1
|
Simpson HL, Smits E, Moerkens R, Wijmenga C, Mooiweer J, Jonkers IH, Withoff S. Human organoids and organ-on-chips in coeliac disease research. Trends Mol Med 2025; 31:117-137. [PMID: 39448329 DOI: 10.1016/j.molmed.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
Coeliac disease (CeD) is an immune-mediated disorder characterised by gluten-triggered inflammation and damage in the small intestine, with lifelong gluten-free diet (GFD) as the only treatment. It is a multifactorial disease, involving genetic and environmental susceptibility factors, and its complexity and lack of comprehensive human model systems have hindered understanding of its pathogenesis and development of new treatments. Therefore, it is crucial to establish systems that recapitulate patient genetic background and the interactions between the small intestinal epithelial barrier, immune cells, and environment that contribute to CeD. In this review, we discuss disease complexity, recent advances in stem cell biology, organoids, tissue co-cultures, and organ-on-chip (OoC) systems that facilitate the development of comprehensive human model systems, and model applications in preclinical studies of potential treatments.
Collapse
Affiliation(s)
- Hanna L Simpson
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Eline Smits
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Renée Moerkens
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Joram Mooiweer
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Iris H Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands.
| |
Collapse
|
2
|
Zeng Q, Xue W, Wei Z, Shen H, Xu H, Zhu H, Guan J, Yi H, Feng Y, Li X, Ye H. Multiple Allergic Rhinitis Single Nucleotide Polymorphism Variants are Associated with Sleep-Breathing Parameters in Men with Obstructive Sleep Apnea: A Large-Scale Study. Nat Sci Sleep 2024; 16:989-1000. [PMID: 39050366 PMCID: PMC11268849 DOI: 10.2147/nss.s456995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 07/11/2024] [Indexed: 07/27/2024] Open
Abstract
Background Sleep-disordered breathing is more prevalent in individuals with allergic rhinitis (AR) than in those without AR. In addition to increased risk for sleep-disordered breathing, AR is associated with greater severity of obstructive sleep apnea (OSA) symptoms. The aim of this research study was to evaluate the association of multiple single nucleotide polymorphism (SNP) variations in AR with sleep- and breathing-related parameters in men with OSA. Methods Men who had complained of snoring were consecutively enrolled in the Shanghai Sleep Health Study of Shanghai Sixth People's Hospital from 2007 to 2018. After rigorous screening, 5322 men were included in the analysis. Anthropometric, fasting biochemical, and polysomnographic parameters, along with 27 AR-associated SNPs were analyzed. The associations between AR-related genetic polymorphisms and OSA were determined via linear, binary, and multinomial logistic regression analyses. Results Rs12509403 had significantly positive associations with most sleep-breathing parameters. While the risk for OSA was increased by rs12509403, it was decreased by rs7717955 [odds ratio (OR) = 1.341, 95% confidence interval [CI] = 1.039-1.732, P = 0.024; OR = 0.829, 95% CI = 0.715-0.961, P = 0.013, respectively]. A graded increase in the risk of being in the highest quartile (Q4) vs the reference category (Q1) for sleep breathing indicators, especially REM-AHI and NREM-AHI, was identified by rs12509403 (OR = 1.496, 95% CI = 1.175-1.904, P = 0.001; OR = 1.471, 95% CI = 1.151-1.879, P < 0.001, respectively). Conclusion The association of multiple AR SNPs with OSA-related hypoxia and sleep indices provides a genetic explanation for the higher AR susceptibility of OSA patients. Understanding the AR-related genetic underpinnings of OSA may lead to more personalized treatment approaches.
Collapse
Affiliation(s)
- Qiying Zeng
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, People’s Republic of China
| | - Wenjun Xue
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, People’s Republic of China
| | - Zhicheng Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, People’s Republic of China
| | - Hangdong Shen
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, People’s Republic of China
| | - Huajun Xu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, People’s Republic of China
| | - Huaming Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, People’s Republic of China
| | - Jian Guan
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, People’s Republic of China
| | - Hongliang Yi
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, People’s Republic of China
| | - Yunhai Feng
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, People’s Republic of China
| | - Xinyi Li
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, People’s Republic of China
| | - Haibo Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Sleep Disordered Breathing, Otorhinolaryngology Institute of Shanghai Jiao Tong University, Shanghai, 200233, People’s Republic of China
| |
Collapse
|
3
|
Zulfiqar S, Fiaz A, Khan WA, Hussain M, Ali A, Ahmed N, Ali B, Masood MA. Association of LPP and ZMIZ1 Gene Polymorphism with Celiac Disease in Subjects from Punjab, Pakistan. Genes (Basel) 2024; 15:852. [PMID: 39062631 PMCID: PMC11275600 DOI: 10.3390/genes15070852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Accepted: 12/23/2023] [Indexed: 07/28/2024] Open
Abstract
Celiac disease (CD) is a complicated autoimmune disease that is caused by gluten sensitivity. It was commonly believed that CD only affected white Europeans, but recent findings show that it is also prevailing in some other racial groups, like South Asians, Caucasians, Africans, and Arabs. Genetics plays a profound role in increasing the risk of developing CD. Genetic Variations in non-HLA genes such as LPP, ZMIZ1, CCR3, and many more influence the risk of CD in various populations. This study aimed to explore the association between LPP rs1464510 and ZMIZ1 rs1250552 and CD in the Punjabi Pakistani population. For this, a total of 70 human subjects were selected and divided into healthy controls and patients. Genotyping was performed using an in-house-developed tetra-amplification refractory mutation system polymerase chain reaction. Statistical analysis revealed a significant association between LPP rs1464510 (χ2 = 4.421, p = 0.035) and ZMIZ1 rs1250552 (χ2 = 3.867, p = 0.049) and CD. Multinomial regression analysis showed that LPP rs1464510 A allele reduces the risk of CD by ~52% (OR 0.48, CI: 0.24-0.96, 0.037), while C allele-carrying subjects are at ~2.6 fold increased risk of CD (OR 3.65, CI: 1.25-10.63, 0.017). Similarly, the ZMIZ1 rs1250552 AG genotype significantly reduces the risk of CD by 73% (OR 0.26, CI: 0.077-0.867, p = 0.028). In summary, Genetic Variations in the LPP and ZMIZ1 genes influence the risk of CD in Punjabi Pakistani subjects. LPP rs1464510 A allele and ZMIZ1 AG genotype play a protective role and reduce the risk of CD.
Collapse
Affiliation(s)
- Sumaira Zulfiqar
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha 40162, Pakistan (M.H.)
| | - Amna Fiaz
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha 40162, Pakistan (M.H.)
| | - Waqas Ahmed Khan
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha 40162, Pakistan (M.H.)
| | - Misbah Hussain
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha 40162, Pakistan (M.H.)
| | - Ansar Ali
- Department of Biotechnology, Faculty of Sciences, University of Sargodha, Sargodha 40162, Pakistan (M.H.)
| | - Nadeem Ahmed
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 42000, Pakistan
| | - Basharat Ali
- Department of Family Medicine, University of Health Sciences, Lahore 42000, Pakistan
| | - Muhammad Adnan Masood
- Department of Medicine, Niazi Medical & Dental College Sargodha, Sargodha 40100, Pakistan
| |
Collapse
|
4
|
Howarth S, Sneddon G, Allinson KR, Razvi S, Mitchell AL, Pearce SHS. Replication of association at the LPP and UBASH3A loci in a UK autoimmune Addison's disease cohort. Eur J Endocrinol 2023; 188:lvac010. [PMID: 36651163 DOI: 10.1093/ejendo/lvac010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/21/2022] [Accepted: 11/30/2022] [Indexed: 01/13/2023]
Abstract
Autoimmune Addison's disease (AAD) arises from a complex interplay between multiple genetic susceptibility polymorphisms and environmental factors. The first genome wide association study (GWAS) with patients from Scandinavian Addison's registries has identified association signals at four novel loci in the genes LPP, SH2B3, SIGLEC5, and UBASH3A. To verify these novel risk loci, we performed a case-control association study in our independent cohort of 420 patients with AAD from the across the UK. We report significant association of alleles of the LPP and UBASH3A genes [odds ratio (95% confidence intervals), 1.46 (1.21-1.75)and 1.40 (1.16-1.68), respectively] with AAD in our UK cohort. In addition, we report nominal association of AAD with SH2B3 [OR 1.18 (1.02-1.35)]. We confirm that variants at the LPP and UBASH3A loci confer susceptibility to AAD in a UK population. Further studies with larger patient cohorts are required to robustly confirm the association of SH2B3 and SIGLEC5/SPACA6 alleles.
Collapse
Affiliation(s)
- Sophie Howarth
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Georgina Sneddon
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Kathleen R Allinson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Salman Razvi
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Anna L Mitchell
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| | - Simon H S Pearce
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Department of Endocrinology, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP, UK
| |
Collapse
|
5
|
He GH, Liu SD, Shi XQ, Chen Y, Su L, Shi QN, Sun C. rs77283072 influences breast cancer susceptibility by regulating CDKN2A expression. Oncol Lett 2023; 25:76. [PMID: 36742366 PMCID: PMC9853096 DOI: 10.3892/ol.2023.13662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/25/2022] [Indexed: 01/06/2023] Open
Abstract
Breast cancer is the cancer type with the highest morbidity rates in women, and previous genome-wide association studies (GWASs) have suggested that the single nucleotide polymorphism (SNP) rs1011970 is significantly associated with this disease. An analysis of data from the 1000 Genomes Project demonstrated that there is an SNP, rs77283072, in almost complete linkage disequilibrium with rs1011970, which should therefore present the same signal in a GWAS. However, the actual causal SNP and its associated underlying mechanism have yet to be elucidated. Therefore, the present study evaluated the role of rs77283072 in terms of its association with breast cancer. A dual-luciferase assay was performed, which demonstrated that the two alleles of rs1011970 did not exhibit significantly different reporter gene activity. However, the A allele of rs77283072 exhibited a significant increase in relative luciferase activity compared with the G allele, which suggested that rs77283072 was the causal SNP for breast cancer. Chromosome conformation capture demonstrated that the enhancer containing rs77283072 interacted with the promoter of cyclin-dependent kinase inhibitor 2A (CDKN2A). Furthermore, expression quantitative trait locus analysis demonstrated that the expression of CDKN2A was dependent on the genotype of rs77283072. Taken together, the findings of the present study provided novel insights into the mechanism underlying how the genetic variation in this locus was able to influence breast cancer susceptibility and further the treatment for this disease.
Collapse
Affiliation(s)
- Guang-Huan He
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Shao-Dong Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Xiao-Qian Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Ying Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Li Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China
| | - Qiao-Na Shi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China,Correspondence to: Dr Chang Sun or Ms. Qiao-Na Shi, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Road, Xi'an, Shaanxi 710119, P.R. China, E-mail:
| | - Chang Sun
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi 710119, P.R. China,Correspondence to: Dr Chang Sun or Ms. Qiao-Na Shi, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Road, Xi'an, Shaanxi 710119, P.R. China, E-mail:
| |
Collapse
|
6
|
Nanayakkara M, Bellomo C, Furone F, Maglio M, Marano A, Lania G, Porpora M, Nicoletti M, Auricchio S, Barone MV. PTPRK, an EGFR Phosphatase, Is Decreased in CeD Biopsies and Intestinal Organoids. Cells 2022; 12:cells12010115. [PMID: 36611909 PMCID: PMC9818839 DOI: 10.3390/cells12010115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND & AIMS Celiac disease (CeD) is an immune-mediated enteropathy triggered in genetically susceptible (HLA-DQ2/8) individuals by a group of wheat proteins and related prolamins from cereals. The celiac intestine is characterized by an inversion of the differentiation/proliferation program of the enterocytes, with an increase in the proliferative compartment and crypt hyperplasia, which are the mechanisms that regulate the increased proliferation in CeD that arenot completely understood.The aim of this study is to understand the role of Protein Tyrosine Phosphatase Receptor Type K (PTPRK), a nodal phosphatase that regulates EGFR activation in the proliferation of the enterocytes from CeD biopsies and organoids. METHODS The levels of PTPRK were evaluated by RT PCR, western blot (WB) and immunofluorescence techniques in intestinal biopsies and organoids from CeD patients and controls. Additionally, pEGFR and pERK were evaluated by WB and proliferation by BrdU incorporation. PTPRK si-RNA was silenced in CTR organoids and was overexpressed in CeD organoids. RESULTS PTPRK was reduced in Gluten Containing Diet-Celiac Disease (GCD-CeD) and Potential-Celiac Disease(Pot-CeD) biopsies (p < 0.01-p < 0.05) whereas pEGFR (p < 0.01 p < 0.01), pERK (p < 0.01 p < 0.01) and proliferation were increased. (p < 0.05 p < 0.05) respect to the controls.The CeD organoids reproduced these same alterations. Silencing of PTPRK in CTR organoids increased pEGFR, pERK and proliferation. The overexpression of PTPRK in CeD organoids reduced pEGFR, pERK and proliferation. CONCLUSIONS modulation of PTPRK levels can reduce or increase pEGFR, pERK and proliferation in CeD or CTR organoids, respectively. The CeD organoids can be a good model to study the mechanisms of the disease.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Claudia Bellomo
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Francesca Furone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Mariantonia Maglio
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Antonella Marano
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Giuliana Lania
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Monia Porpora
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Martina Nicoletti
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Salvatore Auricchio
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, Section of Pediatrics, University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- ELFID (European Laboratory for the Investigation of Food Induced Diseases), University Federico II, Via S. Pansini 5, 80131 Naples, Italy
- Correspondence: ; Tel.: +39-0817464568; Fax: +39-0817463116
| |
Collapse
|
7
|
Byrska-Bishop M, Evani US, Zhao X, Basile AO, Abel HJ, Regier AA, Corvelo A, Clarke WE, Musunuri R, Nagulapalli K, Fairley S, Runnels A, Winterkorn L, Lowy E, Paul Flicek, Germer S, Brand H, Hall IM, Talkowski ME, Narzisi G, Zody MC. High-coverage whole-genome sequencing of the expanded 1000 Genomes Project cohort including 602 trios. Cell 2022; 185:3426-3440.e19. [PMID: 36055201 PMCID: PMC9439720 DOI: 10.1016/j.cell.2022.08.004] [Citation(s) in RCA: 439] [Impact Index Per Article: 146.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 06/21/2022] [Accepted: 08/03/2022] [Indexed: 01/05/2023]
Abstract
The 1000 Genomes Project (1kGP) is the largest fully open resource of whole-genome sequencing (WGS) data consented for public distribution without access or use restrictions. The final, phase 3 release of the 1kGP included 2,504 unrelated samples from 26 populations and was based primarily on low-coverage WGS. Here, we present a high-coverage 3,202-sample WGS 1kGP resource, which now includes 602 complete trios, sequenced to a depth of 30X using Illumina. We performed single-nucleotide variant (SNV) and short insertion and deletion (INDEL) discovery and generated a comprehensive set of structural variants (SVs) by integrating multiple analytic methods through a machine learning model. We show gains in sensitivity and precision of variant calls compared to phase 3, especially among rare SNVs as well as INDELs and SVs spanning frequency spectrum. We also generated an improved reference imputation panel, making variants discovered here accessible for association studies.
Collapse
Affiliation(s)
| | | | - Xuefang Zhao
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | - Haley J Abel
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison A Regier
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Wayne E Clarke
- New York Genome Center, New York, NY 10013, USA; Outlier Informatics Inc., Saskatoon, SK S7H 1L4, Canada
| | | | | | - Susan Fairley
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | | | - Ernesto Lowy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Harrison Brand
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ira M Hall
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Genomic Health, Yale University School of Medicine, New Haven, CT 06510, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
8
|
Røyrvik EC, Husebye ES. The genetics of autoimmune Addison disease: past, present and future. Nat Rev Endocrinol 2022; 18:399-412. [PMID: 35411072 DOI: 10.1038/s41574-022-00653-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/21/2022] [Indexed: 12/23/2022]
Abstract
Autoimmune Addison disease is an endocrinopathy that is fatal if not diagnosed and treated in a timely manner. Its rarity has hampered unbiased studies of the predisposing genetic factors. A 2021 genome-wide association study, explaining up to 40% of the genetic susceptibility, has revealed new disease loci and reproduced some of the previously reported associations, while failing to reproduce others. Credible risk loci from both candidate gene and genome-wide studies indicate that, like one of its most common comorbidities, type 1 diabetes mellitus, Addison disease is primarily caused by aberrant T cell behaviour. Here, we review the current understanding of the genetics of autoimmune Addison disease and its position in the wider field of autoimmune disorders. The mechanisms that could underlie the effects on the adrenal cortex are also discussed.
Collapse
Affiliation(s)
- Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Bergen, Norway.
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway.
| | - Eystein S Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
9
|
Wysocka-Mincewicz M, Groszek A, Ambrozkiewicz F, Paziewska A, Dąbrowska M, Rybak A, Konopka E, Ochocińska A, Żeber-Lubecka N, Karczmarski J, Bierła JB, Trojanowska I, Rogowska A, Ostrowski J, Cukrowska B. Combination of HLA-DQ2/-DQ8 Haplotypes and a Single MSH5 Gene Variant in a Polish Population of Patients with Type 1 Diabetes as a First Line Screening for Celiac Disease? J Clin Med 2022; 11:2223. [PMID: 35456320 PMCID: PMC9025645 DOI: 10.3390/jcm11082223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022] Open
Abstract
Patients with type 1 diabetes (T1D) are at increased risk for developing celiac disease (CD). The aim of the study was to assess the usefulness of celiac-specific human leukocyte antigen (HLA) haplotype and the rs3130484 variant of MSH5 gene, a previously described non-HLA variant associated with CD in the Polish population as a first-line screening for CD in T1D pediatric patients. Serological CD screening performed in the T1D group (n = 248) and healthy controls (n = 551) allowed for CD recognition in 20 patients (8.1%) with T1D (T1D + CD group). HLA-DQ2, HLA-DQ8 and the rs3130484 variant were genotyped with TaqMan SNP Genotyping Assays. The T1D + CD group presented a higher, but not statistically significant, frequency of HLA-DQ2 in comparison with T1D subjects. Combining the rs3130484 with HLA-DQ2/HLA-DQ8 typing significantly increased the sensitivity of HLA testing from 32.7% to 68.7%, and the accuracy of estimating CD prediction from 51.7% to 86.4% but decreased the specificity from 100% to 78.2%. The receiver operating characteristic curve analysis confirmed the best discrimination for the combination of both genetic tests with an area under curve reaching 0.735 (95% CI: 0.700-0.7690) in comparison with 0.664 (95% CI: 0.632-0.696) for HLA typing alone. Results show the low utility of HLA-DQ2/HLA-DQ8 typing for CD screening in T1D pediatric patients. Combination of the rs3130484 variant of the MSH5 gene and HLA testing increases both the sensitivity and the predictive value of the test accuracy, but still, the obtained values are not satisfactory for recommending such testing as the first-line screening for CD in T1D patients.
Collapse
Affiliation(s)
- Marta Wysocka-Mincewicz
- Department of Endocrinology and Diabetology of the Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.W.-M.); (A.G.)
| | - Artur Groszek
- Department of Endocrinology and Diabetology of the Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland; (M.W.-M.); (A.G.)
| | - Filip Ambrozkiewicz
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (F.A.); (M.D.); (N.Ż.-L.); (J.K.); (J.O.)
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 323 00 Pilsen, Czech Republic
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (A.P.); (A.R.)
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
- Faculty of Medical and Health Sciences, Institute of Health Sciences, Siedlce University of Natural Sciences and Humanities, 08-110 Siedlce, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (F.A.); (M.D.); (N.Ż.-L.); (J.K.); (J.O.)
| | - Anna Rybak
- Department of Gastroenterology, Great Ormond Street Hospital NHS Trust, Great Ormond Street, London WC1N 3JH, UK;
| | - Ewa Konopka
- Department of Pathomorphology of the Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland; (E.K.); (J.B.B.); (I.T.)
| | - Agnieszka Ochocińska
- Department of Biochemistry, Radioimmunology and Experimental Medicine of the Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland;
| | - Natalia Żeber-Lubecka
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (F.A.); (M.D.); (N.Ż.-L.); (J.K.); (J.O.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (A.P.); (A.R.)
| | - Jakub Karczmarski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (F.A.); (M.D.); (N.Ż.-L.); (J.K.); (J.O.)
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland
| | - Joanna B. Bierła
- Department of Pathomorphology of the Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland; (E.K.); (J.B.B.); (I.T.)
| | - Ilona Trojanowska
- Department of Pathomorphology of the Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland; (E.K.); (J.B.B.); (I.T.)
| | - Agnieszka Rogowska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (A.P.); (A.R.)
- Department of Oncological Gastroenterology, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, 02-781 Warsaw, Poland; (F.A.); (M.D.); (N.Ż.-L.); (J.K.); (J.O.)
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland; (A.P.); (A.R.)
| | - Bożena Cukrowska
- Department of Pathomorphology of the Children’s Memorial Health Institute, Aleja Dzieci Polskich 20, 04-730 Warsaw, Poland; (E.K.); (J.B.B.); (I.T.)
| |
Collapse
|
10
|
Micronutrient Improvement of Epithelial Barrier Function in Various Disease States: A Case for Adjuvant Therapy. Int J Mol Sci 2022; 23:ijms23062995. [PMID: 35328419 PMCID: PMC8951934 DOI: 10.3390/ijms23062995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care—but also medical prophylactic and therapeutic care in general—to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.
Collapse
|
11
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
Verdu EF, Schuppan D. Co-factors, Microbes, and Immunogenetics in Celiac Disease to Guide Novel Approaches for Diagnosis and Treatment. Gastroenterology 2021; 161:1395-1411.e4. [PMID: 34416277 DOI: 10.1053/j.gastro.2021.08.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022]
Abstract
Celiac disease (CeD) is a frequent immune-mediated disease that affects not only the small intestine but also many extraintestinal sites. The role of gluten proteins as dietary triggers, HLA-DQ2 or -DQ8 as major necessary genetic predisposition, and tissue transglutaminase (TG2) as mechanistically involved autoantigen, are unique features of CeD. Recent research implicates many cofactors working in synergism with these key triggers, including the intestinal microbiota and their metabolites, nongluten dietary triggers, intestinal barrier defects, novel immune cell phenotypes, and mediators and cytokines. In addition, apart from HLA-DQ2 and -DQ8, multiple and complex predisposing genetic factors and interactions have been defined, most of which overlap with predispositions in other, usually autoimmune, diseases that are linked to CeD. The resultant better understanding of CeD pathogenesis, and its manifold manifestations has already paved the way for novel therapeutic approaches beyond the lifelong strict gluten-free diet, which poses a burden to patients and often does not lead to complete mucosal healing. Thus, supported by improved mouse models for CeD and in vitro organoid cultures, several targeted therapies are in phase 2-3 clinical studies, such as highly effective gluten-degrading oral enzymes, inhibition of TG2, cytokine therapies, induction of tolerance to gluten ingestion, along with adjunctive and preventive approaches using beneficial probiotics and micronutrients. These developments are supported by novel noninvasive markers of CeD severity and activity that may be used as companion diagnostics, allow easy-to perform and reliable monitoring of patients, and finally support personalized therapy for CeD.
Collapse
Affiliation(s)
- Elena F Verdu
- Division of Gastroenterology, Department of Internal Medicine, Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Detlef Schuppan
- Institute of Translational Immunology,Research Center for Immune Therapy and Celiac Center, University Medical Center, Johannes Gutenberg University, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
King HW, Wells KL, Shipony Z, Kathiria AS, Wagar LE, Lareau C, Orban N, Capasso R, Davis MM, Steinmetz LM, James LK, Greenleaf WJ. Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci. Sci Immunol 2021; 6:eabh3768. [PMID: 34623901 PMCID: PMC8859880 DOI: 10.1126/sciimmunol.abh3768] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The germinal center (GC) response is critical for both effective adaptive immunity and establishing peripheral tolerance by limiting autoreactive B cells. Dysfunction in these processes can lead to defective immune responses to infection or contribute to autoimmune disease. To understand the gene regulatory principles underlying the GC response, we generated a single-cell transcriptomic and epigenomic atlas of the human tonsil, a widely studied and representative lymphoid tissue. We characterize diverse immune cell subsets and build a trajectory of dynamic gene expression and transcription factor activity during B cell activation, GC formation, and plasma cell differentiation. We subsequently leverage cell type–specific transcriptomic and epigenomic maps to interpret potential regulatory impact of genetic variants implicated in autoimmunity, revealing that many exhibit their greatest regulatory potential in GC-associated cellular populations. These included gene loci linked with known roles in GC biology (IL21, IL21R, IL4R, and BCL6) and transcription factors regulating B cell differentiation (POU2AF1 and HHEX). Together, these analyses provide a powerful new cell type–resolved resource for the interpretation of cellular and genetic causes underpinning autoimmune disease.
Collapse
Affiliation(s)
- Hamish W King
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Kristen L Wells
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Zohar Shipony
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Arwa S Kathiria
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Lisa E Wagar
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Caleb Lareau
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Pathology, University of California Irvine, Irvine, CA, USA
| | - Nara Orban
- Barts Health Ear, Nose and Throat Service, The Royal London Hospital, London, UK
| | - Robson Capasso
- Division of Sleep Surgery, Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Lars M Steinmetz
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Genome Technology Center, Stanford University, Stanford, CA, USA
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Louisa K James
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Chan–Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
14
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
15
|
Discepolo V, Lania G, Ten Eikelder MLG, Nanayakkara M, Sepe L, Tufano R, Troncone R, Auricchio S, Auricchio R, Paolella G, Barone MV. Pediatric Celiac Disease Patients Show Alterations of Dendritic Cell Shape and Actin Rearrangement. Int J Mol Sci 2021; 22:ijms22052708. [PMID: 33800150 PMCID: PMC7962447 DOI: 10.3390/ijms22052708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022] Open
Abstract
Celiac disease (CD) is a frequent intestinal inflammatory disease occurring in genetically susceptible individuals upon gluten ingestion. Recent studies point to a role in CD for genes involved in cell shape, adhesion and actin rearrangements, including a Rho family regulator, Rho GTPase-activating protein 31 (ARHGAP31). In this study, we investigated the morphology and actin cytoskeletons of peripheral monocyte-derived dendritic cells (DCs) from children with CD and controls when in contact with a physiological substrate, fibronectin. DCs were generated from peripheral blood monocytes of pediatric CD patients and controls. After adhesion on fibronectin, DCs showed a higher number of protrusions and a more elongated shape in CD patients compared with controls, as assessed by immunofluorescence actin staining, transmitted light staining and video time-lapse microscopy. These alterations did not depend on active intestinal inflammation associated with gluten consumption and were specific to CD, since they were not found in subjects affected by other intestinal inflammatory conditions. The elongated morphology was not a result of differences in DC activation or maturation status, and did not depend on the human leukocyte antigen (HLA)-DQ2 haplotype. Notably, we found that ARH-GAP31 mRNA levels were decreased while RhoA-GTP activity was increased in CD DCs, pointing to an impairment of the Rho pathway in CD cells. Accordingly, Rho inhibition was able to prevent the cytoskeleton rearrangements leading to the elongated morphology of celiac DCs upon adhesion on fibronectin, confirming the role of this pathway in the observed phenotype. In conclusion, adhesion on fibronectin discriminated CD from the controls' DCs, revealing a gluten-independent CD-specific cellular phenotype related to DC shape and regulated by RhoA activity.
Collapse
Affiliation(s)
- Valentina Discepolo
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Giuliana Lania
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | | | - Merlin Nanayakkara
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Leandra Sepe
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (L.S.); (R.T.)
| | - Rossella Tufano
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy; (L.S.); (R.T.)
| | - Riccardo Troncone
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Renata Auricchio
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Giovanni Paolella
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
| | - Maria Vittoria Barone
- European Laboratory for the Investigation of Food Induced Diseases, Department of Translational Medical Science, Section of Pediatrics, and ELFID, University Federico II, Via S. Pansini 5, 80131 Naples, Italy; (V.D.); (G.L.); (M.N.); (R.T.); (S.A.); (R.A.); (G.P.)
- Correspondence:
| |
Collapse
|
16
|
Jauregi-Miguel A. The tight junction and the epithelial barrier in coeliac disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 358:105-132. [PMID: 33707052 DOI: 10.1016/bs.ircmb.2020.09.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epithelial barriers are essential to maintain multicellular organisms well compartmentalized and protected from external environment. In the intestine, the epithelial layer orchestrates a dynamic balance between nutrient absorption and prevention of microorganisms, and antigen intrusion. Intestinal barrier function has been shown to be altered in coeliac disease but whether it contributes to the pathogenesis development or if it is merely a phenomenon secondary to the aberrant immune response is still unknown. The tight junction complexes are multiprotein cell-cell adhesions that seal the epithelial intercellular space and regulate the paracellular permeability of ions and solutes. These structures have a fundamental role in epithelial barrier integrity as well as in signaling mechanisms that control epithelial-cell polarization, the formation of apical domains and cellular processes such as cell proliferation, migration, differentiation, and survival. In coeliac disease, the molecular structures and function of tight junctions appear disrupted and are not completely recovered after treatment with gluten-free diet. Moreover, zonulin, the only known physiological regulator of the tight junction permeability, appears augmented in autoimmune conditions associated with TJ dysfunction, including coeliac disease. This chapter will examine recent discoveries about the molecular architecture of tight junctions and their functions. We will discuss how different factors contribute to tight junction disruption and intestinal barrier impairment in coeliac disease. To conclude, new insights into zonulin-driven disruption of tight junction structures and barrier integrity in coeliac disease are presented together with the advancements in novel therapy to treat the barrier defect seen in pathogenesis.
Collapse
Affiliation(s)
- Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden; Department of Biomedical and Clinical Sciences, Faculty of Health Science, Linköping University, Linköping, Sweden.
| |
Collapse
|
17
|
Intestinal Barrier Function in Gluten-Related Disorders. Nutrients 2019; 11:nu11102325. [PMID: 31581491 PMCID: PMC6835310 DOI: 10.3390/nu11102325] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022] Open
Abstract
Gluten-related disorders include distinct disease entities, namely celiac disease, wheat-associated allergy and non-celiac gluten/wheat sensitivity. Despite having in common the contact of the gastrointestinal mucosa with components of wheat and other cereals as a causative factor, these clinical entities have distinct pathophysiological pathways. In celiac disease, a T-cell mediate immune reaction triggered by gluten ingestion is central in the pathogenesis of the enteropathy, while wheat allergy develops as a rapid immunoglobulin E- or non-immunoglobulin E-mediated immune response. In non-celiac wheat sensitivity, classical adaptive immune responses are not involved. Instead, recent research has revealed that an innate immune response to a yet-to-be-defined antigen, as well as the gut microbiota, are pivotal in the development in this disorder. Although impairment of the epithelial barrier has been described in all three clinical conditions, its role as a potential pathogenetic co-factor, specifically in celiac disease and non-celiac wheat sensitivity, is still a matter of investigation. This article gives a short overview of the mucosal barrier of the small intestine, summarizes the aspects of barrier dysfunction observed in all three gluten-related disorders and reviews literature data in favor of a primary involvement of the epithelial barrier in the development of celiac disease and non-celiac wheat sensitivity.
Collapse
|
18
|
Abstract
The incidence of celiac disease has risen quickly and has a worldwide distribution in Europe, North and South America, Asia, the Middle East and Africa. This is attributed in part to increased availability in screening but also to the fast-rising gluten consumption and perhaps unknown environmental factors. In daily practice, this means that more subclinical cases and very young and elderly patients are diagnosed. The pathogenesis of celiac disease is a T-cell driven process initiated by gluten, leading to increased intestinal permeability and villous atrophy. The process requires HLA genotypes DQ2, DQ8 or both. Additional non-HLA alleles have been identified in genome-wide association studies. Serological testing, followed by duodenal biopsies, are still required to confirm the diagnosis. Advances are in the making for novel biomarkers to monitor disease and for pharmacological support of celiac disease. Medical costs and patient-perceived disease burden remain high in celiac disease, which point to the need for ongoing research in drug development to improve quality of daily life. Drugs undergoing phase I and phase II clinical trials include intraluminal therapies and vaccines to restore immune tolerance. These therapies aim to reduce symptoms and mucosal injuries as adjunct therapies to a gluten-free diet.
Collapse
Affiliation(s)
- Julie Zhu
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
| | - Chris J J Mulder
- Celiac Center Amsterdam, Department Gastroenterology and Hepatology, VU University Medical Center, Amsterdam, the Netherlands
| | - Levinus A Dieleman
- Division of Gastroenterology, University of Alberta, Edmonton, Alberta, Canada
- Correspondence: Dr. Levinus Dieleman, MD, PhD, Division of Gastroenterology, University of Alberta Zeidler Bldg 2-24, 130 University Campus, Edmonton, Canada T6G 2X8, e-mail
| |
Collapse
|
19
|
Abstract
The 1000 Genomes Project created a valuable, worldwide reference for human genetic variation. Common uses of the 1000 Genomes dataset include genotype imputation supporting Genome-wide Association Studies, mapping expression Quantitative Trait Loci, filtering non-pathogenic variants from exome, whole genome and cancer genome sequencing projects, and genetic analysis of population structure and molecular evolution. In this article, we will highlight some of the multiple ways that the 1000 Genomes data can be and has been utilized for genetic studies.
Collapse
|
20
|
Profiling Celiac Disease-Related Transcriptional Changes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:149-174. [DOI: 10.1016/bs.ircmb.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Stein R, Katz D. Celiac Disease. FOODBORNE DISEASES 2017:475-526. [DOI: 10.1016/b978-0-12-385007-2.00024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
22
|
Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs. J Autoimmun 2016; 68:62-74. [PMID: 26898941 PMCID: PMC5391837 DOI: 10.1016/j.jaut.2016.01.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/28/2016] [Accepted: 01/31/2016] [Indexed: 12/17/2022]
Abstract
Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases.
Collapse
|
23
|
Ahn RS, Garner C. A Case Study of Fixed-Effects and Random-Effects Meta-Analysis Models for Genome-Wide Association Studies in Celiac Disease. Hum Hered 2015; 80:51-61. [PMID: 26436999 DOI: 10.1159/000437323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 06/30/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS Amongst the many approaches to genome-wide association study (GWAS) meta-analysis (MA), the most popular methods are based on fixed-effects (FE) modeling because it tends to be the statistically most powerful approach in the absence of heterogeneity. However, FE-based MA ignores the potential heterogeneity that may exist between studies. The purpose of our analysis was to test whether results from random effects (RE)-based methods that account for heterogeneity differed significantly from the results that were originally published. METHODS We reanalyzed two GWAS FE-based MAs of celiac disease with RE-based methods: (1) a two-stage GWAS MA that includes 9,451 celiac disease cases and 16,434 controls from 12 collections and (2) a single-stage GWAS MA using a custom dense genotyping platform to capture low-frequency and rare variants in 12,041 cases and 12,228 controls from 7 collections. RESULTS We present evidence that SNPs at loci that were previously reported to be genome-wide significant (GWS; p < 5 × 10(-8)) in either the two-stage GWAS MA or the single-stage GWAS MA were not GWS when heterogeneity was accounted for by an RE MA method. CONCLUSION This case study highlights the strengths of RE MA methods in the presence of heterogeneity and of pooled FE methods.
Collapse
Affiliation(s)
- Richard S Ahn
- Department of Dermatology, School of Medicine, University of California, San Francisco, Calif., USA
| | | |
Collapse
|
24
|
Leonard MM, Serena G, Sturgeon C, Fasano A. Genetics and celiac disease: the importance of screening. Expert Rev Gastroenterol Hepatol 2015; 9:209-15. [PMID: 25294637 DOI: 10.1586/17474124.2014.945915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The prevalence of celiac disease (CD) is increasing. Despite an increased awareness and an improvement in diagnostic testing, the majority of individuals with CD remain undiagnosed. Currently, genetic testing in screening for CD is used only to exclude a diagnosis or reinforce a strong clinical suspicion. In this paper, we review the most current literature regarding genetic testing in CD. In response to important data revealing that an individual's HLA haplotype is one of the strongest known predictors of CD, we propose genetic screening for at-risk infants to stratify individuals based on genetic risk to ultimately create genetic specific screening algorithms.
Collapse
Affiliation(s)
- Maureen M Leonard
- Center for Celiac Research, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, 165 Cambridge St, Boston MA 02111, USA
| | | | | | | |
Collapse
|
25
|
Deelen P, Bonder MJ, van der Velde KJ, Westra HJ, Winder E, Hendriksen D, Franke L, Swertz MA. Genotype harmonizer: automatic strand alignment and format conversion for genotype data integration. BMC Res Notes 2014; 7:901. [PMID: 25495213 PMCID: PMC4307387 DOI: 10.1186/1756-0500-7-901] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 12/03/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To gain statistical power or to allow fine mapping, researchers typically want to pool data before meta-analyses or genotype imputation. However, the necessary harmonization of genetic datasets is currently error-prone because of many different file formats and lack of clarity about which genomic strand is used as reference. FINDINGS Genotype Harmonizer (GH) is a command-line tool to harmonize genetic datasets by automatically solving issues concerning genomic strand and file format. GH solves the unknown strand issue by aligning ambiguous A/T and G/C SNPs to a specified reference, using linkage disequilibrium patterns without prior knowledge of the used strands. GH supports many common GWAS/NGS genotype formats including PLINK, binary PLINK, VCF, SHAPEIT2 & Oxford GEN. GH is implemented in Java and a large part of the functionality can also be used as Java 'Genotype-IO' API. All software is open source under license LGPLv3 and available from http://www.molgenis.org/systemsgenetics. CONCLUSIONS GH can be used to harmonize genetic datasets across different file formats and can be easily integrated as a step in routine meta-analysis and imputation pipelines.
Collapse
Affiliation(s)
- Patrick Deelen
- />University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
- />Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marc Jan Bonder
- />Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - K Joeri van der Velde
- />University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
- />Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Harm-Jan Westra
- />Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erwin Winder
- />University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
- />Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Dennis Hendriksen
- />University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
- />Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Lude Franke
- />Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Morris A Swertz
- />University of Groningen, University Medical Center Groningen, Genomics Coordination Center, Groningen, the Netherlands
- />Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
26
|
Expression analysis in intestinal mucosa reveals complex relations among genes under the association peaks in celiac disease. Eur J Hum Genet 2014; 23:1100-5. [PMID: 25388004 PMCID: PMC4795102 DOI: 10.1038/ejhg.2014.244] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 12/17/2022] Open
Abstract
Celiac disease is a chronic immune-mediated disorder with an important genetic component. To date, there are 57 independent association signals from 39 non-HLA loci, and a total of 66 candidate genes have been proposed. We aimed to scrutinize the functional implication of 45 of those genes by analyzing their expression in the disease tissue of celiac patients (at diagnosis/treatment) compared with non-celiac controls. Moreover, we investigated the SNP genotype effect in gene expression and performed coexpression analyses. Several genes showed differential expression among disease groups, most of them related to immune response. Multiple trans-eQTLs but only four cis-eQTLs were found, and surprisingly the genotype effect seems to be stimulus dependent as it differs among groups. Coexpression levels vary from higher to lower levels in active patients at diagnosis, treated patients and non-celiac controls respectively. A subset of 18 genes tightly correlated in both groups of patients but not in controls was identified. Interestingly, this subset of genes was influenced by the genotype of three SNPs. One of the SNPs, rs1018326 on chromosome two is on top of a known lincRNA whose function is not yet described, and whose expression seems to be upregulated in active disease when comparing biopsy pairs from the same individuals. Our results strongly suggest that the effects of disease-associated SNPs go far beyond the oversimplistic idea of transcriptional control at a nearby locus. Further investigations are needed to determine how each variant disrupts fine-tuning mechanisms in the genome that eventually lead to disease.
Collapse
|
27
|
Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci 2014. [PMID: 25387079 DOI: 10.3390/ijms151120518.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31-43, P31-43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31-43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31-43 in controls, mimicking the celiac cellular phenotype.
Collapse
|
28
|
Barone MV, Troncone R, Auricchio S. Gliadin peptides as triggers of the proliferative and stress/innate immune response of the celiac small intestinal mucosa. Int J Mol Sci 2014; 15:20518-37. [PMID: 25387079 PMCID: PMC4264181 DOI: 10.3390/ijms151120518] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 02/06/2023] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides induce innate and adaptive T cell-mediated immune responses. The major mediator of the stress and innate immune response to gliadin peptides (i.e., peptide 31–43, P31–43) is the cytokine interleukin-15 (IL-15). The role of epithelial growth factor (EGF) as a mediator of enterocyte proliferation and the innate immune response has been described. In this paper, we review the most recent literature on the mechanisms responsible for triggering the up-regulation of these mediators in CD by gliadin peptides. We will discuss the role of P31–43 in enterocyte proliferation, structural changes and the innate immune response in CD mucosa in cooperation with EGF and IL-15, and the mechanism of up-regulation of these mediators related to vesicular trafficking. We will also review the literature that focuses on constitutive alterations of the structure, signalling/proliferation and stress/innate immunity pathways of CD cells. Finally, we will discuss how these pathways can be triggered by gliadin peptide P31–43 in controls, mimicking the celiac cellular phenotype.
Collapse
Affiliation(s)
- Maria Vittoria Barone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Pediatrics), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| | - Salvatore Auricchio
- European Laboratory for the Investigation of Food Induced Diseases (ELFID), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy.
| |
Collapse
|
29
|
Kumar V, Gutierrez-Achury J, Kanduri K, Almeida R, Hrdlickova B, Zhernakova DV, Westra HJ, Karjalainen J, Ricaño-Ponce I, Li Y, Stachurska A, Tigchelaar EF, Abdulahad WH, Lähdesmäki H, Hofker MH, Zhernakova A, Franke L, Lahesmaa R, Wijmenga C, Withoff S. Systematic annotation of celiac disease loci refines pathological pathways and suggests a genetic explanation for increased interferon-gamma levels. Hum Mol Genet 2014; 24:397-409. [PMID: 25190711 DOI: 10.1093/hmg/ddu453] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Although genome-wide association studies and fine mapping have identified 39 non-HLA loci associated with celiac disease (CD), it is difficult to pinpoint the functional variants and susceptibility genes in these loci. We applied integrative approaches to annotate and prioritize functional single nucleotide polymorphisms (SNPs), genes and pathways affected in CD. CD-associated SNPs were intersected with regulatory elements categorized by the ENCODE project to prioritize functional variants, while results from cis-expression quantitative trait loci (eQTL) mapping in 1469 blood samples were combined with co-expression analyses to prioritize causative genes. To identify the key cell types involved in CD, we performed pathway analysis on RNA-sequencing data from different immune cell populations and on publicly available expression data on non-immune tissues. We discovered that CD SNPs are significantly enriched in B-cell-specific enhancer regions, suggesting that, besides T-cell processes, B-cell responses play a major role in CD. By combining eQTL and co-expression analyses, we prioritized 43 susceptibility genes in 36 loci. Pathway and tissue-specific expression analyses on these genes suggested enrichment of CD genes in the Th1, Th2 and Th17 pathways, but also predicted a role for four genes in the intestinal barrier function. We also discovered an intricate transcriptional connectivity between CD susceptibility genes and interferon-γ, a key effector in CD, despite the absence of CD-associated SNPs in the IFNG locus. Using systems biology, we prioritized the CD-associated functional SNPs and genes. By highlighting a role for B cells in CD, which classically has been described as a T-cell-driven disease, we offer new insights into the mechanisms and pathways underlying CD.
Collapse
Affiliation(s)
| | | | - Kartiek Kanduri
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland and
| | | | | | | | | | | | | | | | | | | | | | - Harri Lähdesmäki
- Department of Information and Computer Science, Aalto University School of Science, Espoo 02150, Finland
| | - Marten H Hofker
- Department of Pediatrics, Molecular Genetics Section, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | | | - Riitta Lahesmaa
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku 20520, Finland and
| | | | | |
Collapse
|
30
|
Nanayakkara M, Kosova R, Lania G, Sarno M, Gaito A, Galatola M, Greco L, Cuomo M, Troncone R, Auricchio S, Auricchio R, Barone MV. A celiac cellular phenotype, with altered LPP sub-cellular distribution, is inducible in controls by the toxic gliadin peptide P31-43. PLoS One 2013; 8:e79763. [PMID: 24278174 PMCID: PMC3838353 DOI: 10.1371/journal.pone.0079763] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/27/2013] [Indexed: 12/22/2022] Open
Abstract
Celiac disease (CD) is a frequent inflammatory intestinal disease, with a genetic background, caused by gliadin-containing food. Undigested gliadin peptides P31-43 and P57-68 induce innate and adaptive T cell-mediated immune responses, respectively. Alterations in the cell shape and actin cytoskeleton are present in celiac enterocytes, and gliadin peptides induce actin rearrangements in both the CD mucosa and cell lines. Cell shape is maintained by the actin cytoskeleton and focal adhesions, sites of membrane attachment to the extracellular matrix. The locus of the human Lipoma Preferred Partner (LPP) gene was identified as strongly associated with CD using genome-wide association studies (GWAS). The LPP protein plays an important role in focal adhesion architecture and acts as a transcription factor in the nucleus. In this study, we examined the hypothesis that a constitutive alteration of the cell shape and the cytoskeleton, involving LPP, occurs in a cell compartment far from the main inflammation site in CD fibroblasts from skin explants. We analyzed the cell shape, actin organization, focal adhesion number, focal adhesion proteins, LPP sub-cellular distribution and adhesion to fibronectin of fibroblasts obtained from CD patients on a Gluten-Free Diet (GFD) and controls, without and with treatment with A-gliadin peptide P31-43. We observed a “CD cellular phenotype” in these fibroblasts, characterized by an altered cell shape and actin organization, increased number of focal adhesions, and altered intracellular LPP protein distribution. The treatment of controls fibroblasts with gliadin peptide P31-43 mimics the CD cellular phenotype regarding the cell shape, adhesion capacity, focal adhesion number and LPP sub-cellular distribution, suggesting a close association between these alterations and CD pathogenesis.
Collapse
Affiliation(s)
- Merlin Nanayakkara
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Roberta Kosova
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Giuliana Lania
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Marco Sarno
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Alessandra Gaito
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Martina Galatola
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Luigi Greco
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Marialaura Cuomo
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Salvatore Auricchio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Renata Auricchio
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
| | - Maria Vittoria Barone
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- European Laboratory for the Investigation of Food Induced Disease, (ELFID) University of Naples Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|