1
|
Konopka A, Jamali MS, Fowler M, Mehta P, Parakh S, Takalloo Z, Farzana F, Mumtaz N, Hunter J, Shadfar S, Rogers ML, Atkin JD. Pathological forms of TDP-43 in amyotrophic lateral sclerosis (ALS) promote aberrant telomere elongation. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167906. [PMID: 40379219 DOI: 10.1016/j.bbadis.2025.167906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting motor neurons. TAR DNA-binding protein 43 (TDP-43) mis-localisation from the nucleus to the cytoplasm is the major pathological characteristic of ALS. Telomeres are repetitive DNA sequences found in complex with proteins at chromosomal ends. The shelterin protein complex protects telomeres from DNA damage by producing characteristic t-loop structures, and telomere repeat binding factor 2 (TRF2) has an essential role in this process. Telomere dysregulation is reported in ALS, but conflicting findings have been obtained. Here we examined if telomere dysregulation is present in cortical neurons in a mouse model with pathological mis-localisation of TDP-43 to the cytoplasm - TDP-43 rNLS - compared to controls, and in cortical primary neurons expressing TDP-43 ALS associated mutations (A315T, A90V). We demonstrate that telomeres are significantly longer and of more variable in length in the TDP-43 rNLS model compared to controls. This was proceeded by downregulation of TRF2 in early disease stages with subsequent upregulation of TRF2 at advanced disease in TDP-43 rNLS mice. Longer telomeres were also present in primary cortical neurons expressing mutant TDP-43. A trend towards TRF2 upregulation was also present in human ALS spinal cord lysates. We detected dysregulation of catalytic subunit of telomerase, TERT, and a trend towards upregulation of telomere interacting protein, Rif 1 in these mice and human ALS spinal cord lysates. The longer telomeres were independent of the alternative lengthening of telomeres (ALT) mechanism of maintaining telomere length. Similarly, no DNA damage at telomere sites was detected. Our findings imply that telomere protection is compromised in ALS, leading to longer telomeres in neurons in ALS associated with TDP-43 pathology.
Collapse
Affiliation(s)
- Anna Konopka
- College of Medicine and Public Health, Flinders University, Australia.
| | | | - Megan Fowler
- College of Medicine and Public Health, Flinders University, Australia
| | - Prachi Mehta
- MND Research Centre, Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Sonam Parakh
- MND Research Centre, Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Zeinab Takalloo
- MND Research Centre, Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Fabiha Farzana
- MND Research Centre, Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Naima Mumtaz
- MND Research Centre, Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Julie Hunter
- MND Research Centre, Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Sina Shadfar
- MND Research Centre, Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | | | - Julie D Atkin
- MND Research Centre, Macquarie Medical School, Faculty of Medicine and Health Sciences, Macquarie University, Australia
| |
Collapse
|
2
|
Xie L, Zhu Y, Hurtle BT, Wright M, Robinson JL, Mauna JC, Brown EE, Ngo M, Bergmann CA, Xu J, Merjane J, Gleixner AM, Grigorean G, Liu F, Rossoll W, Lee EB, Kiskinis E, Chikina M, Donnelly CJ. Context-dependent Interactors Regulate TDP-43 Dysfunction in ALS/FTLD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.646890. [PMID: 40291645 PMCID: PMC12026901 DOI: 10.1101/2025.04.07.646890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
TDP-43 mislocalization, aggregation, and loss of splicing function are neuropathological hallmarks in over 97% of Amyotrophic Lateral Sclerosis (ALS), 45% of Frontotemporal Lobar Degeneration (FTLD), and 60% of Alzheimer's Disease, which has been reclassified as LATE-NC. However, the mechanisms underlying TDP-43 dysfunction remain elusive. Here, we utilize APEX2-driven proximity labeling and mass spectrometry to characterize the context-dependent TDP-43 interactome in conditions of cytoplasmic mislocalization, impaired RNA-binding contributing to aggregation, and oxidative stress. We describe context-dependent interactors, including disrupted interactions with splicing-related proteins and altered biomolecular condensate (BMC) associations. By integrating ALS and FTLD snRNA-seq data, we uncover disease-relevant molecular alterations and validate our dataset through a functional screen that identifies key TDP- 43 regulators. We demonstrate that disrupting nuclear speckle integrity, particularly through the downregulation of the splicing factor SRRM2, promotes TDP-43 mislocalization and loss of function. Additionally, we identify NUFIP2 as an interactor associated with mislocalization that sequesters TDP-43 into cytoplasmic aggregates and co-localizes with TDP-43 pathology in patient tissue. We also highlight HNRNPC as a potent TDP-43 splicing regulator, where precise modulation of TDP-43 or HNRNPC can rescue cryptic exon splicing. These findings provide mechanistic insights and potential therapeutic targets for TDP-43 dysfunction.
Collapse
|
3
|
Deng FY, Zhu GL, Ou KL, Zhu LH, Jia QQ, Wang X, Guo MW, Li B, Li SH, Li XJ, Yin P. Ribosome-associated pathological TDP-43 alters the expression of multiple mRNAs in the monkey brain. Zool Res 2025; 46:263-276. [PMID: 39973136 PMCID: PMC12000131 DOI: 10.24272/j.issn.2095-8137.2024.286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/03/2024] [Indexed: 02/21/2025] Open
Abstract
Cytoplasmic accumulation of TDP-43 is a pathological hallmark of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. While current studies have primarily focused on gene regulation mediated by full-length nuclear TDP-43, the potential effects of cytoplasmic TDP-43 fragments remain less explored. Our previous findings demonstrated that primate-specific cleavage of TDP-43 contributes to its cytoplasmic localization, prompting further investigation into its pathological effects. In the cynomolgus monkey brain, we observed that mutant or truncated TDP-43 was transported onto the ribosome organelle. Ribosome-associated transcriptomic analysis revealed dysregulation of apoptosis- and lysosome-related genes, indicating that cytoplasmic TDP-43 induces neurotoxicity by binding to ribosomes and disrupting mRNA expression. These findings provide mechanistic insights into the gain-of-function effects of pathological TDP-43.
Collapse
Affiliation(s)
- Fu-Yu Deng
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, In vitro Diagnostic Reagents Testing Department, Shenzhen, Guangdong 518057, China
| | - Gao-Lu Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Kai-Li Ou
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Long-Hong Zhu
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Qing-Qing Jia
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiang Wang
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Ming-Wei Guo
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Bang Li
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Shi-Hua Li
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| | - Peng Yin
- Guangdong Key Laboratory of Non-human Primate Research, Ministry of Education Key Laboratory of CNS Regeneration, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
4
|
Verde EM, Antoniani F, Mediani L, Secco V, Crotti S, Ferrara MC, Vinet J, Sergeeva A, Yan X, Hoege C, Stuani C, Paron F, Kao TT, Shrivastava R, Polanowska J, Bailly A, Rosa A, Aronica E, Goswami A, Shneider N, Hyman AA, Buratti E, Xirodimas D, Franzmann TM, Alberti S, Carra S. SUMO2/3 conjugation of TDP-43 protects against aggregation. SCIENCE ADVANCES 2025; 11:eadq2475. [PMID: 39982984 PMCID: PMC11844728 DOI: 10.1126/sciadv.adq2475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
Cytosolic aggregation of the RNA binding protein TDP-43 (transactive response DNA-binding protein 43) is a hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. Here, we report that during oxidative stress, TDP-43 becomes SUMO2/3-ylated by the SUMO E3 ligase protein PIAS4 (protein inhibitor of activated STAT 4) and enriches in cytoplasmic stress granules (SGs). Upon pharmacological inhibition of TDP-43 SUMO2/3-ylation or PIAS4 depletion, TDP-43 enrichment in SGs is accompanied by irreversible aggregation. In cells that are unable to assemble SGs, SUMO2/3-ylation of TDP-43 is strongly impaired, supporting the notion that SGs are compartments that promote TDP-43 SUMO2/3-ylation during oxidative stress. Binding of TDP-43 to UG-rich RNA antagonizes PIAS4-mediated SUMO2/3-ylation, while RNA dissociation promotes TDP-43 SUMO2/3-ylation. We conclude that SUMO2/3 protein conjugation is a cellular mechanism to stabilize cytosolic RNA-free TDP-43 against aggregation.
Collapse
Affiliation(s)
- Enza Maria Verde
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Francesco Antoniani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Samuele Crotti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Maria Celidea Ferrara
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena 41125, Italy
| | - Aleksandra Sergeeva
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden 01307, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Xiao Yan
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Carsten Hoege
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Cristiana Stuani
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste 34149, Italy
| | - Francesca Paron
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste 34149, Italy
| | - Tzu-Ting Kao
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, New York, NY 10032, USA
| | - Rohit Shrivastava
- CRBM, Université de Montpellier, CNRS, Montpellier Cedex 05, 34293, France
| | - Jolanta Polanowska
- CRBM, Université de Montpellier, CNRS, Montpellier Cedex 05, 34293, France
| | - Aymeric Bailly
- CRBM, Université de Montpellier, CNRS, Montpellier Cedex 05, 34293, France
| | - Alessandro Rosa
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Anand Goswami
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, New York, NY 10032, USA
| | - Neil Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, New York, NY 10032, USA
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| | - Emanuele Buratti
- Molecular Pathology Lab, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste 34149, Italy
| | - Dimitris Xirodimas
- CRBM, Université de Montpellier, CNRS, Montpellier Cedex 05, 34293, France
| | - Titus M. Franzmann
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden 01307, Germany
| | - Simon Alberti
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden 01307, Germany
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena 41125, Italy
| |
Collapse
|
5
|
Zhao B, Cowan CM, Coutts JA, Christy DD, Saraph A, Hsueh SCC, Plotkin SS, Mackenzie IR, Kaplan JM, Cashman NR. Targeting RACK1 to alleviate TDP-43 and FUS proteinopathy-mediated suppression of protein translation and neurodegeneration. Acta Neuropathol Commun 2023; 11:200. [PMID: 38111057 PMCID: PMC10726565 DOI: 10.1186/s40478-023-01705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) and Fused in Sarcoma/Translocated in Sarcoma (FUS) are ribonucleoproteins associated with pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Under physiological conditions, TDP-43 and FUS are predominantly localized in the nucleus, where they participate in transcriptional regulation, RNA splicing and metabolism. In disease, however, they are typically mislocalized to the cytoplasm where they form aggregated inclusions. A number of shared cellular pathways have been identified that contribute to TDP-43 and FUS toxicity in neurodegeneration. In the present study, we report a novel pathogenic mechanism shared by these two proteins. We found that pathological FUS co-aggregates with a ribosomal protein, the Receptor for Activated C-Kinase 1 (RACK1), in the cytoplasm of spinal cord motor neurons of ALS, as previously reported for pathological TDP-43. In HEK293T cells transiently transfected with TDP-43 or FUS mutant lacking a functional nuclear localization signal (NLS; TDP-43ΔNLS and FUSΔNLS), cytoplasmic TDP-43 and FUS induced co-aggregation with endogenous RACK1. These co-aggregates sequestered the translational machinery through interaction with the polyribosome, accompanied by a significant reduction of global protein translation. RACK1 knockdown decreased cytoplasmic aggregation of TDP-43ΔNLS or FUSΔNLS and alleviated associated global translational suppression. Surprisingly, RACK1 knockdown also led to partial nuclear localization of TDP-43ΔNLS and FUSΔNLS in some transfected cells, despite the absence of NLS. In vivo, RACK1 knockdown alleviated retinal neuronal degeneration in transgenic Drosophila melanogaster expressing hTDP-43WT or hTDP-43Q331K and improved motor function of hTDP-43WT flies, with no observed adverse effects on neuronal health in control knockdown flies. In conclusion, our results revealed a novel shared mechanism of pathogenesis for misfolded aggregates of TDP-43 and FUS mediated by interference with protein translation in a RACK1-dependent manner. We provide proof-of-concept evidence for targeting RACK1 as a potential therapeutic approach for TDP-43 or FUS proteinopathy associated with ALS and FTLD.
Collapse
Affiliation(s)
- Beibei Zhao
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
- ProMIS Neurosciences, Cambridge, MA, 02142, USA
| | - Catherine M Cowan
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Juliane A Coutts
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Darren D Christy
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Ananya Saraph
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | - Shawn C C Hsueh
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Stephen S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Ian R Mackenzie
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada
| | | | - Neil R Cashman
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, BC, V6T 1Z3, Canada.
- ProMIS Neurosciences, Cambridge, MA, 02142, USA.
| |
Collapse
|
6
|
Arnold FJ, Nguyen AD, Bedlack RS, Bennett CL, La Spada AR. Intercellular transmission of pathogenic proteins in ALS: Exploring the pathogenic wave. Neurobiol Dis 2023:106218. [PMID: 37394036 DOI: 10.1016/j.nbd.2023.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/04/2023] Open
Abstract
In patients with amyotrophic lateral sclerosis (ALS), disease symptoms and pathology typically spread in a predictable spatiotemporal pattern beginning at a focal site of onset and progressing along defined neuroanatomical tracts. Like other neurodegenerative diseases, ALS is characterized by the presence of protein aggregates in postmortem patient tissue. Cytoplasmic, ubiquitin-positive aggregates of TDP-43 are observed in approximately 97% of sporadic and familial ALS patients, while SOD1 inclusions are likely specific to cases of SOD1-ALS. Additionally, the most common subtype of familial ALS, caused by a hexanucleotide repeat expansion in the first intron of the C9orf72 gene (C9-ALS), is further characterized by the presence of aggregated dipeptide repeat proteins (DPRs). As we will describe, cell-to-cell propagation of these pathological proteins tightly correlates with the contiguous spread of disease. While TDP-43 and SOD1 are capable of seeding protein misfolding and aggregation in a prion-like manner, C9orf72 DPRs appear to induce (and transmit) a 'disease state' more generally. Multiple mechanisms of intercellular transport have been described for all of these proteins, including anterograde and retrograde axonal transport, extracellular vesicle secretion, and macropinocytosis. In addition to neuron-to-neuron transmission, transmission of pathological proteins occurs between neurons and glia. Given that the spread of ALS disease pathology corresponds with the spread of symptoms in patients, the various mechanisms by which ALS-associated protein aggregates propagate through the central nervous system should be closely examined.
Collapse
Affiliation(s)
- F J Arnold
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - A D Nguyen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - R S Bedlack
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - C L Bennett
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA.
| | - A R La Spada
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Departments of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, University of California, Irvine, Irvine, CA, USA; Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA; UCI Center for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
7
|
Shenoy J, Lends A, Berbon M, Bilal M, El Mammeri N, Bertoni M, Saad A, Morvan E, Grélard A, Lecomte S, Theillet FX, Buell AK, Kauffmann B, Habenstein B, Loquet A. Structural polymorphism of the low-complexity C-terminal domain of TDP-43 amyloid aggregates revealed by solid-state NMR. Front Mol Biosci 2023; 10:1148302. [PMID: 37065450 PMCID: PMC10095165 DOI: 10.3389/fmolb.2023.1148302] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Aberrant aggregation of the transactive response DNA-binding protein (TDP-43) is associated with several lethal neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal dementia. Cytoplasmic neuronal inclusions of TDP-43 are enriched in various fragments of the low-complexity C-terminal domain and are associated with different neurotoxicity. Here we dissect the structural basis of TDP-43 polymorphism using magic-angle spinning solid-state NMR spectroscopy in combination with electron microscopy and Fourier-transform infrared spectroscopy. We demonstrate that various low-complexity C-terminal fragments, namely TDP-13 (TDP-43300–414), TDP-11 (TDP-43300–399), and TDP-10 (TDP-43314–414), adopt distinct polymorphic structures in their amyloid fibrillar state. Our work demonstrates that the removal of less than 10% of the low-complexity sequence at N- and C-termini generates amyloid fibrils with comparable macroscopic features but different local structural arrangement. It highlights that the assembly mechanism of TDP-43, in addition to the aggregation of the hydrophobic region, is also driven by complex interactions involving low-complexity aggregation-prone segments that are a potential source of structural polymorphism.
Collapse
Affiliation(s)
- Jayakrishna Shenoy
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Alons Lends
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mélanie Berbon
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Muhammed Bilal
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Nadia El Mammeri
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Mathilde Bertoni
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Ahmad Saad
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Estelle Morvan
- University Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Axelle Grélard
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - Sophie Lecomte
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
| | - François-Xavier Theillet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif-surYvette Cedex, France
| | - Alexander K. Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Brice Kauffmann
- University Bordeaux, CNRS, INSERM, IECB, UAR 3033, Pessac, France
| | - Birgit Habenstein
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
- *Correspondence: Birgit Habenstein, ; Antoine Loquet,
| | - Antoine Loquet
- University Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, Pessac, France
- *Correspondence: Birgit Habenstein, ; Antoine Loquet,
| |
Collapse
|
8
|
Riemenschneider H, Guo Q, Bader J, Frottin F, Farny D, Kleinberger G, Haass C, Mann M, Hartl FU, Baumeister W, Hipp MS, Meissner F, Fernández‐Busnadiego R, Edbauer D. Gel-like inclusions of C-terminal fragments of TDP-43 sequester stalled proteasomes in neurons. EMBO Rep 2022; 23:e53890. [PMID: 35438230 PMCID: PMC9171420 DOI: 10.15252/embr.202153890] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/25/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022] Open
Abstract
Aggregation of the multifunctional RNA-binding protein TDP-43 defines large subgroups of amyotrophic lateral sclerosis and frontotemporal dementia and correlates with neurodegeneration in both diseases. In disease, characteristic C-terminal fragments of ~25 kDa ("TDP-25") accumulate in cytoplasmic inclusions. Here, we analyze gain-of-function mechanisms of TDP-25 combining cryo-electron tomography, proteomics, and functional assays. In neurons, cytoplasmic TDP-25 inclusions are amorphous, and photobleaching experiments reveal gel-like biophysical properties that are less dynamic than nuclear TDP-43. Compared with full-length TDP-43, the TDP-25 interactome is depleted of low-complexity domain proteins. TDP-25 inclusions are enriched in 26S proteasomes adopting exclusively substrate-processing conformations, suggesting that inclusions sequester proteasomes, which are largely stalled and no longer undergo the cyclic conformational changes required for proteolytic activity. Reporter assays confirm that TDP-25 impairs proteostasis, and this inhibitory function is enhanced by ALS-causing TDP-43 mutations. These findings support a patho-physiological relevance of proteasome dysfunction in ALS/FTD.
Collapse
Affiliation(s)
| | - Qiang Guo
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- State Key Laboratory of Protein and Plant Gene ResearchSchool of Life Sciences and Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Jakob Bader
- Department of Proteomics and Signal TransductionMax Planck Institute for BiochemistryMartinsriedGermany
| | - Frédéric Frottin
- Department of Cellular BiochemistryMax Planck Institute for BiochemistryMartinsriedGermany
- Institute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayCEACNRSGif‐sur‐YvetteFrance
| | - Daniel Farny
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Gernot Kleinberger
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Chair of Metabolic BiochemistryFaculty of MedicineBiomedical Center (BMC)Ludwig‐Maximilians‐Universität MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Matthias Mann
- Department of Proteomics and Signal TransductionMax Planck Institute for BiochemistryMartinsriedGermany
| | - F. Ulrich Hartl
- Department of Cellular BiochemistryMax Planck Institute for BiochemistryMartinsriedGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Wolfgang Baumeister
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Mark S Hipp
- Department of Cellular BiochemistryMax Planck Institute for BiochemistryMartinsriedGermany
- Department of Biomedical Sciences of Cells and SystemsUniversity Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
- School of Medicine and Health SciencesCarl von Ossietzky University OldenburgOldenburgGermany
| | - Felix Meissner
- Department of Proteomics and Signal TransductionMax Planck Institute for BiochemistryMartinsriedGermany
- Department of Systems Immunology and ProteomicsMedical FacultyInstitute of Innate ImmunityUniversity of BonnGermany
| | - Rubén Fernández‐Busnadiego
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
- Institute of NeuropathologyUniversity Medical Center GöttingenGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC)University of GöttingenGöttingenGermany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE), MunichMunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
- Graduate School of Systemic Neurosciences (GSN)Ludwig‐Maximilians‐University MunichMunichGermany
| |
Collapse
|
9
|
Effect of TDP43-CTFs35 on Brain Endothelial Cell Functions in Cerebral Ischemic Injury. Mol Neurobiol 2022; 59:4593-4611. [PMID: 35581521 DOI: 10.1007/s12035-022-02869-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Pathological changes in the brain endothelium play an important role in the progression of ischemic stroke and the compromised BBB under ischemic stroke conditions cause neuronal damage. However, the pathophysiological mechanisms of the BBB under normal conditions and under ischemic stroke conditions have not been fully elucidated. The present study demonstrated that knockdown of TAR DNA-binding protein 43 (TDP-43) or overexpression of TDP43-CTFs35 inhibited tight junction protein expression, and mammalian sterile-20-like 1/2 (MST1/2) and YES-associated protein (YAP) phosphorylation in brain ECs and suppressed brain EC migration in vitro. The cytoplasmic TDP43-CTFs35 level was increased in brain ECs 24 h and 72 h after MCAO, but it disappeared 1 week after cerebral ischemia. The expression of tight junction proteins was also significantly deceased 24 h after MCAO and then gradually recovered at 72 h and 1 week after MCAO. The level of YAP phosphorylation was first significantly decreased 24 h after MCAO and then increased 72 h and 1 week after MCAO, accompanied by nuclear YAP translocation. The underlying mechanism is TDP43-CTFs35-mediated inhibition of Hippo signaling pathway activity through the dephosphorylation of MST1/2, which leads to the inhibition of YAP phosphorylation and the subsequent impairment of brain EC migration and tight junction protein expression. This study provides new insights into the mechanisms of brain vascular EC regulation, which may impact on BBB integrity after cerebral ischemic injury.
Collapse
|
10
|
Moretto E, Stuart S, Surana S, Vargas JNS, Schiavo G. The Role of Extracellular Matrix Components in the Spreading of Pathological Protein Aggregates. Front Cell Neurosci 2022; 16:844211. [PMID: 35573838 PMCID: PMC9100790 DOI: 10.3389/fncel.2022.844211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Several neurodegenerative diseases are characterized by the accumulation of aggregated misfolded proteins. These pathological agents have been suggested to propagate in the brain via mechanisms similar to that observed for the prion protein, where a misfolded variant is transferred from an affected brain region to a healthy one, thereby inducing the misfolding and/or aggregation of correctly folded copies. This process has been characterized for several proteins, such as α-synuclein, tau, amyloid beta (Aβ) and less extensively for huntingtin and TDP-43. α-synuclein, tau, TDP-43 and huntingtin are intracellular proteins, and their aggregates are located in the cytosol or nucleus of neurons. They have been shown to spread between cells and this event occurs, at least partially, via secretion of these protein aggregates in the extracellular space followed by re-uptake. Conversely, Aβ aggregates are found mainly extracellularly, and their spreading occurs in the extracellular space between brain regions. Due to the inherent nature of their spreading modalities, these proteins are exposed to components of the extracellular matrix (ECM), including glycans, proteases and core matrix proteins. These ECM components can interact with or process pathological misfolded proteins, potentially changing their properties and thus regulating their spreading capabilities. Here, we present an overview of the documented roles of ECM components in the spreading of pathological protein aggregates in neurodegenerative diseases with the objective of identifying the current gaps in knowledge and stimulating further research in the field. This could potentially lead to the identification of druggable targets to slow down the spreading and/or progression of these pathologies.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, National Research Council, CNR, Milan, Italy
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- *Correspondence: Edoardo Moretto,
| | - Skye Stuart
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sunaina Surana
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Jose Norberto S. Vargas
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
| | - Giampietro Schiavo
- UK Dementia Research Institute, University College London, London, United Kingdom
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, United Kingdom
- UCL Queen Square Motor Neuron Disease Centre, University College London, London, United Kingdom
- Giampietro Schiavo,
| |
Collapse
|
11
|
Zamani A, Walker AK, Rollo B, Ayers KL, Farah R, O'Brien TJ, Wright DK. Impaired glymphatic function in the early stages of disease in a TDP-43 mouse model of amyotrophic lateral sclerosis. Transl Neurodegener 2022; 11:17. [PMID: 35287738 PMCID: PMC8922788 DOI: 10.1186/s40035-022-00291-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Multiple lines of evidence suggest possible impairment of the glymphatic system in amyotrophic lateral sclerosis (ALS). To investigate this, we used in vivo magnetic resonance imaging (MRI) to assess glymphatic function early in the course of disease in a transgenic mouse with doxycycline (Dox)-controlled expression of cytoplasmic human TDP-43 (hTDP-43ΔNLS), mimicking the key pathology implicated in ALS. METHODS Adult TDP-43 transgenic and littermate monogenic control mice underwent longitudinal multimodal MRI one and three weeks after the cessation of Dox feed, together with weekly rotarod assessments of motor performance. Glymphatic function was assessed using dynamic contrast-enhanced MRI to track the clearance of an MR contrast agent injected into the cisterna magna. RESULTS Compared to their littermate controls, TDP-43 mice exhibited progressive neurodegeneration including that within the primary motor cortex, primary somatosensory cortex and corticospinal tract, significant weight loss including gastrocnemius atrophy, and shortened telomere length. Furthermore, in the presence of this ALS-like phenotype, these mice have significantly disrupted glymphatic function. CONCLUSIONS Although the relationship between glymphatic clearance and ALS disease progression remains to be elucidated, these changes occurred very early in the disease course. This provides initial evidence to suggest that the glymphatic system might be a potential therapeutic target in the treatment of ALS.
Collapse
Affiliation(s)
- Akram Zamani
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Adam K Walker
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ben Rollo
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Katie L Ayers
- The Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Raysha Farah
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.,Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - David K Wright
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
12
|
Eldeeb MA, Ragheb MA, Soliman MH, Fahlman RP. Regulation of Neurodegeneration-associated Protein Fragments by the N-degron Pathways. Neurotox Res 2022; 40:298-318. [PMID: 35043375 DOI: 10.1007/s12640-021-00396-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
Among the most salient features that underpin the development of aging-related neurodegenerative disorders are the accumulation of protein aggregates and the decrease in cellular degradation capacity. Mammalian cells have evolved sophisticated quality control mechanisms to repair or eliminate the otherwise abnormal or misfolded proteins. Chaperones identify unstable or abnormal conformations in proteins and often help them regain their correct conformation. However, if repair is not an option, abnormal proteins are selectively degraded to prevent undesired interactions with other proteins or oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of abnormal or aberrant protein fragments. Despite an increasing understanding regarding the molecular responses that counteract the formation and clearance of dysfunctional protein aggregates, the role of N-degrons in these processes is poorly understood. Previous work demonstrated that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of neurodegeneration-associated proteins, thereby regulating crucial signaling hubs that modulate the progression of neurodegenerative diseases. Herein, we discuss the functional interconnection between N-degron pathways and proteins associated with neurodegenerative disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. We also highlight some future prospects related to how the molecular insights gained from these processes will help unveil novel therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt. .,Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
13
|
Chhangani D, Martín-Peña A, Rincon-Limas DE. Molecular, functional, and pathological aspects of TDP-43 fragmentation. iScience 2021; 24:102459. [PMID: 34013172 PMCID: PMC8113996 DOI: 10.1016/j.isci.2021.102459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transactive response DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in transcriptional regulation and RNA processing. It is linked to sporadic and familial amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 is predominantly nuclear, but it translocates to the cytoplasm under pathological conditions. Cytoplasmic accumulation, phosphorylation, ubiquitination and truncation of TDP-43 are the main hallmarks of TDP-43 proteinopathies. Among these processes, the pathways leading to TDP-43 fragmentation remain poorly understood. We review here the molecular and biochemical properties of several TDP-43 fragments, the mechanisms and factors mediating their production, and their potential role in disease progression. We also address the presence of TDP-43 C-terminal fragments in several neurological disorders, including Alzheimer's disease, and highlight their respective implications. Finally, we discuss features of animal models expressing TDP-43 fragments as well as recent therapeutic strategies to approach TDP-43 truncation.
Collapse
Affiliation(s)
- Deepak Chhangani
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Alfonso Martín-Peña
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA.,Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32611, USA.,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Porta S, Xu Y, Lehr T, Zhang B, Meymand E, Olufemi M, Stieber A, Lee EB, Trojanowski JQ, Lee VMY. Distinct brain-derived TDP-43 strains from FTLD-TDP subtypes induce diverse morphological TDP-43 aggregates and spreading patterns in vitro and in vivo. Neuropathol Appl Neurobiol 2021; 47:1033-1049. [PMID: 33971027 DOI: 10.1111/nan.12732] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/30/2021] [Accepted: 05/02/2021] [Indexed: 12/12/2022]
Abstract
AIM The heterogeneity in the distribution and morphological features of TAR DNA-binding protein-43 (TDP-43) pathology in the brains of frontotemporal lobar degeneration (FTLD-TDP) patients and their different clinical manifestations suggest that distinct pathological TDP-43 strains could play a role in this heterogeneity between different FTLD-TDP subtypes (A-E). Our aim was to evaluate the existence of distinct TDP-43 strains in the brains of different FTLD-TDP subtypes and characterise their specific seeding properties in vitro and in vivo. METHODS AND RESULTS We used an inducible stable cell line expressing a mutant cytoplasmic TDP-43 (iGFP-NLSm) to evaluate the seeding properties of distinct pathological TDP-43 strains. Brain-derived TDP-43 protein extracts from FTLD-TDP types A (n = 6) and B (n = 3) cases induced the formation of round/spherical phosphorylated TDP-43 aggregates that morphologically differed from the linear and wavy wisps and bigger heterogeneous filamentous (skein-like) aggregates induced by type E (n = 3) cases. These morphological differences correlated with distinct biochemical banding patterns of sarkosyl-insoluble TDP-43 protein recovered from the transduced cells. Moreover, brain-derived TDP-43 extracts from type E cases showed higher susceptibility to PK digestion of full-length TDP-43 and the most abundant C-terminal fragments that characterise type E extracts. Finally, we showed that intracerebral injections of different TDP-43 strains induced a distinctive morphological and subcellular distribution of TDP-43 pathology and different spreading patterns in the brains of CamKIIa-hTDP-43NLSm Tg mice. CONCLUSIONS We show the existence of distinct TDP-43 strains in the brain of different FTLD-TDP subtypes with distinctive seeding and spreading properties in the brains of experimental animal models.
Collapse
Affiliation(s)
- Sílvia Porta
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan Xu
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Tagan Lehr
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Bin Zhang
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily Meymand
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Modupe Olufemi
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Anna Stieber
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
15
|
Wood A, Gurfinkel Y, Polain N, Lamont W, Lyn Rea S. Molecular Mechanisms Underlying TDP-43 Pathology in Cellular and Animal Models of ALS and FTLD. Int J Mol Sci 2021; 22:4705. [PMID: 33946763 PMCID: PMC8125728 DOI: 10.3390/ijms22094705] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are neurodegenerative disorders that exist on a disease spectrum due to pathological, clinical and genetic overlap. In up to 97% of ALS cases and ~50% of FTLD cases, the primary pathological protein observed in affected tissues is TDP-43, which is hyperphosphorylated, ubiquitinated and cleaved. The TDP-43 is observed in aggregates that are abnormally located in the cytoplasm. The pathogenicity of TDP-43 cytoplasmic aggregates may be linked with both a loss of nuclear function and a gain of toxic functions. The cellular processes involved in ALS and FTLD disease pathogenesis include changes to RNA splicing, abnormal stress granules, mitochondrial dysfunction, impairments to axonal transport and autophagy, abnormal neuromuscular junctions, endoplasmic reticulum stress and the subsequent induction of the unfolded protein response. Here, we review and discuss the evidence for alterations to these processes that have been reported in cellular and animal models of TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Alistair Wood
- School of Molecular Science, University of Western Australia, Nedlands 6009, Australia;
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Yuval Gurfinkel
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Nicole Polain
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
| | - Wesley Lamont
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands 6009, Australia;
| | - Sarah Lyn Rea
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Health Research Building, Discovery Way, Murdoch 6150, Australia; (Y.G.); (N.P.)
- Hub for Immersive Visualisation and eResearch, Curtin University, Bentley 6102, Australia
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands 6009, Australia
| |
Collapse
|
16
|
Venkataraman L, He P, Khan G, Harris BT, Sierks MR. Isolation and characterization of antibody fragments selective for human FTD brain derived TDP-43 variants. BMC Neurosci 2020; 21:36. [PMID: 32887544 PMCID: PMC7472585 DOI: 10.1186/s12868-020-00586-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/24/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) is the second leading cause of early onset dementia following Alzheimer's disease. It involves atrophy of the frontal and temporal regions of the brain affecting language, memory, and behavior. Transactive response DNA-binding protein 43 (TDP-43) pathology is found in most FTD and ALS cases. It plays a role in transcription, translation and serves as a shuttle between the nucleus and cytoplasm. Prior to its aggregation, TDP-43 exists as polyubiquitinated, hyperphosphorylated C-terminal fragments that correlate well with FTD disease progression. Because of the importance of TDP-43 in these diseases, reagents that can selectively recognize specific toxic TDP variants associated with onset and progression of FTD can be effective diagnostic and therapeutic tools. RESULTS We utilized a novel atomic force microscopy (AFM) based biopanning protocol to isolate single chain variable fragments (scFvs) from a phage display library that selectively bind TDP variants present in human FTD but not cognitively normal age matched brain tissue. We then used the scFvs (FTD-TDP1 through 5) to probe post-mortem brain tissue and sera samples for the presence of FTD related TDP variants. The scFvs readily selected the FTD tissue and sera samples over age matched controls. The scFvs were used in immunohistochemical analysis of FTD and control brain slices where the reagents showed strong staining with TDP in FTD brain tissue slice. FTD-TDP1, FTD-TDP2, FTD-TDP4 and FTD-TDP5 all protected neuronal cells against FTD TDP induced toxicity suggesting potential therapeutic value. CONCLUSIONS These results show existence of different disease specific TDP variants in FTD individuals. We have identified a panel of scFvs capable of recognizing these disease specific TDP variants in postmortem FTD tissue and sera samples over age matched controls and can thus serve as a biomarker tool.
Collapse
Affiliation(s)
| | - Ping He
- Chemical Engineering, School for Engineering, Matter, Transport and Energy, Arizona State University, ECG301-501 Tyler Mall, Tempe, AZ, 85281-6106, USA
| | - Galam Khan
- Departments of Neurology, Georgetown University Medical Center, Washington, DC, USA
| | - Brent T Harris
- Departments of Neurology, Georgetown University Medical Center, Washington, DC, USA.,Departments of Pathology, Georgetown University Medical Center, Washington, DC, USA
| | - Michael R Sierks
- Chemical Engineering, School for Engineering, Matter, Transport and Energy, Arizona State University, ECG301-501 Tyler Mall, Tempe, AZ, 85281-6106, USA.
| |
Collapse
|
17
|
McAlary L, Yerbury JJ, Cashman NR. The prion-like nature of amyotrophic lateral sclerosis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:261-296. [PMID: 32958236 DOI: 10.1016/bs.pmbts.2020.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The misfolding, aggregation, and deposition of specific proteins is the key hallmark of most progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis (ALS). ALS is characterized by the rapid and progressive degenerations of motor neurons in the spinal cord and motor cortex, resulting in paralysis of those who suffer from it. Pathologically, there are three major aggregating proteins associated with ALS, including TAR DNA-binding protein of 43kDa (TDP-43), superoxide dismutase-1 (SOD1), and fused in sarcoma (FUS). While there are ALS-associated mutations found in each of these proteins, the most prevalent aggregation pathology is that of wild-type TDP-43 (97% of cases), with the remaining split between mutant forms of SOD1 (~2%) and FUS (~1%). Considering the progressive nature of ALS and its association with the aggregation of specific proteins, a growing notion is that the spread of pathology and symptoms can be explained by a prion-like mechanism. Prion diseases are a group of highly infectious neurodegenerative disorders caused by the misfolding, aggregation, and spread of a transmissible conformer of prion protein (PrP). Pathogenic PrP is capable of converting healthy PrP into a toxic form through template-directed misfolding. Application of this finding to other neurodegenerative disorders, and in particular ALS, has revolutionized our understanding of cause and progression of these disorders. In this chapter, we first provide a background on ALS pathology and genetic origin. We then detail and discuss the evidence supporting a prion-like propagation of protein misfolding and aggregation in ALS with a particular focus on SOD1 and TDP-43 as these are the most well-established models in the field.
Collapse
Affiliation(s)
- L McAlary
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - J J Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - N R Cashman
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
18
|
Suk TR, Rousseaux MWC. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener 2020; 15:45. [PMID: 32799899 PMCID: PMC7429473 DOI: 10.1186/s13024-020-00397-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Since its discovery as a primary component in cytoplasmic aggregates in post-mortem tissue of patients with Amyotrophic Lateral Sclerosis (ALS), TAR DNA Binding Protein 43 kDa (TDP-43) has remained a central focus to understand the disease. TDP-43 links both familial and sporadic forms of ALS as mutations are causative for disease and cytoplasmic aggregates are a hallmark of nearly all cases, regardless of TDP-43 mutational status. Research has focused on the formation and consequences of cytosolic protein aggregates as drivers of ALS pathology through both gain- and loss-of-function mechanisms. Not only does aggregation sequester the normal function of TDP-43, but these aggregates also actively block normal cellular processes inevitably leading to cellular demise in a short time span. Although there may be some benefit to therapeutically targeting TDP-43 aggregation, this step may be too late in disease development to have substantial therapeutic benefit. However, TDP-43 pathology appears to be tightly linked with its mislocalization from the nucleus to the cytoplasm, making it difficult to decouple the consequences of nuclear-to-cytoplasmic mislocalization from protein aggregation. Studies focusing on the effects of TDP-43 mislocalization have demonstrated both gain- and loss-of-function consequences including altered splicing regulation, over responsiveness to cellular stressors, increases in DNA damage, and transcriptome-wide changes. Additionally, mutations in TARDBP confer a baseline increase in cytoplasmic TDP-43 thus suggesting that small changes in the subcellular localization of TDP-43 could in fact drive early pathology. In this review, we bring forth the theme of protein mislocalization as a key mechanism underlying ALS, by highlighting the importance of maintaining subcellular proteostasis along with the gain- and loss-of-functional consequences when TDP-43 localization is dysregulated. Additional research, focusing on early events in TDP-43 pathogenesis (i.e. to the protein mislocalization stage) will provide insight into disease mechanisms, therapeutic targets, and novel biomarkers for ALS.
Collapse
Affiliation(s)
- Terry R. Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Maxime W. C. Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, Canada
- Ottawa Institute of Systems Biology, Ottawa, Canada
| |
Collapse
|
19
|
Tomé SO, Vandenberghe R, Ospitalieri S, Van Schoor E, Tousseyn T, Otto M, von Arnim CAF, Thal DR. Distinct molecular patterns of TDP-43 pathology in Alzheimer's disease: relationship with clinical phenotypes. Acta Neuropathol Commun 2020; 8:61. [PMID: 32349792 PMCID: PMC7189555 DOI: 10.1186/s40478-020-00934-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
The co-existence of multiple pathologies and proteins is a common feature in the brains of cognitively impaired elderly individuals. Transactive response DNA-binding protein (TDP-43) has been discovered to accumulate in limbic brain regions of a portion of late-onset Alzheimer's disease (AD) patients, in addition to amyloid-β and τ protein. However, it is not yet known whether the TDP-43 species in the AD brain differ in their composition, when compared among different AD cases and to frontotemporal lobar degeneration cases with TDP-43 inclusions (FTLD-TDP). Furthermore, it is not known whether TDP-43 pathology in AD is related to symptoms of the frontotemporal dementia (FTD) spectrum. In this study, we investigated the molecular pattern of TDP-43 lesions with five different antibodies against different phosphorylated (pTDP-43) and non-phosphorylated TDP-43 epitopes. We analyzed a cohort of 97 autopsy cases, including brains from 20 non-demented individuals, 16 cognitively normal pathologically-defined preclinical AD (p-preAD), 51 neuropathologically-confirmed AD cases and 10 FTLD-TDP cases as positive controls. We observed distinct neuropathological patterns of TDP-43 among AD cases. In 11 neuropathologically-confirmed AD cases we found dystrophic neurites (DNs), neuronal cytoplasmic inclusions (NCIs) and/or neurofibrillary tangle (NFT)-like lesions not only positive for pTDP-43409/410, but also for pTDP-43 phosphorylated at serines 403/404 (pTDP-43403/404) and non-phosphorylated, full-length TDP-43, as seen with antibodies against C-terminal TDP-43 and N-terminal TDP-43. These cases were referred to as ADTDP + FL because full-length TDP-43 was presumably present in the aggregates. FTLD-TDP cases showed a similar molecular TDP-43 pattern. A second pattern, which was not seen in FTLD-TDP, was observed in most of p-preAD, as well as 30 neuropathologically-confirmed AD cases, which mainly exhibited NFTs and NCIs stained with antibodies against TDP-43 phosphorylated at serines 409/410 (pTDP-43409, pTDP-43409/410). Because only phosphorylated C-terminal species of TDP-43 could be detected in the lesions we designated these AD cases as ADTDP + CTF. Ten AD cases did not contain any TDP-43 pathology and were referred to as ADTDP-. The different TDP-43 patterns were associated with clinically typical AD symptoms in 80% of ADTDP + CTF cases, 63,6% of ADTDP + FL and 100% of the ADTDP- cases. On the other hand, clinical symptoms characteristic for FTD were observed in 36,4% of ADTDP + FL, in 16,6% of the ADTDP + CTF, and in none of the ADTDP- cases. Our findings provide evidence that TDP-43 aggregates occurring in AD cases vary in their composition, suggesting the distinction of different molecular patterns of TDP-43 pathology ranging from ADTDP- to ADTDP + CTF and ADTDP + FL with possible impact on their clinical picture, i.e. a higher chance for FTD-like symptoms in ADTDP + FL cases.
Collapse
Affiliation(s)
- Sandra O Tomé
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium
| | - Rik Vandenberghe
- Department of Neurosciences - Laboratory of Cognitive Neurology, KU- Leuven, Leuven, Belgium
- Department of Neurology, UZ Leuven, Leuven, Belgium
| | - Simona Ospitalieri
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium
| | - Evelien Van Schoor
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium
- Department of Neurosciences - Laboratory for Neurobiology, KU-Leuven and Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Thomas Tousseyn
- Department of Imaging and Pathology - Translational Cell and Tissue Research Unit, KU-Leuven, Leuven, Belgium
- Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Geriatrics, Göttingen University, Göttingen, Germany
| | - Dietmar Rudolf Thal
- Department of Imaging and Pathology - Laboratory of Neuropathology, and Leuven Brain Institute, KU-Leuven, O&N IV, Herestraat 49, box 1032, 3000, Leuven, Belgium.
- Department of Pathology, UZ Leuven, Leuven, Belgium.
| |
Collapse
|
20
|
Hergesheimer RC, Chami AA, de Assis DR, Vourc'h P, Andres CR, Corcia P, Lanznaster D, Blasco H. The debated toxic role of aggregated TDP-43 in amyotrophic lateral sclerosis: a resolution in sight? Brain 2020; 142:1176-1194. [PMID: 30938443 PMCID: PMC6487324 DOI: 10.1093/brain/awz078] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/11/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Transactive response DNA-binding protein-43 (TDP-43) is an RNA/DNA binding protein that forms phosphorylated and ubiquitinated aggregates in the cytoplasm of motor neurons in amyotrophic lateral sclerosis, which is a hallmark of this disease. Amyotrophic lateral sclerosis is a neurodegenerative condition affecting the upper and lower motor neurons. Even though the aggregative property of TDP-43 is considered a cornerstone of amyotrophic lateral sclerosis, there has been major controversy regarding the functional link between TDP-43 aggregates and cell death. In this review, we attempt to reconcile the current literature surrounding this debate by discussing the results and limitations of the published data relating TDP-43 aggregates to cytotoxicity, as well as therapeutic perspectives of TDP-43 aggregate clearance. We point out key data suggesting that the formation of TDP-43 aggregates and the capacity to self-template and propagate among cells as a 'prion-like' protein, another pathological property of TDP-43 aggregates, are a significant cause of motor neuronal death. We discuss the disparities among the various studies, particularly with respect to the type of models and the different forms of TDP-43 used to evaluate cellular toxicity. We also examine how these disparities can interfere with the interpretation of the results pertaining to a direct toxic effect of TDP-43 aggregates. Furthermore, we present perspectives for improving models in order to better uncover the toxic role of aggregated TDP-43. Finally, we review the recent studies on the enhancement of the cellular clearance mechanisms of autophagy, the ubiquitin proteasome system, and endocytosis in an attempt to counteract TDP-43 aggregation-induced toxicity. Altogether, the data available so far encourage us to suggest that the cytoplasmic aggregation of TDP-43 is key for the neurodegeneration observed in motor neurons in patients with amyotrophic lateral sclerosis. The corresponding findings provide novel avenues toward early therapeutic interventions and clinical outcomes for amyotrophic lateral sclerosis management.
Collapse
Affiliation(s)
| | - Anna A Chami
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France
| | | | - Patrick Vourc'h
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| | - Christian R Andres
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| | - Philippe Corcia
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Neurologie, Tours, France
| | | | - Hélène Blasco
- UMR 1253, iBRAIN, Université de Tours, INSERM, Tours, France.,CHU de Tours, Service de Biochimie et Biologie Moléculaire, Tours, France
| |
Collapse
|
21
|
TDP-43 induces mitochondrial damage and activates the mitochondrial unfolded protein response. PLoS Genet 2019; 15:e1007947. [PMID: 31100073 PMCID: PMC6524796 DOI: 10.1371/journal.pgen.1007947] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
Mutations in or dys-regulation of the TDP-43 gene have been associated with TDP-43 proteinopathy, a spectrum of neurodegenerative diseases including Frontotemporal Lobar Degeneration (FTLD) and Amyotrophic Lateral Sclerosis (ALS). The underlying molecular and cellular defects, however, remain unclear. Here, we report a systematic study combining analyses of patient brain samples with cellular and animal models for TDP-43 proteinopathy. Electron microscopy (EM) analyses of patient samples revealed prominent mitochondrial impairment, including abnormal cristae and a loss of cristae; these ultrastructural changes were consistently observed in both cellular and animal models of TDP-43 proteinopathy. In these models, increased TDP-43 expression induced mitochondrial dysfunction, including decreased mitochondrial membrane potential and elevated production of reactive oxygen species (ROS). TDP-43 expression suppressed mitochondrial complex I activity and reduced mitochondrial ATP synthesis. Importantly, TDP-43 activated the mitochondrial unfolded protein response (UPRmt) in both cellular and animal models. Down-regulating mitochondrial protease LonP1 increased mitochondrial TDP-43 levels and exacerbated TDP-43-induced mitochondrial damage as well as neurodegeneration. Together, our results demonstrate that TDP-43 induced mitochondrial impairment is a critical aspect in TDP-43 proteinopathy. Our work has not only uncovered a previously unknown role of LonP1 in regulating mitochondrial TDP-43 levels, but also advanced our understanding of the pathogenic mechanisms for TDP-43 proteinopathy. Our study suggests that blocking or reversing mitochondrial damage may provide a potential therapeutic approach to these devastating diseases. TDP-43 proteinopathy is a group of fatal neurological diseases. Here, we report a systematic examination of the role of mitochondrial damage in TDP-43 proteinopathy using patient brain tissues, as well as cellular and animal models. Our data show that TDP-43 induces severe mitochondrial damage, accompanied by activation of UPRmt in both cellular and animal models of TDP-43 proteinopathy. LonP1, one of the key mitochondrial proteases in UPRmt, protects against TDP-43 induced cytotoxicity and neurodegeneration. Our study uncovers LonP1 as a modifier gene for TDP-43 proteinopathy and suggests protecting against or reversing mitochondrial damage as a potential therapeutic approach to these neurodegenerative disorders.
Collapse
|
22
|
|
23
|
Berning BA, Walker AK. The Pathobiology of TDP-43 C-Terminal Fragments in ALS and FTLD. Front Neurosci 2019; 13:335. [PMID: 31031584 PMCID: PMC6470282 DOI: 10.3389/fnins.2019.00335] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
During neurodegenerative disease, the multifunctional RNA-binding protein TDP-43 undergoes a vast array of post-translational modifications, including phosphorylation, acetylation, and cleavage. Many of these alterations may directly contribute to the pathogenesis of TDP-43 proteinopathies, which include most forms of amyotrophic lateral sclerosis (ALS) and approximately half of all frontotemporal dementia, pathologically identified as frontotemporal lobar degeneration (FTLD) with TDP-43 pathology. However, the relative contributions of the various TDP-43 post-translational modifications to disease remain unclear, and indeed some may be secondary epiphenomena rather than disease-causative. It is therefore critical to determine the involvement of each modification in disease processes to allow the design of targeted treatments. In particular, TDP-43 C-terminal fragments (CTFs) accumulate in the brains of people with ALS and FTLD and are therefore described as a neuropathological signature of these diseases. Remarkably, these TDP-43 CTFs are rarely observed in the spinal cord, even in ALS which involves dramatic degeneration of spinal motor neurons. Therefore, TDP-43 CTFs are not produced non-specifically in the course of all forms of TDP-43-related neurodegeneration, but rather variably arise due to additional factors influenced by regional heterogeneity in the central nervous system. In this review, we summarize how TDP-43 CTFs are generated and degraded by cells, and critique evidence from studies of TDP-43 CTF pathology in human disease tissues, as well as cell and animal models, to analyze the pathophysiological relevance of TDP-43 CTFs to ALS and FTLD. Numerous studies now indicate that, although TDP-43 CTFs are prevalent in ALS and FTLD brains, disease-related pathology is only variably reproduced in TDP-43 CTF cell culture models. Furthermore, TDP-43 CTF expression in both transgenic and viral-mediated in vivo models largely fails to induce motor or behavioral dysfunction reminiscent of human disease. We therefore conclude that although TDP-43 CTFs are a hallmark of TDP-43-related neurodegeneration in the brain, they are not a primary cause of ALS or FTLD.
Collapse
Affiliation(s)
- Britt A. Berning
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Adam K. Walker
- Neurodegeneration Pathobiology Laboratory, Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
24
|
Lu SZ, Guo YS, Liang PZ, Zhang SZ, Yin S, Yin YQ, Wang XM, Ding F, Gu XS, Zhou JW. Suppression of astrocytic autophagy by αB-crystallin contributes to α-synuclein inclusion formation. Transl Neurodegener 2019; 8:3. [PMID: 30675347 PMCID: PMC6337871 DOI: 10.1186/s40035-018-0143-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/27/2018] [Indexed: 01/17/2023] Open
Abstract
Background Parkinson’s disease (PD) is characterized by a chronic loss of dopaminergic neurons and the presence of proteinaceous inclusions (Lewy bodies) within some remaining neurons in the substantia nigra. Recently, astroglial inclusion body has also been found in some neurodegenerative diseases including PD. However, the underlying molecular mechanisms of how astroglial protein aggregation forms remain largely unknown. Here, we investigated the contribution of αB-crystallin (CRYAB), a small heat shock protein, in α-synuclein inclusion formation in astrocytes. Methods Small interfering RNA (siRNA)-mediated CRYAB (siCRYAB) knockdown or CRYAB overexpression was performed to investigate the impact of CRYAB on the autophagy in human glioblastoma cell line U251 cells. Co-immunoprecipitation (co-IP) and immunoblotting were used to dissect the interaction among multiple proteins. The clearance of α-synuclein in vitro was evaluated by immunocytochemistry. CRYAB transgenic mice and transgenic mice overexpressing A30P mutant form of human α-synuclein were used to examine the influence of CRYAB to α-synuclein accumulation in vivo. Results We found that knockdown of CRYAB in U251 cells or primary cultured astrocytes resulted in a marked augmentation of autophagy activity. In contrast, exogenous CRYAB disrupted the assembly of the BAG3-HSPB8-HSC70 complex via binding with BAG3, thereby suppressing the autophagy activity. Furthermore, CRYAB-regulated autophagy has relevance to PD pathogenesis. Knockdown of CRYAB remarkably promoted cytoplasmic clearance of α-synuclein preformed fibrils (PFFs). Conversely, selective overexpression of CRYAB in astrocytes markedly suppressed autophagy leading to the accumulation of α-synuclein aggregates in the brain of transgenic mice expressing human α-synuclein A30P mutant. Conclusions This study reveals a novel function for CRYAB as a natural inhibitor of astrocytic autophagy and shows that knockdown of CYRAB may provide a therapeutic target against proteinopathies such as synucleinopathies.
Collapse
Affiliation(s)
- Shen-Zhao Lu
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China.,2School of Future Techology, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yong-Shun Guo
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China.,2School of Future Techology, University of Chinese Academy of Sciences, Beijing, 100049 China.,3Center for Brain Disorders Research, Capital Medical University and Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100053 China
| | - Pei-Zhou Liang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Shu-Zhen Zhang
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Shu Yin
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Yan-Qing Yin
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xiao-Min Wang
- 3Center for Brain Disorders Research, Capital Medical University and Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, 100053 China
| | - Fei Ding
- 4Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, 226001 Jiangsu China
| | - Xiao-Song Gu
- 4Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University, Nantong, 226001 Jiangsu China
| | - Jia-Wei Zhou
- 1Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031 China.,2School of Future Techology, University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
25
|
Patient-derived frontotemporal lobar degeneration brain extracts induce formation and spreading of TDP-43 pathology in vivo. Nat Commun 2018; 9:4220. [PMID: 30310141 PMCID: PMC6181940 DOI: 10.1038/s41467-018-06548-9] [Citation(s) in RCA: 177] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/14/2018] [Indexed: 12/12/2022] Open
Abstract
The stereotypical distribution of TAR DNA-binding 43 protein (TDP-43) aggregates in frontotemporal lobar degeneration (FTLD-TDP) suggests that pathological TDP-43 spreads throughout the brain via cell-to-cell transmission and correlates with disease progression, but no in vivo experimental data support this hypothesis. We first develop a doxycycline-inducible cell line expressing GFP-tagged cytoplasmic TDP-43 protein (iGFP-NLSm) as a cell-based system to screen and identify seeding activity of human brain-derived pathological TDP-43 isolated from sporadic FTLD-TDP and familial cases with Granulin (FTLD-TDP-GRN) or C9orf72 repeat expansion mutations (FTLD-TDP-C9+). We demonstrate that intracerebral injections of biologically active pathogenic FTLD-TDP seeds into transgenic mice expressing cytoplasmic human TDP-43 (lines CamKIIa-hTDP-43NLSm, rNLS8, and CamKIIa-208) and non-transgenic mice led to the induction of de-novo TDP-43 pathology. Moreover, TDP-43 pathology progressively spreads throughout the brain in a time-dependent manner via the neuroanatomic connectome. Our study suggests that the progression of FTLD-TDP reflects the templated cell-to-cell transneuronal spread of pathological TDP-43.
Collapse
|
26
|
Hans F, Eckert M, von Zweydorf F, Gloeckner CJ, Kahle PJ. Identification and characterization of ubiquitinylation sites in TAR DNA-binding protein of 43 kDa (TDP-43). J Biol Chem 2018; 293:16083-16099. [PMID: 30120199 DOI: 10.1074/jbc.ra118.003440] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/14/2018] [Indexed: 12/13/2022] Open
Abstract
TAR DNA-binding protein of 43 kDa (TDP-43) forms pathological aggregates in neurodegenerative diseases, particularly in certain forms of frontotemporal dementia and amyotrophic lateral sclerosis. Pathological modifications of TDP-43 include proteolytic fragmentation, phosphorylation, and ubiquitinylation. A pathognomonic TDP-43 C-terminal fragment (CTF) spanning amino acids 193-414 contains only four lysine residues that could be potentially ubiquitinylated. Here, serial mutagenesis of these four lysines to arginine revealed that not a single residue is responsible for the ubiquitinylation of mCherry-tagged CTF. Removal of all four lysines was necessary to suppress ubiquitinylation. Interestingly, Lys-408 substitution enhanced the pathological phosphorylation of the immediately adjacent serine residues 409/410 in the context of mCherry-CTF. Thus, Lys-408 ubiquitinylation appears to hinder Ser-409/410 phosphorylation in TDP-43 CTF. However, we did not observe the same effect for full-length TDP-43. We extended the mutagenesis study to full-length TDP-43 and performed MS. Ubiquitinylated lysine residues were identified in the nuclear localization sequence (NLS; Lys-84 and Lys-95) and RNA-binding region (mostly Lys-160, Lys-181, and Lys-263). Mutagenesis of Lys-84 confirmed its importance as the major determinant for nuclear import, whereas Lys-95 mutagenesis did not significantly affect TDP-43's nucleo-cytoplasmic distribution, solubility, aggregation, and RNA-processing activities. Nevertheless, the K95A mutant had significantly reduced Ser-409/410 phosphorylation, emphasizing the suspected interplay between TDP-43 ubiquitinylation and phosphorylation. Collectively, our analysis of TDP-43 ubiquitinylation sites indicates that the NLS residues Lys-84 and Lys-95 have more prominent roles in TDP-43 function than the more C-terminal lysines and suggests a link between specific ubiquitinylation events and pathological TDP-43 phosphorylation.
Collapse
Affiliation(s)
- Friederike Hans
- From the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen and.,the Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, and
| | - Marita Eckert
- From the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen and.,the Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, and
| | - Felix von Zweydorf
- From the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen and
| | - Christian Johannes Gloeckner
- From the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen and.,the Institute for Ophthalmic Research, Center for Ophthalmology, University of Tübingen, 72076 Tübingen, Germany
| | - Philipp J Kahle
- From the German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen and .,the Hertie Institute for Clinical Brain Research, Department of Neurodegeneration, and
| |
Collapse
|
27
|
Abstract
Trans activation response DNA/RNA-binding protein 43 kDa (TDP-43) regulates RNA splicing and stability. TDP-43 is a component of ubiquitin-positive inclusion bodies of motor neurons from patients with amyotrophic lateral sclerosis, suggesting a role in disease pathogenesis. Toxic intracellular TDP-43 aggregation may cause neuronal cell death. The loss of TDP-43 in animal models causes lethality in early development. Furthermore, TDP-43 knockdown in adult animals and cells increases aberrant splicing. Uridine-rich small nuclear RNA (U snRNA) regulation is disrupted in cultured neuroblastoma cells with TDP-43 knockdown and in motor neurons in amyotrophic lateral sclerosis. Aberrant mRNA splicing and U snRNA expression are likely key processes in neuronal cell death. We review the research history and future perspectives of aberrant splicing by TDP-43 loss.
Collapse
Affiliation(s)
- Akira Kitamura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo, Japan 001-0021
| |
Collapse
|
28
|
van Hummel A, Chan G, van der Hoven J, Morsch M, Ippati S, Suh L, Bi M, Asih PR, Lee WS, Butler TA, Przybyla M, Halliday GM, Piguet O, Kiernan MC, Chung RS, Ittner LM, Ke YD. Selective Spatiotemporal Vulnerability of Central Nervous System Neurons to Pathologic TAR DNA-Binding Protein 43 in Aged Transgenic Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1447-1456. [DOI: 10.1016/j.ajpath.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/19/2018] [Accepted: 03/08/2018] [Indexed: 12/14/2022]
|
29
|
Cagnin A, Mariotto S, Fiorini M, Gaule M, Bonetto N, Tagliapietra M, Buratti E, Zanusso G, Ferrari S, Monaco S. Microglial and Neuronal TDP-43 Pathology in Anti-IgLON5-Related Tauopathy. J Alzheimers Dis 2018; 59:13-20. [PMID: 28550263 DOI: 10.3233/jad-170189] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A novel neuronal tauopathy, mainly confined to hypothalamus and brainstem tegmentum, has recently been reported in patients with autoantibodies to the neuronal cell-adhesion molecule IgLON5. We describe a patient with anti-IgLON5 syndrome, who presented with dysautonomia and sleep disorder, followed by subacute dementia. Postmortem brain examination disclosed neuronal tau pathology prevailing in the hippocampus, amygdala, and locus coeruleus, in addition to microglial/neuronal TDP-43 pathology, with overexpression of aberrantly phosphorylated forms and neurotoxic truncated fragments, in basal ganglia, nucleus basalis, thalamus, and midbrain. These findings suggest that neurodegeneration in anti-IgLON5 syndrome might also occur via a microglia-triggered non-cell autonomous pathway.
Collapse
Affiliation(s)
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Fiorini
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marina Gaule
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicola Bonetto
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Matteo Tagliapietra
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Emanuele Buratti
- Molecular Pathology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Sergio Ferrari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Salvatore Monaco
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
30
|
Abstract
INTRODUCTION Nuclear factor TDP-43 is a ubiquitously expressed RNA binding protein that plays a key causative role in several neurodegenerative diseases, especially in the ALS/FTD spectrum. In addition, its aberrant aggregation and expression has been recently observed in other type of diseases, such as myopathies and Niemann-Pick C, a lysosomal storage disease. Areas covered: This review aims to specifically cover the post-translational modifications (PTMs) that can affect TDP-43 function and cellular status both in health and disease. To this date, these include phosphorylation, formation of C-terminal fragments, disulfide bridge formation, ubiquitination, acetylation, and sumoylation. Recently published articles on these subjects have been reviewed in this manuscript. Expert opinion: Targeting aberrant TDP-43 expression in neurodegenerative diseases is a very challenging task due to the fact that both its overexpression and downregulation are considerably toxic to cells. This characteristic makes it difficult to therapeutically target this protein in a generalized manner. An alternative approach could be the identification of specific aberrant PTMs that promote its aggregation or toxicity, and developing novel therapeutic approaches toward their selective modification.
Collapse
Affiliation(s)
- Emanuele Buratti
- a Department of Molecular Pathology , International Centre for Genetic Engineering and Biotechnology (ICGEB) , Trieste , Italy
| |
Collapse
|
31
|
Spiller KJ, Restrepo CR, Khan T, Dominique MA, Fang TC, Canter RG, Roberts CJ, Miller KR, Ransohoff RM, Trojanowski JQ, Lee VMY. Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nat Neurosci 2018; 21:329-340. [PMID: 29463850 PMCID: PMC5857237 DOI: 10.1038/s41593-018-0083-7] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022]
Abstract
Though motor neurons (MNs) selectively degenerate in amyotrophic lateral sclerosis (ALS), other cell types are likely involved in this disease. We recently generated rNLS8 mice in which human TDP-43 (hTDP-43) pathology could be reversibly induced in neurons and expected microglia would contribute to neurodegeneration. However, only subtle microglial changes were detected during disease in the spinal cord, despite progressive MN loss, but microglia still reacted to inflammatory triggers in these mice. Notably, after the hTDP-43 expression was suppressed, microglia dramatically proliferated and changed their morphology and gene expression profiles. These abundant, reactive microglia selectively cleared neuronal hTDP-43. Finally, when microgliosis was blocked during the early recovery phase using PLX3397, a CSF1R/c-kit inhibitor, rNLS8 mice failed to regain full motor function, revealing an important neuroprotective role for microglia. Therefore, reactive microglia exert neuroprotective functions in this ALS model and definition of the underlying mechanism could point towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Krista J Spiller
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Clark R Restrepo
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tahiyana Khan
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Myrna A Dominique
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | - Kelly R Miller
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - John Q Trojanowski
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Virginia M-Y Lee
- Center for Neurodegenerative Disease Research (CNDR), Institute on Aging, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
32
|
Alzheimer’s Disease and Frontotemporal Lobar Degeneration: Mouse Models. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
33
|
Zhuang J, Wen X, Zhang YQ, Shan Q, Zhang ZF, Zheng GH, Fan SH, Li MQ, Wu DM, Hu B, Lu J, Zheng YL. TDP-43 upregulation mediated by the NLRP3 inflammasome induces cognitive impairment in 2 2',4,4'-tetrabromodiphenyl ether (BDE-47)-treated mice. Brain Behav Immun 2017; 65:99-110. [PMID: 28532818 DOI: 10.1016/j.bbi.2017.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/10/2017] [Accepted: 05/19/2017] [Indexed: 10/19/2022] Open
Abstract
It is now commonly known that exposure to polybrominated diphenyl ethers (PBDEs) may cause neurotoxicity and cognitive deficits in children as well as adults, but the underlying mechanisms are still not clear. In the present study, we aimed to elucidate the potential underlying mechanism of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47)-induced neurotoxicity and cognitive impairment. Our results showed that BDE-47-treated mice exhibited impaired cognition and robust upregulation of nuclear TDP-43 in the hippocampus. Hippocampus-specific TDP-43 knockdown attenuated hippocampal apoptosis, restored synaptic protein levels and thus improved cognitive dysfunction in BDE-47-treated mice. Furthermore, our data demonstrated that NLRP3 inflammasome activation played a distinct role in the upregulation of nuclear TDP-43 by downregulating Parkin in the hippocampus of BDE-47-treated mice. Knocking down NLRP3 in the hippocampus or inhibiting caspase 1 activity in BDE-47-treated mice effectively increased Parkin expression in the hippocampus, which decreased the levels of nuclear TDP-43 and ultimately abrogated TDP-43-induced neurotoxic effects. Taken together, our data indicate that TDP-43 upregulation mediated by NLRP3 inflammasome activation via Parkin downregulation in the hippocampus induces cognitive decline in BDE-47-treated mice, and suggest that inhibition of NLRP3 or TDP-43 may be a potential strategy for the prevention or treatment of cognitive impairment in BDE-47-induced neurotoxicity and brain diseases.
Collapse
Affiliation(s)
- Juan Zhuang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Science, Huaiyin Normal University, 111 Changjiang Road, Huaian 223300, Jiangsu Province, PR China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Yan-Qiu Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Qun Shan
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China; Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Gui-Hong Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China.
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou 221116, Jiangsu Province, PR China.
| |
Collapse
|
34
|
Onset of disorder and protein aggregation due to oxidation-induced intermolecular disulfide bonds: case study of RRM2 domain from TDP-43. Sci Rep 2017; 7:11161. [PMID: 28894122 PMCID: PMC5593996 DOI: 10.1038/s41598-017-10574-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
We have investigated the behavior of second RNA-recognition motif (RRM2) of neuropathological protein TDP43 under the effect of oxidative stress as modeled in vitro. Toward this end we have used the specially adapted version of H/D exchange experiment, NMR relaxation and diffusion measurements, dynamic light scattering, controlled proteolysis, gel electrophoresis, site-directed mutagenesis and microsecond MD simulations. Under oxidizing conditions RRM2 forms disulfide-bonded dimers that experience unfolding and then assemble into aggregate particles (APs). These particles are strongly disordered, highly inhomogeneous and susceptible to proteolysis; some of them withstand the dithiothreitol treatment. They can recruit/release monomeric RRM2 through thiol-disulfide exchange reactions. By using a combination of dynamic light scattering and NMR diffusion data we were able to approximate the size distribution function for the APs. The key to the observed aggregation behavior is the diminished ability of disulfide-bonded RRM2 dimers to refold and their increased propensity to misfold, which makes them vulnerable to large thermal fluctuations. The emerging picture provides detailed insight on how oxidative stress can contribute to neurodegenerative disease, with unfolding, aggregation, and proteolytic cleavage as different facets of the process.
Collapse
|
35
|
Paolicelli RC, Jawaid A, Henstridge CM, Valeri A, Merlini M, Robinson JL, Lee EB, Rose J, Appel S, Lee VMY, Trojanowski JQ, Spires-Jones T, Schulz PE, Rajendran L. TDP-43 Depletion in Microglia Promotes Amyloid Clearance but Also Induces Synapse Loss. Neuron 2017; 95:297-308.e6. [PMID: 28669544 PMCID: PMC5519492 DOI: 10.1016/j.neuron.2017.05.037] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/28/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Microglia coordinate various functions in the central nervous system ranging from removing synaptic connections, to maintaining brain homeostasis by monitoring neuronal function, and clearing protein aggregates across the lifespan. Here we investigated whether increased microglial phagocytic activity that clears amyloid can also cause pathological synapse loss. We identified TDP-43, a DNA-RNA binding protein encoded by the Tardbp gene, as a strong regulator of microglial phagocytosis. Mice lacking TDP-43 in microglia exhibit reduced amyloid load in a model of Alzheimer’s disease (AD) but at the same time display drastic synapse loss, even in the absence of amyloid. Clinical examination from TDP-43 pathology cases reveal a considerably reduced prevalence of AD and decreased amyloid pathology compared to age-matched healthy controls, confirming our experimental results. Overall, our data suggest that dysfunctional microglia might play a causative role in the pathogenesis of neurodegenerative disorders, critically modulating the early stages of cognitive decline. TDP-43 regulates microglial phagocytosis and clearance of Aβ Depletion of microglial TDP-43 results in enhanced synapse loss Depletion of microglial TDP-43 promotes amyloid clearance in a mouse model of AD TDP-43 pathology is associated with lower amyloid deposition in post-mortem brains
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland.
| | - Ali Jawaid
- Brain Research Institute, University of Zurich/ETH, Zurich, Switzerland
| | | | - Andrea Valeri
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland
| | - Mario Merlini
- Center for Molecular Cardiology - Vascular Aging & Stroke, University of Zurich, Schlieren, Switzerland
| | - John L Robinson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jamie Rose
- Academic Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stanley Appel
- ALS/MDA Center, The Methodist Hospital, Houston, TX, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Tara Spires-Jones
- Center for Cognitive and Neural Systems, University of Edinburgh, Edinburgh, UK
| | - Paul E Schulz
- Department of Neurology, University of Texas, Health Science Center, Houston, TX, USA
| | - Lawrence Rajendran
- Systems and Cell Biology of Neurodegeneration, IREM, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
36
|
Shahheydari H, Ragagnin A, Walker AK, Toth RP, Vidal M, Jagaraj CJ, Perri ER, Konopka A, Sultana JM, Atkin JD. Protein Quality Control and the Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Continuum. Front Mol Neurosci 2017; 10:119. [PMID: 28539871 PMCID: PMC5423993 DOI: 10.3389/fnmol.2017.00119] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Protein homeostasis, or proteostasis, has an important regulatory role in cellular function. Protein quality control mechanisms, including protein folding and protein degradation processes, have a crucial function in post-mitotic neurons. Cellular protein quality control relies on multiple strategies, including molecular chaperones, autophagy, the ubiquitin proteasome system, endoplasmic reticulum (ER)-associated degradation (ERAD) and the formation of stress granules (SGs), to regulate proteostasis. Neurodegenerative diseases are characterized by the presence of misfolded protein aggregates, implying that protein quality control mechanisms are dysfunctional in these conditions. Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are neurodegenerative diseases that are now recognized to overlap clinically and pathologically, forming a continuous disease spectrum. In this review article, we detail the evidence for dysregulation of protein quality control mechanisms across the whole ALS-FTD continuum, by discussing the major proteins implicated in ALS and/or FTD. We also discuss possible ways in which protein quality mechanisms could be targeted therapeutically in these disorders and highlight promising protein quality control-based therapeutics for clinical trials.
Collapse
Affiliation(s)
- Hamideh Shahheydari
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Audrey Ragagnin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Adam K Walker
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Reka P Toth
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Marta Vidal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Cyril J Jagaraj
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Emma R Perri
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Anna Konopka
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Jessica M Sultana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia
| | - Julie D Atkin
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie UniversitySydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe UniversityMelbourne, VIC, Australia
| |
Collapse
|
37
|
Kawamata H, Peixoto P, Konrad C, Palomo G, Bredvik K, Gerges M, Valsecchi F, Petrucelli L, Ravits JM, Starkov A, Manfredi G. Mutant TDP-43 does not impair mitochondrial bioenergetics in vitro and in vivo. Mol Neurodegener 2017; 12:37. [PMID: 28482850 PMCID: PMC5422931 DOI: 10.1186/s13024-017-0180-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 04/29/2017] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial dysfunction has been linked to the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Functional studies of mitochondrial bioenergetics have focused mostly on superoxide dismutase 1 (SOD1) mutants, and showed that mutant human SOD1 impairs mitochondrial oxidative phosphorylation, calcium homeostasis, and dynamics. However, recent reports have indicated that alterations in transactivation response element DNA-binding protein 43 (TDP-43) can also lead to defects of mitochondrial morphology and dynamics. Furthermore, it was proposed that TDP-43 mutations cause oxidative phosphorylation impairment associated with respiratory chain defects and that these effects were caused by mitochondrial localization of the mutant protein. Here, we investigated the presence of bioenergetic defects in the brain of transgenic mice expressing human mutant TDP-43 (TDP-43A315T mice), patient derived fibroblasts, and human cells expressing mutant forms of TDP-43. Methods In the brain of TDP-43A315T mice, TDP-43 mutant fibroblasts, and cells expressing mutant TDP-43, we tested several bioenergetics parameters, including mitochondrial respiration, ATP synthesis, and calcium handling. Differences between mutant and control samples were evaluated by student t-test or by ANOVA, followed by Bonferroni correction, when more than two groups were compared. Mitochondrial localization of TDP-43 was investigated by immunocytochemistry in fibroblasts and by subcellular fractionation and western blot of mitochondrial fractions in mouse brain. Results We did not observe defects in any of the mitochondrial bioenergetic functions that were tested in TDP-43 mutants. We detected a small amount of TDP-43A315T peripherally associated with brain mitochondria. However, there was no correlation between TDP-43 associated with mitochondria and respiratory chain dysfunction. In addition, we observed increased calcium uptake in mitochondria from TDP-43A315T mouse brain and cells expressing A315T mutant TDP-43. Conclusions While alterations of mitochondrial morphology and dynamics in TDP-43 mutant neurons are well established, the present study did not demonstrate oxidative phosphorylation defects in TDP-43 mutants, in vitro and in vivo. On the other hand, the increase in mitochondrial calcium uptake in A315T TDP-43 mutants was an intriguing finding, which needs to be investigated further to understand its mechanisms and potential pathogenic implications.
Collapse
Affiliation(s)
- Hibiki Kawamata
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RR507, New York, NY, 10065, USA
| | - Pablo Peixoto
- Department of Natural Sciences, CUNY Baruch College, New York, NY, USA
| | - Csaba Konrad
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RR507, New York, NY, 10065, USA
| | - Gloria Palomo
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RR507, New York, NY, 10065, USA
| | - Kirsten Bredvik
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RR507, New York, NY, 10065, USA
| | - Meri Gerges
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RR507, New York, NY, 10065, USA
| | - Federica Valsecchi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RR507, New York, NY, 10065, USA
| | | | - John M Ravits
- Department of Neuroscience, University of California San Diego, La Jolla, CA, USA
| | - Anatoly Starkov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RR507, New York, NY, 10065, USA
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, RR507, New York, NY, 10065, USA.
| |
Collapse
|
38
|
Valle C, Carrì MT. Cysteine Modifications in the Pathogenesis of ALS. Front Mol Neurosci 2017; 10:5. [PMID: 28167899 PMCID: PMC5253364 DOI: 10.3389/fnmol.2017.00005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Several proteins are found misfolded and aggregated in sporadic and genetic forms of amyotrophic lateral sclerosis (ALS). These include superoxide dismutase (SOD1), transactive response DNA-binding protein (TDP-43), fused in sarcoma/translocated in liposarcoma protein (FUS/TLS), p62, vasolin-containing protein (VCP), Ubiquilin-2 and dipeptide repeats produced by unconventional RAN-translation of the GGGGCC expansion in C9ORF72. Up to date, functional studies have not yet revealed a common mechanism for the formation of such diverse protein inclusions. Consolidated studies have demonstrated a fundamental role of cysteine residues in the aggregation process of SOD1 and TDP43, but disturbance of protein thiols homeostatic factors such as protein disulfide isomerases (PDI), glutathione, cysteine oxidation or palmitoylation might contribute to a general aberration of cysteine residues proteostasis in ALS. In this article we review the evidence that cysteine modifications may have a central role in many, if not all, forms of this disease.
Collapse
Affiliation(s)
- Cristiana Valle
- Institute for Cell Biology and Neurobiology, CNRRome, Italy
- Fondazione Santa Lucia IRCCSRome, Italy
| | - Maria Teresa Carrì
- Fondazione Santa Lucia IRCCSRome, Italy
- Department of Biology, University of Rome Tor VergataRome, Italy
| |
Collapse
|
39
|
Wang Q, Zhou Q, Zhang S, Shao W, Yin Y, Li Y, Hou J, Zhang X, Guo Y, Wang X, Gu X, Zhou J. Elevated Hapln2 Expression Contributes to Protein Aggregation and Neurodegeneration in an Animal Model of Parkinson's Disease. Front Aging Neurosci 2016; 8:197. [PMID: 27601993 PMCID: PMC4993759 DOI: 10.3389/fnagi.2016.00197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/02/2016] [Indexed: 01/15/2023] Open
Abstract
Parkinson's disease (PD), the second most common age-associated progressive neurodegenerative disorder, is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SN). The pathogenesis of PD and the mechanisms underlying the degeneration of DA neurons are still not fully understood. Our previous quantitative proteomics study revealed that hyaluronan and proteoglycan binding link protein 2 (Hapln2) is one of differentially expressed proteins in the substantia nigra tissues from PD patients and healthy control subjects. However, the potential role of Hapln2 in PD pathogenesis remains elusive. In the present study, we characterized the expression pattern of Hapln2. In situ hybridization revealed that Hapln2 mRNA was widely expressed in adult rat brain with high abundance in the substantia nigra. Immunoblotting showed that expression levels of Hapln2 were markedly upregulated in the substantia nigra of either human subjects with Parkinson's disease compared with healthy control. Likewise, there were profound increases in Hapln2 expression in neurotoxin 6-hydroxydopamine-treated rat. Overexpression of Hapln2 in vitro increased vulnerability of MES23.5 cells, a dopaminergic cell line, to 6-hydroxydopamine. Moreover, Hapln2 overexpression led to the formation of cytoplasmic aggregates which were co-localized with ubiquitin and E3 ligases including Parkin, Gp78, and Hrd1 in vitro. Endogenous α-synuclein was also localized in Hapln2-containing aggregates and ablation of Hapln2 led to a marked decrease of α-synuclein in insoluble fraction compared with control. Thus, Hapln2 is identified as a novel factor contributing to neurodegeneration in PD. Our data provides new insights into the cellular mechanism underlying the pathogenesis in PD.
Collapse
Affiliation(s)
- Qinqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, China; University of Chinese Academy of SciencesShanghai, China
| | - Qinbo Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Shuzhen Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Wei Shao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yanqing Yin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Yandong Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Jincan Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| | - Xinhua Zhang
- Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University Nantong, China
| | - Yongshun Guo
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders Beijing, China
| | - Xiaomin Wang
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders Beijing, China
| | - Xiaosong Gu
- Co-innovation Center of Neuroregeneration, School of Medicine, Nantong University Nantong, China
| | - Jiawei Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences Shanghai, China
| |
Collapse
|
40
|
Bozzo F, Salvatori I, Iacovelli F, Mirra A, Rossi S, Cozzolino M, Falconi M, Valle C, Carrì MT. Structural insights into the multi-determinant aggregation of TDP-43 in motor neuron-like cells. Neurobiol Dis 2016; 94:63-72. [PMID: 27317832 DOI: 10.1016/j.nbd.2016.06.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/06/2016] [Accepted: 06/13/2016] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is aggregated in patients with ALS and FLTD through mechanisms still incompletely understood. Since aggregation in the cytosol is most probably responsible for the delocalization and loss of proper RNA-binding function of TDP-43 in the nucleus, interception of the formation of aggregates may represent a useful therapeutic option. In this study, we investigated the relative importance of the N-terminal and C-terminal moieties of TDP-43 in the aggregation process and the weight of each of the six cysteine residues in determining unfolding and aggregation of the different domains. We report that cytoplasmic inclusions formed by WT and mutant TDP-43 in motor neuron-like NSC34 cells are redox-sensitive only in part, and contain at least two components, i.e. oligomers and large aggregates, that are made of different molecular species. The two N-terminal cysteine residues contribute to the seeding for the first step in oligomerization, which is then accomplished by mechanisms depending on the four cysteines in the RNA-recognition motifs. Cysteine-independent large aggregates contain unfolded isoforms of the protein, held together by unspecific hydrophobic interactions. Interestingly, truncated isoforms are entrapped exclusively in oligomers. Ab initio modeling of TDP-43 structure, molecular dynamics and molecular docking analysis indicate a differential accessibility of cysteine residues that contributes to aggregation propensity. We propose a model of TDP-43 aggregation involving cysteine-dependent and cysteine-independent stages that may constitute a starting point to devise strategies counteracting the formation of inclusions in TDP-43 proteinopathies.
Collapse
Affiliation(s)
- F Bozzo
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy
| | - I Salvatori
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy
| | - F Iacovelli
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Interuniversity Consortium, National Institute of Biostructure and Biosystem (INBB), Italy
| | - A Mirra
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy
| | - S Rossi
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - M Cozzolino
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
| | - M Falconi
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Interuniversity Consortium, National Institute of Biostructure and Biosystem (INBB), Italy
| | - C Valle
- Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy; Institute for Cell Biology and Neurobiology, CNR, c/o CERC, 00143 Rome, Italy.
| | - M T Carrì
- Department of Biology, University of Rome Tor Vergata, 00133 Rome, Italy; Fondazione Santa Lucia IRCCS, c/o CERC, 00143 Rome, Italy.
| |
Collapse
|