1
|
Taha MS, Ahmadian MR. Fragile X Messenger Ribonucleoprotein Protein and Its Multifunctionality: From Cytosol to Nucleolus and Back. Biomolecules 2024; 14:399. [PMID: 38672417 PMCID: PMC11047961 DOI: 10.3390/biom14040399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene and a consequent lack of FMR protein (FMRP) synthesis are associated with fragile X syndrome, one of the most common inherited intellectual disabilities. FMRP is a multifunctional protein that is involved in many cellular functions in almost all subcellular compartments under both normal and cellular stress conditions in neuronal and non-neuronal cell types. This is achieved through its trafficking signals, nuclear localization signal (NLS), nuclear export signal (NES), and nucleolar localization signal (NoLS), as well as its RNA and protein binding domains, and it is modulated by various post-translational modifications such as phosphorylation, ubiquitination, sumoylation, and methylation. This review summarizes the recent advances in understanding the interaction networks of FMRP with a special focus on FMRP stress-related functions, including stress granule formation, mitochondrion and endoplasmic reticulum plasticity, ribosome biogenesis, cell cycle control, and DNA damage response.
Collapse
Affiliation(s)
- Mohamed S. Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
- Research on Children with Special Needs Department, Institute of Medical Research and Clinical Studies, National Research Centre, Cairo 12622, Egypt
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
2
|
Zhang R, Xu H, Lu J, Chen Y, Zhang Y, Xiao L. Accelerated Apoptosis and Down-Regulated FMRP in Human Neuroblastoma Cells with CRISPR/ Cas9 Genome Editing. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:703-712. [PMID: 37551173 PMCID: PMC10404333 DOI: 10.18502/ijph.v52i4.12438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/19/2022] [Indexed: 08/09/2023]
Abstract
Background Fragile X syndrome (FXS) is a genetic disease with intellectual disabilities. FXS is often caused by the CGG-repeat expansion mutation in the FMR1 gene with suppressed FMR1 transcription and decreased protein levels in the brain of the patients. The RNA-guided CRISPR/Cas9 system is a promising targeted genomic editing tool in gene therapy of FXS. In order to evaluate its feasibility, the present study used CRISPR/Cas9 system to target the FMR1 5'-UTR sites in cultured human neuroblastoma cells. Methods PCR and DNA clone were used to construct plasmids. CRISPR function was tested by Western blot and flow cytometry. Data were analyzed by a two-tailed unpaired Student's t-test using GraphPad software. This research was conducted from 2020 to 2022 in the Second Affiliated Hospital of Soochow University, Suzhou, China. Results Cell cycle analysis showed significant differences in G1, S and G2/M phases between the two groups (P<0.05). In the knockout cells, apoptosis was accelerated (P<0.05) with a significantly down-regulated (P<0.05) expression of FMRP as compared with the control group. Conclusion This study provides further understanding about the FMRP function and molecular mechanism of FMR1 gene in nerve cells, and suggests the feasibility of gene therapy in FXS by CRISPR/Cas9 gene editing system.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| | - Huifen Xu
- Department of Pharmacy, Children’s Hospital, Zhejiang University School of Medicine, Hangzhou, 310057, China
| | - Jin Lu
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ying Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yahui Zhang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Li Xiao
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, China
| |
Collapse
|
3
|
Chakraborty A, Grageda A, Kuznetsov VA, Feng W. A Double Jeopardy: Loss of FMRP Results in DSB and Down-regulated DNA Repair. 21ST CENTURY PATHOLOGY 2022; 2:125. [PMID: 36688938 PMCID: PMC9850805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Our understanding of the molecular functions of the nucleocytoplasmic FMRP protein, which, if absent or dysfunctional, causes the fragile X syndrome (FXS), largely revolves around its involvement in protein translation regulation in the cytoplasm. Recent studies have begun honing in on the nuclear and genomic functions of FMRP. We have shown that during DNA replication stress, cells derived from FXS patients sustain increased level of R-loop formation and DNA double strand breaks. Here, we describe a transcriptomic analysis of these cells in order to identify those genes most impacted by the loss of FMRP with and without replication stress. We show that FMRP loss causes transcriptomic changes previously reported in untreated conditions. Importantly, we also show that replication stress, in addition to causing excess of DSB, results in down-regulation of transcription in virtually all DNA repair pathways. This finding suggests that despite normal DNA damage response, FXS patient-derived cells experience R-loop-induced DNA breakage as well as impaired DNA repair functions, effectively a double jeopardy. We suggest that it is imperative to deepen the understanding of the nuclear functions, particularly a genome protective function, of FMRP, which will lead to discoveries of novel therapeutic interventions for the FXS.
Collapse
Affiliation(s)
- Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
- Tessera Therapeutics, Somerville, Massachusetts, USA
| | - Andre Grageda
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Vladimir A. Kuznetsov
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
4
|
Kieffer F, Hilal F, Gay AS, Debayle D, Pronot M, Poupon G, Lacagne I, Bardoni B, Martin S, Gwizdek C. Combining affinity purification and mass spectrometry to define the network of the nuclear proteins interacting with the N-terminal region of FMRP. Front Mol Biosci 2022; 9:954087. [PMID: 36237573 PMCID: PMC9553004 DOI: 10.3389/fmolb.2022.954087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Fragile X-Syndrome (FXS) represents the most common inherited form of intellectual disability and the leading monogenic cause of Autism Spectrum Disorders. In most cases, this disease results from the absence of expression of the protein FMRP encoded by the FMR1 gene (Fragile X messenger ribonucleoprotein 1). FMRP is mainly defined as a cytoplasmic RNA-binding protein regulating the local translation of thousands of target mRNAs. Interestingly, FMRP is also able to shuttle between the nucleus and the cytoplasm. However, to date, its roles in the nucleus of mammalian neurons are just emerging. To broaden our insight into the contribution of nuclear FMRP in mammalian neuronal physiology, we identified here a nuclear interactome of the protein by combining subcellular fractionation of rat forebrains with pull‐ down affinity purification and mass spectrometry analysis. By this approach, we listed 55 candidate nuclear partners. This interactome includes known nuclear FMRP-binding proteins as Adar or Rbm14 as well as several novel candidates, notably Ddx41, Poldip3, or Hnrnpa3 that we further validated by target‐specific approaches. Through our approach, we identified factors involved in different steps of mRNA biogenesis, as transcription, splicing, editing or nuclear export, revealing a potential central regulatory function of FMRP in the biogenesis of its target mRNAs. Therefore, our work considerably enlarges the nuclear proteins interaction network of FMRP in mammalian neurons and lays the basis for exciting future mechanistic studies deepening the roles of nuclear FMRP in neuronal physiology and the etiology of the FXS.
Collapse
Affiliation(s)
- Félicie Kieffer
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Fahd Hilal
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Anne-Sophie Gay
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Delphine Debayle
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Marie Pronot
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Gwénola Poupon
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Iliona Lacagne
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Barbara Bardoni
- Université Côte d'Azur, Institut National de la Santé Et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Stéphane Martin
- Université Côte d'Azur, Institut National de la Santé Et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
| | - Carole Gwizdek
- Université Côte d'Azur, Centre National de la Recherche Scientifique, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne, France
- *Correspondence: Carole Gwizdek,
| |
Collapse
|
5
|
Donnard E, Shu H, Garber M. Single cell transcriptomics reveals dysregulated cellular and molecular networks in a fragile X syndrome model. PLoS Genet 2022; 18:e1010221. [PMID: 35675353 PMCID: PMC9212148 DOI: 10.1371/journal.pgen.1010221] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/21/2022] [Accepted: 04/27/2022] [Indexed: 02/07/2023] Open
Abstract
Despite advances in understanding the pathophysiology of Fragile X syndrome (FXS), its molecular basis is still poorly understood. Whole brain tissue expression profiles have proved surprisingly uninformative, therefore we applied single cell RNA sequencing to profile an FMRP deficient mouse model with higher resolution. We found that the absence of FMRP results in highly cell type specific gene expression changes that are strongest among specific neuronal types, where FMRP-bound mRNAs were prominently downregulated. Metabolic pathways including translation and respiration are significantly upregulated across most cell types with the notable exception of excitatory neurons. These effects point to a potential difference in the activity of mTOR pathways, and together with other dysregulated pathways, suggest an excitatory-inhibitory imbalance in the Fmr1-knock out cortex that is exacerbated by astrocytes. Our data demonstrate that FMRP loss affects abundance of key cellular communication genes that potentially affect neuronal synapses and provide a resource for interrogating the biological basis of this disorder. Fragile X syndrome is a leading genetic cause of inherited intellectual disability and autism spectrum disorder. It results from the inactivation of a single gene, FMR1 and hence the loss of its encoded protein FMRP. Despite decades of intensive research, we still lack an overview of the molecular and biological consequences of the disease. Using single cell RNA sequencing, we profiled cells from the brain of healthy mice and of knock-out mice lacking the FMRP protein, a common model for this disease, to identify molecular changes that happen across different cell types. We find neurons are the most impacted cell type, where genes in multiple pathways are similarly impacted. This includes transcripts known to be bound by FMRP, which are collectively decreased only in neurons but not in other cell types. Our results show how the loss of FMRP affects the intricate interactions between different brain cell types, which could provide new perspectives to the development of therapeutic interventions.
Collapse
Affiliation(s)
- Elisa Donnard
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| | - Huan Shu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| | - Manuel Garber
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Department of Dermatology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (ED); (HS); (MG)
| |
Collapse
|
6
|
Shang Q, Du H, Wu X, Guo Q, Zhang F, Gong Z, Jiao T, Guo J, Kong Y. FMRP ligand circZNF609 destabilizes RAC1 mRNA to reduce metastasis in acral melanoma and cutaneous melanoma. J Exp Clin Cancer Res 2022; 41:170. [PMID: 35534866 PMCID: PMC9087950 DOI: 10.1186/s13046-022-02357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/05/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melanoma is a type of malignant tumor with high aggressiveness and poor prognosis. At present, metastasis of melanoma is still an important cause of death in melanoma patients. However, the potential functions and molecular mechanisms of most circular RNAs (circRNAs) in melanoma metastasis remain unknown. METHODS circRNAs dysregulated in melanoma cell subgroups with different metastatic abilities according to a screening model based on repeated Transwell assays were identified with a circRNA array. The expression and prognostic significance of circZNF609 in skin cutaneous melanoma and acral melanoma cells and tissues were determined by qRT-PCR, nucleoplasmic separation assays and fluorescence in situ hybridization. In vitro wound healing, Transwell and 3D invasion assays were used to analyse melanoma cell metastasis ability. Tail vein injection and intrasplenic injection were used to study in vivo lung metastasis and liver metastasis, respectively. The mechanism of circZNF609 was further evaluated via RNA immunoprecipitation, RNA pull-down, silver staining, and immunofluorescence colocalization assays. RESULTS circZNF609 was stably expressed at low levels in melanoma tissues and cells and was negatively correlated with Breslow depth, clinical stage and prognosis of melanoma patients. circZNF609 inhibited metastasis of acral and cutaneous melanoma in vivo and in vitro. Mechanistically, circZNF609 promoted the binding of FMRP protein and RAC1 mRNA, thereby enhancing the inhibitory effect of FMRP protein on the stability of RAC1 mRNA and ultimately inhibiting melanoma metastasis. CONCLUSIONS Our findings revealed that circZNF609 plays a vital role in the metastasis of acral and cutaneous melanoma through the circRNF609-FMRP-RAC1 axis and indicated that circZNF609 regulates the stability of RAC1 mRNA by combining with FMRP, which might provide insight into melanoma pathogenesis and a new potential target for treatment of melanoma.
Collapse
Affiliation(s)
- Qingfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, China
| | - Haizhen Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, China
| | - Xiaowen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, China
| | - Qian Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, China
| | - Fenghao Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, China
| | - Ziqi Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, China
| | - Tao Jiao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, China
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, China.
| | - Yan Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry Education), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Research Institute, Beijing, China.
| |
Collapse
|
7
|
Yang H, Wang Y, Xiang Y, Yadav T, Ouyang J, Phoon L, Zhu X, Shi Y, Zou L, Lan L. FMRP promotes transcription-coupled homologous recombination via facilitating TET1-mediated m5C RNA modification demethylation. Proc Natl Acad Sci U S A 2022; 119:e2116251119. [PMID: 35290126 PMCID: PMC8944906 DOI: 10.1073/pnas.2116251119] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
RNA modifications regulate a variety of cellular processes including DNA repair.The RNA methyltransferase TRDMT1 generates methyl-5-cytosine (m5C) on messen-ger RNA (mRNA) at DNA double-strand breaks (DSBs) in transcribed regions, pro-moting transcription-coupled homologous recombination (HR). Here, we identifiedthat Fragile X mental retardation protein (FMRP) promotes transcription-coupled HRvia its interaction with both the m5C writer TRDMT1 and the m5C eraser ten-eleventranslocation protein 1 (TET1). TRDMT1, FMRP, and TET1 function in a temporalorder at the transcriptionally active sites of DSBs. FMRP displays a higher affinity forDNA:RNA hybrids containing m5C-modified RNA than for hybrids without modifica-tion and facilitates demethylation of m5C by TET1 in vitro. Loss of either the chroma-tin- or RNA-binding domain of FMRP compromises demethylation of damage-inducedm5C in cells. Importantly, FMRP is required for R-loop resolving in cells. Due to unre-solved R-loop and m5C preventing completion of DSB repair, FMRP depletion or lowexpression leads to delayed repair of DSBs at transcriptionally active sites and sensitizescancer cells to radiation in a BRCA-independent manner. Together, ourfindings presentan m5C reader, FMRP, which acts as a coordinator between the m5C writer and eraserto promote mRNA-dependent repair and cell survival in cancer.
Collapse
Affiliation(s)
- Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129
| | - Yumin Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Laiyee Phoon
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129
| |
Collapse
|
8
|
Replication Stress Induces Global Chromosome Breakage in the Fragile X Genome. Cell Rep 2021; 32:108179. [PMID: 32966779 DOI: 10.1016/j.celrep.2020.108179] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/17/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder caused by mutations in the FMR1 gene and deficiency of a functional FMRP protein. FMRP is known as a translation repressor whose nuclear function is not understood. We investigated the global impact on genome stability due to FMRP loss. Using Break-seq, we map spontaneous and replication stress-induced DNA double-strand breaks (DSBs) in an FXS patient-derived cell line. We report that the genomes of FXS cells are inherently unstable and accumulate twice as many DSBs as those from an unaffected control. We demonstrate that replication stress-induced DSBs in FXS cells colocalize with R-loop forming sequences. Exogenously expressed FMRP in FXS fibroblasts ameliorates DSB formation. FMRP, not the I304N mutant, abates R-loop-induced DSBs during programmed replication-transcription conflict. These results suggest that FMRP is a genome maintenance protein that prevents R-loop accumulation. Our study provides insights into the etiological basis for FXS.
Collapse
|
9
|
Taha MS, Haghighi F, Stefanski A, Nakhaei-Rad S, Kazemein Jasemi NS, Al Kabbani MA, Görg B, Fujii M, Lang PA, Häussinger D, Piekorz RP, Stühler K, Ahmadian MR. Novel FMRP interaction networks linked to cellular stress. FEBS J 2020; 288:837-860. [PMID: 32525608 DOI: 10.1111/febs.15443] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Silencing of the fragile X mental retardation 1 (FMR1) gene and consequently lack of synthesis of FMR protein (FMRP) are associated with fragile X syndrome, which is one of the most prevalent inherited intellectual disabilities, with additional roles in increased viral infection, liver disease, and reduced cancer risk. FMRP plays critical roles in chromatin dynamics, RNA binding, mRNA transport, and mRNA translation. However, the underlying molecular mechanisms, including the (sub)cellular FMRP protein networks, remain elusive. Here, we employed affinity pull-down and quantitative LC-MS/MS analyses with FMRP. We identified known and novel candidate FMRP-binding proteins as well as protein complexes. FMRP interacted with 180 proteins, 28 of which interacted with its N terminus. Interaction with the C terminus of FMRP was observed for 102 proteins, and 48 proteins interacted with both termini. This FMRP interactome comprises known FMRP-binding proteins, including the ribosomal proteins FXR1P, NUFIP2, Caprin-1, and numerous novel FMRP candidate interacting proteins that localize to different subcellular compartments, including CARF, LARP1, LEO1, NOG2, G3BP1, NONO, NPM1, SKIP, SND1, SQSTM1, and TRIM28. Our data considerably expand the protein and RNA interaction networks of FMRP, which thereby suggest that, in addition to its known functions, FMRP participates in transcription, RNA metabolism, ribonucleoprotein stress granule formation, translation, DNA damage response, chromatin dynamics, cell cycle regulation, ribosome biogenesis, miRNA biogenesis, and mitochondrial organization. Thus, FMRP seems associated with multiple cellular processes both under normal and cell stress conditions in neuronal as well as non-neuronal cell types, as exemplified by its role in the formation of stress granules.
Collapse
Affiliation(s)
- Mohamed S Taha
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany.,Research on Children with Special Needs Department, Medical Research Branch, National Research Centre, Cairo, Egypt
| | - Fereshteh Haghighi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Anja Stefanski
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Neda S Kazemein Jasemi
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Mohamed Aghyad Al Kabbani
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Boris Görg
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Phillip A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine-University, Düsseldorf, Germany
| | - Dieter Häussinger
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty of the Heinrich Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Kai Stühler
- Molecular Proteomics Laboratory, Heinrich Heine-University, Düsseldorf, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
10
|
Application of Drosophila Model Toward Understanding the Molecular Basis of Fragile X Syndrome. Methods Mol Biol 2019. [PMID: 30900182 DOI: 10.1007/978-1-4939-9080-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Drosophila melanogaster is an ideal model to study Fragile X syndrome (FXS) as it presents us with a toolbox to identify genetic modifiers and to investigate the molecular mechanisms of FXS. Here we describe some of the methods that have been used to study FXS, ranging from reverse genetic screening using the GAL4-UAS system, to mushroom body staining and courtship behavioral assays to examine the learning and memory deficits associated with FXS.
Collapse
|
11
|
Specchia V, Puricella A, D'Attis S, Massari S, Giangrande A, Bozzetti MP. Drosophila melanogaster as a Model to Study the Multiple Phenotypes, Related to Genome Stability of the Fragile-X Syndrome. Front Genet 2019; 10:10. [PMID: 30815010 PMCID: PMC6381874 DOI: 10.3389/fgene.2019.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/11/2019] [Indexed: 12/14/2022] Open
Abstract
Fragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked Fmr1 gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability. Fragile-X (FraX) individuals also display cellular and morphological traits including branched dendritic spines, large ears, and macroorchidism. The dFmr1 gene is the Drosophila ortholog of the human Fmr1 gene. dFmr1 mutant flies exhibit synaptic abnormalities, behavioral defects as well as an altered germline development, resembling the phenotypes observed in FraX patients. Therefore, Drosophila melanogaster is considered a good model to study the physiopathological mechanisms underlying the Fragile-X syndrome. In this review, we explore how the multifaceted roles of the FMRP protein have been addressed in the Drosophila model and how the gained knowledge may open novel perspectives for understanding the molecular defects causing the disease and for identifying novel therapeutical targets.
Collapse
Affiliation(s)
- Valeria Specchia
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Antonietta Puricella
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Simona D'Attis
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Serafina Massari
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| | - Angela Giangrande
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Maria Pia Bozzetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, DiSTeBA, Università del Salento, Lecce, Italy
| |
Collapse
|
12
|
Kumari D, Gazy I, Usdin K. Pharmacological Reactivation of the Silenced FMR1 Gene as a Targeted Therapeutic Approach for Fragile X Syndrome. Brain Sci 2019; 9:brainsci9020039. [PMID: 30759772 PMCID: PMC6406686 DOI: 10.3390/brainsci9020039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/22/2022] Open
Abstract
More than ~200 CGG repeats in the 5′ untranslated region of the FMR1 gene results in transcriptional silencing and the absence of the FMR1 encoded protein, FMRP. FMRP is an RNA-binding protein that regulates the transport and translation of a variety of brain mRNAs in an activity-dependent manner. The loss of FMRP causes dysregulation of many neuronal pathways and results in an intellectual disability disorder, fragile X syndrome (FXS). Currently, there is no effective treatment for FXS. In this review, we discuss reactivation of the FMR1 gene as a potential approach for FXS treatment with an emphasis on the use of small molecules to inhibit the pathways important for gene silencing.
Collapse
Affiliation(s)
- Daman Kumari
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Inbal Gazy
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Dockendorff TC, Labrador M. The Fragile X Protein and Genome Function. Mol Neurobiol 2018; 56:711-721. [PMID: 29796988 DOI: 10.1007/s12035-018-1122-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The fragile X syndrome (FXS) arises from loss of expression or function of the FMR1 gene and is one of the most common monogenic forms of intellectual disability and autism. During the past two decades of FXS research, the fragile X mental retardation protein (FMRP) has been primarily characterized as a cytoplasmic RNA binding protein that facilitates transport of select RNA substrates through neural projections and regulation of translation within synaptic compartments, with the protein products of such mRNAs then modulating cognitive functions. However, the presence of a small fraction of FMRP in the nucleus has long been recognized. Accordingly, recent studies have uncovered several mechanisms or pathways by which FMRP influences nuclear gene expression and genome function. Some of these pathways appear to be independent of the classical role for FMRP as a regulator of translation and point to novel functions, including the possibility that FMRP directly participates in the DNA damage response and in the maintenance of genome stability. In this review, we highlight these advances and discuss how these new findings could contribute to our understanding of FMRP in brain development and function, the neural pathology of fragile X syndrome, and perhaps impact of future therapeutic considerations.
Collapse
Affiliation(s)
- Thomas C Dockendorff
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| | - Mariano Labrador
- Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
14
|
Drozd M, Bardoni B, Capovilla M. Modeling Fragile X Syndrome in Drosophila. Front Mol Neurosci 2018; 11:124. [PMID: 29713264 PMCID: PMC5911982 DOI: 10.3389/fnmol.2018.00124] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/29/2018] [Indexed: 01/18/2023] Open
Abstract
Intellectual disability (ID) and autism are hallmarks of Fragile X Syndrome (FXS), a hereditary neurodevelopmental disorder. The gene responsible for FXS is Fragile X Mental Retardation gene 1 (FMR1) encoding the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in RNA metabolism and modulating the expression level of many targets. Most cases of FXS are caused by silencing of FMR1 due to CGG expansions in the 5'-UTR of the gene. Humans also carry the FXR1 and FXR2 paralogs of FMR1 while flies have only one FMR1 gene, here called dFMR1, sharing the same level of sequence homology with all three human genes, but functionally most similar to FMR1. This enables a much easier approach for FMR1 genetic studies. Drosophila has been widely used to investigate FMR1 functions at genetic, cellular, and molecular levels since dFMR1 mutants have many phenotypes in common with the wide spectrum of FMR1 functions that underlay the disease. In this review, we present very recent Drosophila studies investigating FMRP functions at genetic, cellular, molecular, and electrophysiological levels in addition to research on pharmacological treatments in the fly model. These studies have the potential to aid the discovery of pharmacological therapies for FXS.
Collapse
Affiliation(s)
- Małgorzata Drozd
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| | - Barbara Bardoni
- CNRS LIA (Neogenex), Valbonne, France.,Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Maria Capovilla
- Université Côte d'Azur, CNRS, IPMC, Valbonne, France.,CNRS LIA (Neogenex), Valbonne, France
| |
Collapse
|
15
|
Davis JK, Broadie K. Multifarious Functions of the Fragile X Mental Retardation Protein. Trends Genet 2017; 33:703-714. [PMID: 28826631 PMCID: PMC5610095 DOI: 10.1016/j.tig.2017.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/20/2017] [Accepted: 07/24/2017] [Indexed: 01/01/2023]
Abstract
Fragile X syndrome (FXS), a heritable intellectual and autism spectrum disorder (ASD), results from the loss of Fragile X mental retardation protein (FMRP). This neurodevelopmental disease state exhibits neural circuit hyperconnectivity and hyperexcitability. Canonically, FMRP functions as an mRNA-binding translation suppressor, but recent findings have enormously expanded its proposed roles. Although connections between burgeoning FMRP functions remain unknown, recent advances have extended understanding of its involvement in RNA, channel, and protein binding that modulate calcium signaling, activity-dependent critical period development, and the excitation-inhibition (E/I) neural circuitry balance. In this review, we contextualize 3 years of FXS model research. Future directions extrapolated from recent advances focus on discovering links between FMRP roles to determine whether FMRP has a multitude of unrelated functions or whether combinatorial mechanisms can explain its multifaceted existence.
Collapse
Affiliation(s)
- Jenna K Davis
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Kendal Broadie
- Department of Biological Sciences, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
16
|
He Q, Ge W. The tandem Agenet domain of fragile X mental retardation protein interacts with FUS. Sci Rep 2017; 7:962. [PMID: 28424484 PMCID: PMC5430443 DOI: 10.1038/s41598-017-01175-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/22/2017] [Indexed: 11/10/2022] Open
Abstract
The tandem Agenet domain (TAD) of fragile X mental retardation protein (FMRP) protein is considered to be a member of the methyl-lysine-binding Tudor domain “Royal family”. Several groups have reported that the TAD binds with methylated histones and plays a role in DNA damage responses. FMRP is a RNA-binding protein predominantly resident in cytoplasm. Therefore, in this study, we identified DDX5, FUS, EWSR1 and LSM14A as TAD-interacting proteins sensitive to F32L and/or Y96L mutation by pull-down assays and mass spectrometry. We also showed that the interaction is potentially mediated by RGG/RG motifs. Furthermore, when FMRP was knocked-down, translocation of exogenously expressed wild-type FUS and disease-related mutant R514G was observed. This study may provide a novel insight into FMRP involvement in the intracellular localization of FUS and pathology of FUS-related amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Qingzhong He
- National Key Laboratory of Medical Molecular Biology & Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Ge
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
17
|
Weisz ED, Monyak RE, Jongens TA. Deciphering discord: How Drosophila research has enhanced our understanding of the importance of FMRP in different spatial and temporal contexts. Exp Neurol 2015; 274:14-24. [PMID: 26026973 PMCID: PMC12047081 DOI: 10.1016/j.expneurol.2015.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/18/2015] [Accepted: 05/23/2015] [Indexed: 01/06/2023]
Abstract
Fragile X Syndrome (FXS) is the most common heritable form of intellectual impairment as well as the leading monogenetic cause of autism. In addition to its canonical definition as a neurodevelopmental disease, recent findings in the clinic suggest that FXS is a systemic disorder that is characterized by a variety of heterogeneous phenotypes. Efforts to study FXS pathogenesis have been aided by the development and characterization of animal models of the disease. Research efforts in Drosophila melanogaster have revealed key insights into the mechanistic underpinnings of FXS. While much remains unknown, it is increasingly apparent that FXS involves a myriad of spatially and temporally specific alterations in cellular function. Consequently, the literature is filled with numerous discordant findings. Researchers and clinicians alike must be cognizant of this dissonance, as it will likely be important for the design of preclinical studies to assess the efficacy of therapeutic strategies to improve the lives of FXS patients.
Collapse
Affiliation(s)
- Eliana D Weisz
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Rachel E Monyak
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States
| | - Thomas A Jongens
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
18
|
Drosophila Homolog of FMRP Maintains Genome Integrity by Interacting with Piwi. J Genet Genomics 2015; 43:11-24. [PMID: 26842990 DOI: 10.1016/j.jgg.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FraX), the most common form of inherited mental retardation, is caused by the absence of the evolutionally conserved fragile X mental retardation protein (FMRP). While neuronal functions of FMRP have been intensively studied for the last two decades, its role in non-neuronal cells remains poorly understood. Piwi, a key component of the Piwi-interacting RNA (piRNA) pathway, plays an essential role in germline development. In the present study, we report that similar to piwi, dfmr1, the Drosophila homolog of human FMR1, is required for transposon suppression in the germlines. Genetic analyses showed that dfmr1 and piwi act synergistically in heterochromatic silencing, and in inhibiting the differentiation of primordial germline cells and transposon expression. Northern analyses showed that roo piRNA expression levels are reduced in dfmr1 mutant ovaries, suggesting a role of dfmr1 in piRNA biogenesis. Biochemical analysis demonstrated a physical interaction between dFMRP and Piwi via their N-termini. Taken together, we propose that dFMRP cooperates with Piwi in maintaining genome integrity by regulating heterochromatic silencing in somatic cells and suppressing transposon activity via the piRNA pathway in germlines.
Collapse
|
19
|
Affiliation(s)
- Qingzhong He
- National Key Laboratory of Medical Molecular Biology & Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China,
| | | |
Collapse
|
20
|
Kumari D, Swaroop M, Southall N, Huang W, Zheng W, Usdin K. High-Throughput Screening to Identify Compounds That Increase Fragile X Mental Retardation Protein Expression in Neural Stem Cells Differentiated From Fragile X Syndrome Patient-Derived Induced Pluripotent Stem Cells. Stem Cells Transl Med 2015; 4:800-8. [PMID: 25999519 DOI: 10.5966/sctm.2014-0278] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 03/23/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED : Fragile X syndrome (FXS), the most common form of inherited cognitive disability, is caused by a deficiency of the fragile X mental retardation protein (FMRP). In most patients, the absence of FMRP is due to an aberrant transcriptional silencing of the fragile X mental retardation 1 (FMR1) gene. FXS has no cure, and the available treatments only provide symptomatic relief. Given that FMR1 gene silencing in FXS patient cells can be partially reversed by treatment with compounds that target repressive epigenetic marks, restoring FMRP expression could be one approach for the treatment of FXS. We describe a homogeneous and highly sensitive time-resolved fluorescence resonance energy transfer assay for FMRP detection in a 1,536-well plate format. Using neural stem cells differentiated from an FXS patient-derived induced pluripotent stem cell (iPSC) line that does not express any FMRP, we screened a collection of approximately 5,000 known tool compounds and approved drugs using this FMRP assay and identified 6 compounds that modestly increase FMR1 gene expression in FXS patient cells. Although none of these compounds resulted in clinically relevant levels of FMR1 mRNA, our data provide proof of principle that this assay combined with FXS patient-derived neural stem cells can be used in a high-throughput format to identify better lead compounds for FXS drug development. SIGNIFICANCE In this study, a specific and sensitive fluorescence resonance energy transfer-based assay for fragile X mental retardation protein detection was developed and optimized for high-throughput screening (HTS) of compound libraries using fragile X syndrome (FXS) patient-derived neural stem cells. The data suggest that this HTS format will be useful for the identification of better lead compounds for developing new therapeutics for FXS. This assay can also be adapted for FMRP detection in clinical and research settings.
Collapse
Affiliation(s)
- Daman Kumari
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Manju Swaroop
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Noel Southall
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Wenwei Huang
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Wei Zheng
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - Karen Usdin
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Therapeutics for Rare and Neglected Diseases, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
21
|
Chatterjee A, Saha S, Chakraborty A, Silva-Fernandes A, Mandal SM, Neves-Carvalho A, Liu Y, Pandita RK, Hegde ML, Hegde PM, Boldogh I, Ashizawa T, Koeppen AH, Pandita TK, Maciel P, Sarkar PS, Hazra TK. The role of the mammalian DNA end-processing enzyme polynucleotide kinase 3'-phosphatase in spinocerebellar ataxia type 3 pathogenesis. PLoS Genet 2015; 11:e1004749. [PMID: 25633985 PMCID: PMC4310589 DOI: 10.1371/journal.pgen.1004749] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 09/11/2014] [Indexed: 01/09/2023] Open
Abstract
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3'-P and 5'-OH, are processed by mammalian polynucleotide kinase 3'-phosphatase (PNKP), a bifunctional enzyme with 3'-phosphatase and 5'-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14-41 to 55-82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP's 3' phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3'-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients' brain. Finally, long amplicon quantitative PCR analysis of human MJD patients' brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.
Collapse
Affiliation(s)
- Arpita Chatterjee
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Saikat Saha
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anirban Chakraborty
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anabela Silva-Fernandes
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Santi M. Mandal
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andreia Neves-Carvalho
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yongping Liu
- Department of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Raj K. Pandita
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pavana M. Hegde
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Istvan Boldogh
- Department of Microbiology & Immunology; University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tetsuo Ashizawa
- Department of Neurology, University of Florida, Gainesville, Florida, United States of America
| | - Arnulf H. Koeppen
- Department of Neurology, Albany Stratton VA Medical Center, Albany, New York, United States of America
| | - Tej K. Pandita
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Radiation Oncology, The Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Patricia Maciel
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Partha S. Sarkar
- Department of Neurology and Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
22
|
Gao R, Liu Y, Silva-Fernandes A, Fang X, Paulucci-Holthauzen A, Chatterjee A, Zhang HL, Matsuura T, Choudhary S, Ashizawa T, Koeppen AH, Maciel P, Hazra TK, Sarkar PS. Inactivation of PNKP by mutant ATXN3 triggers apoptosis by activating the DNA damage-response pathway in SCA3. PLoS Genet 2015; 11:e1004834. [PMID: 25590633 PMCID: PMC4295939 DOI: 10.1371/journal.pgen.1004834] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 10/16/2014] [Indexed: 12/30/2022] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an untreatable autosomal dominant neurodegenerative disease, and the most common such inherited ataxia worldwide. The mutation in SCA3 is the expansion of a polymorphic CAG tri-nucleotide repeat sequence in the C-terminal coding region of the ATXN3 gene at chromosomal locus 14q32.1. The mutant ATXN3 protein encoding expanded glutamine (polyQ) sequences interacts with multiple proteins in vivo, and is deposited as aggregates in the SCA3 brain. A large body of literature suggests that the loss of function of the native ATNX3-interacting proteins that are deposited in the polyQ aggregates contributes to cellular toxicity, systemic neurodegeneration and the pathogenic mechanism in SCA3. Nonetheless, a significant understanding of the disease etiology of SCA3, the molecular mechanism by which the polyQ expansions in the mutant ATXN3 induce neurodegeneration in SCA3 has remained elusive. In the present study, we show that the essential DNA strand break repair enzyme PNKP (polynucleotide kinase 3'-phosphatase) interacts with, and is inactivated by, the mutant ATXN3, resulting in inefficient DNA repair, persistent accumulation of DNA damage/strand breaks, and subsequent chronic activation of the DNA damage-response ataxia telangiectasia-mutated (ATM) signaling pathway in SCA3. We report that persistent accumulation of DNA damage/strand breaks and chronic activation of the serine/threonine kinase ATM and the downstream p53 and protein kinase C-δ pro-apoptotic pathways trigger neuronal dysfunction and eventually neuronal death in SCA3. Either PNKP overexpression or pharmacological inhibition of ATM dramatically blocked mutant ATXN3-mediated cell death. Discovery of the mechanism by which mutant ATXN3 induces DNA damage and amplifies the pro-death signaling pathways provides a molecular basis for neurodegeneration due to PNKP inactivation in SCA3, and for the first time offers a possible approach to treatment.
Collapse
Affiliation(s)
- Rui Gao
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yongping Liu
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Anabela Silva-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s PT Government Associate Laboratory, Braga/Guimarặes, Portugal
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Adriana Paulucci-Holthauzen
- Department of Biomedical Engineering, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Arpita Chatterjee
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Hang L. Zhang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tohru Matsuura
- Department of Neurology, Jichi Medical School, Shimotsuke, Japan
| | - Sanjeev Choudhary
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Tetsuo Ashizawa
- Department of Neurology and McNight Brain Research Institute, University of Florida, Gainesville, Florida, United States of America
| | - Arnulf H. Koeppen
- Department of Neurology, Albany Stratton VA Medical Center, Albany, New York, United States of America
| | - Patricia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3B’s PT Government Associate Laboratory, Braga/Guimarặes, Portugal
| | - Tapas K. Hazra
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Partha S. Sarkar
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
23
|
Abstract
Fragile X Syndrome (FXS) is commonly thought to arise from dysfunction of the synapse, the site of communication between neurons. However, loss of the protein that results in FXS occurs early in embryonic development, while synapses are formed relatively late. Fragile X Syndrome (FXS) is the leading known monogenic form of autism and the most common form of inherited intellectual disability. FXS results from silencing the FMR1 gene during embryonic development, leading to loss of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein that regulates mRNA transport, stability, and translation. FXS is commonly thought of as a disease of synaptic dysfunction; however, FMRP expression is lost early in embryonic development, well before most synaptogenesis occurs. Recent studies suggest that loss of FMRP results in aberrant neurogenesis, but neurogenic defects have been variable. We investigated whether FMRP affects neurogenesis in Xenopus laevis tadpoles that express a homolog of FMR1. We used in vivo time-lapse imaging of neural progenitor cells and their neuronal progeny to evaluate the effect of acute loss or overexpression of FMRP on neurogenesis in the developing optic tectum. We complimented the time-lapse studies with SYTOX labeling to quantify apoptosis and CldU labeling to measure cell proliferation. Animals with increased or decreased levels of FMRP have significantly decreased neuronal proliferation and survival. They also have increased neuronal differentiation, but deficient dendritic arbor elaboration. The presence and severity of these defects was highly sensitive to FMRP levels. These data demonstrate that FMRP plays an important role in neurogenesis and suggest that endogenous FMRP levels are carefully regulated. These studies show promise in using Xenopus as an experimental system to study fundamental deficits in brain development with loss of FMRP and give new insight into the pathophysiology of FXS.
Collapse
|
24
|
Matic K, Eninger T, Bardoni B, Davidovic L, Macek B. Quantitative phosphoproteomics of murine Fmr1-KO cell lines provides new insights into FMRP-dependent signal transduction mechanisms. J Proteome Res 2014; 13:4388-97. [PMID: 25168779 DOI: 10.1021/pr5006372] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fragile X mental retardation protein (FMRP) is an RNA-binding protein that has a major effect on neuronal protein synthesis. Transcriptional silencing of the FMR1 gene leads to loss of FMRP and development of Fragile X syndrome (FXS), the most common known hereditary cause of intellectual impairment and autism. Here we utilize SILAC-based quantitative phosphoproteomics to analyze murine FMR1(-) and FMR1(+) fibroblastic cell lines derived from FMR1-KO embryos to identify proteins and phosphorylation sites dysregulated as a consequence of FMRP loss. We quantify FMRP-related changes in the levels of 5,023 proteins and 6,133 phosphorylation events and map them onto major signal transduction pathways. Our study confirms global downregulation of the MAPK/ERK pathway and decrease in phosphorylation level of ERK1/2 in the absence of FMRP, which is connected to attenuation of long-term potentiation. We detect differential expression of several key proteins from the p53 pathway, pointing to the involvement of p53 signaling in dysregulated cell cycle control in FXS. Finally, we detect differential expression and phosphorylation of proteins involved in pre-mRNA processing and nuclear transport, as well as Wnt and calcium signaling, such as PLC, PKC, NFAT, and cPLA2. We postulate that calcium homeostasis is likely affected in molecular pathogenesis of FXS.
Collapse
Affiliation(s)
- Katarina Matic
- Proteome Center Tübingen and ‡Graduate School of Cellular and Molecular Neuroscience, University of Tübingen , Österbergstrasse 3, 72074 Tübingen, Germany
| | | | | | | | | |
Collapse
|