1
|
Messina M, Vaz FM, Rahman S. Mitochondrial membrane synthesis, remodelling and cellular trafficking. J Inherit Metab Dis 2025; 48:e12766. [PMID: 38872485 PMCID: PMC11730691 DOI: 10.1002/jimd.12766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/15/2024]
Abstract
Mitochondria are dynamic cellular organelles with complex roles in metabolism and signalling. Primary mitochondrial disorders are a group of approximately 400 monogenic disorders arising from pathogenic genetic variants impacting mitochondrial structure, ultrastructure and/or function. Amongst these disorders, defects of complex lipid biosynthesis, especially of the unique mitochondrial membrane lipid cardiolipin, and membrane biology are an emerging group characterised by clinical heterogeneity, but with recurrent features including cardiomyopathy, encephalopathy, neurodegeneration, neuropathy and 3-methylglutaconic aciduria. This review discusses lipid synthesis in the mitochondrial membrane, the mitochondrial contact site and cristae organising system (MICOS), mitochondrial dynamics and trafficking, and the disorders associated with defects of each of these processes. We highlight overlapping functions of proteins involved in lipid biosynthesis and protein import into the mitochondria, pointing to an overarching coordination and synchronisation of mitochondrial functions. This review also focuses on membrane interactions between mitochondria and other organelles, namely the endoplasmic reticulum, peroxisomes, lysosomes and lipid droplets. We signpost disorders of these membrane interactions that may explain the observation of secondary mitochondrial dysfunction in heterogeneous pathological processes. Disruption of these organellar interactions ultimately impairs cellular homeostasis and organismal health, highlighting the central role of mitochondria in human health and disease.
Collapse
Affiliation(s)
- Martina Messina
- Mitochondrial Research Group, Genetics and Genomic Medicine DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Frédéric M. Vaz
- Department of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's HospitalAmsterdam UMC Location University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn Errors of MetabolismAmsterdamThe Netherlands
| | - Shamima Rahman
- Mitochondrial Research Group, Genetics and Genomic Medicine DepartmentUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
2
|
Mak G, Tarnopolsky M, Lu JQ. Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders. Mitochondrion 2024; 78:101945. [PMID: 39134108 DOI: 10.1016/j.mito.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.
Collapse
Affiliation(s)
- Gloria Mak
- University of Alberta, Department of Neurology, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- McMaster University, Department of Medicine and Pediatrics, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Gómez-Oca R, Edelweiss E, Djeddi S, Gerbier M, Massana-Muñoz X, Oulad-Abdelghani M, Crucifix C, Spiegelhalter C, Messaddeq N, Poussin-Courmontagne P, Koebel P, Cowling BS, Laporte J. Differential impact of ubiquitous and muscle dynamin 2 isoforms in muscle physiology and centronuclear myopathy. Nat Commun 2022; 13:6849. [PMID: 36369230 PMCID: PMC9652393 DOI: 10.1038/s41467-022-34490-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Dynamin 2 mechanoenzyme is a key regulator of membrane remodeling and gain-of-function mutations in its gene cause centronuclear myopathies. Here, we investigate the functions of dynamin 2 isoforms and their associated phenotypes and, specifically, the ubiquitous and muscle-specific dynamin 2 isoforms expressed in skeletal muscle. In cell-based assays, we show that a centronuclear myopathy-related mutation in the ubiquitous but not the muscle-specific dynamin 2 isoform causes increased membrane fission. In vivo, overexpressing the ubiquitous dynamin 2 isoform correlates with severe forms of centronuclear myopathy, while overexpressing the muscle-specific isoform leads to hallmarks seen in milder cases of the disease. Previous mouse studies suggested that reduction of the total dynamin 2 pool could be therapeutic for centronuclear myopathies. Here, dynamin 2 splice switching from muscle-specific to ubiquitous dynamin 2 aggravated the phenotype of a severe X-linked form of centronuclear myopathy caused by loss-of-function of the MTM1 phosphatase, supporting the importance of targeting the ubiquitous isoform for efficient therapy in muscle. Our results highlight that the ubiquitous and not the muscle-specific dynamin 2 isoform is the main modifier contributing to centronuclear myopathy pathology.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France ,Dynacure, Illkirch, France
| | - Evelina Edelweiss
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Sarah Djeddi
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | | | - Xènia Massana-Muñoz
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Corinne Crucifix
- grid.420255.40000 0004 0638 2716Integrated Structural Biology platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Coralie Spiegelhalter
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Nadia Messaddeq
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Pierre Poussin-Courmontagne
- grid.420255.40000 0004 0638 2716Integrated Structural Biology platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | - Pascale Koebel
- grid.420255.40000 0004 0638 2716Core platforms, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| | | | - Jocelyn Laporte
- grid.420255.40000 0004 0638 2716Dpt Translational Medicine, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U1258, Université de Strasbourg, CNRS UMR7104 Illkirch, France
| |
Collapse
|
4
|
Fujise K, Noguchi S, Takeda T. Centronuclear Myopathy Caused by Defective Membrane Remodelling of Dynamin 2 and BIN1 Variants. Int J Mol Sci 2022; 23:ijms23116274. [PMID: 35682949 PMCID: PMC9181712 DOI: 10.3390/ijms23116274] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
Centronuclear myopathy (CNM) is a congenital myopathy characterised by centralised nuclei in skeletal myofibers. T-tubules, sarcolemmal invaginations required for excitation-contraction coupling, are disorganised in the skeletal muscles of CNM patients. Previous studies showed that various endocytic proteins are involved in T-tubule biogenesis and their dysfunction is tightly associated with CNM pathogenesis. DNM2 and BIN1 are two causative genes for CNM that encode essential membrane remodelling proteins in endocytosis, dynamin 2 and BIN1, respectively. In this review, we overview the functions of dynamin 2 and BIN1 in T-tubule biogenesis and discuss how their dysfunction in membrane remodelling leads to CNM pathogenesis.
Collapse
Affiliation(s)
- Kenshiro Fujise
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520-8001, USA;
| | - Satoru Noguchi
- National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Tokyo 187-8502, Japan;
| | - Tetsuya Takeda
- Department of Biochemistry, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Shikata-cho 2-5-1, Kita-ku, Okayama 700-8558, Japan
- Correspondence: ; Tel.: +81-86-235-7125; Fax: +81-86-235-7126
| |
Collapse
|
5
|
Gómez-Oca R, Cowling BS, Laporte J. Common Pathogenic Mechanisms in Centronuclear and Myotubular Myopathies and Latest Treatment Advances. Int J Mol Sci 2021; 22:11377. [PMID: 34768808 PMCID: PMC8583656 DOI: 10.3390/ijms222111377] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 10/18/2021] [Indexed: 01/18/2023] Open
Abstract
Centronuclear myopathies (CNM) are rare congenital disorders characterized by muscle weakness and structural defects including fiber hypotrophy and organelle mispositioning. The main CNM forms are caused by mutations in: the MTM1 gene encoding the phosphoinositide phosphatase myotubularin (myotubular myopathy), the DNM2 gene encoding the mechanoenzyme dynamin 2, the BIN1 gene encoding the membrane curvature sensing amphiphysin 2, and the RYR1 gene encoding the skeletal muscle calcium release channel/ryanodine receptor. MTM1, BIN1, and DNM2 proteins are involved in membrane remodeling and trafficking, while RyR1 directly regulates excitation-contraction coupling (ECC). Several CNM animal models have been generated or identified, which confirm shared pathological anomalies in T-tubule remodeling, ECC, organelle mispositioning, protein homeostasis, neuromuscular junction, and muscle regeneration. Dynamin 2 plays a crucial role in CNM physiopathology and has been validated as a common therapeutic target for three CNM forms. Indeed, the promising results in preclinical models set up the basis for ongoing clinical trials. Another two clinical trials to treat myotubular myopathy by MTM1 gene therapy or tamoxifen repurposing are also ongoing. Here, we review the contribution of the different CNM models to understanding physiopathology and therapy development with a focus on the commonly dysregulated pathways and current therapeutic targets.
Collapse
Affiliation(s)
- Raquel Gómez-Oca
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
- Dynacure, 67400 Illkirch, France;
| | | | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch, France;
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, 67400 Illkirch, France
- Centre National de la Recherche Scientifique (CNRS), UMR7104, 67400 Illkirch, France
- Strasbourg University, 67081 Strasbourg, France
| |
Collapse
|
6
|
Striated Preferentially Expressed Protein Kinase (SPEG) in Muscle Development, Function, and Disease. Int J Mol Sci 2021; 22:ijms22115732. [PMID: 34072258 PMCID: PMC8199188 DOI: 10.3390/ijms22115732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in striated preferentially expressed protein kinase (SPEG), a member of the myosin light chain kinase protein family, are associated with centronuclear myopathy (CNM), cardiomyopathy, or a combination of both. Burgeoning evidence suggests that SPEG plays critical roles in the development, maintenance, and function of skeletal and cardiac muscles. Here we review the genotype-phenotype relationships and the molecular mechanisms of SPEG-related diseases. This review will focus on the progress made toward characterizing SPEG and its interacting partners, and its multifaceted functions in muscle regeneration, triad development and maintenance, and excitation-contraction coupling. We will also discuss future directions that are yet to be investigated including understanding of its tissue-specific roles, finding additional interacting proteins and their relationships. Understanding the basic mechanisms by which SPEG regulates muscle development and function will provide critical insights into these essential processes and help identify therapeutic targets in SPEG-related disorders.
Collapse
|
7
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
8
|
Genetic basis and identification of candidate genes for wooden breast and white striping in commercial broiler chickens. Sci Rep 2021; 11:6785. [PMID: 33762630 PMCID: PMC7990949 DOI: 10.1038/s41598-021-86176-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/08/2021] [Indexed: 02/07/2023] Open
Abstract
Wooden breast (WB) and white striping (WS) are highly prevalent and economically damaging muscle disorders of modern commercial broiler chickens characterized respectively by palpable firmness and fatty white striations running parallel to the muscle fiber. High feed efficiency and rapid growth, especially of the breast muscle, are believed to contribute to development of such muscle defects; however, their etiology remains poorly understood. To gain insight into the genetic basis of these myopathies, a genome-wide association study was conducted using a commercial crossbred broiler population (n = 1193). Heritability was estimated at 0.5 for WB and WS with high genetic correlation between them (0.88). GWAS revealed 28 quantitative trait loci (QTL) on five chromosomes for WB and 6 QTL on one chromosome for WS, with the majority of QTL for both myopathies located in a ~ 8 Mb region of chromosome 5. This region has highly conserved synteny with a portion of human chromosome 11 containing a cluster of imprinted genes associated with growth and metabolic disorders such as type 2 diabetes and Beckwith-Wiedemann syndrome. Candidate genes include potassium voltage-gated channel subfamily Q member 1 (KCNQ1), involved in insulin secretion and cardiac electrical activity, lymphocyte-specific protein 1 (LSP1), involved in inflammation and immune response.
Collapse
|
9
|
The Impact of Mitochondrial Deficiencies in Neuromuscular Diseases. Antioxidants (Basel) 2020; 9:antiox9100964. [PMID: 33050147 PMCID: PMC7600520 DOI: 10.3390/antiox9100964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuromuscular diseases (NMDs) are a heterogeneous group of acquired or inherited rare disorders caused by injury or dysfunction of the anterior horn cells of the spinal cord (lower motor neurons), peripheral nerves, neuromuscular junctions, or skeletal muscles leading to muscle weakness and waste. Unfortunately, most of them entail serious or even fatal consequences. The prevalence rates among NMDs range between 1 and 10 per 100,000 population, but their rarity and diversity pose difficulties for healthcare and research. Some molecular hallmarks are being explored to elucidate the mechanisms triggering disease, to set the path for further advances. In fact, in the present review we outline the metabolic alterations of NMDs, mainly focusing on the role of mitochondria. The aim of the review is to discuss the mechanisms underlying energy production, oxidative stress generation, cell signaling, autophagy, and inflammation triggered or conditioned by the mitochondria. Briefly, increased levels of inflammation have been linked to reactive oxygen species (ROS) accumulation, which is key in mitochondrial genomic instability and mitochondrial respiratory chain (MRC) dysfunction. ROS burst, impaired autophagy, and increased inflammation are observed in many NMDs. Increasing knowledge of the etiology of NMDs will help to develop better diagnosis and treatments, eventually reducing the health and economic burden of NMDs for patients and healthcare systems.
Collapse
|
10
|
Lin SS, Hsieh TL, Liou GG, Li TN, Lin HC, Chang CW, Wu HY, Yao CK, Liu YW. Dynamin-2 Regulates Postsynaptic Cytoskeleton Organization and Neuromuscular Junction Development. Cell Rep 2020; 33:108310. [DOI: 10.1016/j.celrep.2020.108310] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022] Open
|
11
|
Massana Muñoz X, Kretz C, Silva-Rojas R, Ochala J, Menuet A, Romero NB, Cowling BS, Laporte J. Physiological impact and disease reversion for the severe form of centronuclear myopathy linked to dynamin. JCI Insight 2020; 5:137899. [PMID: 32809972 PMCID: PMC7526554 DOI: 10.1172/jci.insight.137899] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022] Open
Abstract
Classical dynamins are large GTPases regulating membrane and cytoskeleton dynamics, and they are linked to different pathological conditions ranging from neuromuscular diseases to encephalopathy and cancer. Dominant dynamin 2 (DNM2) mutations lead to either mild adult onset or severe autosomal dominant centronuclear myopathy (ADCNM). Our objectives were to better understand the pathomechanism of severe ADCNM and test a potential therapy. Here, we created the Dnm2SL/+ mouse line harboring the common S619L mutation found in patients with severe ADCNM and impairing the conformational switch regulating dynamin self-assembly and membrane remodeling. The Dnm2SL/+ mouse faithfully reproduces severe ADCNM hallmarks with early impaired muscle function and force, together with myofiber hypotrophy. It revealed swollen mitochondria lacking cristae as the main ultrastructural defect and potential cause of the disease. Patient analysis confirmed this structural hallmark. In addition, DNM2 reduction with antisense oligonucleotides after disease onset efficiently reverted locomotor and force defects after only 3 weeks of treatment. Most histological defects including mitochondria alteration were partially or fully rescued. Overall, this study highlights an efficient approach to revert the severe form of dynamin-related centronuclear myopathy. These data also reveal that the dynamin conformational switch is key for muscle function and should be targeted for future therapeutic developments. The dynamin 2 S619L mouse model displays defects in skeletal muscle that are rescued by reducing dynamin 2 protein levels with antisense oligonucleotide treatment.
Collapse
Affiliation(s)
- Xènia Massana Muñoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Christine Kretz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Roberto Silva-Rojas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julien Ochala
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Alexia Menuet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Norma B Romero
- Neuromuscular Morphology Unit, Myology Institute, GHU Pitié-Salpêtrière, Paris, France.,Sorbonne Université, AP-HP, INSERM, Centre de référence des maladies neuromusculaires Nord/Est/Ile de France, Paris, France
| | - Belinda S Cowling
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Dynacure, Illkirch, France
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
12
|
Pereira JA, Gerber J, Ghidinelli M, Gerber D, Tortola L, Ommer A, Bachofner S, Santarella F, Tinelli E, Lin S, Rüegg MA, Kopf M, Toyka KV, Suter U. Mice carrying an analogous heterozygous dynamin 2 K562E mutation that causes neuropathy in humans develop predominant characteristics of a primary myopathy. Hum Mol Genet 2020; 29:1253-1273. [PMID: 32129442 PMCID: PMC7254847 DOI: 10.1093/hmg/ddaa034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/21/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Some mutations affecting dynamin 2 (DNM2) can cause dominantly inherited Charcot-Marie-Tooth (CMT) neuropathy. Here, we describe the analysis of mice carrying the DNM2 K562E mutation which has been associated with dominant-intermediate CMT type B (CMTDIB). Contrary to our expectations, heterozygous DNM2 K562E mutant mice did not develop definitive signs of an axonal or demyelinating neuropathy. Rather, we found a primary myopathy-like phenotype in these mice. A likely interpretation of these results is that the lack of a neuropathy in this mouse model has allowed the unmasking of a primary myopathy due to the DNM2 K562E mutation which might be overshadowed by the neuropathy in humans. Consequently, we hypothesize that a primary myopathy may also contribute to the disease mechanism in some CMTDIB patients. We propose that these findings should be considered in the evaluation of patients, the determination of the underlying disease processes and the development of tailored potential treatment strategies.
Collapse
Affiliation(s)
- Jorge A Pereira
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Joanne Gerber
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Monica Ghidinelli
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel Gerber
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Luigi Tortola
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Andrea Ommer
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Sven Bachofner
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Francesco Santarella
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Elisa Tinelli
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Shuo Lin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Markus A Rüegg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Manfred Kopf
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| | - Klaus V Toyka
- Department of Neurology, University Hospital of Würzburg, University of Würzburg, 97080 Würzburg, Germany
| | - Ueli Suter
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
13
|
Ravnik-Glavač M, Glavač D. Circulating RNAs as Potential Biomarkers in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2020; 21:ijms21051714. [PMID: 32138249 PMCID: PMC7084402 DOI: 10.3390/ijms21051714] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a complex multi-system neurodegenerative disorder with currently limited diagnostic and no therapeutic options. Despite the intense efforts no clinically applicable biomarkers for ALS are yet established. Most current research is thus focused, in particular, in identifying potential non-invasive circulating biomarkers for more rapid and accurate diagnosis and monitoring of the disease. In this review, we have focused on messenger RNA (mRNA), non-coding RNAs (lncRNAs), micro RNAs (miRNAs) and circular RNA (circRNAs) as potential biomarkers for ALS in peripheral blood serum, plasma and cells. The most promising miRNAs include miR-206, miR-133b, miR-27a, mi-338-3p, miR-183, miR-451, let-7 and miR-125b. To test clinical potential of this miRNA panel, a useful approach may be to perform such analysis on larger multi-center scale using similar experimental design. However, other types of RNAs (lncRNAs, circRNAs and mRNAs) that, together with miRNAs, represent RNA networks, have not been yet extensively studied in blood samples of patients with ALS. Additional research has to be done in order to find robust circulating biomarkers and therapeutic targets that will distinguish key RNA interactions in specific ALS-types to facilitate diagnosis, predict progression and design therapy.
Collapse
Affiliation(s)
- Metka Ravnik-Glavač
- Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia
- Correspondence: (M.R.-G.); (D.G.)
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000 Ljubljana, Slovenia
- Correspondence: (M.R.-G.); (D.G.)
| |
Collapse
|
14
|
Chen X, Miller NM, Afghah Z, Geiger JD. Development of AD-Like Pathology in Skeletal Muscle. JOURNAL OF PARKINSON'S DISEASE AND ALZHEIMER'S DISEASE 2019; 6:10.13188/2376-922x.1000028. [PMID: 32190732 PMCID: PMC7079679 DOI: 10.13188/2376-922x.1000028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Effective therapeutic strategy against Alzheimer's disease (AD) requires early detection of AD; however, clinical diagnosis of Alzheimer's disease (AD) is not precise and a definitive diagnosis of AD is only possible via postmortem examination for AD pathological hallmarks including senile plaques composed of Aβ and neuro fibrillary tangles composed of phosphorylated tau. Although a variety of biomarker has been developed and used in clinical setting, none of them robustly predicts subsequent clinical course of AD. Thus, it is essential to identify new biomarkers that may facilitate the diagnosis of early stages of AD, prediction of subsequent clinical course, and development of new therapeutic strategies. Given that pathological hallmarks of AD including Aβaccumulation and the presence of phosphorylated tau are also detected in peripheral tissues, AD is considered a systemic disease. Without the protection of blood-brain barrier, systemic factors can affect peripheral tissues much earlier than neurons in brain. Here, we will discuss the development of AD-like pathology in skeletal muscle and the potential use of skeletal muscle biopsy (examination for Aβaccumulation and phosphorylated tau) as a biomarker for AD.
Collapse
Affiliation(s)
- X Chen
- Department of Biomedical Sciences, University of North Dakota, USA
| | - NM Miller
- Department of Biomedical Sciences, University of North Dakota, USA
| | - Z Afghah
- Department of Biomedical Sciences, University of North Dakota, USA
| | - JD Geiger
- Department of Biomedical Sciences, University of North Dakota, USA
| |
Collapse
|
15
|
Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira JA, Ommer A, Figlia G, Miehe M, Nägeli LG, Suter V, Tadini V, Sidiropoulos PNM, Wessig C, Toyka KV, Suter U. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. eLife 2019; 8:e42404. [PMID: 30648534 PMCID: PMC6335055 DOI: 10.7554/elife.42404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Myelination requires extensive plasma membrane rearrangements, implying that molecules controlling membrane dynamics play prominent roles. The large GTPase dynamin 2 (DNM2) is a well-known regulator of membrane remodeling, membrane fission, and vesicular trafficking. Here, we genetically ablated Dnm2 in Schwann cells (SCs) and in oligodendrocytes of mice. Dnm2 deletion in developing SCs resulted in severely impaired axonal sorting and myelination onset. Induced Dnm2 deletion in adult SCs caused a rapidly-developing peripheral neuropathy with abundant demyelination. In both experimental settings, mutant SCs underwent prominent cell death, at least partially due to cytokinesis failure. Strikingly, when Dnm2 was deleted in adult SCs, non-recombined SCs still expressing DNM2 were able to remyelinate fast and efficiently, accompanied by neuropathy remission. These findings reveal a remarkable self-healing capability of peripheral nerves that are affected by SC loss. In the central nervous system, however, we found no major defects upon Dnm2 deletion in oligodendrocytes.
Collapse
Affiliation(s)
- Daniel Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Monica Ghidinelli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Elisa Tinelli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Christian Somandin
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Joanne Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Jorge A Pereira
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Andrea Ommer
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Gianluca Figlia
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Michaela Miehe
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Lukas G Nägeli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Vanessa Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Valentina Tadini
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Páris NM Sidiropoulos
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Carsten Wessig
- Department of NeurologyUniversity Hospital of Würzburg, University of WürzburgWürzburgGermany
| | - Klaus V Toyka
- Department of NeurologyUniversity Hospital of Würzburg, University of WürzburgWürzburgGermany
| | - Ueli Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| |
Collapse
|
16
|
Rinnenthal JL, Dittmayer C, Irlbacher K, Wacker I, Schröder R, Goebel HH, Butori C, Villa L, Sacconi S, Stenzel W. New variant of necklace fibres display peculiar lysosomal structures and mitophagy. Neuromuscul Disord 2018; 28:846-856. [PMID: 30149909 DOI: 10.1016/j.nmd.2018.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/20/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022]
Abstract
Here, we describe a new variant of necklace fibres with specific myopathological features that have not been described thus far. They were observed in two patients, from two independent families with identical DNM2 (dynamin 2) mutation (c.1106 G > A (p.Arg369Gln)), displaying mildly heterogeneous clinical phenotypes. The variant is characterized by lysosomal inclusions, arranged in a necklace pattern, containing homogenous material, devoid of myonuclei. The so-called necklace region has a certain characteristic distance to the sarcolemma. Electron microscopy, including three dimensional reconstructions of serial section images highlights their ultrastructural properties and relation to neighbouring organelles. This new pattern is compared to the previously reported patterns in muscle biopsies containing necklace fibres associated with MTM1- and DNM2-mutations.
Collapse
Affiliation(s)
- Jan Leo Rinnenthal
- Department of Pathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Carsten Dittmayer
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Kerstin Irlbacher
- Department of Neurology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Irene Wacker
- Cryo EM, CAM, Universität Heidelberg, Im Neuenheimer Feld 225 69120 Heidelberg, Germany
| | - Rasmus Schröder
- Cryo EM, BioQuant, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 225 69120 Heidelberg, Germany
| | - Hans-Hilmar Goebel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany
| | - Catherine Butori
- Department of Pathology, CHU de Nice, University Côte d'Azur, Hopital Saint Roch 5 rue Pierre Devoluy, France
| | - Luisa Villa
- Department of Pathology, CHU de Nice, University Côte d'Azur, Hopital Saint Roch 5 rue Pierre Devoluy, France
| | - Sabrina Sacconi
- Peripheral Nervous System, Muscle and ALS Department, Institute for Research on Cancer and Aging of Nice (IRCAN), CNRS UMR 7284, INSERM U1081, University Côte d'Azur, CHU Nice, 30, Avenue de la Voie Romaine, France
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Chariteplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
17
|
Zanoteli E. Centronuclear myopathy: advances in genetic understanding and potential for future treatments. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1480366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Edmar Zanoteli
- Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Vrabec K, Boštjančič E, Koritnik B, Leonardis L, Dolenc Grošelj L, Zidar J, Rogelj B, Glavač D, Ravnik-Glavač M. Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients. Front Mol Neurosci 2018; 11:106. [PMID: 29670510 PMCID: PMC5893848 DOI: 10.3389/fnmol.2018.00106] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic studies have managed to explain many cases of familial amyotrophic lateral sclerosis (ALS) through mutations in several genes. However, the cause of a majority of sporadic cases remains unknown. Recently, epigenetics, especially miRNA studies, show some promising aspects. We aimed to evaluate the differential expression of 10 miRNAs, including miR-9, miR-338, miR-638, miR-663a, miR-124a, miR-143, miR-451a, miR-132, miR-206, and let-7b, for which some connection to ALS was shown previously in ALS culture cells, animal models or patients, and in three miRNA host genes, including C1orf61 (miR-9), AATK (miR-338), and DNM2 (miR-638), in leukocyte samples of 84 patients with sporadic ALS. We observed significant aberrant dysregulation across our patient cohort for miR-124a, miR-206, miR-9, let-7b, and miR-638. Since we did not use neurological controls we cannot rule out that the revealed differences in expression of investigated miRNAs are specific for ALS. Nevertheless, the group of these five miRNAs is worth of additional research in leukocytes of larger cohorts from different populations in order to verify their potential association to ALS disease. We also detected a significant up-regulation of the AAKT gene and down-regulation of the DNM2 gene, and thus, for the first time, we connected these with sporadic ALS cases. These findings open up new research toward miRNAs as diagnostic biomarkers and epigenetic processes involved in ALS. The detected significant deregulation of AAKT and DNM2 in sporadic ALS also represents an interesting finding. The DNM2 gene was previously found to be mutated in Charcot-Marie-Tooth neuropathy-type CMT2M and centronuclear myopathy (CNM). In addition, as recent studies connected AATK and frontotemporal dementia (FTD) and DNM2 and hereditary spastic paraplegia (HSP), these two genes together with our results genetically connect, at least in part, five diseases, including FTD, HSP, Charcot-Marie-Tooth (type CMT2M), CNM, and ALS, thus opening future research toward a better understanding of the cell biology involved in these partly overlapping pathologies.
Collapse
Affiliation(s)
- Katarina Vrabec
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc Grošelj
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Janez Zidar
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Štefan Institute, Ljubljana, Slovenia.,Biomedical Research Institute, Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Ravnik-Glavač
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Trochet D, Prudhon B, Beuvin M, Peccate C, Lorain S, Julien L, Benkhelifa-Ziyyat S, Rabai A, Mamchaoui K, Ferry A, Laporte J, Guicheney P, Vassilopoulos S, Bitoun M. Allele-specific silencing therapy for Dynamin 2-related dominant centronuclear myopathy. EMBO Mol Med 2018; 10:239-253. [PMID: 29246969 PMCID: PMC5801507 DOI: 10.15252/emmm.201707988] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 11/14/2017] [Accepted: 11/20/2017] [Indexed: 11/09/2022] Open
Abstract
Rapid advances in allele-specific silencing by RNA interference established a strategy of choice to cure dominant inherited diseases by targeting mutant alleles. We used this strategy for autosomal-dominant centronuclear myopathy (CNM), a rare neuromuscular disorder without available treatment due to heterozygous mutations in the DNM2 gene encoding Dynamin 2. Allele-specific siRNA sequences were developed in order to specifically knock down the human and murine DNM2-mRNA harbouring the p.R465W mutation without affecting the wild-type allele. Functional restoration was achieved in muscle from a knock-in mouse model and in patient-derived fibroblasts, both expressing the most frequently encountered mutation in patients. Restoring either muscle force in a CNM mouse model or DNM2 function in patient-derived cells is an essential breakthrough towards future gene-based therapy for dominant centronuclear myopathy.
Collapse
Affiliation(s)
- Delphine Trochet
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Bernard Prudhon
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Maud Beuvin
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Cécile Peccate
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Stéphanie Lorain
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Laura Julien
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Sofia Benkhelifa-Ziyyat
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Aymen Rabai
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, Collège de France, University of Strasbourg, Illkirch, France
| | - Kamel Mamchaoui
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Arnaud Ferry
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, IGBMC, INSERM U964, CNRS UMR7104, Collège de France, University of Strasbourg, Illkirch, France
| | - Pascale Guicheney
- Institute of Cardiometabolism and Nutrition (ICAN), INSERM UMR_S1166, UPMC Univ Paris 06, Sorbonne Universités, Paris, France
| | - Stéphane Vassilopoulos
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| | - Marc Bitoun
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Sorbonne Universités, Paris, France
| |
Collapse
|
20
|
Chen S, Huang P, Qiu Y, Zhou Q, Li X, Zhu M, Hong D. Phenotype variability and histopathological findings in patients with a novel DNM2
mutation. Neuropathology 2017; 38:34-40. [PMID: 28971531 DOI: 10.1111/neup.12432] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/03/2017] [Accepted: 09/03/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Shuyun Chen
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Ping Huang
- Department of Nutrition; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Yusen Qiu
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Qian Zhou
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Xiaobing Li
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Min Zhu
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| | - Daojun Hong
- Department of Neurology; The First Affiliated Hospital of Nanchang University; Nanchang China
| |
Collapse
|
21
|
González-Jamett AM, Baez-Matus X, Olivares MJ, Hinostroza F, Guerra-Fernández MJ, Vasquez-Navarrete J, Bui MT, Guicheney P, Romero NB, Bevilacqua JA, Bitoun M, Caviedes P, Cárdenas AM. Dynamin-2 mutations linked to Centronuclear Myopathy impair actin-dependent trafficking in muscle cells. Sci Rep 2017; 7:4580. [PMID: 28676641 PMCID: PMC5496902 DOI: 10.1038/s41598-017-04418-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 05/16/2017] [Indexed: 12/20/2022] Open
Abstract
Dynamin-2 is a ubiquitously expressed GTP-ase that mediates membrane remodeling. Recent findings indicate that dynamin-2 also regulates actin dynamics. Mutations in dynamin-2 cause dominant centronuclear myopathy (CNM), a congenital myopathy characterized by progressive weakness and atrophy of skeletal muscles. However, the muscle-specific roles of dynamin-2 affected by these mutations remain elusive. Here we show that, in muscle cells, the GTP-ase activity of dynamin-2 is involved in de novo actin polymerization as well as in actin-mediated trafficking of the glucose transporter GLUT4. Expression of dynamin-2 constructs carrying CNM-linked mutations disrupted the formation of new actin filaments as well as the stimulus-induced translocation of GLUT4 to the plasma membrane. Similarly, mature muscle fibers isolated from heterozygous knock-in mice that harbor the dynamin-2 mutation p.R465W, an animal model of CNM, exhibited altered actin organization, reduced actin polymerization and impaired insulin-induced translocation of GLUT4 to the sarcolemma. Moreover, GLUT4 displayed aberrant perinuclear accumulation in biopsies from CNM patients carrying dynamin-2 mutations, further suggesting trafficking defects. These results suggest that dynamin-2 is a key regulator of actin dynamics and GLUT4 trafficking in muscle cells. Our findings also support a model in which impairment of actin-dependent trafficking contributes to the pathological mechanism in dynamin-2-associated CNM.
Collapse
Affiliation(s)
- Arlek M González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile. .,Programa de Farmacología Molecular y Clinica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Ximena Baez-Matus
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - María José Olivares
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernando Hinostroza
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile.,Doctorado en Ciencias, mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Maria José Guerra-Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Jacqueline Vasquez-Navarrete
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Mai Thao Bui
- Université Sorbonne, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France.,Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Paris, France
| | - Pascale Guicheney
- INSERM, UMR_S1166, Sorbonne Universités, UPMC Univ Paris 06, UMR_S1166, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Norma Beatriz Romero
- Université Sorbonne, UPMC Univ Paris 06, INSERM UMRS974, CNRS FRE3617, Center for Research in Myology, Paris, France.,Centre de référence de Pathologie Neuromusculaire Paris-Est, Institut de Myologie, GHU Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, GH Pitié-Salpêtrière, Paris, France
| | - Jorge A Bevilacqua
- Programa de Anatomía y Biología del Desarrollo, ICBM, Facultad de Medicina, Departamento de Neurología y Neurocirugía, Hospital Clínico Universidad de Chile, Universidad de Chile, Santiago, Chile
| | - Marc Bitoun
- Research Center for Myology, UPMC Univ Paris 06 and INSERM UMRS 974, Institute of Myology, Paris, France
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clinica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Ana M Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso. Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
22
|
Reprogramming the Dynamin 2 mRNA by Spliceosome-mediated RNA Trans-splicing. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e362. [PMID: 27623444 PMCID: PMC5056991 DOI: 10.1038/mtna.2016.67] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/20/2016] [Indexed: 02/04/2023]
Abstract
Dynamin 2 (DNM2) is a large GTPase, ubiquitously expressed, involved in membrane trafficking and regulation of actin and microtubule cytoskeletons. DNM2 mutations cause autosomal dominant centronuclear myopathy which is a rare congenital myopathy characterized by skeletal muscle weakness and histopathological features including nuclear centralization in absence of regeneration. No curative treatment is currently available for the DNM2-related autosomal dominant centronuclear myopathy. In order to develop therapeutic strategy, we evaluated here the potential of Spliceosome-Mediated RNA Trans-splicing technology to reprogram the Dnm2-mRNA in vitro and in vivo in mice. We show that classical 3′-trans-splicing strategy cannot be considered as accurate therapeutic strategy regarding toxicity of the pre-trans-splicing molecules leading to low rate of trans-splicing in vivo. Thus, we tested alternative strategies devoted to prevent this toxicity and enhance frequency of trans-splicing events. We succeeded to overcome the toxicity through a 5′-trans-splicing strategy which also allows detection of trans-splicing events at mRNA and protein levels in vitro and in vivo. These results suggest that the Spliceosome-Mediated RNA Trans-splicing strategy may be used to reprogram mutated Dnm2-mRNA but highlight the potential toxicity linked to the molecular tools which have to be carefully investigated during preclinical development.
Collapse
|
23
|
Bragato C, Gaudenzi G, Blasevich F, Pavesi G, Maggi L, Giunta M, Cotelli F, Mora M. Zebrafish as a Model to Investigate Dynamin 2-Related Diseases. Sci Rep 2016; 6:20466. [PMID: 26842864 PMCID: PMC4740890 DOI: 10.1038/srep20466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM) and dominant intermediate Charcot-Marie-Tooth (CMT) neuropathy type B (CMTDIB). As the relation between these DNM2-related diseases is poorly understood, we used zebrafish to investigate the effects of two different DNM2 mutations. First we identified a new alternatively spliced zebrafish dynamin-2a mRNA (dnm2a-v2) with greater similarity to human DNM2 than the deposited sequence. Then we knocked-down the zebrafish dnm2a, producing defects in muscle morphology. Finally, we expressed two mutated DNM2 mRNA by injecting zebrafish embryos with human mRNAs carrying the R522H mutation, causing CNM, or the G537C mutation, causing CMT. Defects arose especially in secondary motor neuron formation, with incorrect branching in embryos injected with CNM-mutated mRNA, and total absence of branching in those injected with CMT-mutated mRNA. Muscle morphology in embryos injected with CMT-mutated mRNA appeared less regularly organized than in those injected with CNM-mutated mRNA. Our results showing, a continuum between CNM and CMTDIB phenotypes in zebrafish, similarly to the human conditions, confirm this animal model to be a powerful tool to investigate mutations of DNM2 in vivo.
Collapse
Affiliation(s)
- Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Germano Gaudenzi
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Michele Giunta
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| |
Collapse
|
24
|
Szymanska E, Skowronek A, Miaczynska M. Impaired dynamin 2 function leads to increased AP-1 transcriptional activity through the JNK/c-Jun pathway. Cell Signal 2015; 28:160-71. [PMID: 26475677 DOI: 10.1016/j.cellsig.2015.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 10/11/2015] [Indexed: 11/27/2022]
Abstract
Activation of AP-1 transcription factors, composed of the Jun and Fos proteins, regulates cellular fates, such as proliferation, differentiation or apoptosis. Among other stimuli, the AP-1 pathway can be initiated by extracellular ligands, such as growth factors or cytokines, which undergo internalization in complex with their receptors. Endocytosis has been implicated in the regulation of several signaling pathways; however its possible impact on AP-1 signaling remains unknown. Here we show that inhibition of dynamin 2 (Dyn2), a major regulator of endocytic internalization, strongly stimulates the AP-1 pathway. Specifically, expression of a dominant-negative Dyn2 K44A mutant increases the total levels of c-Jun, its phosphorylation on Ser63/73 and transcription of AP-1 target genes. Interestingly, DNM2 mutations implicated in human neurological disorders exhibit similar effects on AP-1 signaling. Mechanistically, Dyn2 K44A induces AP-1 by increasing phosphorylation of several receptor tyrosine kinases. Their activation is required to initiate a Src- and JNK-dependent signaling cascade converging on c-Jun and stimulating expression of AP-1 target genes. Cumulatively, our data uncover a link between the Dyn2 function and JNK signaling which leads to AP-1 induction.
Collapse
Affiliation(s)
- Ewelina Szymanska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Skowronek
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Marta Miaczynska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.
| |
Collapse
|
25
|
González-Jamett AM, Haro-Acuña V, Momboisse F, Caviedes P, Bevilacqua JA, Cárdenas AM. Dynamin-2 in nervous system disorders. J Neurochem 2013; 128:210-23. [DOI: 10.1111/jnc.12455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Arlek M. González-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Valentina Haro-Acuña
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Fanny Momboisse
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| | - Pablo Caviedes
- Programa de Farmacología Molecular y Clínica; Facultad de Medicina; Universidad de Chile; Santiago Chile
| | - Jorge A. Bevilacqua
- Departamento de Neurología y Neurocirugía; Hospital Clínico Universidad de Chile; and Programa de Anatomía y Biología del Desarrollo; ICBM; Facultad de Medicina; Universidad de Chile; Santiago Chile
| | - Ana M. Cárdenas
- Centro Interdisciplinario de Neurociencia de Valparaíso; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso Chile
| |
Collapse
|
26
|
Katsetos CD, Koutzaki S, Melvin JJ. Mitochondrial dysfunction in neuromuscular disorders. Semin Pediatr Neurol 2013; 20:202-15. [PMID: 24331362 DOI: 10.1016/j.spen.2013.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review deciphers aspects of mitochondrial (mt) dysfunction among nosologically, pathologically, and genetically diverse diseases of the skeletal muscle, lower motor neuron, and peripheral nerve, which fall outside the traditional realm of mt cytopathies. Special emphasis is given to well-characterized mt abnormalities in collagen VI myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy), megaconial congenital muscular dystrophy, limb-girdle muscular dystrophy type 2 (calpainopathy), centronuclear myopathies, core myopathies, inflammatory myopathies, spinal muscular atrophy, Charcot-Marie-Tooth neuropathy type 2, and drug-induced peripheral neuropathies. Among inflammatory myopathies, mt abnormalities are more prominent in inclusion body myositis and a subset of polymyositis with mt pathology, both of which are refractory to corticosteroid treatment. Awareness is raised about instances of phenotypic mimicry between cases harboring primary mtDNA depletion, in the context of mtDNA depletion syndrome, and established neuromuscular disorders such as spinal muscular atrophy. A substantial body of experimental work, derived from animal models, attests to a major role of mitochondria (mt) in the early process of muscle degeneration. Common mechanisms of mt-related cell injury include dysregulation of the mt permeability transition pore opening and defective autophagy. The therapeutic use of mt permeability transition pore modifiers holds promise in various neuromuscular disorders, including muscular dystrophies.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA.
| | - Sirma Koutzaki
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Joseph J Melvin
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|