1
|
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol 2024; 61:512-523. [PMID: 38197394 DOI: 10.1177/03009858231222235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies.
Collapse
|
2
|
Swier VJ, White KA, Negrão de Assis PL, Johnson TB, Leppert HG, Rechtzigel MJ, Meyerholz DK, Dodd RD, Quelle DE, Khanna R, Rogers CS, Weimer JM. NF1 +/ex42del miniswine model the cellular disruptions and behavioral presentations of NF1-associated cognitive and motor impairment. Clin Transl Sci 2024; 17:e13858. [PMID: 38932491 PMCID: PMC11208292 DOI: 10.1111/cts.13858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Cognitive or motor impairment is common among individuals with neurofibromatosis type 1 (NF1), an autosomal dominant tumor-predisposition disorder. As many as 70% of children with NF1 report difficulties with spatial/working memory, attention, executive function, and fine motor movements. In contrast to the utilization of various Nf1 mouse models, here we employ an NF1+/ex42del miniswine model to evaluate the mechanisms and characteristics of these presentations, taking advantage of a large animal species more like human anatomy and physiology. The prefrontal lobe, anterior cingulate, and hippocampus from NF1+/ex42del and wild-type miniswine were examined longitudinally, revealing abnormalities in mature oligodendrocytes and astrocytes, and microglial activation over time. Imbalances in GABA: Glutamate ratios and GAD67 expression were observed in the hippocampus and motor cortex, supporting the role of disruption in inhibitory neurotransmission in NF1 cognitive impairment and motor dysfunction. Moreover, NF1+/ex42del miniswine demonstrated slower and shorter steps, indicative of a balance-preserving response commonly observed in NF1 patients, and progressive memory and learning impairments. Collectively, our findings affirm the effectiveness of NF1+/ex42del miniswine as a valuable resource for assessing cognitive and motor impairments associated with NF1, investigating the involvement of specific neural circuits and glia in these processes, and evaluating potential therapeutic interventions.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | - Katherine A. White
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | | | - Tyler B. Johnson
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | - Hannah G. Leppert
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
| | | | | | - Rebecca D. Dodd
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Holden Comprehensive Cancer CenterUniversity of IowaIowa CityIowaUSA
| | - Dawn E. Quelle
- Department of Neuroscience and PharmacologyUniversity of IowaIowa CityIowaUSA
| | - Rajesh Khanna
- Department of Pharmacology and Therapeutics, College of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | | | - Jill M. Weimer
- Pediatrics and Rare Diseases GroupSanford ResearchSioux FallsSouth DakotaUSA
- Department of PediatricsUniversity of South DakotaSioux FallsSouth DakotaUSA
| |
Collapse
|
3
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
4
|
Paull TT, Woolley PR. A-T neurodegeneration and DNA damage-induced transcriptional stress. DNA Repair (Amst) 2024; 135:103647. [PMID: 38377644 PMCID: PMC11707827 DOI: 10.1016/j.dnarep.2024.103647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Loss of the ATM protein kinase in humans results in Ataxia-telangiectasia, a disorder characterized by childhood-onset neurodegeneration of the cerebellum as well as cancer predisposition and immunodeficiency. Although many aspects of ATM function are well-understood, the mechanistic basis of the progressive cerebellar ataxia that occurs in patients is not. Here we review recent progress related to the role of ATM in neurons and the cerebellum that comes from many sources: animal models, post-mortem brain tissue samples, and human neurons in culture. These observations have revealed new insights into the consequences of ATM loss on DNA damage, gene expression, and immune signaling in the brain. Many results point to the importance of reactive oxygen species as well as single-strand DNA breaks in the progression of molecular events leading to neuronal dysfunction. In addition, innate immunity signaling pathways appear to play a critical role in ATM functions in microglia, responding to various forms of nucleic acid sensors and regulating survival of neurons and other cell types. Overall, the results lead to an updated view of transcriptional stress and DNA damage resulting from ATM loss that results in changes in gene expression as well as neuroinflammation that contribute to the cerebellar neurodegeneration observed in patients.
Collapse
Affiliation(s)
- Tanya T Paull
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA.
| | - Phillip R Woolley
- The University of Texas at Austin, Department of Molecular Biosciences, Austin, TX 78712, USA
| |
Collapse
|
5
|
Amrein Almira A, Chen MW, El Demerdash N, Javdan C, Park D, Lee JK, Martin LJ. Proteasome localization and activity in pig brain and in vivo small molecule screening for activators. Front Cell Neurosci 2024; 18:1353542. [PMID: 38469354 PMCID: PMC10925635 DOI: 10.3389/fncel.2024.1353542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Loss of proteasome function, proteinopathy, and proteotoxicity may cause neurodegeneration across the human lifespan in several forms of brain injury and disease. Drugs that activate brain proteasomes in vivo could thus have a broad therapeutic impact in neurology. Methods Using pigs, a clinically relevant large animal with a functionally compartmental gyrencephalic cerebral cortex, we evaluated the localization and biochemical activity of brain proteasomes and tested the ability of small molecules to activate brain proteasomes. Results By Western blotting, proteasome protein subunit PSMB5 and PSMA3 levels were similar in different pig brain regions. Immunohistochemistry for PSMB5 showed localization in the cytoplasm (diffuse and particulate) and nucleus (cytoplasm < nucleus). Some PSMB5 immunoreactivity was colocalized with mitochondrial (voltage-gated anion channel and cyclophilin D) and cell death (Aven) proteins in the neuronal soma and neuropil in the neocortex of pig and human brains. In the nucleus, PSMB5 immunoreactivity was diffuse, particulate, and clustered, including perinucleolar decorations. By fluorogenic assay, proteasome chymotrypsin-like activities (CTL) in crude tissue soluble fractions were generally similar within eight different pig brain regions. Proteasome CTL activity in the hippocampus was correlated with activity in nasal mucosa biopsies. In pilot analyses of subcellular fractions of pig cerebral cortex, proteasome CTL activity was highest in the cytosol and then ~50% lower in nuclear fractions; ~15-20% of total CTL activity was in pure mitochondrial fractions. With in-gel activity assay, 26S-singly and -doubly capped proteasomes were the dominant forms in the pig cerebral cortex. With a novel in situ histochemical activity assay, MG132-inhibitable proteasome CTL activity was localized to the neuropil, as a mosaic, and to cell bodies, nuclei, and centrosome-like perinuclear satellites. In piglets treated intravenously with pyrazolone derivative and chlorpromazine over 24 h, brain proteasome CTL activity was modestly increased. Discussion This study shows that the proteasome in the pig brain has relative regional uniformity, prominent nuclear and perinuclear presence with catalytic activity, a mitochondrial association with activity, 26S-single cap dominance, and indications from small molecule systemic administration of pyrazolone derivative and chlorpromazine that brain proteasome function appears safely activable.
Collapse
Affiliation(s)
- Adriana Amrein Almira
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - May W. Chen
- Departments of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Nagat El Demerdash
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cameron Javdan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dongseok Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jennifer K. Lee
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lee J. Martin
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Pathobiology Graduate Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Swier VJ, White KA, Johnson TB, Wang X, Han J, Pearce DA, Singh R, Drack AV, Pfeifer W, Rogers CS, Brudvig JJ, Weimer JM. A novel porcine model of CLN3 Batten disease recapitulates clinical phenotypes. Dis Model Mech 2023; 16:dmm050038. [PMID: 37305926 PMCID: PMC10434985 DOI: 10.1242/dmm.050038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/10/2023] [Indexed: 06/13/2023] Open
Abstract
Mouse models of CLN3 Batten disease, a rare lysosomal storage disorder with no cure, have improved our understanding of CLN3 biology and therapeutics through their ease of use and a consistent display of cellular pathology. However, the translatability of murine models is limited by disparities in anatomy, body size, life span and inconsistent subtle behavior deficits that can be difficult to detect in CLN3 mutant mouse models, thereby limiting their use in preclinical studies. Here, we present a longitudinal characterization of a novel miniswine model of CLN3 disease that recapitulates the most common human pathogenic variant, an exon 7-8 deletion (CLN3Δex7/8). Progressive pathology and neuron loss is observed in various regions of the CLN3Δex7/8 miniswine brain and retina. Additionally, mutant miniswine present with retinal degeneration and motor abnormalities, similar to deficits seen in humans diagnosed with the disease. Taken together, the CLN3Δex7/8 miniswine model shows consistent and progressive Batten disease pathology, and behavioral impairment mirroring clinical presentation, demonstrating its value in studying the role of CLN3 and safety/efficacy of novel disease-modifying therapeutics.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Tyler B. Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | | | - Jimin Han
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - David A. Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Ruchira Singh
- Department of Ophthalmology, Center for Visual Science, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Arlene V. Drack
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
- University of Iowa Institute for Vision Research, Iowa City, IA 52242, USA
| | - Wanda Pfeifer
- Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jon J. Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105, USA
| |
Collapse
|
7
|
Swier VJ, White KA, Johnson TB, Sieren JC, Johnson HJ, Knoernschild K, Wang X, Rohret FA, Rogers CS, Pearce DA, Brudvig JJ, Weimer JM. A Novel Porcine Model of CLN2 Batten Disease that Recapitulates Patient Phenotypes. Neurotherapeutics 2022; 19:1905-1919. [PMID: 36100791 PMCID: PMC9723024 DOI: 10.1007/s13311-022-01296-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2022] [Indexed: 12/13/2022] Open
Abstract
CLN2 Batten disease is a lysosomal disorder in which pathogenic variants in CLN2 lead to reduced activity in the enzyme tripeptidyl peptidase 1. The disease typically manifests around 2 to 4 years of age with developmental delay, ataxia, seizures, inability to speak and walk, and fatality between 6 and 12 years of age. Multiple Cln2 mouse models exist to better understand the etiology of the disease; however, these models are unable to adequately recapitulate the disease due to differences in anatomy and physiology, limiting their utility for therapeutic testing. Here, we describe a new CLN2R208X/R208X porcine model of CLN2 disease. We present comprehensive characterization showing behavioral, pathological, and visual phenotypes that recapitulate those seen in CLN2 patients. CLN2R208X/R208X miniswine present with gait abnormalities at 6 months of age, ERG waveform declines at 6-9 months, vision loss at 11 months, cognitive declines at 12 months, seizures by 15 months, and early death at 18 months due to failure to thrive. CLN2R208X/R208X miniswine also showed classic storage material accumulation and glial activation in the brain at 6 months, and cortical atrophy at 12 months. Thus, the CLN2R208X/R208X miniswine model is a valuable resource for biomarker discovery and therapeutic development in CLN2 disease.
Collapse
Affiliation(s)
- Vicki J Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jessica C Sieren
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - Hans J Johnson
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Kevin Knoernschild
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | | | | | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jon J Brudvig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
8
|
Eaton SL, Murdoch F, Rzechorzek NM, Thompson G, Hartley C, Blacklock BT, Proudfoot C, Lillico SG, Tennant P, Ritchie A, Nixon J, Brennan PM, Guido S, Mitchell NL, Palmer DN, Whitelaw CBA, Cooper JD, Wishart TM. Modelling Neurological Diseases in Large Animals: Criteria for Model Selection and Clinical Assessment. Cells 2022; 11:cells11172641. [PMID: 36078049 PMCID: PMC9454934 DOI: 10.3390/cells11172641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Issue: The impact of neurological disorders is recognised globally, with one in six people affected in their lifetime and few treatments to slow or halt disease progression. This is due in part to the increasing ageing population, and is confounded by the high failure rate of translation from rodent-derived therapeutics to clinically effective human neurological interventions. Improved translation is demonstrated using higher order mammals with more complex/comparable neuroanatomy. These animals effectually span this translational disparity and increase confidence in factors including routes of administration/dosing and ability to scale, such that potential therapeutics will have successful outcomes when moving to patients. Coupled with advancements in genetic engineering to produce genetically tailored models, livestock are increasingly being used to bridge this translational gap. Approach: In order to aid in standardising characterisation of such models, we provide comprehensive neurological assessment protocols designed to inform on neuroanatomical dysfunction and/or lesion(s) for large animal species. We also describe the applicability of these exams in different large animals to help provide a better understanding of the practicalities of cross species neurological disease modelling. Recommendation: We would encourage the use of these assessments as a reference framework to help standardise neurological clinical scoring of large animal models.
Collapse
Affiliation(s)
- Samantha L. Eaton
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Correspondence: (S.L.E.); (T.M.W.); Tel.: +44-(0)-131-651-9125 (S.L.E.); +44-(0)-131-651-9233 (T.M.W.)
| | - Fraser Murdoch
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Nina M. Rzechorzek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Gerard Thompson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
- Department of Clinical Neurosciences, NHS Lothian, 50 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - Claudia Hartley
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Benjamin Thomas Blacklock
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Chris Proudfoot
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Simon G. Lillico
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Peter Tennant
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Adrian Ritchie
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - James Nixon
- The Large Animal Research & Imaging Facility, Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Paul M. Brennan
- Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Stefano Guido
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Bioresearch & Veterinary Services, University of Edinburgh, Chancellor’s Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Nadia L. Mitchell
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - David N. Palmer
- Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 85084, Lincoln 7647, New Zealand
| | - C. Bruce A. Whitelaw
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
| | - Jonathan D. Cooper
- Departments of Pediatrics, Genetics, and Neurology, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, USA
| | - Thomas M. Wishart
- Royal (Dick) School of Veterinary Studies and Roslin Institute, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK
- Correspondence: (S.L.E.); (T.M.W.); Tel.: +44-(0)-131-651-9125 (S.L.E.); +44-(0)-131-651-9233 (T.M.W.)
| |
Collapse
|
9
|
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Angelica Van Goor
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Taylor Hailstock
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Jasmine Franklin
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Chaohui Dai
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
10
|
Cellular functions of the protein kinase ATM and their relevance to human disease. Nat Rev Mol Cell Biol 2021; 22:796-814. [PMID: 34429537 DOI: 10.1038/s41580-021-00394-2] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
The protein kinase ataxia telangiectasia mutated (ATM) is a master regulator of double-strand DNA break (DSB) signalling and stress responses. For three decades, ATM has been investigated extensively to elucidate its roles in the DNA damage response (DDR) and in the pathogenesis of ataxia telangiectasia (A-T), a human neurodegenerative disease caused by loss of ATM. Although hundreds of proteins have been identified as ATM phosphorylation targets and many important roles for this kinase have been identified, it is still unclear how ATM deficiency leads to the early-onset cerebellar degeneration that is common in all individuals with A-T. Recent studies suggest the existence of links between ATM deficiency and other cerebellum-specific neurological disorders, as well as the existence of broader similarities with more common neurodegenerative disorders. In this Review, we discuss recent structural insights into ATM regulation, and possible aetiologies of A-T phenotypes, including reactive oxygen species, mitochondrial dysfunction, alterations in transcription, R-loop metabolism and alternative splicing, defects in cellular proteostasis and metabolism, and potential pathogenic roles for hyper-poly(ADP-ribosyl)ation.
Collapse
|
11
|
Helke KL, Meyerholz DK, Beck AP, Burrough ER, Derscheid RJ, Löhr C, McInnes EF, Scudamore CL, Brayton CF. Research Relevant Background Lesions and Conditions: Ferrets, Dogs, Swine, Sheep, and Goats. ILAR J 2021; 62:133-168. [PMID: 33712827 DOI: 10.1093/ilar/ilab005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/17/2020] [Accepted: 01/06/2021] [Indexed: 01/01/2023] Open
Abstract
Animal models provide a valuable tool and resource for biomedical researchers as they investigate biological processes, disease pathogenesis, novel therapies, and toxicologic studies. Interpretation of animal model data requires knowledge not only of the processes/diseases being studied but also awareness of spontaneous conditions and background lesions in the model that can influence or even confound the study results. Species, breed/stock, sex, age, anatomy, physiology, diseases (noninfectious and infectious), and neoplastic processes are model features that can impact the results as well as study interpretation. Here, we review these features in several common laboratory animal species, including ferret, dog (beagle), pig, sheep, and goats.
Collapse
Affiliation(s)
- Kristi L Helke
- Department of Comparative Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Eric R Burrough
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Rachel J Derscheid
- Veterinary Diagnostic and Production Animal Medicine Department, Iowa State University, Ames, Iowa, USA
| | - Christiane Löhr
- Department of Biomedical Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Elizabeth F McInnes
- Toxicologic Pathology, Toxicology Section, Human Safety at Syngenta, in Jealott's Hill, Bracknell, United Kingdom
| | - Cheryl L Scudamore
- ExePathology, Pathologist at ExePathology, Exmouth, Devon, United Kingdom
| | - Cory F Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
12
|
Hoenerhoff MJ, Meyerholz DK, Brayton C, Beck AP. Challenges and Opportunities for the Veterinary Pathologist in Biomedical Research. Vet Pathol 2020; 58:258-265. [PMID: 33327888 DOI: 10.1177/0300985820974005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Animal models have critical roles in biomedical research in promoting understanding of human disease and facilitating development of new therapies and diagnostic techniques to improve human and animal health. In the study of myriad human conditions, each model requires in-depth characterization of its assets and limitations in order for it to be used to greatest advantage. Veterinary pathology expertise is critical in understanding the relevance and translational validity of animal models to conditions under study, assessing morbidity and mortality, and validating outcomes as relevant or not to the study interventions. Clear communication with investigators and education of research personnel on the use and interpretation of pathology endpoints in animal models are critical to the success of any research program. The veterinary pathologist is underutilized in biomedical research due to many factors including misconceptions about high fiscal costs, lack of perceived value, limited recognition of their expertise, and the generally low number of veterinary pathologists currently employed in biomedical research. As members of the multidisciplinary research team, veterinary pathologists have an important role to educate scientists, ensure accurate interpretation of pathology data, maximize rigor, and ensure reproducibility to provide the most reliable data for animal models in biomedical research.
Collapse
|
13
|
Koppes EA, Redel BK, Johnson MA, Skvorak KJ, Ghaloul-Gonzalez L, Yates ME, Lewis DW, Gollin SM, Wu YL, Christ SE, Yerle M, Leshinski A, Spate LD, Benne JA, Murphy SL, Samuel MS, Walters EM, Hansen SA, Wells KD, Lichter-Konecki U, Wagner RA, Newsome JT, Dobrowolski SF, Vockley J, Prather RS, Nicholls RD. A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight 2020; 5:141523. [PMID: 33055427 PMCID: PMC7605535 DOI: 10.1172/jci.insight.141523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 μM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.
Collapse
Affiliation(s)
- Erik A. Koppes
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bethany K. Redel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Marie A. Johnson
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristen J. Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lina Ghaloul-Gonzalez
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Megan E. Yates
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dale W. Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Susanne M. Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Yijen L. Wu
- Department of Developmental Biology, University of Pittsburgh, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shawn E. Christ
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Martine Yerle
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Angela Leshinski
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee D. Spate
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Joshua A. Benne
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Stephanie L. Murphy
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Melissa S. Samuel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Eric M. Walters
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Sarah A. Hansen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin D. Wells
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Uta Lichter-Konecki
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert A. Wagner
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph T. Newsome
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven F. Dobrowolski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Randall S. Prather
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Robert D. Nicholls
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
14
|
Lee JH, Paull TT. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol 2020; 32:101511. [PMID: 32244177 PMCID: PMC7115119 DOI: 10.1016/j.redox.2020.101511] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/10/2020] [Accepted: 03/16/2020] [Indexed: 01/10/2023] Open
Abstract
The Ataxia-telangiectasia mutated (ATM) kinase responds to DNA double-strand breaks and other forms of cellular stress, including reactive oxygen species (ROS). Recent work in the field has uncovered links between mitochondrial ROS and ATM activation, suggesting that ATM acts as a sensor for mitochondrial derived ROS and regulates ROS accumulation in cells through this pathway. In addition, characterization of cells from Ataxia-telangiectasia patients as well as ATM-deficient mice and cell models suggest a role for ATM in modulating mitochondrial gene expression and function. Here we review ROS responses related to ATM function, recent evidence for ATM roles in mitochondrial maintenance and turnover, and the relationship between ATM and regulation of protein homeostasis.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tanya T Paull
- The Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
15
|
Zhao X, Nie J, Tang Y, He W, Xiao K, Pang C, Liang X, Lu Y, Zhang M. Generation of Transgenic Cloned Buffalo Embryos Harboring the EGFP Gene in the Y Chromosome Using CRISPR/Cas9-Mediated Targeted Integration. Front Vet Sci 2020; 7:199. [PMID: 32426378 PMCID: PMC7212351 DOI: 10.3389/fvets.2020.00199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/25/2020] [Indexed: 11/16/2022] Open
Abstract
Sex control technology is of great significance in the production of domestic animals, especially for rapidly breeding water buffalo (bubalus bubalis), which served as a research model in the present study. We have confirmed that a fluorescence protein integrated into the Y chromosome is fit for sexing pre-implantation embryos in the mouse. Firstly, we optimized the efficiency of targeted integration of exogenous gene encoding enhanced green fluorescent protein (eGFP) and mCherry in Neuro-2a cells, mouse embryonic stem cells, mouse embryonic cells (NIH3T3), buffalo fetal fibroblast (BFF) cells. The results showed that a homology arm length of 800 bp on both sides of the target is more efficient that 300 bp or 300 bp/800 bp. Homology-directed repair (HDR)-mediated knock-in in BFF cells was also significantly improved when cells were supplemented with pifithrin-μ, which is a small molecule that inhibits the binding of p53 to mitochondria. Three pulses at 250 V resulted in the most efficient electroporation in BFF cells and 1.5 μg/mL puromycin was found to be the optimal concentration for screening. Moreover, Y-Chr-eGFP transgenic BFF cells and cloned buffalo embryos were successfully generated using CRISPR/Cas9-mediated gene editing combined with the somatic cell nuclear transfer (SCNT) technique. At passage numbers 6–8, the growth rate and cell proliferation rate were significantly lower in Y-Chr-eGFP transgenic than in non-transgenic BFF cells; the expression levels of the methylation-related genes DNMT1 and DNMT3a were similar; however, the expression levels of the acetylation-related genes HDAC1, HDAC2, and HDAC3 were significantly higher (p < 0.05) in Y-Chr-eGFP transgenic BFF cells compared with non-transgenic cells. Y-Chr-eGFP transgenic BFFs were used as donors for SCNT, the results showed that eGFP reporter is suitable for the visualization of the sex of embryos. The blastocyst rates of cloned buffalo embryos were similar; however, the cleavage rates of transgenic cloned embryos were significantly lower compared with control. In summary, we optimized the protocol for generating transgenic BFF cells and successfully generated Y-Chr-eGFP transgenic embryos using these cells as donors.
Collapse
Affiliation(s)
- Xiuling Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Junyu Nie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Yuyan Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Wengtan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Kai Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Chunying Pang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Xianwei Liang
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Buffalo Research Institute, Chinese Academy of Agricultural Science, Nanning, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| | - Ming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Animal Reproduction Institute, Guangxi University, Nanning, China
| |
Collapse
|
16
|
Uthoff J, Larson J, Sato TS, Hammond E, Schroeder KE, Rohret F, Rogers CS, Quelle DE, Darbro BW, Khanna R, Weimer JM, Meyerholz DK, Sieren JC. Longitudinal phenotype development in a minipig model of neurofibromatosis type 1. Sci Rep 2020; 10:5046. [PMID: 32193437 PMCID: PMC7081358 DOI: 10.1038/s41598-020-61251-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a rare, autosomal dominant disease with variable clinical presentations. Large animal models are useful to help dissect molecular mechanisms, determine relevant biomarkers, and develop effective therapeutics. Here, we studied a NF1 minipig model (NF1+/ex42del) for the first 12 months of life to evaluate phenotype development, track disease progression, and provide a comparison to human subjects. Through systematic evaluation, we have shown that compared to littermate controls, the NF1 model develops phenotypic characteristics of human NF1: [1] café-au-lait macules, [2] axillary/inguinal freckling, [3] shortened stature, [4] tibial bone curvature, and [5] neurofibroma. At 4 months, full body computed tomography imaging detected significantly smaller long bones in NF1+/ex42del minipigs compared to controls, indicative of shorter stature. We found quantitative evidence of tibial bowing in a subpopulation of NF1 minipigs. By 8 months, an NF1+/ex42del boar developed a large diffuse shoulder neurofibroma, visualized on magnetic resonance imaging, which subsequently grew in size and depth as the animal aged up to 20 months. The NF1+/ex42del minipig model progressively demonstrates signature attributes that parallel clinical manifestations seen in humans and provides a viable tool for future translational NF1 research.
Collapse
Affiliation(s)
- Johanna Uthoff
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | - Jared Larson
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Takashi S Sato
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Emily Hammond
- Department of Radiology, University of Iowa, Iowa City, IA, USA
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
| | | | | | | | - Dawn E Quelle
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Benjamin W Darbro
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - Jessica C Sieren
- Department of Radiology, University of Iowa, Iowa City, IA, USA.
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA.
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
17
|
Beck AP, Meyerholz DK. Evolving challenges to model human diseases for translational research. Cell Tissue Res 2020; 380:305-311. [PMID: 32130478 DOI: 10.1007/s00441-019-03134-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/03/2019] [Indexed: 12/31/2022]
Abstract
Animal models are a significant component of biomedical research and play an important role in translational studies. Traditionally, rodent models have been the mainstay and principal choice of researchers but in recent years, there have been significant changes in the landscape of animal modeling. For example, newer techniques have greatly expanded the use and successful application of large animal models such as pigs for translational studies. The evolving types and species of animal models can influence the research landscape in terms of facilities, expertise, reproducibility and funding streams, which creates new challenges for research studies. It is also important that investigators are prepared to address the necessity of their animal model research and capable to educate the public regarding its value.
Collapse
Affiliation(s)
- Amanda P Beck
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - David K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
18
|
Swier VJ, White KA, Meyerholz DK, Chefdeville A, Khanna R, Sieren JC, Quelle DE, Weimer JM. Validating indicators of CNS disorders in a swine model of neurological disease. PLoS One 2020; 15:e0228222. [PMID: 32074109 PMCID: PMC7029865 DOI: 10.1371/journal.pone.0228222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/09/2020] [Indexed: 11/18/2022] Open
Abstract
Genetically modified swine disease models are becoming increasingly important for studying molecular, physiological and pathological characteristics of human disorders. Given the limited history of these model systems, there remains a great need for proven molecular reagents in swine tissue. Here, to provide a resource for neurological models of disease, we validated antibodies by immunohistochemistry for use in examining central nervous system (CNS) markers in a recently developed miniswine model of neurofibromatosis type 1 (NF1). NF1 is an autosomal dominant tumor predisposition disorder stemming from mutations in NF1, a gene that encodes the Ras-GTPase activating protein neurofibromin. Patients classically present with benign neurofibromas throughout their bodies and can also present with neurological associated symptoms such as chronic pain, cognitive impairment, and behavioral abnormalities. As validated antibodies for immunohistochemistry applications are particularly difficult to find for swine models of neurological disease, we present immunostaining validation of antibodies implicated in glial inflammation (CD68), oligodendrocyte development (NG2, O4 and Olig2), and neuron differentiation and neurotransmission (doublecortin, GAD67, and tyrosine hydroxylase) by examining cellular localization and brain region specificity. Additionally, we confirm the utility of anti-GFAP, anti-Iba1, and anti-MBP antibodies, previously validated in swine, by testing their immunoreactivity across multiple brain regions in mutant NF1 samples. These immunostaining protocols for CNS markers provide a useful resource to the scientific community, furthering the utility of genetically modified miniswine for translational and clinical applications.
Collapse
Affiliation(s)
- Vicki J. Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - Katherine A. White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
| | - David K. Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Aude Chefdeville
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
- Graduate Interdisciplinary Program in Neuroscience; College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Jessica C. Sieren
- Department of Radiology and Biomedical Engineering, University of Iowa, Iowa City, Iowa, United States of America
| | - Dawn E. Quelle
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa, United States of America
| | - Jill M. Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
19
|
Baxa M, Levinska B, Skrivankova M, Pokorny M, Juhasova J, Klima J, Klempir J, Motlı K J, Juhas S, Ellederova Z. Longitudinal study revealing motor, cognitive and behavioral decline in a transgenic minipig model of Huntington's disease. Dis Model Mech 2019; 13:dmm.041293. [PMID: 31704691 PMCID: PMC6918771 DOI: 10.1242/dmm.041293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/30/2019] [Indexed: 01/15/2023] Open
Abstract
Huntington's disease (HD) is an inherited devastating neurodegenerative disease with no known cure to date. Several therapeutic treatments for HD are in development, but their safety, tolerability and efficacy need to be tested before translation to bedside. The monogenetic nature of this disorder has enabled the generation of transgenic animal models carrying a mutant huntingtin (mHTT) gene causing HD. A large animal model reflecting disease progression in humans would be beneficial for testing the potential therapeutic approaches. Progression of the motor, cognitive and behavioral phenotype was monitored in transgenic Huntington's disease minipigs (TgHD) expressing the N-terminal part of human mHTT. New tests were established to investigate physical activity by telemetry, and to explore the stress-induced behavioral and cognitive changes in minipigs. The longitudinal study revealed significant differences between 6- to 8-year-old TgHD animals and their wild-type (WT) controls in a majority of the tests. The telemetric study showed increased physical activity of 4.6- to 6.5-year-old TgHD boars compared to their WT counterparts during the lunch period as well as in the afternoon. Our phenotypic study indicates progression in adult TgHD minipigs and therefore this model could be suitable for longstanding preclinical studies of HD. This article has an associated First Person interview with the first author of the paper. Summary: The transgenic minipig model of Huntington's disease demonstrates a slow-progressing motor, cognitive and behavioral phenotype with later onset in adulthood.
Collapse
Affiliation(s)
- Monika Baxa
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Bozena Levinska
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Monika Skrivankova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Cell Biology, Faculty of Science, Charles University in Prague, 128 00 Prague, Czech Republic
| | - Matous Pokorny
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, 166 27 Prague, Czech Republic
| | - Jana Juhasova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Jiri Klima
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Jiri Klempir
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic.,Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, 128 21 Prague, Czech Republic
| | - Jan Motlı K
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Stefan Juhas
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| | - Zdenka Ellederova
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 277 21 Libechov, Czech Republic
| |
Collapse
|
20
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
21
|
Taylor AMR, Rothblum-Oviatt C, Ellis NA, Hickson ID, Meyer S, Crawford TO, Smogorzewska A, Pietrucha B, Weemaes C, Stewart GS. Chromosome instability syndromes. Nat Rev Dis Primers 2019; 5:64. [PMID: 31537806 PMCID: PMC10617425 DOI: 10.1038/s41572-019-0113-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2019] [Indexed: 01/28/2023]
Abstract
Fanconi anaemia (FA), ataxia telangiectasia (A-T), Nijmegen breakage syndrome (NBS) and Bloom syndrome (BS) are clinically distinct, chromosome instability (or breakage) disorders. Each disorder has its own pattern of chromosomal damage, with cells from these patients being hypersensitive to particular genotoxic drugs, indicating that the underlying defect in each case is likely to be different. In addition, each syndrome shows a predisposition to cancer. Study of the molecular and genetic basis of these disorders has revealed mechanisms of recognition and repair of DNA double-strand breaks, DNA interstrand crosslinks and DNA damage during DNA replication. Specialist clinics for each disorder have provided the concentration of expertise needed to tackle their characteristic clinical problems and improve outcomes. Although some treatments of the consequences of a disorder may be possible, for example, haematopoietic stem cell transplantation in FA and NBS, future early intervention to prevent complications of disease will depend on a greater understanding of the roles of the affected DNA repair pathways in development. An important realization has been the predisposition to cancer in carriers of some of these gene mutations.
Collapse
Affiliation(s)
- A Malcolm R Taylor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | | | - Nathan A Ellis
- The University of Arizona Cancer Center, Tucson, AZ, USA
| | - Ian D Hickson
- Center for Chromosome Stability, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Meyer
- Stem Cell and Leukaemia Proteomics Laboratory, and Paediatric and Adolescent Oncology, Institute of Cancer Sciences, University of Manchester, Manchester, UK
- Department of Paediatric and Adolescent Haematology and Oncology, Royal Manchester Children's Hospital and The Christie NHS Trust, Manchester, UK
| | - Thomas O Crawford
- Department of Neurology and Pediatrics, Johns Hopkins University, Baltimore, MD, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY, USA
| | - Barbara Pietrucha
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Corry Weemaes
- Department of Pediatrics (Pediatric Immunology), Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Grant S Stewart
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
22
|
CRISPR/Cas9 mediated generation of an ovine model for infantile neuronal ceroid lipofuscinosis (CLN1 disease). Sci Rep 2019; 9:9891. [PMID: 31289301 PMCID: PMC6616324 DOI: 10.1038/s41598-019-45859-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/12/2019] [Indexed: 01/09/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating monogenetic lysosomal disorders that affect children and young adults with no cure or effective treatment currently available. One of the more severe infantile forms of the disease (INCL or CLN1 disease) is due to mutations in the palmitoyl-protein thioesterase 1 (PPT1) gene and severely reduces the child's lifespan to approximately 9 years of age. In order to better translate the human condition than is possible in mice, we sought to produce a large animal model employing CRISPR/Cas9 gene editing technology. Three PPT1 homozygote sheep were generated by insertion of a disease-causing PPT1 (R151X) human mutation into the orthologous sheep locus. This resulted in a morphological, anatomical and biochemical disease phenotype that closely resembles the human condition. The homozygous sheep were found to have significantly reduced PPT1 enzyme activity and accumulate autofluorescent storage material, as is observed in CLN1 patients. Clinical signs included pronounced behavioral deficits as well as motor deficits and complete loss of vision, with a reduced lifespan of 17 ± 1 months at a humanely defined terminal endpoint. Magnetic resonance imaging (MRI) confirmed a significant decrease in motor cortical volume as well as increased ventricular volume corresponding with observed brain atrophy and a profound reduction in brain mass of 30% at necropsy, similar to alterations observed in human patients. In summary, we have generated the first CRISPR/Cas9 gene edited NCL model. This novel sheep model of CLN1 disease develops biochemical, gross morphological and in vivo brain alterations confirming the efficacy of the targeted modification and potential relevance to the human condition.
Collapse
|
23
|
Johnson TB, Cain JT, White KA, Ramirez-Montealegre D, Pearce DA, Weimer JM. Therapeutic landscape for Batten disease: current treatments and future prospects. Nat Rev Neurol 2019; 15:161-178. [PMID: 30783219 PMCID: PMC6681450 DOI: 10.1038/s41582-019-0138-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Batten disease (also known as neuronal ceroid lipofuscinoses) constitutes a family of devastating lysosomal storage disorders that collectively represent the most common inherited paediatric neurodegenerative disorders worldwide. Batten disease can result from mutations in 1 of 13 genes. These mutations lead to a group of diseases with loosely overlapping symptoms and pathology. Phenotypically, patients with Batten disease have visual impairment and blindness, cognitive and motor decline, seizures and premature death. Pathologically, Batten disease is characterized by lysosomal accumulation of autofluorescent storage material, glial reactivity and neuronal loss. Substantial progress has been made towards the development of effective therapies and treatments for the multiple forms of Batten disease. In 2017, cerliponase alfa (Brineura), a tripeptidyl peptidase enzyme replacement therapy, became the first globally approved treatment for CLN2 Batten disease. Here, we provide an overview of the promising therapeutic avenues for Batten disease, highlighting current FDA-approved clinical trials and prospective future treatments.
Collapse
Affiliation(s)
- Tyler B Johnson
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | - Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA
| | | | - David A Pearce
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD, USA.
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
24
|
White KA, Swier VJ, Cain JT, Kohlmeyer JL, Meyerholz DK, Tanas MR, Uthoff J, Hammond E, Li H, Rohret FA, Goeken A, Chan CH, Leidinger MR, Umesalma S, Wallace MR, Dodd RD, Panzer K, Tang AH, Darbro BW, Moutal A, Cai S, Li W, Bellampalli SS, Khanna R, Rogers CS, Sieren JC, Quelle DE, Weimer JM. A porcine model of neurofibromatosis type 1 that mimics the human disease. JCI Insight 2018; 3:120402. [PMID: 29925695 DOI: 10.1172/jci.insight.120402] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
Loss of the NF1 tumor suppressor gene causes the autosomal dominant condition, neurofibromatosis type 1 (NF1). Children and adults with NF1 suffer from pathologies including benign and malignant tumors to cognitive deficits, seizures, growth abnormalities, and peripheral neuropathies. NF1 encodes neurofibromin, a Ras-GTPase activating protein, and NF1 mutations result in hyperactivated Ras signaling in patients. Existing NF1 mutant mice mimic individual aspects of NF1, but none comprehensively models the disease. We describe a potentially novel Yucatan miniswine model bearing a heterozygotic mutation in NF1 (exon 42 deletion) orthologous to a mutation found in NF1 patients. NF1+/ex42del miniswine phenocopy the wide range of manifestations seen in NF1 patients, including café au lait spots, neurofibromas, axillary freckling, and neurological defects in learning and memory. Molecular analyses verified reduced neurofibromin expression in swine NF1+/ex42del fibroblasts, as well as hyperactivation of Ras, as measured by increased expression of its downstream effectors, phosphorylated ERK1/2, SIAH, and the checkpoint regulators p53 and p21. Consistent with altered pain signaling in NF1, dysregulation of calcium and sodium channels was observed in dorsal root ganglia expressing mutant NF1. Thus, these NF1+/ex42del miniswine recapitulate the disease and provide a unique, much-needed tool to advance the study and treatment of NF1.
Collapse
Affiliation(s)
- Katherine A White
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Vicki J Swier
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Jacob T Cain
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | | | | | | | - Johanna Uthoff
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Biomedical Engineering at the University of Iowa, Iowa City, Iowa, USA
| | - Emily Hammond
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Biomedical Engineering at the University of Iowa, Iowa City, Iowa, USA
| | - Hua Li
- Department of Molecular Genetics and Microbiology and.,University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | | | | | - Chun-Hung Chan
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | | | | | - Margaret R Wallace
- Department of Molecular Genetics and Microbiology and.,University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, USA
| | - Rebecca D Dodd
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Karin Panzer
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Amy H Tang
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Benjamin W Darbro
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA.,Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Aubin Moutal
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Song Cai
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | - Wennan Li
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, Arizona, USA
| | | | - Jessica C Sieren
- Department of Radiology, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Department of Biomedical Engineering at the University of Iowa, Iowa City, Iowa, USA.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Dawn E Quelle
- Molecular Medicine Program.,Department of Pathology, and.,Department of Pharmacology and.,Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota, USA
| |
Collapse
|
25
|
Beraldi R, Meyerholz DK, Savinov A, Kovács AD, Weimer JM, Dykstra JA, Geraets RD, Pearce DA. Genetic ataxia telangiectasia porcine model phenocopies the multisystemic features of the human disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2862-2870. [PMID: 28746835 PMCID: PMC5687068 DOI: 10.1016/j.bbadis.2017.07.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/20/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Ataxia telangiectasia (AT) is a progressive multisystem autosomal recessive disorder caused by mutations in the AT-mutated (ATM) gene. Early onset AT in children is characterized by cerebellar degeneration, leading to motor impairment. Lung disease and cancer are the two most common causes of death in AT patients. Accelerated thymic involution may contribute to the cancer, and recurrent and/or chronic respiratory infections may be a contributing factor to lung disease in AT. AT patients have fertility issues, are highly sensitive to ionizing radiation and they present oculocutaneous telangiectasia. Current treatments only slightly ameliorate disease symptoms; therapy that alters or reverses the course of the disease has not yet been discovered. Previously, we have shown that ATM-/- pigs, a novel model of AT, present with a loss of Purkinje cells, altered cerebellar cytoarchitecture and motor coordination deficits. ATM-/- porcine model not only recapitulates the neurological phenotype, but also other multifaceted clinical features of the human disease. Our current study shows that ATM-/- female pigs are infertile, with anatomical and functional signs of an immature reproductive system. Both male and female ATM-/- pigs show abnormal thymus structure with decreased cell cycle and apoptosis markers in the gland. Moreover, ATM-/- pigs have an altered immune system with decreased CD8+ and increased natural killer and CD4+CD8+ double-positive cells. Nevertheless, ATM-/- pigs manifest a deficient IgG response after a viral infection. Based on the neurological and peripheral phenotypes, the ATM-/- pig is a novel genetic model that may be used for therapeutic assessments and to identify pathomechanisms of this disease.
Collapse
Affiliation(s)
- Rosanna Beraldi
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Alexei Savinov
- Diabetes Group Sanford Research, Sioux Falls, SD 57105, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA
| | - Attila D Kovács
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jill M Weimer
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA
| | - Jordan A Dykstra
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA
| | - Ryan D Geraets
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA
| | - David A Pearce
- Pediatric and Rare Diseases Group Sanford Research, Sioux Falls, SD 57104, USA; Sanford School of Medicine at the University of South Dakota, Sioux Falls, SD 57105, USA.
| |
Collapse
|
26
|
Nayler SP, Powell JE, Vanichkina DP, Korn O, Wells CA, Kanjhan R, Sun J, Taft RJ, Lavin MF, Wolvetang EJ. Human iPSC-Derived Cerebellar Neurons from a Patient with Ataxia-Telangiectasia Reveal Disrupted Gene Regulatory Networks. Front Cell Neurosci 2017; 11:321. [PMID: 29081736 PMCID: PMC5645492 DOI: 10.3389/fncel.2017.00321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/26/2017] [Indexed: 01/09/2023] Open
Abstract
Ataxia-telangiectasia (A-T) is a rare genetic disorder caused by loss of function of the ataxia-telangiectasia-mutated kinase and is characterized by a predisposition to cancer, pulmonary disease, immune deficiency and progressive degeneration of the cerebellum. As animal models do not faithfully recapitulate the neurological aspects, it remains unclear whether cerebellar degeneration is a neurodevelopmental or neurodegenerative phenotype. To address the necessity for a human model, we first assessed a previously published protocol for the ability to generate cerebellar neuronal cells, finding it gave rise to a population of precursors highly enriched for markers of the early hindbrain such as EN1 and GBX2, and later more mature cerebellar markers including PTF1α, MATH1, HOXB4, ZIC3, PAX6, and TUJ1. RNA sequencing was used to classify differentiated cerebellar neurons generated from integration-free A-T and control induced pluripotent stem cells. Comparison of RNA sequencing data with datasets from the Allen Brain Atlas reveals in vitro-derived cerebellar neurons are transcriptionally similar to discrete regions of the human cerebellum, and most closely resemble the cerebellum at 22 weeks post-conception. We show that patient-derived cerebellar neurons exhibit disrupted gene regulatory networks associated with synaptic vesicle dynamics and oxidative stress, offering the first molecular insights into early cerebellar pathogenesis of ataxia-telangiectasia.
Collapse
Affiliation(s)
- Sam P Nayler
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia
| | - Joseph E Powell
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD, Australia
| | - Darya P Vanichkina
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - Othmar Korn
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia
| | - Christine A Wells
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, VIC, Australia
| | - Refik Kanjhan
- School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Jian Sun
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia
| | - Ryan J Taft
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia.,Department of Integrated Systems Biology and Department of Pediatrics, School of Medicine and Health Services, George Washington University, Washington, DC, United States.,Illumina, Inc.,, San Diego, CA, United States
| | - Martin F Lavin
- UQ Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
27
|
Quek H, Luff J, Cheung K, Kozlov S, Gatei M, Lee CS, Bellingham MC, Noakes PG, Lim YC, Barnett NL, Dingwall S, Wolvetang E, Mashimo T, Roberts TL, Lavin MF. A rat model of ataxia-telangiectasia: evidence for a neurodegenerative phenotype. Hum Mol Genet 2017; 26:109-123. [PMID: 28007901 DOI: 10.1093/hmg/ddw371] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/25/2016] [Indexed: 11/14/2022] Open
Abstract
Ataxia-telangiectasia (A-T), an autosomal recessive disease caused by mutations in the ATM gene is characterised by cerebellar atrophy and progressive neurodegeneration which has been poorly recapitulated in Atm mutant mice. Consequently, pathways leading to neurodegeneration in A-T are poorly understood. We describe here the generation of an Atm knockout rat model that does not display cerebellar atrophy but instead paralysis and spinal cord atrophy, reminiscent of that seen in older patients and milder forms of the disorder. Loss of Atm in neurons and glia leads to accumulation of cytosolic DNA, increased cytokine production and constitutive activation of microglia consistent with a neuroinflammatory phenotype. Rats lacking ATM had significant loss of motor neurons and microgliosis in the spinal cord, consistent with onset of paralysis. Since short term treatment with steroids has been shown to improve the neurological signs in A-T patients we determined if that was also the case for Atm-deficient rats. Betamethasone treatment extended the lifespan of Atm knockout rats, prevented microglial activation and significantly decreased neuroinflammatory changes and motor neuron loss. These results point to unrepaired damage to DNA leading to significant levels of cytosolic DNA in Atm-deficient neurons and microglia and as a consequence activation of the cGAS-STING pathway and cytokine production. This in turn would increase the inflammatory microenvironment leading to dysfunction and death of neurons. Thus the rat model represents a suitable one for studying neurodegeneration in A-T and adds support for the use of anti-inflammatory drugs for the treatment of neurodegeneration in A-T patients.
Collapse
Affiliation(s)
- Hazel Quek
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - John Luff
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - KaGeen Cheung
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Sergei Kozlov
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - Magtouf Gatei
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| | - C Soon Lee
- The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, The University of Queensland, St Lucia, Qld, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Herston, Qld, Australia
| | - Nigel L Barnett
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,Queensland Eye Institute, South Brisbane, Qld, Australia.,School of Biomedical Sciences, Queensland University of Technology, Brisbane, Qld, Australia
| | - Steven Dingwall
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Qld, Australia
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Qld, Australia
| | - Tomoji Mashimo
- Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tara L Roberts
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia.,QIMR Berghofer Medical Research Institute, Herston, Qld, Australia.,The Ingham Institute for Applied Medical Research and School of Medicine, Western Sydney University, Liverpool, NSW, Australia
| | - Martin F Lavin
- The University of Queensland Centre for Clinical Research, Herston, Qld, Australia
| |
Collapse
|
28
|
Meyerholz DK, Ofori-Amanfo GK, Leidinger MR, Goeken JA, Khanna R, Sieren JC, Darbro BW, Quelle DE, Weimer JM. Immunohistochemical Markers for Prospective Studies in Neurofibromatosis-1 Porcine Models. J Histochem Cytochem 2017; 65:607-618. [PMID: 28846462 DOI: 10.1369/0022155417729357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common, cancer-predisposing disease caused by mutations in the NF1 tumor gene. Patients with NF1 have an increased risk for benign and malignant tumors of the nervous system (e.g., neurofibromas, malignant peripheral nerve sheath tumors, gliomas) and other tissues (e.g., leukemias, rhabdomyosarcoma, etc.) as well as increased susceptibility to learning disabilities, chronic pain/migraines, hypertension, pigmentary changes, and developmental lesions (e.g., tibial pseudoarthrosis). Pigs are an attractive and upcoming animal model for future NF1 studies, but a potential limitation to porcine model research has been the lack of validated reagents for direct translational study to humans. To address that issue, we used formalin-fixed tissues (human and pigs) to evaluate select immunohistochemical markers (activated caspase-3, allograft inflammatory factor-1, beta-tubulin III, calbindin D, CD13, CD20, desmin, epithelial membrane antigen, glial fibrillary acidic protein, glucose transporter-1, laminin, myelin basic protein, myoglobin, proliferating cell nuclear antigen, S100, vimentin, and von Willebrand factor). The markers were validated by comparing known expression and localization in human and pig tissues. Validation of these markers on fixed tissues will facilitate prospective immunohistochemical studies of NF1 pigs, as well as other pig models, in a more efficient, reproducible, and translationally relevant manner.
Collapse
Affiliation(s)
| | | | | | | | - Rajesh Khanna
- University of Iowa, Iowa City, Iowa, Departments of Pharmacology and Anesthesiology, College of Medicine, University of Arizona, Tucson, Arizona.,Departments of Pharmacology and Anesthesiology, College of Medicine, University of Arizona, Tucson, Arizona
| | | | | | - Dawn E Quelle
- Department of Pathology.,Department of Pediatrics.,Department of Pharmacology
| | - Jill M Weimer
- Pediatrics and Rare Disease Group, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
29
|
Eaton SL, Wishart TM. Bridging the gap: large animal models in neurodegenerative research. Mamm Genome 2017; 28:324-337. [PMID: 28378063 PMCID: PMC5569151 DOI: 10.1007/s00335-017-9687-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/25/2017] [Indexed: 01/08/2023]
Abstract
The world health organisation has declared neurological disorders as one of the greatest public health risks in the world today. Yet, despite this growing concern, the mechanisms underpinning many of these conditions are still poorly understood. This may in part be due to the seemingly diverse nature of the initiating insults ranging from genetic (such as the Ataxia's and Lysosomal storage disorders) through to protein misfolding and aggregation (i.e. Prions), and those of a predominantly unknown aetiology (i.e. Alzheimer's and Parkinson's disease). However, efforts to elucidate mechanistic regulation are also likely to be hampered because of the complexity of the human nervous system, the apparent selective regional vulnerability and differential degenerative progression. The key to elucidating these aetiologies is determining the regional molecular cascades, which are occurring from the early through to terminal stages of disease progression. Whilst much molecular data have been captured at the end stage of disease from post-mortem analysis in humans, the very early stages of disease are often conspicuously asymptomatic, and even if they were not, repeated sampling from multiple brain regions of "affected" patients and "controls" is neither ethical nor possible. Model systems therefore become fundamental for elucidating the mechanisms governing these complex neurodegenerative conditions. However, finding a model that precisely mimics the human condition can be challenging and expensive. Whilst cellular and invertebrate models are frequently used in neurodegenerative research and have undoubtedly yielded much useful data, the comparatively simplistic nature of these systems makes insights gained from such a stand alone model limited when it comes to translation. Given the recent advances in gene editing technology, the options for novel model generation in higher order species have opened up new and exciting possibilities for the field. In this review, we therefore explain some of the reasons why larger animal models often appear to give a more robust recapitulation of human neurological disorders and why they may be a critical stepping stone for effective therapeutic translation.
Collapse
Affiliation(s)
- S L Eaton
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - T M Wishart
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Euan MacDonald Centre for MND Research, Chancellor's Building, 49 Little France, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
30
|
Meyerholz DK, Reznikov LR. Simple and reproducible approaches for the collection of select porcine ganglia. J Neurosci Methods 2017; 289:93-98. [PMID: 28602889 DOI: 10.1016/j.jneumeth.2017.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/05/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND The anatomy and physiology of the pig nervous system is more similar to humans compared to traditional rodent models. This makes the pig an attractive model to answer questions relating to human health and disease. Yet the technical and molecular tools available to pig researchers are limited compared to rodent researchers. NEW METHOD We developed simple and rapid methods to isolate the trigeminal, nodose (distal vagal), and dorsal root ganglia from neonatal pigs. We selected these ganglia due to their broad applicability to basic science researchers and clinicians. RESULTS Use of these methods resulted in reproducible isolation of all three types of ganglia as validated by histological examination. COMPARISON WITH EXISTING METHOD(S) There are currently no methods that describe a step-by-step protocol to isolate these porcine ganglia. CONCLUSIONS In conclusion, these methods for ganglia collection will facilitate and accelerate future neuroscience investigations in pig models of human disease.
Collapse
Affiliation(s)
- David K Meyerholz
- Department of Pathology, Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA.
| | - Leah R Reznikov
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
31
|
Robust reprogramming of Ataxia-Telangiectasia patient and carrier erythroid cells to induced pluripotent stem cells. Stem Cell Res 2016; 17:296-305. [DOI: 10.1016/j.scr.2016.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/29/2016] [Accepted: 08/06/2016] [Indexed: 12/18/2022] Open
|
32
|
Yao J, Huang J, Zhao J. Genome editing revolutionize the creation of genetically modified pigs for modeling human diseases. Hum Genet 2016; 135:1093-105. [DOI: 10.1007/s00439-016-1710-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/06/2016] [Indexed: 01/03/2023]
|
33
|
Abstract
Animal models are an important resource for studying human diseases. Genetically engineered mice are the most commonly used species and have made significant contributions to our understanding of basic biology, disease mechanisms, and drug development. However, they often fail to recreate important aspects of human diseases and thus can have limited utility as translational research tools. Developing disease models in species more similar to humans may provide a better setting in which to study disease pathogenesis and test new treatments. This unit provides an overview of the history of genetically engineered large animals and the techniques that have made their development possible. Factors to consider when planning a large animal model, including choice of species, type of modification and methodology, characterization, production methods, and regulatory compliance, are also covered. © 2016 by John Wiley & Sons, Inc.
Collapse
|
34
|
Genetically engineered livestock for biomedical models. Transgenic Res 2016; 25:345-59. [PMID: 26820410 DOI: 10.1007/s11248-016-9928-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022]
Abstract
To commemorate Transgenic Animal Research Conference X, this review summarizes the recent progress in developing genetically engineered livestock species as biomedical models. The first of these conferences was held in 1997, which turned out to be a watershed year for the field, with two significant events occurring. One was the publication of the first transgenic livestock animal disease model, a pig with retinitis pigmentosa. Before that, the use of livestock species in biomedical research had been limited to wild-type animals or disease models that had been induced or were naturally occurring. The second event was the report of Dolly, a cloned sheep produced by somatic cell nuclear transfer. Cloning subsequently became an essential part of the process for most of the models developed in the last 18 years and is stilled used prominently today. This review is intended to highlight the biomedical modeling achievements that followed those key events, many of which were first reported at one of the previous nine Transgenic Animal Research Conferences. Also discussed are the practical challenges of utilizing livestock disease models now that the technical hurdles of model development have been largely overcome.
Collapse
|