S and G2/M transitions. Furthermore, the expression of several cell cycle regulatory proteins was altered, including that of cyclin D1, cyclin B1, CDK4, CDK2, and surviving. NEK8 knockdown impaired cell migration and invasion as well as reduced the expression of epithelial-mesenchymal transition markers. Regarding stem-cell characteristics, NEK8 knockdown decreased the tumour sphere formation, aldehyde dehydrogenase activity, and stem-cell marker expression, including that of CD44, Sox2, Oct4a, and Nanog. Further analysis revealed that NEK8 interacts with β-catenin. Also, NEK8 knockdown promoted β-catenin degradation. NEK8-silenced MDA-MB-231 cells inhibited xenograft tumour growth, metastasis, and tumour initiation in vivo. Using the Oncomine and TNMplot public databases, we found a significant correlation between NEK8 overexpression and poor clinical outcomes in breast cancer patients. Thus, NEK8 may be a crucial regulator of breast cancer progression and a potential therapeutic target.
Collapse
Affiliation(s)
- Eunji Kang
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Hong-Kyu Kim
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Han-Byoel Lee
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea
| | - Wonshik Han
- Cancer Research Institute, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Department of Surgery, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
- Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Devlin L, Dhondurao Sudhindar P, Sayer JA. Renal ciliopathies: promising drug targets and prospects for clinical trials. Expert Opin Ther Targets 2023; 27:325-346. [PMID: 37243567 DOI: 10.1080/14728222.2023.2218616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
INTRODUCTION Renal ciliopathies represent a collection of genetic disorders characterized by deficiencies in the biogenesis, maintenance, or functioning of the ciliary complex. These disorders, which encompass autosomal dominant polycystic kidney disease (ADPKD), autosomal recessive polycystic kidney disease (ARPKD), and nephronophthisis (NPHP), typically result in cystic kidney disease, renal fibrosis, and a gradual deterioration of kidney function, culminating in kidney failure. AREAS COVERED Here we review the advances in basic science and clinical research into renal ciliopathies which have yielded promising small compounds and drug targets, within both preclinical studies and clinical trials. EXPERT OPINION Tolvaptan is currently the sole approved treatment option available for ADPKD patients, while no approved treatment alternatives exist for ARPKD or NPHP patients. Clinical trials are presently underway to evaluate additional medications in ADPKD and ARPKD patients. Based on preclinical models, other potential therapeutic targets for ADPKD, ARPKD, and NPHP look promising. These include molecules targeting fluid transport, cellular metabolism, ciliary signaling and cell-cycle regulation. There is a real and urgent clinical need for translational research to bring novel treatments to clinical use for all forms of renal ciliopathies to reduce kidney disease progression and prevent kidney failure.
Collapse
Affiliation(s)
- Laura Devlin
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - Praveen Dhondurao Sudhindar
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - John A Sayer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, UK
- Renal Services, Newcastle Upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle Upon Tyne, UK
| |
Collapse
|
20
|
Gunther K, Imseis EM, Samuel JP, Hillman EA, Ojala TH, Jahnukainen T, Hillman PR. Renal-hepatic-pancreatic dysplasia type 2: Perinatal lethal condition or a multisystemic disorder with variable expressivity. Mol Genet Genomic Med 2023; 11:e2135. [PMID: 36756677 PMCID: PMC10094071 DOI: 10.1002/mgg3.2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Renal-hepatic-pancreatic dysplasia type 2 (RHPD2) is a rare condition that has been described in the literature disproportionately in perinatal losses. The main features of liver and kidney involvement are well described, with cardiac malformations and cardiomyopathy adding additional variation to the phenotype. Many patients reported are within larger cohorts of congenital anomalies of kidney and urinary tract (CAKUT) or liver failure, and with minimal phenotypic and clinical course data. METHODS An independent series of phenotypes and prognosis was aggregated from the literature. In this literature review, we describe an additional patient with RHPD2, provide a clinical update on the oldest known living patient, and report the cumulative phenotypes from the existing published patients. RESULTS With now examining the 17 known patients in the literature, 13 died within the perinatal period-pregnancy to one year of life. Of the four cases living past the first year of life, one case died at 5 years secondary to renal failure, the other at 30 months secondary to liver and kidney failure. Two are currently alive and well at one year and 13 years. Two cases have had transplantation with one resulting in long-term survival. CONCLUSIONS These patients serve to expand the existing phenotype of RHPD2 as a perinatal lethal condition into a pediatric disorder with variable expressivity. Additionally, we introduce the consideration of transplantation and outcomes within this cohort and future patients.
Collapse
Affiliation(s)
- Kathryn Gunther
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Essam M Imseis
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Joyce P Samuel
- Department of Pediatrics, Division of Nephrology, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Elizabeth A Hillman
- Department of Pediatrics, Division of Neonatology, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| | - Tiina H Ojala
- Department of Pediatric Cardiology, Pediatric Research Center, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Jahnukainen
- Department of Pediatric Nephrology and Transplantation, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Paul R Hillman
- Department of Pediatrics, Division of Medical Genetics, McGovern Medical School at the University of Texas Health Science Center at Houston (UTHealth Houston) and Children's Memorial Hermann Hospital, Houston, Texas, USA
| |
Collapse
|
21
|
Panda DK, Bai X, Zhang Y, Stylianesis NA, Koromilas AE, Lipman ML, Karaplis AC. SCF-SKP2 E3 ubiquitin ligase links mTORC1/ER stress/ISR with YAP activation in murine renal cystogenesis. J Clin Invest 2022; 132:153943. [PMID: 36326820 PMCID: PMC9754004 DOI: 10.1172/jci153943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
The Hippo pathway nuclear effector Yes-associated protein (YAP) potentiates the progression of polycystic kidney disease (PKD) arising from ciliopathies. The mechanisms underlying the increase in YAP expression and transcriptional activity in PKD remain obscure. We observed that in kidneys from mice with juvenile cystic kidney (jck) ciliopathy, the aberrant hyperactivity of mechanistic target of rapamycin complex 1 (mTORC1), driven by ERK1/2 and PI3K/AKT cascades, induced ER proteotoxic stress. To reduce this stress by reprogramming translation, the protein kinase R-like ER kinase-eukaryotic initiation factor 2α (PERK/eIF2α) arm of the integrated stress response (ISR) was activated. PERK-mediated phosphorylation of eIF2α drove the selective translation of activating transcription factor 4 (ATF4), potentiating YAP expression. In parallel, YAP underwent K63-linked polyubiquitination by SCF S-phase kinase-associated protein 2 (SKP2) E3 ubiquitin ligase, a Hippo-independent, nonproteolytic ubiquitination that enhances YAP nuclear trafficking and transcriptional activity in cancer cells. Defective ISR cellular adaptation to ER stress in eIF2α phosphorylation-deficient jck mice further augmented YAP-mediated transcriptional activity and renal cyst growth. Conversely, pharmacological tuning down of ER stress/ISR activity and SKP2 expression in jck mice by administration of tauroursodeoxycholic acid (TUDCA) or tolvaptan impeded these processes. Restoring ER homeostasis and/or interfering with the SKP2-YAP interaction represent potential therapeutic avenues for stemming the progression of renal cystogenesis.
Collapse
Affiliation(s)
- Dibyendu K. Panda
- Division of Endocrinology and Metabolism, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital,,Division of Nephrology, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | - Xiuying Bai
- Division of Endocrinology and Metabolism, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | - Yan Zhang
- Division of Nephrology, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | | | - Antonis E. Koromilas
- Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Mark L. Lipman
- Division of Nephrology, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| | - Andrew C. Karaplis
- Division of Endocrinology and Metabolism, Department of Medicine, and Lady Davis Institute for Medical Research, Jewish General Hospital
| |
Collapse
|
22
|
Never-in-Mitosis A-Related Kinase 8 (NEK8) Regulates Adipogenesis, Glucose Homeostasis, and Obesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1947067. [PMID: 36506932 PMCID: PMC9729029 DOI: 10.1155/2022/1947067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
Abstract
Background Adipogenesis is a complex biological process and the leading main cause of obesity. We evaluated the role of never-in-mitosis A-related kinase 8 (NEK8) in adipocyte development and insulin sensitivity in the present study. Methods NEK8 expression was manipulated using a specific shRNA or the NEK8-full-length expressing recombinant plasmids. The interaction between NEK8 and Tafazzin (TAZ, an oncogenic transcriptional regulator) was examined by Co-immunoprecipitation (Co-IP) and confocal immunofluorescence staining. Western blot assay was performed to determine the protein expression. The in vivo role of NEK8 was explored in a mouse model of high-fat diet- (HFD-) induced insulin resistance. Results During adipogenesis, the expression of NEK8 was elevated while TAZ was downregulated. Overexpression of NEK8 promoted lipid accumulation and expression of markers for adipocyte differentiation. Mechanically, NEK8 interacted with TAZ and suppressed its expression in adipocytes. Functionally, lentiviral-mediated NEK8 inhibition ameliorates HFD-induced insulin resistance in adipocytes. Conclusion These findings suggest that NEK8 plays a critical role in adipocyte proliferation, providing novel insight into the link between NEK8 and type 2 diabetes- (T2DM-) related obesity.
Collapse
|
23
|
Zhu H, Zhao ZH, Zhu SY, Xiong F, He LH, Zhang Y, Wang J. Renal-hepatic-pancreatic dysplasia-1 with a novel NPHP3 genotype: a case report and review of the literature. BMC Pediatr 2022; 22:603. [PMID: 36253741 PMCID: PMC9578240 DOI: 10.1186/s12887-022-03659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 10/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Renal-hepatic-pancreatic dysplasia type 1 (RHPD1) is a rare sporadic and autosomal recessive disorder with unknown incidence. RHPD1 is caused by biallelic pathogenic variants in NPHP3, which encode nephrocystin, an important component of the ciliary protein complex. CASE PRESENTATION In this case report, we describe a male newborn who was confirmed by ultrasound to have renal enlargement with multiple cysts, pancreatic enlargement with cysts, and increased liver echogenicity, leading to the clinical diagnosis of RHPD. In addition, a compound heterozygous pathogenic variant, namely, NPHP3 c.1761G > A (p. W587*) and the c.69delC (p. Gly24Ala24*11) variant, was detected by WES. The patient was clinically and genetically diagnosed with RHPD1. At 34 h of life, the infant died of respiratory insufficiency. CONCLUSION This is the first published case of RHPD1 in China. This study broadens the known range of RHPD1 due to NPHP3 pathogenic variants.
Collapse
Affiliation(s)
- Hui Zhu
- Department of Pediatrics, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| | - Zhi-Hui Zhao
- Department of Neonatology, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| | - Shu-Yao Zhu
- Department of Pediatrics, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| | - Fu Xiong
- Department of Pediatrics, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| | - Li-Hong He
- Ultrasonic Department, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| | - Yong Zhang
- Department of Neonatology, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China.
| | - Jin Wang
- Department of Medical Genetics and Prenatal Diagnosis, Sichuan Provincial Maternity and Child Health Care Hospital, No. 290 West Second Street, Shayan Road, Chengdu, 610045, Sichuan, China
| |
Collapse
|
24
|
Djenoune L, Berg K, Brueckner M, Yuan S. A change of heart: new roles for cilia in cardiac development and disease. Nat Rev Cardiol 2022; 19:211-227. [PMID: 34862511 PMCID: PMC10161238 DOI: 10.1038/s41569-021-00635-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
Although cardiac abnormalities have been observed in a growing class of human disorders caused by defective primary cilia, the function of cilia in the heart remains an underexplored area. The primary function of cilia in the heart was long thought to be restricted to left-right axis patterning during embryogenesis. However, new findings have revealed broad roles for cilia in congenital heart disease, valvulogenesis, myocardial fibrosis and regeneration, and mechanosensation. In this Review, we describe advances in our understanding of the mechanisms by which cilia function contributes to cardiac left-right axis development and discuss the latest findings that highlight a broader role for cilia in cardiac development. Specifically, we examine the growing line of evidence connecting cilia function to the pathogenesis of congenital heart disease. Furthermore, we also highlight research from the past 10 years demonstrating the role of cilia function in common cardiac valve disorders, including mitral valve prolapse and aortic valve disease, and describe findings that implicate cardiac cilia in mechanosensation potentially linking haemodynamic and contractile forces with genetic regulation of cardiac development and function. Finally, given the presence of cilia on cardiac fibroblasts, we also explore the potential role of cilia in fibrotic growth and summarize the evidence implicating cardiac cilia in heart regeneration.
Collapse
Affiliation(s)
- Lydia Djenoune
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kathryn Berg
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Brueckner
- Department of Paediatrics, Yale University School of Medicine, New Haven, CT, USA.
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
| | - Shiaulou Yuan
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Cruz NM, Reddy R, McFaline-Figueroa JL, Tran C, Fu H, Freedman BS. Modelling ciliopathy phenotypes in human tissues derived from pluripotent stem cells with genetically ablated cilia. Nat Biomed Eng 2022; 6:463-475. [PMID: 35478224 PMCID: PMC9228023 DOI: 10.1038/s41551-022-00880-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 03/08/2022] [Indexed: 11/08/2022]
Abstract
The functions of cilia-antenna-like organelles associated with a spectrum of disease states-are poorly understood, particularly in human cells. Here we show that human pluripotent stem cells (hPSCs) edited via CRISPR to knock out the kinesin-2 subunits KIF3A or KIF3B can be used to model ciliopathy phenotypes and to reveal ciliary functions at the tissue scale. KIF3A-/- and KIF3B-/- hPSCs lacked cilia, yet remained robustly self-renewing and pluripotent. Tissues and organoids derived from these hPSCs displayed phenotypes that recapitulated defective neurogenesis and nephrogenesis, polycystic kidney disease (PKD) and other features of the ciliopathy spectrum. We also show that human cilia mediate a critical switch in hedgehog signalling during organoid differentiation, and that they constitutively release extracellular vesicles containing signalling molecules associated with ciliopathy phenotypes. The capacity of KIF3A-/- and KIF3B-/- hPSCs to reveal endogenous mechanisms underlying complex ciliary phenotypes may facilitate the discovery of candidate therapeutics.
Collapse
Affiliation(s)
- Nelly M Cruz
- Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA
- Kidney Research Institute, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Raghava Reddy
- Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA
- Kidney Research Institute, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Christine Tran
- Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA
- Kidney Research Institute, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Hongxia Fu
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Division of Hematology, University of Washington School of Medicine, Seattle, WA, USA
- Department of Bioengineering (Adjunct), University of Washington School of Medicine, Seattle, WA, USA
| | - Benjamin S Freedman
- Division of Nephrology, University of Washington School of Medicine, Seattle, WA, USA.
- Kidney Research Institute, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
- Department of Bioengineering (Adjunct), University of Washington School of Medicine, Seattle, WA, USA.
- Department of Laboratory Medicine and Pathology (Adjunct), University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
26
|
Whole-Exome Sequencing Identifies the VHL Mutation (c.262T > C, p.Try88Arg) in Non-Obstructive Azoospermia-Associated Cystic Renal Cell Carcinoma. Curr Oncol 2022; 29:2376-2384. [PMID: 35448166 PMCID: PMC9030033 DOI: 10.3390/curroncol29040192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/14/2022] [Accepted: 03/10/2022] [Indexed: 11/17/2022] Open
Abstract
Von Hippel-Lindau (VHL) genes are intimately involved in renal cell carcinoma (RCC), including clear cell RCC (ccRCC) pathogenesis. However, the contribution of pathogenic VHL mutations to ccRCC remains poorly understood. We report a xanthoderm with non-obstructive azoospermia (NOA)-associated cystic ccRCC, and the missense VHL mutation (c.262T > C, p.Try88Arg). In a 34-year-old patient, a urologic physical examination identified hard epididymis, and imaging tests revealed deferens-associated NOA, as well as multi-organ hydatid cysts, including bilateral epididymal cysts, bilateral testicular cysts, bilateral renal cysts, and pancreatic cysts. Five years later, ccRCC was developed based on clinical and radiologic evidence. Two different prediction models of protein structure and multiple sequence alignment across species were applied to assess the pathological effects of the VHL mutation. The reliability of the assessment in silico was determined by both the cellular location and protein levels of the mutant products, using IF and Western blot, respectively. Our study shows that the missense VHL mutation (c.262T > C, p.Try88Arg) plays a deleterious role in pVHL functions, as predicted by multiple sequence alignment across species. While a structural analysis identified no significant structural alterations in pVHL, the detrimental effects of this mutation were determined by exogenous expression, evidenced by a markedly different spatial distribution and reduced expression of mutant pVHL. This is the first report of the VHL gene mutation (c.475T > C, p.Try88Arg) in a xanthoderm.
Collapse
|
27
|
Yang M, Guo Y, Guo X, Mao Y, Zhu S, Wang N, Lu D. Analysis of the effect of NEKs on the prognosis of patients with non-small-cell lung carcinoma based on bioinformatics. Sci Rep 2022; 12:1705. [PMID: 35105934 PMCID: PMC8807624 DOI: 10.1038/s41598-022-05728-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/14/2022] [Indexed: 12/14/2022] Open
Abstract
NEKs are proteins that are involved in various cell processes and play important roles in the formation and development of cancer. However, few studies have examined the role of NEKs in the development of non-small-cell lung carcinoma (NSCLC). To address this problem, the Oncomine, UALCAN, and the Human Protein Atlas databases were used to analyze differential NEK expression and its clinicopathological parameters, while the Kaplan-Meier, cBioPortal, GEPIA, and DAVID databases were used to analyze survival, gene mutations, similar genes, and biological enrichments. The rate of NEK family gene mutation was high (> 50%) in patients with NSCLC, in which NEK2/4/6/8/ was overexpressed and significantly correlated with tumor stage and nodal metastasis status. In addition, the high expression of NEK2/3mRNA was significantly associated with poor prognosis in patients with NSCLC, while high expression of NEK1/4/6/7/8/9/10/11mRNA was associated with good prognosis. In summary, these results suggest that NEK2/4/6/8 may be a potential prognostic biomarker for the survival of patients with NSCLC.
Collapse
Affiliation(s)
- Mengxia Yang
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.,Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yikun Guo
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China
| | - Xiaofei Guo
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Yun Mao
- Department of Oncology, The Second Hospital of Hunan University of Chinese Medicine, Changsha, 410005, People's Republic of China
| | - Shijie Zhu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China
| | - Ningjun Wang
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| | - Dianrong Lu
- Department of Oncology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, 100102, People's Republic of China.
| |
Collapse
|
28
|
Al-Hamed MH, Kurdi W, Khan R, Tulbah M, AlNemer M, AlSahan N, AlMugbel M, Rafiullah R, Assoum M, Monies D, Shah Z, Rahbeeni Z, Derar N, Hakami F, Almutairi G, AlOtaibi A, Ali W, AlShammasi A, AlMubarak W, AlDawoud S, AlAmri S, Saeed B, Bukhari H, Ali M, Akili R, Alquayt L, Hagos S, Elbardisy H, Akilan A, Almuhana N, AlKhalifah A, Abouelhoda M, Ramzan K, Sayer JA, Imtiaz F. Prenatal exome sequencing and chromosomal microarray analysis in fetal structural anomalies in a highly consanguineous population reveals a propensity of ciliopathy genes causing multisystem phenotypes. Hum Genet 2021; 141:101-126. [PMID: 34853893 DOI: 10.1007/s00439-021-02406-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/26/2021] [Indexed: 12/25/2022]
Abstract
Fetal abnormalities are detected in 3% of all pregnancies and are responsible for approximately 20% of all perinatal deaths. Chromosomal microarray analysis (CMA) and exome sequencing (ES) are widely used in prenatal settings for molecular genetic diagnostics with variable diagnostic yields. In this study, we aimed to determine the diagnostic yield of trio-ES in detecting the cause of fetal abnormalities within a highly consanguineous population. In families with a history of congenital anomalies, a total of 119 fetuses with structural anomalies were recruited and DNA from invasive samples were used together with parental DNA samples for trio-ES and CMA. Data were analysed to determine possible underlying genetic disorders associated with observed fetal phenotypes. The cohort had a known consanguinity of 81%. Trio-ES led to diagnostic molecular genetic findings in 59 fetuses (with pathogenic/likely pathogenic variants) most with multisystem or renal abnormalities. CMA detected chromosomal abnormalities compatible with the fetal phenotype in another 7 cases. Monogenic ciliopathy disorders with an autosomal recessive inheritance were the predominant cause of multisystem fetal anomalies (24/59 cases, 40.7%) with loss of function variants representing the vast majority of molecular genetic abnormalities. Heterozygous de novo pathogenic variants were found in four fetuses. A total of 23 novel variants predicted to be associated with the phenotype were detected. Prenatal trio-ES and CMA detected likely causative molecular genetic defects in a total of 55% of families with fetal anomalies confirming the diagnostic utility of trio-ES and CMA as first-line genetic test in the prenatal diagnosis of multisystem fetal anomalies including ciliopathy syndromes.
Collapse
Affiliation(s)
- Mohamed H Al-Hamed
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia.
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia.
| | - Wesam Kurdi
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rubina Khan
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maha AlNemer
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Nada AlSahan
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Maisoon AlMugbel
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rafiullah Rafiullah
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Mirna Assoum
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Dorota Monies
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Zeeshan Shah
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Nada Derar
- Medical Genetics Department, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Fahad Hakami
- King Abdulaziz Medical City/King Saud bin Abdulaziz University for Health Science, Jeddah, Saudi Arabia
| | - Gawaher Almutairi
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Afaf AlOtaibi
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Wafaa Ali
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Amal AlShammasi
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Wardah AlMubarak
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Samia AlDawoud
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Saja AlAmri
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Bashayer Saeed
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Hanifa Bukhari
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Mohannad Ali
- Department of Obstetrics and Genecology, King Faisal Specialist Hospital and Research Centre, P. O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Rana Akili
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Laila Alquayt
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Samia Hagos
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Hadeel Elbardisy
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Asma Akilan
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Nora Almuhana
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Abrar AlKhalifah
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia
| | - Mohamed Abouelhoda
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - Khushnooda Ramzan
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia
| | - John A Sayer
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
- Renal Services, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE7 7DN, UK
- NIHR Newcastle Biomedical Research Centre, Newcastle University, Tyne and Wear, Newcastle upon Tyne, NE4 5PL, UK
| | - Faiqa Imtiaz
- Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Centre, MBC# 26, P. O. Box 3354, Riyadh, Saudi Arabia.
- Saudi Diagnostics Laboratory, KFSHI, P.O.BOX 6802, Riyadh, 12311, Saudi Arabia.
| |
Collapse
|
29
|
Schwarz H, Popp B, Airik R, Torabi N, Knaup KX, Stoeckert J, Wiech T, Amann K, Reis A, Schiffer M, Wiesener MS, Schueler M. Biallelic ANKS6 mutations cause late onset ciliopathy with chronic kidney disease through YAP dysregulation. Hum Mol Genet 2021; 31:1357-1369. [PMID: 34740236 DOI: 10.1093/hmg/ddab322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Nephronophthisis-related ciliopathies (NPHP-RC) comprises a group of inherited kidney diseases, caused by mutations in genes encoding proteins localizing to primary cilia. NPHP-RC represent the one of the most frequent monogenic causes of renal failure within the first three decades of life, but its molecular disease mechanisms remains unclear. Here, we identified biallelic ANKS6 mutations in two affected siblings with late onset chronic kidney disease by whole exome sequencing. We employed patient derived fibroblasts generating an in vitro model to study the precise biological impact of distinct human ANKS6 mutations, completed by immunohistochemistry studies on renal biopsy samples. Functional studies using patient derived cells showed an impaired integrity of the ciliary Inversin compartment with reduced cilia length. Further analyses demonstrated that ANKS6 deficiency leads to a dysregulation of Hippo-signaling through nuclear YAP imbalance, and disrupted ciliary localization of YAP. Additionally an altered transcriptional activity of canonical Wnt target genes and altered expression of non-phosphorylated (active) β-catenin and phosphorylated GSK3β were observed. Upon ciliation ANKS6 deficiency revealed a deranged subcellular localization and expression of components of the endocytic recycling compartment. Our results demonstrate that ANKS6 plays a key role in regulating the Hippo pathway and ANKS6 deficiency is linked to dysregulation of signaling pathways. Our study provides molecular clues in understanding pathophysiological mechanisms of NPHP-RC and may offer new therapeutic targets.
Collapse
Affiliation(s)
- Hannah Schwarz
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Bernt Popp
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, 04103, Germany.,Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Rannar Airik
- Department of Pediatrics, Division of Nephrology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, 15224, USA
| | - Nasrin Torabi
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Karl X Knaup
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Johanna Stoeckert
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Thorsten Wiech
- Institute of Pathology, Nephropathology Section, University Hospital Hamburg-Eppendorf, Hamburg, 20246, Germany
| | - Kerstin Amann
- Department of Nephropathology, Institute of Pathology, University of Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - André Reis
- Institute of Human Genetics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, 91054, Germany
| | - Mario Schiffer
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Michael S Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, 91054, Germany
| | - Markus Schueler
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, 10117, Germany
| |
Collapse
|
30
|
Airik M, Schüler M, McCourt B, Weiss AC, Herdman N, Lüdtke TH, Widmeier E, Stolz DB, Nejak-Bowen KN, Yimlamai D, Wu YL, Kispert A, Airik R, Hildebrandt F. Loss of Anks6 leads to YAP deficiency and liver abnormalities. Hum Mol Genet 2021; 29:3064-3080. [PMID: 32886109 PMCID: PMC7733532 DOI: 10.1093/hmg/ddaa197] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 07/03/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
ANKS6 is a ciliary protein that localizes to the proximal compartment of the primary cilium, where it regulates signaling. Mutations in the ANKS6 gene cause multiorgan ciliopathies in humans, which include laterality defects of the visceral organs, renal cysts as part of nephronophthisis and congenital hepatic fibrosis (CHF) in the liver. Although CHF together with liver ductal plate malformations are common features of several human ciliopathy syndromes, including nephronophthisis-related ciliopathies, the mechanism by which mutations in ciliary genes lead to bile duct developmental abnormalities is not understood. Here, we generated a knockout mouse model of Anks6 and show that ANKS6 function is required for bile duct morphogenesis and cholangiocyte differentiation. The loss of Anks6 causes ciliary abnormalities, ductal plate remodeling defects and periportal fibrosis in the liver. Our expression studies and biochemical analyses show that biliary abnormalities in Anks6-deficient livers result from the dysregulation of YAP transcriptional activity in the bile duct-lining epithelial cells. Mechanistically, our studies suggest, that ANKS6 antagonizes Hippo signaling in the liver during bile duct development by binding to Hippo pathway effector proteins YAP1, TAZ and TEAD4 and promoting their transcriptional activity. Together, this study reveals a novel function for ANKS6 in regulating Hippo signaling during organogenesis and provides mechanistic insights into the regulatory network controlling bile duct differentiation and morphogenesis during liver development.
Collapse
Affiliation(s)
- Merlin Airik
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Markus Schüler
- Division of Nephrology and Internal Intensive Care Medicine, Charite University, Berlin, Germany.,Division of Nephrology, Boston Children's Hospital, Boston, MA, USA
| | - Blake McCourt
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Nathan Herdman
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Eugen Widmeier
- Division of Nephrology, Boston Children's Hospital, Boston, MA, USA.,Department of Medicine, Renal Division, Medical Center - University of Freiburg, Freiburg, Germany
| | - Donna B Stolz
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kari N Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dean Yimlamai
- Division of Gastroenterology and Nutrition, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yijen L Wu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Rannar Airik
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
31
|
Bornhorst D, Abdelilah-Seyfried S. Strong as a Hippo's Heart: Biomechanical Hippo Signaling During Zebrafish Cardiac Development. Front Cell Dev Biol 2021; 9:731101. [PMID: 34422841 PMCID: PMC8375320 DOI: 10.3389/fcell.2021.731101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 07/20/2021] [Indexed: 11/13/2022] Open
Abstract
The heart is comprised of multiple tissues that contribute to its physiological functions. During development, the growth of myocardium and endocardium is coupled and morphogenetic processes within these separate tissue layers are integrated. Here, we discuss the roles of mechanosensitive Hippo signaling in growth and morphogenesis of the zebrafish heart. Hippo signaling is involved in defining numbers of cardiac progenitor cells derived from the secondary heart field, in restricting the growth of the epicardium, and in guiding trabeculation and outflow tract formation. Recent work also shows that myocardial chamber dimensions serve as a blueprint for Hippo signaling-dependent growth of the endocardium. Evidently, Hippo pathway components act at the crossroads of various signaling pathways involved in embryonic zebrafish heart development. Elucidating how biomechanical Hippo signaling guides heart morphogenesis has direct implications for our understanding of cardiac physiology and pathophysiology.
Collapse
Affiliation(s)
- Dorothee Bornhorst
- Stem Cell Program, Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Salim Abdelilah-Seyfried
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.,Institute of Molecular Biology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
32
|
Stokman MF, Saunier S, Benmerah A. Renal Ciliopathies: Sorting Out Therapeutic Approaches for Nephronophthisis. Front Cell Dev Biol 2021; 9:653138. [PMID: 34055783 PMCID: PMC8155538 DOI: 10.3389/fcell.2021.653138] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nephronophthisis (NPH) is an autosomal recessive ciliopathy and a major cause of end-stage renal disease in children. The main forms, juvenile and adult NPH, are characterized by tubulointerstitial fibrosis whereas the infantile form is more severe and characterized by cysts. NPH is caused by mutations in over 20 different genes, most of which encode components of the primary cilium, an organelle in which important cellular signaling pathways converge. Ciliary signal transduction plays a critical role in kidney development and tissue homeostasis, and disruption of ciliary signaling has been associated with cyst formation, epithelial cell dedifferentiation and kidney function decline. Drugs have been identified that target specific signaling pathways (for example cAMP/PKA, Hedgehog, and mTOR pathways) and rescue NPH phenotypes in in vitro and/or in vivo models. Despite identification of numerous candidate drugs in rodent models, there has been a lack of clinical trials and there is currently no therapy that halts disease progression in NPH patients. This review covers the most important findings of therapeutic approaches in NPH model systems to date, including hypothesis-driven therapies and untargeted drug screens, approached from the pathophysiology of NPH. Importantly, most animal models used in these studies represent the cystic infantile form of NPH, which is less prevalent than the juvenile form. It appears therefore important to develop new models relevant for juvenile/adult NPH. Alternative non-orthologous animal models and developments in patient-based in vitro model systems are discussed, as well as future directions in personalized therapy for NPH.
Collapse
Affiliation(s)
- Marijn F Stokman
- Department of Genetics, University Medical Center Utrecht, Utrecht, Netherlands
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Sophie Saunier
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| | - Alexandre Benmerah
- Université de Paris, Imagine Institute, Laboratory of Inherited Kidney Diseases, INSERM UMR 1163, Paris, France
| |
Collapse
|
33
|
Peralta M, Ortiz Lopez L, Jerabkova K, Lucchesi T, Vitre B, Han D, Guillemot L, Dingare C, Sumara I, Mercader N, Lecaudey V, Delaval B, Meilhac SM, Vermot J. Intraflagellar Transport Complex B Proteins Regulate the Hippo Effector Yap1 during Cardiogenesis. Cell Rep 2021; 32:107932. [PMID: 32698004 DOI: 10.1016/j.celrep.2020.107932] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/30/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Cilia and the intraflagellar transport (IFT) proteins involved in ciliogenesis are associated with congenital heart diseases (CHDs). However, the molecular links between cilia, IFT proteins, and cardiogenesis are yet to be established. Using a combination of biochemistry, genetics, and live-imaging methods, we show that IFT complex B proteins (Ift88, Ift54, and Ift20) modulate the Hippo pathway effector YAP1 in zebrafish and mouse. We demonstrate that this interaction is key to restrict the formation of the proepicardium and the myocardium. In cellulo experiments suggest that IFT88 and IFT20 interact with YAP1 in the cytoplasm and functionally modulate its activity, identifying a molecular link between cilia-related proteins and the Hippo pathway. Taken together, our results highlight a noncanonical role for IFT complex B proteins during cardiogenesis and shed light on a mechanism of action for ciliary proteins in YAP1 regulation.
Collapse
Affiliation(s)
- Marina Peralta
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Laia Ortiz Lopez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Katerina Jerabkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Tommaso Lucchesi
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France
| | - Benjamin Vitre
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Dong Han
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Laurent Guillemot
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Chaitanya Dingare
- Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
| | - Izabela Sumara
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland; Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Virginie Lecaudey
- Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, Frankfurt, Germany
| | - Benedicte Delaval
- Centre de Recherche en Biologie Cellulaire de Montpellier (CRBM), CNRS, Université de Montpellier, Montpellier, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, Paris, France; INSERM UMR1163, Université Paris Descartes, Paris, France
| | - Julien Vermot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France; Université de Strasbourg, Illkirch, France; Sorbonne Université, Collège Doctoral, F-75005, Paris, France; Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
34
|
Primary cilia and the DNA damage response: linking a cellular antenna and nuclear signals. Biochem Soc Trans 2021; 49:829-841. [PMID: 33843966 DOI: 10.1042/bst20200751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 11/17/2022]
Abstract
The maintenance of genome stability involves integrated biochemical activities that detect DNA damage or incomplete replication, delay the cell cycle, and direct DNA repair activities on the affected chromatin. These processes, collectively termed the DNA damage response (DDR), are crucial for cell survival and to avoid disease, particularly cancer. Recent work has highlighted links between the DDR and the primary cilium, an antenna-like, microtubule-based signalling structure that extends from a centriole docked at the cell surface. Ciliary dysfunction gives rise to a range of complex human developmental disorders termed the ciliopathies. Mutations in ciliopathy genes have been shown to impact on several functions that relate to centrosome integrity, DNA damage signalling, responses to problems in DNA replication and the control of gene expression. This review covers recent findings that link cilia and the DDR and explores the various roles played by key genes in these two contexts. It outlines how proteins encoded by ciliary genes impact checkpoint signalling, DNA replication and repair, gene expression and chromatin remodelling. It discusses how these diverse activities may integrate nuclear responses with those that affect a structure of the cell periphery. Additional directions for exploration of the interplay between these pathways are highlighted, with a focus on new ciliary gene candidates that alter genome stability.
Collapse
|
35
|
Fabretti F, Tschernoster N, Erger F, Hedergott A, Buescher AK, Dafinger C, Reusch B, Köntges VK, Kohl S, Bartram MP, Weber LT, Thiele H, Altmueller J, Schermer B, Beck BB, Habbig S. Expanding the Spectrum of FAT1 Nephropathies by Novel Mutations That Affect Hippo Signaling. Kidney Int Rep 2021; 6:1368-1378. [PMID: 34013115 PMCID: PMC8116753 DOI: 10.1016/j.ekir.2021.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/19/2023] Open
Abstract
Introduction Disease-causing mutations in the protocadherin FAT1 have been recently described both in patients with a glomerulotubular nephropathy and in patients with a syndromic nephropathy. Methods We identified 4 patients with FAT1-associated disease, performed clinical and genetic characterization, and compared our findings to the previously published patients. Patient-derived primary urinary epithelial cells were analyzed by quantitative polymerase chain reaction (qPCR) and immunoblotting to identify possible alterations in Hippo signaling. Results Here we expand the spectrum of FAT1-associated disease with the identification of novel FAT1 mutations in 4 patients from 3 families (homozygous truncating variants in 3, compound heterozygous missense variants in 1 patient). All patients show an ophthalmologic phenotype together with heterogeneous renal phenotypes ranging from normal renal function to early-onset end-stage kidney failure. Molecular analysis of primary urine-derived urinary renal epithelial cells revealed alterations in the Hippo signaling cascade with a decreased phosphorylation of both the core kinase MST and the downstream effector YAP. Consistently, we found a transcriptional upregulation of bona fide YAP target genes. Conclusion A comprehensive review of the here identified patients and those previously published indicates a highly diverse phenotype in patients with missense mutations but a more uniform and better recognizable phenotype in the patients with truncating mutations. Altered Hippo signaling and de-repressed YAP activity might be novel contributing factors to the pathomechanism in FAT1-associated renal disease.
Collapse
Affiliation(s)
- Francesca Fabretti
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Nikolai Tschernoster
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Florian Erger
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Andrea Hedergott
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anja K Buescher
- Children's Hospital, Pediatrics II, University of Duisburg-Essen, Essen, Germany
| | - Claudia Dafinger
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Bjoern Reusch
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Vincent K Köntges
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stefan Kohl
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Malte P Bartram
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Lutz Thorsten Weber
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Janine Altmueller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Sandra Habbig
- Department of Pediatrics, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
36
|
Delgado ILS, Carmona B, Nolasco S, Santos D, Leitão A, Soares H. MOB: Pivotal Conserved Proteins in Cytokinesis, Cell Architecture and Tissue Homeostasis. BIOLOGY 2020; 9:biology9120413. [PMID: 33255245 PMCID: PMC7761452 DOI: 10.3390/biology9120413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/08/2023]
Abstract
The MOB family proteins are constituted by highly conserved eukaryote kinase signal adaptors that are often essential both for cell and organism survival. Historically, MOB family proteins have been described as kinase activators participating in Hippo and Mitotic Exit Network/ Septation Initiation Network (MEN/SIN) signaling pathways that have central roles in regulating cytokinesis, cell polarity, cell proliferation and cell fate to control organ growth and regeneration. In metazoans, MOB proteins act as central signal adaptors of the core kinase module MST1/2, LATS1/2, and NDR1/2 kinases that phosphorylate the YAP/TAZ transcriptional co-activators, effectors of the Hippo signaling pathway. More recently, MOBs have been shown to also have non-kinase partners and to be involved in cilia biology, indicating that its activity and regulation is more diverse than expected. In this review, we explore the possible ancestral role of MEN/SIN pathways on the built-in nature of a more complex and functionally expanded Hippo pathway, by focusing on the most conserved components of these pathways, the MOB proteins. We discuss the current knowledge of MOBs-regulated signaling, with emphasis on its evolutionary history and role in morphogenesis, cytokinesis, and cell polarity from unicellular to multicellular organisms.
Collapse
Affiliation(s)
- Inês L. S. Delgado
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Faculdade de Medicina Veterinária, Universidade Lusófona de Humanidades e Tecnologias, 1749-024 Lisboa, Portugal
| | - Bruno Carmona
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Sofia Nolasco
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
| | - Dulce Santos
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Alexandre Leitão
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisboa, Portugal or (I.L.S.D.); or (S.N.); (D.S.); (A.L.)
| | - Helena Soares
- Escola Superior de Tecnologia da Saúde de Lisboa, Instituto Politécnico de Lisboa, 1990-096 Lisboa, Portugal; or
- Centro de Química Estrutural–Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: or
| |
Collapse
|
37
|
Lei TY, Fu F, Li R, Yu QX, Du K, Zhang WW, Deng Q, Li LS, Wang D, Yang X, Zhen L, Li DZ, Liao C. Whole-exome sequencing in the evaluation of fetal congenital anomalies of the kidney and urinary tract detected by ultrasonography. Prenat Diagn 2020; 40:1290-1299. [PMID: 32436246 DOI: 10.1002/pd.5737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We aimed to investigate the value of whole-exome sequencing (WES) in fetuses with congenital anomalies of the kidney and urinary tract (CAKUT) with or without other structural anomalies but with normal findings upon karyotyping and chromosome microarray analysis (CMA). METHODS Cases with CAKUT with or without other structural anomalies were screened for eligibility. Fetuses with abnormal karyotyping or CMA results were excluded. We performed WES on DNA samples from eligible fetus-parental trios and identified diagnostic genetic variants based on ultrasonographic features. RESULTS A total of 163 eligible fetus-parental trios were successfully analyzed by WES. We found 26 likely pathogenic or pathogenic variants in 18 genes from 20 fetuses, with a total proportion of diagnostic genetic variants of 12.3% (20/163). Genetic variants were significantly more frequently detected in fetuses with multisystem anomalies (27.0%, 10/37), enlarged kidney/echogenic kidney (20%, 4/20), and multicystic dysplastic kidney (11.1%, 4/36). Pregnancy outcome data showed that 88 (94.6%, 88/93) of the surviving cases with negative WES results had a good prognosis in early childhood. CONCLUSIONS Our study is the largest to use WES prenatally for CAKUT and shows that WES can be used diagnostically to define the molecular defects that underlie unexplained CAKUT.
Collapse
Affiliation(s)
- Ting-Ying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Fang Fu
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ru Li
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiu-Xia Yu
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Kun Du
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen-Wen Zhang
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Qiong Deng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu-Shan Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dan Wang
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
38
|
Kurbegovic A, Trudel M. The master regulators Myc and p53 cellular signaling and functions in polycystic kidney disease. Cell Signal 2020; 71:109594. [PMID: 32145315 DOI: 10.1016/j.cellsig.2020.109594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/08/2023]
Abstract
The transcription factors Myc and p53 associated with oncogenesis play determinant roles in a human genetic disorder, autosomal dominant polycystic kidney disease (ADPKD), that was coined early in ADPKD etiology a «neoplasia in disguise ». These factors are interdependent master cell regulators of major biological processes including proliferation, apoptosis, cell growth, metabolism, inflammation, fibrosis and differentiation that are all modulated in ADPKD. Myc and p53 proteins evolved to respond and carry out overlapping functions via opposing mechanisms of action. Studies in human ADPKD kidneys, caused by mutations in the PKD1 or PKD2 genes, reveal reduced p53 expression and high expression of Myc in the cystic tubular epithelium. Myc and p53 via direct interaction act respectively, as transcriptional activator and repressor of PKD1 gene expression, consistent with increased renal PKD1 levels in ADPKD. Mouse models generated by Pkd1 and Pkd2 gene dosage dysregulation reproduce renal cystogenesis with activation of Myc expression and numerous signaling pathways, strikingly similar to those determined in human ADPKD. In fact, upregulation of renal Myc expression is also detected in virtually all non-orthologous animal models of PKD. A definitive causal connection of Myc with cystogenesis was established by renal overexpression of Myc in transgenic mice that phenocopies human ADPKD. The network of activated signaling pathways in human and mouse cystogenesis individually or in combination can target Myc as a central node of PKD pathogenesis. One or many of the multiple functions of Myc upon activation can play a role in every phases of ADPKD development and lend credence to the notion of "Myc addiction" for cystogenesis. We propose that the residual p53 levels are conducive to an ADPKD biological program without cancerogenesis while a "p53 dependent annihilation" mechanism would be permissive to oncogenesis. Of major importance, Myc ablation in orthologous mouse models or direct inhibition in non-orthologous mouse model significantly delays cystogenesis consistent with pharmacologic or genetic inhibition of Myc upstream regulator or downstream targets in the mouse. Together, these studies on PKD proteins upon dysregulation not only converged on Myc as a focal point but also attribute to Myc upregulation a causal and « driver » role in pathogenesis. This review will present and discuss our current knowledge on Myc and p53, focused on PKD mouse models and ADPKD.
Collapse
Affiliation(s)
- Almira Kurbegovic
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
39
|
Homozygous NEK8 Mutations in Siblings With Neonatal Cholestasis Progressing to End-stage Liver, Renal, and Cardiac Disease. J Pediatr Gastroenterol Nutr 2020; 70:e19-e22. [PMID: 31633649 DOI: 10.1097/mpg.0000000000002517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
40
|
Pazour GJ, Quarmby L, Smith AO, Desai PB, Schmidts M. Cilia in cystic kidney and other diseases. Cell Signal 2019; 69:109519. [PMID: 31881326 DOI: 10.1016/j.cellsig.2019.109519] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/21/2019] [Accepted: 12/21/2019] [Indexed: 12/23/2022]
Abstract
Epithelial cells lining the ducts and tubules of the kidney nephron and collecting duct have a single non-motile cilium projecting from their surface into the lumen of the tubule. These organelles were long considered vestigial remnants left as a result of evolution from a ciliated ancestor, but we now recognize them as critical sensory antennae. In the kidney, the polycystins and fibrocystin, products of the major human polycystic kidney disease genes, localize to this organelle. The polycystins and fibrocystin, through an unknown mechanism, monitor the diameter of the kidney tubules and regulate the proliferation and differentiation of the cells lining the tubule. When the polycystins, fibrocystin or cilia themselves are defective, the cell perceives this as a pro-proliferative signal, which leads to tubule dilation and cystic disease. In addition to critical roles in preventing cyst formation in the kidney, cilia are also important in cystic and fibrotic diseases of the liver and pancreas, and ciliary defects lead to a variety of developmental abnormalities that cause structural birth defects in most organs.
Collapse
Affiliation(s)
- Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America.
| | - Lynne Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada.
| | - Abigail O Smith
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America
| | - Paurav B Desai
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Suite 213, 373 Plantation Street, Worcester, MA 01605, United States of America
| | - Miriam Schmidts
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79112 Freiburg, Germany.
| |
Collapse
|
41
|
Rothé B, Gagnieux C, Leal-Esteban LC, Constam DB. Role of the RNA-binding protein Bicaudal-C1 and interacting factors in cystic kidney diseases. Cell Signal 2019; 68:109499. [PMID: 31838063 DOI: 10.1016/j.cellsig.2019.109499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 01/03/2023]
Abstract
Polycystic kidneys frequently associate with mutations in individual components of cilia, basal bodies or centriolar satellites that perturb complex protein networks. In this review, we focus on the RNA-binding protein Bicaudal-C1 (BICC1) which was found mutated in renal cystic dysplasia, and on its interactions with the ankyrin repeat and sterile α motif (SAM)-containing proteins ANKS3 and ANKS6 and associated kinases and their partially overlapping ciliopathy phenotypes. After reviewing BICC1 homologs in model organisms and their functions in mRNA and cell metabolism during development and in renal tubules, we discuss recent insights from cell-based assays and from structure analysis of the SAM domains, and how SAM domain oligomerization might influence multivalent higher order complexes that are implicated in ciliary signal transduction.
Collapse
Affiliation(s)
- Benjamin Rothé
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | - Céline Gagnieux
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland
| | - Lucia Carolina Leal-Esteban
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland; Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Daniel B Constam
- Ecole Polytechnique Fédérale de Lausanne (EPFL) SV ISREC, Station 19, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
42
|
Characterization of Primary Cilia in Normal Fallopian Tube Epithelium and Serous Tubal Intraepithelial Carcinoma. Int J Gynecol Cancer 2019; 28:1535-1544. [PMID: 30095490 PMCID: PMC6166701 DOI: 10.1097/igc.0000000000001321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Supplemental digital content is available in the text. Objectives The aim of this study was to investigate the distribution of primary cilia on secretory cells in normal fallopian tube (FT) and serous tubal intraepithelial carcinoma (STIC). Methods Fallopian tube tissue samples were obtained from 4 females undergoing prophylactic hysterectomies and 6 patients diagnosed with STIC. A mogp-TAg transgenic mouse STIC sample was also compared with a wild-type mouse FT sample. Serous tubal intraepithelial carcinoma was identified by hematoxylin and eosin staining and confirmed by positive Ki-67 and p53 immunohistochemical staining of tissue sections. We assessed the relative distribution of primary cilia on secretory cells and motile cilia on multiple ciliated cells by immunofluorescence and immunohistochemical staining. Ciliary function was assessed by immunofluorescence staining of specific ciliary marker proteins and responsiveness to Sonic Hedgehog signaling. Results Primary cilia are widespread on secretory cells in the ampulla, isthmus, and in particular, the fimbriae of human FT where they may appear to mediate ciliary-mediated Sonic Hedgehog signaling. A statistically significant reduction in the number of primary cilia on secretory cells was observed in human STIC samples compared with normal controls (P < 0.0002, Student t test), supported by similar findings in a mouse STIC sample. Immunohistochemical staining for dynein axonemal heavy chain 5 discriminated multiple motile cilia from primary cilia in human FT. Conclusions Primary cilia are widespread on secretory cells in the ampulla, isthmus, and in particular, the fimbriae of the human FT but are significantly reduced in both human and mouse STIC samples. Immunohistochemical staining for ciliary proteins may have clinical utility for early detection of STIC.
Collapse
|
43
|
Gundogdu R, Hergovich A. MOB (Mps one Binder) Proteins in the Hippo Pathway and Cancer. Cells 2019; 8:cells8060569. [PMID: 31185650 PMCID: PMC6627106 DOI: 10.3390/cells8060569] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/22/2022] Open
Abstract
The family of MOBs (monopolar spindle-one-binder proteins) is highly conserved in the eukaryotic kingdom. MOBs represent globular scaffold proteins without any known enzymatic activities. They can act as signal transducers in essential intracellular pathways. MOBs have diverse cancer-associated cellular functions through regulatory interactions with members of the NDR/LATS kinase family. By forming additional complexes with serine/threonine protein kinases of the germinal centre kinase families, other enzymes and scaffolding factors, MOBs appear to be linked to an even broader disease spectrum. Here, we review our current understanding of this emerging protein family, with emphases on post-translational modifications, protein-protein interactions, and cellular processes that are possibly linked to cancer and other diseases. In particular, we summarise the roles of MOBs as core components of the Hippo tissue growth and regeneration pathway.
Collapse
Affiliation(s)
- Ramazan Gundogdu
- Vocational School of Health Services, Bingol University, 12000 Bingol, Turkey.
| | - Alexander Hergovich
- UCL Cancer Institute, University College London, WC1E 6BT, London, United Kingdom.
| |
Collapse
|
44
|
Kosfeld A, Martens H, Hennies I, Haffner D, Weber RG. Kongenitale Anomalien der Nieren und ableitenden Harnwege (CA KUT). MED GENET-BERLIN 2018. [DOI: 10.1007/s11825-018-0226-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zusammenfassung
Der Begriff CAKUT (Congenital Anomalies of the Kidney and Urinary Tract) bezeichnet diverse angeborene Fehlbildungen der Nieren und ableitenden Harnwege. Da alle CAKUT-Phänotypen zusammengenommen etwa 15–30 % aller pränatal diagnostizierten Fehlbildungen ausmachen und etwa 40 % der Fälle mit terminalem Nierenversagen bei Kindern und Jugendlichen verursachen, sind diese Anomalien epidemiologisch hochrelevant. Die Diagnosestellung erfolgt mit radiologischen Verfahren, insbesondere mit Ultraschall, wobei bei vielen Patienten eine Kombination verschiedener CAKUT-Phänotypen nachgewiesen wird. CAKUT tritt zu etwa 85 % sporadisch auf, zu etwa 15 % familiär. Das Vererbungsmuster ist häufig dominant, kann aber auch rezessiv sein. CAKUT kann isoliert auftreten, aber auch als Teil einer syndromalen Erkrankung. Variable Expressivität und inkomplette Penetranz sind bei CAKUT häufig. CAKUT ist genetisch sehr heterogen. Im Mausmodell wurden bislang über 180 CAKUT-assoziierte Gene beschrieben. Da Mutationen in den etwa 50 bisher bekannten humanen CAKUT-Genen nur ca. 20 % der CAKUT-Fälle erklären und sich verschiedene chromosomale Aberrationen wie Mikrodeletionen in weiteren ca. 15 % der Patienten insbesondere mit syndromalen CAKUT finden, sind exom-/genomweite Screeningverfahren für die Aufklärung genetischer CAKUT-Ursachen besonders geeignet. Bei sporadischen Fällen ist eine Trio-basierte Analyse der Exome/Genome von Patienten-Eltern-Trios zur Identifizierung von De-novo-Aberrationen und biallelischen Varianten vielversprechend. Eine Abklärung der genetischen Ursache ist für die Präzisierung von Wiederholungsrisiken sowie eine gezielte Untersuchung von CAKUT-Patienten im Hinblick auf extrarenale Phänotypen von klinischer Bedeutung.
Collapse
Affiliation(s)
- Anne Kosfeld
- Aff1 0000 0000 9529 9877 grid.10423.34 Institut für Humangenetik Medizinische Hochschule Hannover Carl-Neuberg-Straße 1 30625 Hannover Deutschland
| | - Helge Martens
- Aff1 0000 0000 9529 9877 grid.10423.34 Institut für Humangenetik Medizinische Hochschule Hannover Carl-Neuberg-Straße 1 30625 Hannover Deutschland
| | - Imke Hennies
- Aff2 0000 0000 9529 9877 grid.10423.34 Klinik für Pädiatrische Nieren-, Leber- und Stoffwechselerkrankungen Medizinische Hochschule Hannover Hannover Deutschland
| | - Dieter Haffner
- Aff2 0000 0000 9529 9877 grid.10423.34 Klinik für Pädiatrische Nieren-, Leber- und Stoffwechselerkrankungen Medizinische Hochschule Hannover Hannover Deutschland
| | - Ruthild G. Weber
- Aff1 0000 0000 9529 9877 grid.10423.34 Institut für Humangenetik Medizinische Hochschule Hannover Carl-Neuberg-Straße 1 30625 Hannover Deutschland
| |
Collapse
|
45
|
Pierpont ME, Brueckner M, Chung WK, Garg V, Lacro RV, McGuire AL, Mital S, Priest JR, Pu WT, Roberts A, Ware SM, Gelb BD, Russell MW. Genetic Basis for Congenital Heart Disease: Revisited: A Scientific Statement From the American Heart Association. Circulation 2018; 138:e653-e711. [PMID: 30571578 PMCID: PMC6555769 DOI: 10.1161/cir.0000000000000606] [Citation(s) in RCA: 387] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review provides an updated summary of the state of our knowledge of the genetic contributions to the pathogenesis of congenital heart disease. Since 2007, when the initial American Heart Association scientific statement on the genetic basis of congenital heart disease was published, new genomic techniques have become widely available that have dramatically changed our understanding of the causes of congenital heart disease and, clinically, have allowed more accurate definition of the pathogeneses of congenital heart disease in patients of all ages and even prenatally. Information is presented on new molecular testing techniques and their application to congenital heart disease, both isolated and associated with other congenital anomalies or syndromes. Recent advances in the understanding of copy number variants, syndromes, RASopathies, and heterotaxy/ciliopathies are provided. Insights into new research with congenital heart disease models, including genetically manipulated animals such as mice, chicks, and zebrafish, as well as human induced pluripotent stem cell-based approaches are provided to allow an understanding of how future research breakthroughs for congenital heart disease are likely to happen. It is anticipated that this review will provide a large range of health care-related personnel, including pediatric cardiologists, pediatricians, adult cardiologists, thoracic surgeons, obstetricians, geneticists, genetic counselors, and other related clinicians, timely information on the genetic aspects of congenital heart disease. The objective is to provide a comprehensive basis for interdisciplinary care for those with congenital heart disease.
Collapse
|
46
|
Ding XF, Chen J, Zhou J, Chen G, Wu YL. Never-in-mitosis A-related kinase 8, a novel target of von-Hippel-Lindau tumor suppressor protein, promotes gastric cancer cell proliferation. Oncol Lett 2018; 16:5900-5906. [PMID: 30333866 PMCID: PMC6176424 DOI: 10.3892/ol.2018.9328] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Previous research has revealed that the von-Hippel-Lindau tumor suppressor protein (pVHL) may downregulate never-in-mitosis A-related kinase 8 (NEK8) via hypoxia-inducible factor-α (HIF-α). The HIF-independent functions of pVHL also serve an important role in its tumor-suppressor action. In the present study, the association between pVHL and NEK8 was demonstrated in the human gastric cancer cell line, SGC-7901, indicating a direct interaction of pVHL with NEK8. Subsequently, it was reported that MG-132, a specific proteasome inhibitor, may attenuate pVHL overexpression-induced reductions in NEK8 protein expression levels. In addition, the present study revealed that pVHL may stimulate the rapid degradation of NEK8 protein and promote its ubiquitination. The association between the expression profile of NEK8 and the survival status of patients with gastric cancer was analyzed from an online database. Kaplan-Meier survival plots indicated that higher expression levels of NEK8 may lead to poor survival, as suggested by the transcriptomic data of 1,065 patients with gastric cancer. It was found that NEK8-knockdown mediated by RNA interference inhibited SGC-7901 and SNU-1 proliferation, colony formation and migration in vitro, and tumor growth in vivo. Collectively, the present study proposed that NEK8 may be a novel target of pVHL as a ubiquitin E3 ligase, and may serve a role as a potential oncoprotein in human gastric cancer.
Collapse
Affiliation(s)
- Xiao-Fei Ding
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China.,Laboratory for Biological Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Jie Chen
- Laboratory for Biological Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Jun Zhou
- Laboratory for Biological Medicine, School of Medicine, Taizhou University, Taizhou, Zhejiang 318000, P.R. China.,Institute of Tumor, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Guang Chen
- Institute of Tumor, Taizhou University, Taizhou, Zhejiang 318000, P.R. China.,Department of Pharmacology, School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Ying-Liang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
47
|
Morthorst SK, Christensen ST, Pedersen LB. Regulation of ciliary membrane protein trafficking and signalling by kinesin motor proteins. FEBS J 2018; 285:4535-4564. [PMID: 29894023 DOI: 10.1111/febs.14583] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/09/2018] [Accepted: 06/11/2018] [Indexed: 12/14/2022]
Abstract
Primary cilia are antenna-like sensory organelles that regulate a substantial number of cellular signalling pathways in vertebrates, both during embryonic development as well as in adulthood, and mutations in genes coding for ciliary proteins are causative of an expanding group of pleiotropic diseases known as ciliopathies. Cilia consist of a microtubule-based axoneme core, which is subtended by a basal body and covered by a bilayer lipid membrane of unique protein and lipid composition. Cilia are dynamic organelles, and the ability of cells to regulate ciliary protein and lipid content in response to specific cellular and environmental cues is crucial for balancing ciliary signalling output. Here we discuss mechanisms involved in regulation of ciliary membrane protein trafficking and signalling, with main focus on kinesin-2 and kinesin-3 family members.
Collapse
|
48
|
Lei TY, Fu F, Li R, Wang D, Wang RY, Jing XY, Deng Q, Li ZZ, Liu ZQ, Yang X, Li DZ, Liao C. Whole-exome sequencing for prenatal diagnosis of fetuses with congenital anomalies of the kidney and urinary tract. Nephrol Dial Transplant 2018; 32:1665-1675. [PMID: 28387813 DOI: 10.1093/ndt/gfx031] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/20/2017] [Indexed: 12/18/2022] Open
Abstract
Background In the absence of cytogenetic abnormality, fetuses with congenital anomalies of the kidney and urinary tract (CAKUT) with/without other structural anomalies show a higher likelihood of monogenic causes; however, defining the underlying pathology can be challenging. Here, we investigate the value of whole-exome sequencing (WES) in fetuses with CAKUT but normal findings upon karyotyping and chromosome microarray analysis. Methods WES was performed on DNA from the cord blood of 30 fetuses with unexplained CAKUT with/without other structural anomalies. In the first 23 cases, sequencing was initially performed on fetal DNA only; for the remaining seven cases, the trio of fetus, mother and father was sequenced simultaneously. Results Of the 30 cases, pathogenic variants were identified in 4 (13%) (UMOD, NEK8, HNF1B and BBS2) and incidental variants in 2 (7%) (HSPD1 and GRIN2B). Furthermore, two of the above four cases had other anomalies in addition to CAKUT. Thus, the detection rate was only 2/22 (9.1%) for isolated CAKUT and 2/8 (25%) for CAKUT with other abnormalities. Conclusions Applying WES to the prenatal diagnostic approach in CAKUT fetuses with or without other anomalies allows for an accurate and early etiology-based diagnosis and improved clinical management. To expedite interpretation of the results, trio sequencing should be employed; however, interpretation may nevertheless be compromised by incomplete coverage of all relevant genes.
Collapse
Affiliation(s)
- Ting-Ying Lei
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Fang Fu
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Ru Li
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Dan Wang
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Rong-Yue Wang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Xiang-Yi Jing
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Qiong Deng
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Zhou-Zhou Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Ze-Qun Liu
- Eugenic and Perinatal Institute, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Xin Yang
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| | - Can Liao
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong, China
| |
Collapse
|
49
|
Wheway G, Nazlamova L, Hancock JT. Signaling through the Primary Cilium. Front Cell Dev Biol 2018; 6:8. [PMID: 29473038 PMCID: PMC5809511 DOI: 10.3389/fcell.2018.00008] [Citation(s) in RCA: 323] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022] Open
Abstract
The presence of single, non-motile “primary” cilia on the surface of epithelial cells has been well described since the 1960s. However, for decades these organelles were believed to be vestigial, with no remaining function, having lost their motility. It wasn't until 2003, with the discovery that proteins responsible for transport along the primary cilium are essential for hedgehog signaling in mice, that the fundamental importance of primary cilia in signal transduction was realized. Little more than a decade later, it is now clear that the vast majority of signaling pathways in vertebrates function through the primary cilium. This has led to the adoption of the term “the cells's antenna” as a description for the primary cilium. Primary cilia are particularly important during development, playing fundamental roles in embryonic patterning and organogenesis, with a suite of inherited developmental disorders known as the “ciliopathies” resulting from mutations in genes encoding cilia proteins. This review summarizes our current understanding of the role of these fascinating organelles in a wide range of signaling pathways.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Department of Applied Science, Faculty of Health and Applied Sciences, Centre for Research in Biosciences, University of the West of England, Bristol, United Kingdom
| | - Liliya Nazlamova
- Department of Applied Science, Faculty of Health and Applied Sciences, Centre for Research in Biosciences, University of the West of England, Bristol, United Kingdom
| | - John T Hancock
- Department of Applied Science, Faculty of Health and Applied Sciences, Centre for Research in Biosciences, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
50
|
Petersen MB, Gonçalves CA, Kim YH, Grapin-Botton A. Recapitulating and Deciphering Human Pancreas Development From Human Pluripotent Stem Cells in a Dish. Curr Top Dev Biol 2018; 129:143-190. [DOI: 10.1016/bs.ctdb.2018.02.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|