1
|
Association between Synonymous SNPs of SOX10 and Plumage Color and Reproductive Traits of Ducks. Animals (Basel) 2022; 12:ani12233345. [PMID: 36496864 PMCID: PMC9736065 DOI: 10.3390/ani12233345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Mutations in the SOX10 gene affect the plumage color of chickens and pigeons. The mutation also causes abnormal pigmentation of the skin and hair color, as well as postnatal growth retardation and reproduction problems in humans and mice. In this study, we investigated the association between the SOX10 gene and plumage color and reproductive traits of ducks using SNPs. We found six novel SNPs from 11 identified SNP sites using direct sequencing for PCR products from three different mixed DNA pools. We found two coding SNPs to be associated with the plumage color of ducks (ZJU1.0 Chr1. g.54065419C>T and g.54070844C>T), and found three coding SNPs associated with the reproductive traits of ducks (g.54065419C>T, g.54070844C>T, and g.54070904C>T), which were age at sexual maturity, body weight at sexual maturity, and the Haugh unit for egg quality traits and egg production in different productive periods. These results also indicated that the T alleles of the three SNPs of the coding region of SOX10 contribute to lower reproductive traits.
Collapse
|
2
|
Hu F, Fong KO, Cheung MPL, Liu JA, Liang R, Li TW, Sharma R, IP PP, Yang X, Cheung M. DEPDC1B Promotes Melanoma Angiogenesis and Metastasis through Sequestration of Ubiquitin Ligase CDC16 to Stabilize Secreted SCUBE3. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105226. [PMID: 35088579 PMCID: PMC8981904 DOI: 10.1002/advs.202105226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/11/2022] [Indexed: 05/28/2023]
Abstract
The ability of melanoma to acquire metastasis through the induction of angiogenesis is one of the major causes of skin cancer death. Here, it is found that high transcript levels of DEP domain containing 1B (DEPDC1B) in cutaneous melanomas are significantly associated with a poor prognosis. Tissue microarray analysis indicates that DEPDC1B expression is positively correlated with SOX10 in the different stages of melanoma. Consistently, DEPDC1B is both required and sufficient for melanoma growth, metastasis, angiogenesis, and functions as a direct downstream target of SOX10 to partly mediate its oncogenic activity. In contrast to other tumor types, the DEPDC1B-mediated enhancement of melanoma metastatic potential is not dependent on the activities of RHO GTPase signaling and canonical Wnt signaling, but is acquired through secretion of signal peptide, CUB domain and EGF like domain containing 3 (SCUBE3), which is crucial for promoting angiogenesis in vitro and in vivo. Mechanistically, DEPDC1B regulates SCUBE3 protein stability through the competitive association with ubiquitin ligase cell division cycle 16 (CDC16) to prevent SCUBE3 from undergoing degradation via the ubiquitin-proteasome pathway. Importantly, expression of SOX10, DEPDC1B, and SCUBE3 are positively correlated with microvessel density in the advanced stage of melanomas. In conclusion, it is revealed that a SOX10-DEPDC1B-SCUBE3 regulatory axis promotes melanoma angiogenesis and metastasis, which suggests that targeting secreted SCUBE3 can be a therapeutic strategy against metastatic melanoma.
Collapse
Affiliation(s)
- Feng Hu
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Ki On Fong
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - May Pui Lai Cheung
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Jessica Aijia Liu
- Department of NeuroscienceCity University of Hong KongTat Chee AvenueHong KongChina
| | - Rui Liang
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Tsz Wai Li
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Rakesh Sharma
- Centre for PanorOmic SciencesProteomics and Metabolomics Core FacilityLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Philip Pun‐Ching IP
- Department of PathologyLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xintao Yang
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Martin Cheung
- School of Biomedical SciencesLi Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| |
Collapse
|
3
|
Abstract
Demyelinating forms of Charcot-Marie-Tooth disease (CMT) are genetically and phenotypically heterogeneous and result from highly diverse biological mechanisms including gain of function (including dominant negative effects) and loss of function. While no definitive treatment is currently available, rapid advances in defining the pathomechanisms of demyelinating CMT have led to promising pre-clinical studies, as well as emerging clinical trials. Especially promising are the recently completed pre-clinical genetic therapy studies in PMP-22, GJB1, and SH3TC2-associated neuropathies, particularly given the success of similar approaches in humans with spinal muscular atrophy and transthyretin familial polyneuropathy. This article focuses on neuropathies related to mutations in PMP-22, MPZ, and GJB1, which together comprise the most common forms of demyelinating CMT, as well as on select rarer forms for which promising treatment targets have been identified. Clinical characteristics and pathomechanisms are reviewed in detail, with emphasis on therapeutically targetable biological pathways. Also discussed are the challenges facing the CMT research community in its efforts to advance the rapidly evolving biological insights to effective clinical trials. These considerations include the limitations of currently available animal models, the need for personalized medicine approaches/allele-specific interventions for select forms of demyelinating CMT, and the increasing demand for optimal clinical outcome assessments and objective biomarkers.
Collapse
Affiliation(s)
- Vera Fridman
- Department of Neurology, University of Colorado Anschutz Medical Campus, 12631 E 17th Avenue, Mailstop B185, Room 5113C, Aurora, CO, 80045, USA.
| | - Mario A Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Roos D, de Boer M. Mutations in cis that affect mRNA synthesis, processing and translation. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166166. [PMID: 33971252 DOI: 10.1016/j.bbadis.2021.166166] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 12/17/2022]
Abstract
Genetic mutations that cause hereditary diseases usually affect the composition of the transcribed mRNA and its encoded protein, leading to instability of the mRNA and/or the protein. Sometimes, however, such mutations affect the synthesis, the processing or the translation of the mRNA, with similar disastrous effects. We here present an overview of mRNA synthesis, its posttranscriptional modification and its translation into protein. We then indicate which elements in these processes are known to be affected by pathogenic mutations, but we restrict our review to mutations in cis, in the DNA of the gene that encodes the affected protein. These mutations can be in enhancer or promoter regions of the gene, which act as binding sites for transcription factors involved in pre-mRNA synthesis. We also describe mutations in polyadenylation sequences and in splice site regions, exonic and intronic, involved in intron removal. Finally, we include mutations in the Kozak sequence in mRNA, which is involved in protein synthesis. We provide examples of genetic diseases caused by mutations in these DNA regions and refer to databases to help identify these regions. The over-all knowledge of mRNA synthesis, processing and translation is essential for improvement of the diagnosis of patients with genetic diseases.
Collapse
Affiliation(s)
- Dirk Roos
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands.
| | - Martin de Boer
- Sanquin Blood Supply Organization, Dept. of Blood Cell Research, Landsteiner Laboratory, Amsterdam University Medical Centre, location AMC, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
5
|
Duan X, Ma Y, Fan D, Liu X. Characteristics of Clinical and Electrophysiological Pattern in a Large Cohort of Chinese Patients With Charcot-Marie-Tooth 4C. Front Neurol 2021; 12:598168. [PMID: 33643188 PMCID: PMC7907161 DOI: 10.3389/fneur.2021.598168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/21/2021] [Indexed: 11/13/2022] Open
Abstract
The "Src homology 3 (SH3) domain and tetratricopeptide repeats 2" (SH3TC2) gene is mutated in individuals with Charcot-Marie-Tooth disease (CMT) and considered relevant to a demyelinating or intermediate subtype of CMT disease, CMT4C. In this study, we screened a cohort of 465 unrelated Chinese CMT patients alongside 650 controls. We used Sanger, next-generation, or whole-exome sequencing to analyze SH3TC2 and other CMT-related genes and identified 12 SH3TC2 variants (eight novel) in seven families. Of the eight novel variants, seven were likely pathogenic (c.280-2 A > G, c.732-1 G > A, c.1177+6 T > C, c.3328-1 G > A, G299S, R548W, L1048P), and 1 had uncertain significance (S221P). The CMT4C frequency was calculated to be 4.24% in demyelinating or intermediate CMT patients without PMP22 duplication. Additionally, we detected variant R954* in the Chinese cohort in our study, indicating that this variant may be present among Asians, albeit with a relatively low frequency. The onset age varied among the eight patients, three of whom presented scoliosis. We summarized phenotypes in the Chinese CMT cohort and concluded that the absence of scoliosis, cranial nerve involvement, or late-onset symptoms does not necessarily preclude SH3TC2 involvement in a given case.
Collapse
Affiliation(s)
- Xiaohui Duan
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yan Ma
- Department of Neurology, Peking University Third Hospital, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China
| | - Xiaoxuan Liu
- Department of Neurology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
SOX10-regulated promoter use defines isoform-specific gene expression in Schwann cells. BMC Genomics 2020; 21:549. [PMID: 32770939 PMCID: PMC7430845 DOI: 10.1186/s12864-020-06963-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Background Multicellular organisms adopt various strategies to tailor gene expression to cellular contexts including the employment of multiple promoters (and the associated transcription start sites (TSSs)) at a single locus that encodes distinct gene isoforms. Schwann cells—the myelinating cells of the peripheral nervous system (PNS)—exhibit a specialized gene expression profile directed by the transcription factor SOX10, which is essential for PNS myelination. SOX10 regulates promoter elements associated with unique TSSs and gene isoforms at several target loci, implicating SOX10-mediated, isoform-specific gene expression in Schwann cell function. Here, we report on genome-wide efforts to identify SOX10-regulated promoters and TSSs in Schwann cells to prioritize genes and isoforms for further study. Results We performed global TSS analyses and mined previously reported ChIP-seq datasets to assess the activity of SOX10-bound promoters in three models: (i) an adult mammalian nerve; (ii) differentiating primary Schwann cells, and (iii) cultured Schwann cells with ablated SOX10 function. We explored specific characteristics of SOX10-dependent TSSs, which provides confidence in defining them as SOX10 targets. Finally, we performed functional studies to validate our findings at four previously unreported SOX10 target loci: ARPC1A, CHN2, DDR1, and GAS7. These findings suggest roles for the associated SOX10-regulated gene products in PNS myelination. Conclusions In sum, we provide comprehensive computational and functional assessments of SOX10-regulated TSS use in Schwann cells. The data presented in this study will stimulate functional studies on the specific mRNA and protein isoforms that SOX10 regulates, which will improve our understanding of myelination in the peripheral nerve.
Collapse
|
7
|
Kishore S, De Franco E, Cardenas-Diaz FL, Letourneau-Freiberg LR, Sanyoura M, Osorio-Quintero C, French DL, Greeley SAW, Hattersley AT, Gadue P. A Non-Coding Disease Modifier of Pancreatic Agenesis Identified by Genetic Correction in a Patient-Derived iPSC Line. Cell Stem Cell 2020; 27:137-146.e6. [PMID: 32442395 PMCID: PMC7335348 DOI: 10.1016/j.stem.2020.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 12/17/2019] [Accepted: 04/30/2020] [Indexed: 12/27/2022]
Abstract
GATA6 is a critical regulator of pancreatic development, with heterozygous mutations in this transcription factor being the most common cause of pancreatic agenesis. To study the variability in disease phenotype among individuals harboring these mutations, a patient-induced pluripotent stem cell model was used. Interestingly, GATA6 protein expression remained depressed in pancreatic progenitor cells even after correction of the coding mutation. Screening the regulatory regions of the GATA6 gene in these patient cells and 32 additional agenesis patients revealed a higher minor allele frequency of a SNP 3' of the GATA6 coding sequence. Introduction of this minor allele SNP by genome editing confirmed its functionality in depressing GATA6 expression and the efficiency of pancreas differentiation. This work highlights a possible genetic modifier contributing to pancreatic agenesis and demonstrates the usefulness of using patient-induced pluripotent stem cells for targeted discovery and validation of non-coding gene variants affecting gene expression and disease penetrance.
Collapse
Affiliation(s)
- Siddharth Kishore
- Department of Cell and Molecular Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Fabian L Cardenas-Diaz
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa R Letourneau-Freiberg
- Kovler Diabetes Center and the Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago Medicine, Chicago, IL, USA
| | - May Sanyoura
- Kovler Diabetes Center and the Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago Medicine, Chicago, IL, USA
| | - Catherine Osorio-Quintero
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Deborah L French
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Siri Atma W Greeley
- Kovler Diabetes Center and the Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, University of Chicago Medicine, Chicago, IL, USA
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter EX2 5DW, UK
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Pantera H, Shy ME, Svaren J. Regulating PMP22 expression as a dosage sensitive neuropathy gene. Brain Res 2019; 1726:146491. [PMID: 31586623 DOI: 10.1016/j.brainres.2019.146491] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/21/2022]
Abstract
Structural variation in the human genome has emerged as a major cause of disease as genomic data have accumulated. One of the most common structural variants associated with human disease causes the heritable neuropathy known as Charcot-Marie-Tooth (CMT) disease type 1A. This 1.4 Mb duplication causes nearly half of the CMT cases that are genetically diagnosed. The PMP22 gene is highly induced in Schwann cells during development, although its precise role in myelin formation and homeostasis is still under active investigation. The PMP22 gene can be considered as a nucleoprotein complex with enzymatic activity to produce the PMP22 transcript, and the complex is allosterically regulated by transcription factors that respond to intracellular signals and epigenomic modifications. The control of PMP22 transcript levels has been one of the major therapeutic targets of therapy development, and this review summarizes those approaches as well as efforts to characterize the regulation of the PMP22 gene.
Collapse
Affiliation(s)
- Harrison Pantera
- Molecular and Cellular Pharmacology Training Program, University of Wisconsin, Madison, WI, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - John Svaren
- Waisman Center and Department of Comparative Biosciences, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
9
|
de Oliveira CM, Fussiger H, Winckler PB, Saute JAM. Dropped head syndrome as a manifestation of Charcot–Marie–Tooth disease type 4C. Neuromuscul Disord 2019; 29:138-141. [DOI: 10.1016/j.nmd.2018.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/12/2018] [Accepted: 11/26/2018] [Indexed: 02/02/2023]
|
10
|
Law WD, Fogarty EA, Vester A, Antonellis A. A genome-wide assessment of conserved SNP alleles reveals a panel of regulatory SNPs relevant to the peripheral nerve. BMC Genomics 2018; 19:311. [PMID: 29716548 PMCID: PMC5930951 DOI: 10.1186/s12864-018-4692-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/17/2018] [Indexed: 12/29/2022] Open
Abstract
Background Identifying functional non-coding variation is critical for defining the genetic contributions to human disease. While single-nucleotide polymorphisms (SNPs) within cis-acting transcriptional regulatory elements have been implicated in disease pathogenesis, not all cell types have been assessed and functional validations have been limited. In particular, the cells of the peripheral nervous system have been excluded from genome-wide efforts to link non-coding SNPs to altered gene function. Addressing this gap is essential for defining the genetic architecture of diseases that affect the peripheral nerve. We developed a computational pipeline to identify SNPs that affect regulatory function (rSNPs) and evaluated our predictions on a set of 144 regions in Schwann cells, motor neurons, and muscle cells. Results We identified 28 regions that display regulatory activity in at least one cell type and 13 SNPs that affect regulatory function. We then tailored our pipeline to one peripheral nerve cell type by incorporating SOX10 ChIP-Seq data; SOX10 is essential for Schwann cells. We prioritized 22 putative SOX10 response elements harboring a SNP and rapidly validated two rSNPs. We then selected one of these elements for further characterization to assess the biological relevance of our approach. Deletion of the element from the genome of cultured Schwann cells—followed by differential gene expression studies—revealed Tubb2b as a candidate target gene. Studying the enhancer in developing mouse embryos revealed activity in SOX10-positive cells including the dorsal root ganglia and melanoblasts. Conclusions Our efforts provide insight into the utility of employing strict conservation for rSNP discovery. This strategy, combined with functional analyses, can yield candidate target genes. In support of this, our efforts suggest that investigating the role of Tubb2b in SOX10-positive cells may reveal novel biology within these cell populations. Electronic supplementary material The online version of this article (10.1186/s12864-018-4692-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- William D Law
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Elizabeth A Fogarty
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Aimée Vester
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA. .,Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Neurology, University of Michigan Medical School, 3710A Medical Sciences II, 1241 E. Catherine St. SPC 5618, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Nam SH, Kanwal S, Nam DE, Lee MH, Kang TH, Jung SC, Choi BO, Chung KW. Association of miR-149 polymorphism with onset age and severity in Charcot-Marie-Tooth disease type 1A. Neuromuscul Disord 2018; 28:502-507. [PMID: 29729827 DOI: 10.1016/j.nmd.2018.04.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 02/03/2023]
Abstract
Charcot-Marie-Tooth disease type 1A (CMT1A) is caused by 1.5-fold increased dosage of the PMP22; however, onset age and severity vary considerably among patients. The exact reason behind these phenotypic heterogeneities has rarely been discovered yet. Because miRNAs are the key regulators of gene expression, we speculated that variants of miRNAs might be the genetic modifiers for CMT1A. This study noticed a common single nucleotide polymorphism (n.86T > C, rs2292832) in the miR-149 which was predicted to target several CMT causing genes including PMP22. The rs2292832 was located near the 3' end of the precursor microRNA of the miR-149. We performed an association study between the rs2292832 polymorphism and clinical phenotypes of CMT1A in subjects consisting of 176 unrelated Korean CMT1A patients and 176 controls. From this study, we observed that rs2292832 was closely associated to the onset age and severity of CMT1A. Particularly, the TC and CC genotypes were significantly associated with late onset and mild symptom. Therefore, we suggest that the rs2292832 variant in the miR-149 is a potential candidate as a genetic modifier which affects the phenotypic heterogeneity of CMT1A. This study may provide the first evidence that polymorphism in the miR gene is associated with the CMT1A phenotype.
Collapse
Affiliation(s)
- Soo Hyun Nam
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea; Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sumaira Kanwal
- Department of Biosciences, COMSATS Institute of Information Technology Sahiwal Campus, Pakistan
| | - Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Min Hee Lee
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Tae Hoon Kang
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea
| | - Sung-Chul Jung
- Department of Biochemistry, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Byung-Ok Choi
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science & Tech, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, Republic of Korea.
| |
Collapse
|
12
|
Yuan JH, Hashiguchi A, Okamoto Y, Yoshimura A, Ando M, Shiomi K, Saito K, Takahashi M, Ichinose K, Ohmichi T, Ichikawa K, Tadashi A, Takigawa H, Shibayama H, Takashima H. Clinical and mutational spectrum of Japanese patients with recessive variants in SH3TC2. J Hum Genet 2018; 63:281-287. [PMID: 29321516 DOI: 10.1038/s10038-017-0388-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/12/2017] [Accepted: 10/26/2017] [Indexed: 02/04/2023]
Abstract
SH3TC2, known as the causative gene of autosomal recessive demyelinating Charcot-Marie-Tooth type 4C (CMT4C), was also found linked to a mild mononeuropathy of the median nerve with an autosomal dominant inheritance pattern. Using DNA microarray, Illumina MiSeq, and Ion proton, we carried out gene panel sequencing among 1483 Japanese CMT patients, containing 397 patients with demyelinating CMT. From seven patients with demyelinating CMT, we identified eight recessive variants in the SH3TC2 gene, consisting of five novel (pathogenic/likely pathogenic) and three reported variants. Additionally, from two patients with axonal CMT, we detected a reported recessive variant, p.Arg77Trp, which was herein reclassified as variant with unknown significance. Of the seven CMT4C patients (six females and one male), 2/7 patients developed symptoms at their first decade, and 5/7 patients lost their ambulation around age 50. Scoliosis was observed from more than half (4/7) of these patients, whereas hearing loss is the most common symptom of central nervous system (6/7). No median nerve mononeuropathy was recorded from their family members. We identified recessive variants in SH3TC2 from 1.76% of demyelinating CMT patients. An uncommon gender difference was recognized and the wild spectrum of these variants suggests mutational diversity of SH3TC2 in Japan.
Collapse
Affiliation(s)
- Jun-Hui Yuan
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akihiro Hashiguchi
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuji Okamoto
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akiko Yoshimura
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masahiro Ando
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazutaka Shiomi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Miyazaki, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Makoto Takahashi
- Department of Neurology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiko Ichinose
- Department of Neurology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuma Ohmichi
- Department of Neurology, NHO Maizuru Medical Center, Kyoto, Japan
| | - Kazushi Ichikawa
- Department of Pediatrics, Odawara Municipal Hospital, Kanagawa, Japan
| | - Adachi Tadashi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Hiroshi Takigawa
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Tottori, Japan
| | | | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
13
|
Weis J, Claeys KG, Roos A, Azzedine H, Katona I, Schröder JM, Senderek J. Towards a functional pathology of hereditary neuropathies. Acta Neuropathol 2017; 133:493-515. [PMID: 27896434 DOI: 10.1007/s00401-016-1645-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/11/2022]
Abstract
A growing number of hereditary neuropathies have been assigned to causative gene defects in recent years. The study of human nerve biopsy samples has contributed substantially to the discovery of many of these neuropathy genes. Genotype-phenotype correlations based on peripheral nerve pathology have provided a comprehensive picture of the consequences of these mutations. Intriguingly, several gene defects lead to distinguishable lesion patterns that can be studied in nerve biopsies. These characteristic features include the loss of certain nerve fiber populations and a large spectrum of distinct structural changes of axons, Schwann cells and other components of peripheral nerves. In several instances the lesion patterns are directly or indirectly linked to the known functions of the mutated gene. The present review is designed to provide an overview on these characteristic patterns. It also considers other aspects important for the manifestation and pathology of hereditary neuropathies including the role of inflammation, effects of chemotherapeutic agents and alterations detectable in skin biopsies.
Collapse
Affiliation(s)
- Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany.
| | - Kristl G Claeys
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Neurology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Department of Neurology, University Hospitals Leuven and University of Leuven (KU Leuven), Leuven, Belgium
| | - Andreas Roos
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Otto-Hahn-Str. 6b, 44227, Dortmund, Germany
| | - Hamid Azzedine
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - J Michael Schröder
- Institute of Neuropathology, RWTH Aachen University Medical School, Pauwelsstr. 30, 52074, Aachen, Germany
| | - Jan Senderek
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University, Ziemssenstr. 1a, 80336, Munich, Germany.
| |
Collapse
|
14
|
Gopinath C, Law WD, Rodríguez-Molina JF, Prasad AB, Song L, Crawford GE, Mullikin JC, Svaren J, Antonellis A. Stringent comparative sequence analysis reveals SOX10 as a putative inhibitor of glial cell differentiation. BMC Genomics 2016; 17:887. [PMID: 27821050 PMCID: PMC5100263 DOI: 10.1186/s12864-016-3167-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 10/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background The transcription factor SOX10 is essential for all stages of Schwann cell development including myelination. SOX10 cooperates with other transcription factors to activate the expression of key myelin genes in Schwann cells and is therefore a context-dependent, pro-myelination transcription factor. As such, the identification of genes regulated by SOX10 will provide insight into Schwann cell biology and related diseases. While genome-wide studies have successfully revealed SOX10 target genes, these efforts mainly focused on myelinating stages of Schwann cell development. We propose that less-biased approaches will reveal novel functions of SOX10 outside of myelination. Results We developed a stringent, computational-based screen for genome-wide identification of SOX10 response elements. Experimental validation of a pilot set of predicted binding sites in multiple systems revealed that SOX10 directly regulates a previously unreported alternative promoter at SOX6, which encodes a transcription factor that inhibits glial cell differentiation. We further explored the utility of our computational approach by combining it with DNase-seq analysis in cultured Schwann cells and previously published SOX10 ChIP-seq data from rat sciatic nerve. Remarkably, this analysis enriched for genomic segments that map to loci involved in the negative regulation of gliogenesis including SOX5, SOX6, NOTCH1, HMGA2, HES1, MYCN, ID4, and ID2. Functional studies in Schwann cells revealed that: (1) all eight loci are expressed prior to myelination and down-regulated subsequent to myelination; (2) seven of the eight loci harbor validated SOX10 binding sites; and (3) seven of the eight loci are down-regulated upon repressing SOX10 function. Conclusions Our computational strategy revealed a putative novel function for SOX10 in Schwann cells, which suggests a model where SOX10 activates the expression of genes that inhibit myelination during non-myelinating stages of Schwann cell development. Importantly, the computational and functional datasets we present here will be valuable for the study of transcriptional regulation, SOX protein function, and glial cell biology. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3167-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chetna Gopinath
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - William D Law
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - José F Rodríguez-Molina
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Arjun B Prasad
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lingyun Song
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA
| | - Gregory E Crawford
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, 27708, USA.,Department of Pediatrics, Duke University Medical Center, Durham, NC, 27708, USA
| | - James C Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA. .,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
15
|
Fogarty EA, Brewer MH, Rodriguez-Molina JF, Law WD, Ma KH, Steinberg NM, Svaren J, Antonellis A. SOX10 regulates an alternative promoter at the Charcot-Marie-Tooth disease locus MTMR2. Hum Mol Genet 2016; 25:3925-3936. [PMID: 27466180 DOI: 10.1093/hmg/ddw233] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 11/13/2022] Open
Abstract
Schwann cells are the myelinating glia of the peripheral nervous system and dysfunction of these cells causes motor and sensory peripheral neuropathy. The transcription factor SOX10 is critical for Schwann cell development and maintenance, and many SOX10 target genes encode proteins required for Schwann cell function. Loss-of-function mutations in the gene encoding myotubularin-related protein 2 (MTMR2) cause Charcot-Marie-Tooth disease type 4B1 (CMT4B1), a severe demyelinating peripheral neuropathy characterized by myelin outfoldings along peripheral nerves. Previous reports indicate that MTMR2 is ubiquitously expressed making it unclear how loss of this gene causes a Schwann cell-specific phenotype. To address this, we performed computational and functional analyses at MTMR2 to identify transcriptional regulatory elements important for Schwann cell expression. Through these efforts, we identified an alternative, SOX10-responsive promoter at MTMR2 that displays strong regulatory activity in immortalized rat Schwann (S16) cells. This promoter directs transcription of a previously unidentified MTMR2 transcript that is enriched in mouse Schwann cells compared to immortalized mouse motor neurons (MN-1), and is predicted to encode an N-terminally truncated protein isoform. The expression of the endogenous transcript is induced in a heterologous cell line by ectopically expressing SOX10, and is nearly ablated in Schwann cells by impairing SOX10 function. Intriguingly, overexpressing the two MTMR2 protein isoforms in HeLa cells revealed that both localize to nuclear puncta and the shorter isoform displays higher nuclear localization compared to the longer isoform. Combined, our data warrant further investigation of the truncated MTMR2 protein isoform in Schwann cells and in CMT4B1 pathogenesis.
Collapse
Affiliation(s)
| | - Megan H Brewer
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - William D Law
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ki H Ma
- Cellular and Molecular Pathology (CMP) Program
| | - Noah M Steinberg
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - John Svaren
- Waisman Center.,Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Anthony Antonellis
- Neuroscience Graduate Program .,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Vijay S, Chiu M, Dacks JB, Roberts RC. Exclusive expression of the Rab11 effector SH3TC2 in Schwann cells links integrin-α6 and myelin maintenance to Charcot-Marie-Tooth disease type 4C. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:1279-90. [PMID: 27068304 PMCID: PMC4879868 DOI: 10.1016/j.bbadis.2016.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/24/2016] [Accepted: 04/06/2016] [Indexed: 02/07/2023]
Abstract
Charcot-Marie-Tooth disease type 4C (CMT4C) is one of the commonest autosomal recessive inherited peripheral neuropathies and is associated with mutations in the Rab11 effector, SH3TC2. Disruption of the SH3TC2-Rab11 interaction is the molecular abnormality underlying this disease. However, why SH3TC2 mutations cause an isolated demyelinating neuropathy remains unanswered. Here we show that SH3TC2 is an exclusive Schwann cell protein expressed late in myelination and is downregulated following denervation suggesting a functional role in myelin sheath maintenance. We support our data with an evolutionary cell biological analysis showing that the SH3TC2 gene, and its paralogue SH3TC1, are derived from an ancestral homologue, the duplication of which occurred in the common ancestor of jawed vertebrates, coincident with the appearance of Schwann cells and peripheral axon myelination. Furthermore, we report that SH3TC2 associates with integrin-α6, suggesting that aberrant Rab11-dependent endocytic trafficking of this critical laminin receptor in myelinated Schwann cells is connected to the demyelination seen in affected nerves. Our study therefore highlights the inherent evolutionary link between SH3TC2 and peripheral nerve myelination, pointing also towards a molecular mechanism underlying the specific demyelinating neuropathy that characterizes CMT4C.
Collapse
Affiliation(s)
- Sauparnika Vijay
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK
| | - Meagan Chiu
- Department of Cell Biology, University of Alberta, 5-31 Medical Science Building, Edmonton, Alberta, Canada
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, 5-31 Medical Science Building, Edmonton, Alberta, Canada
| | - Rhys C Roberts
- Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0XY, UK.
| |
Collapse
|
17
|
Visigalli D, Castagnola P, Capodivento G, Geroldi A, Bellone E, Mancardi G, Pareyson D, Schenone A, Nobbio L. Alternative Splicing in the HumanPMP22Gene: Implications in CMT1A Neuropathy. Hum Mutat 2015; 37:98-109. [DOI: 10.1002/humu.22921] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 10/11/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Davide Visigalli
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | | | - Giovanna Capodivento
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Alessandro Geroldi
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) - Section of Medical Genetics; University of Genoa IRCCS AOU San Martino-IST; UOC Medical Genetics; Genoa Italy
| | - Emilia Bellone
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) - Section of Medical Genetics; University of Genoa IRCCS AOU San Martino-IST; UOC Medical Genetics; Genoa Italy
| | - Gianluigi Mancardi
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Davide Pareyson
- Clinic of Central and Peripheral Degenerative Neuropathies Unit; IRCCS Foundation; C. Besta Neurological Institute; Milan Italy
| | - Angelo Schenone
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| | - Lucilla Nobbio
- Department of Neurosciences; Rehabilitation Ophthalmology; Genetics and Maternal-Infantile Sciences (DINOGMI) and CEBR; University of Genoa; Genoa Italy
| |
Collapse
|
18
|
Lopez-Anido C, Sun G, Koenning M, Srinivasan R, Hung HA, Emery B, Keles S, Svaren J. Differential Sox10 genomic occupancy in myelinating glia. Glia 2015; 63:1897-1914. [PMID: 25974668 PMCID: PMC4644515 DOI: 10.1002/glia.22855] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 04/22/2015] [Indexed: 11/11/2022]
Abstract
Myelin is formed by specialized myelinating glia: oligodendrocytes and Schwann cells in the central and peripheral nervous systems, respectively. While there are distinct developmental aspects and regulatory pathways in these two cell types, myelination in both systems requires the transcriptional activator Sox10. Sox10 interacts with cell type-specific transcription factors at some loci to induce myelin gene expression, but it is largely unknown how Sox10 transcriptional networks globally compare between oligodendrocytes and Schwann cells. We used in vivo ChIP-Seq analysis of spinal cord and peripheral nerve (sciatic nerve) to identify unique and shared Sox10 binding sites and assess their correlation with active enhancers and transcriptional profiles in oligodendrocytes and Schwann cells. Sox10 binding sites overlap with active enhancers and critical cell type-specific regulators of myelination, such as Olig2 and Myrf in oligodendrocytes, and Egr2/Krox20 in Schwann cells. Sox10 sites also associate with genes critical for myelination in both oligodendrocytes and Schwann cells and are found within super-enhancers previously defined in brain. In Schwann cells, Sox10 sites contain binding motifs of putative partners in the Sp/Klf, Tead, and nuclear receptor protein families. Specifically, siRNA analysis of nuclear receptors Nr2f1 and Nr2f2 revealed downregulation of myelin genes Mbp and Ndrg1 in primary Schwann cells. Our analysis highlights different mechanisms that establish cell type-specific genomic occupancy of Sox10, which reflects the unique characteristics of oligodendrocyte and Schwann cell differentiation. GLIA 2015;63:1897-1914.
Collapse
Affiliation(s)
- Camila Lopez-Anido
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Guannan Sun
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Matthias Koenning
- Department of Anatomy and Neuroscience and the Centre for Neuroscience Research, University of Melbourne, Melbourne, Australia
| | - Rajini Srinivasan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Holly A. Hung
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ben Emery
- Department of Anatomy and Neuroscience and the Centre for Neuroscience Research, University of Melbourne, Melbourne, Australia
| | - Sunduz Keles
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - John Svaren
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
19
|
Sanmaneechai O, Feely S, Scherer SS, Herrmann DN, Burns J, Muntoni F, Li J, Siskind CE, Day JW, Laura M, Sumner CJ, Lloyd TE, Ramchandren S, Shy RR, Grider T, Bacon C, Finkel RS, Yum SW, Moroni I, Piscosquito G, Pareyson D, Reilly MM, Shy ME. Genotype-phenotype characteristics and baseline natural history of heritable neuropathies caused by mutations in the MPZ gene. Brain 2015; 138:3180-92. [PMID: 26310628 DOI: 10.1093/brain/awv241] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 06/30/2015] [Indexed: 11/14/2022] Open
Abstract
We aimed to characterize genotype-phenotype correlations and establish baseline clinical data for peripheral neuropathies caused by mutations in the myelin protein zero (MPZ) gene. MPZ mutations are the second leading cause of Charcot-Marie-Tooth disease type 1. Recent research makes clinical trials for patients with MPZ mutations a realistic possibility. However, the clinical severity varies with different mutations and natural history data on progression is sparse. We present cross-sectional data to begin to define the phenotypic spectrum and clinical baseline of patients with these mutations. A cohort of patients with MPZ gene mutations was identified in 13 centres of the Inherited Neuropathies Consortium - Rare Disease Clinical Research Consortium (INC-RDCRC) between 2009 and 2012 and at Wayne State University between 1996 and 2009. Patient phenotypes were quantified by the Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and the Charcot-Marie-Tooth disease paediatric scale outcome instruments. Genetic testing was performed in all patients and/or in first- or second-degree relatives to document mutation in MPZ gene indicating diagnosis of Charcot-Marie-Tooth disease type 1B. There were 103 patients from 71 families with 47 different MPZ mutations with a mean age of 40 years (range 3-84 years). Patients and mutations were separated into infantile, childhood and adult-onset groups. The infantile onset group had higher Charcot-Marie-Tooth disease neuropathy score version 1 or 2 and slower nerve conductions than the other groups, and severity increased with age. Twenty-three patients had no family history of Charcot-Marie-Tooth disease. Sixty-one patients wore foot/ankle orthoses, 19 required walking assistance or support, and 10 required wheelchairs. There was hearing loss in 21 and scoliosis in 17. Forty-two patients did not begin walking until after 15 months of age. Half of the infantile onset patients then required ambulation aids or wheelchairs for ambulation. Our results demonstrate that virtually all MPZ mutations are associated with specific phenotypes. Early onset (infantile and childhood) phenotypes likely represent developmentally impaired myelination, whereas the adult-onset phenotype reflects axonal degeneration without antecedent demyelination. Data from this cohort of patients will provide the baseline data necessary for clinical trials of patients with Charcot-Marie-Tooth disease caused by MPZ gene mutations.
Collapse
Affiliation(s)
- Oranee Sanmaneechai
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA 2 Division of Neurology, Department of Pediatrics, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Shawna Feely
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA
| | - Steven S Scherer
- 3 The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David N Herrmann
- 4 Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua Burns
- 5 Arthritis and Musculoskeletal Research Group, University of Sydney / Paediatric Gait Analysis Service of NSW, Children's Hospital at Westmead, Sydney / Neuromuscular Research Group, Murdoch Childrens Research Institute, Melbourne, Australia
| | - Francesco Muntoni
- 6 University College London Institute of Child Health and Great Ormond Street Hospital, London, UK
| | - Jun Li
- 7 Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Carly E Siskind
- 8 Department of Neurology, Stanford University, Stanford, CA, USA
| | - John W Day
- 8 Department of Neurology, Stanford University, Stanford, CA, USA
| | - Matilde Laura
- 9 MRC Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - Charlotte J Sumner
- 10 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas E Lloyd
- 10 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Rosemary R Shy
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA
| | - Tiffany Grider
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA
| | - Chelsea Bacon
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA
| | | | - Sabrina W Yum
- 3 The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA 13 Neuromuscular Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Isabella Moroni
- 14 Departments of Child Neurology, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Giuseppe Piscosquito
- 15 Departments of Clinical Neurosciences, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Davide Pareyson
- 15 Departments of Clinical Neurosciences, IRCCS Foundation, Carlo Besta Neurological Institute, Milan, Italy
| | - Mary M Reilly
- 9 MRC Centre for Neuromuscular Diseases, University College London Institute of Neurology, London, UK
| | - Michael E Shy
- 1 Department of Neurology, University of Iowa Hospitals and Clinics, Iowa, IA, USA
| | | |
Collapse
|
20
|
Hung HA, Sun G, Keles S, Svaren J. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury. J Biol Chem 2015; 290:6937-50. [PMID: 25614629 PMCID: PMC4358118 DOI: 10.1074/jbc.m114.622878] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/31/2014] [Indexed: 12/20/2022] Open
Abstract
Myelination of the peripheral nervous system is required for axonal function and long term stability. After peripheral nerve injury, Schwann cells transition from axon myelination to a demyelinated state that supports neuronal survival and ultimately remyelination of axons. Reprogramming of gene expression patterns during development and injury responses is shaped by the actions of distal regulatory elements that integrate the actions of multiple transcription factors. We used ChIP-seq to measure changes in histone H3K27 acetylation, a mark of active enhancers, to identify enhancers in myelinating rat peripheral nerve and their dynamics after demyelinating nerve injury. Analysis of injury-induced enhancers identified enriched motifs for c-Jun, a transcription factor required for Schwann cells to support nerve regeneration. We identify a c-Jun-bound enhancer in the gene for Runx2, a transcription factor induced after nerve injury, and we show that Runx2 is required for activation of other induced genes. In contrast, enhancers that lose H3K27ac after nerve injury are enriched for binding sites of the Sox10 and early growth response 2 (Egr2/Krox20) transcription factors, which are critical determinants of Schwann cell differentiation. Egr2 expression is lost after nerve injury, and many Egr2-binding sites lose H3K27ac after nerve injury. However, the majority of Egr2-bound enhancers retain H3K27ac, indicating that other transcription factors maintain active enhancer status after nerve injury. The global epigenomic changes in H3K27ac deposition pinpoint dynamic changes in enhancers that mediate the effects of transcription factors that control Schwann cell myelination and peripheral nervous system responses to nerve injury.
Collapse
Affiliation(s)
- Holly A Hung
- From the Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - Guannan Sun
- Departments of Biostatistics and Medical Informatics and
| | - Sunduz Keles
- Departments of Biostatistics and Medical Informatics and
| | - John Svaren
- From the Waisman Center, Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
21
|
Brennan KM, Shy ME. New and emerging treatments of Charcot–Marie–Tooth disease. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2015.1009037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|