1
|
Yu Y, Li J, Wang X, Li X, Lyu C, Yang L, Bai Y. Actin Gamma Smooth Muscle 2 Promotes Epithelial Ovarian Cancer Cell Proliferation via the AKT1/NF-κB Signaling Pathway. Cell Biochem Funct 2025; 43:e70077. [PMID: 40289545 DOI: 10.1002/cbf.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/15/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025]
Abstract
Epithelial ovarian cancer (EOC) is associated with high mortality rates worldwide and is characterized as the most lethal gynecological cancer. The study aimed to investigate the functional role and underlying molecular mechanism of actin gamma smooth muscle 2 (ACTG2) in the progression of EOC. Data mining from The Cancer Genome Atlas (TCGA) databases showed the expression of ACTG2 was significantly upregulated in EOC and negatively associated with longer overall survival and better prognosis of patients. By using of gain-of-function and loss-of-function experiments in vitro and in vivo, we found that ACTG2 promoted EOC cell proliferation and suppressed cell apoptosis. Mechanistic study revealed that ACTG2 regulates EOC cell proliferation by activating the AKT serine/threonine kinase 1 (AKT1)/nuclear factor-κB (NF-κB) signaling pathway. Importantly, p65 plays a crucial role in this newly identified regulatory mechanism. Our findings demonstrate that ACTG2 may play an oncogenic role in EOC, suggesting its potential as a therapeutic target.
Collapse
Affiliation(s)
- Yinjue Yu
- Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Jiangxia Li
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Xiaohang Wang
- Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoxiao Li
- Department of Anesthesiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Cuiting Lyu
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lina Yang
- Central Laboratory, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Yongrui Bai
- Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Taroc EZM, Amato E, Semon A, Dolphin N, Beck B, Belin S, Poitelon Y, Forni PE. Shared Lineage, Distinct Outcomes: Yap and Taz Loss Differentially Impact Schwann and Olfactory Ensheathing Cell Development Without Disrupting GnRH-1 Migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638196. [PMID: 40027653 PMCID: PMC11870449 DOI: 10.1101/2025.02.13.638196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Olfactory Ensheathing Cells (OECs) are glial cells originating from the neural crest, critical for bundling olfactory axons to the brain. Their development is crucial for the migration of Gonadotropin-Releasing Hormone-1 (GnRH-1) neurons, which are essential for puberty and fertility. OECs have garnered interest as potential therapeutic targets for central nervous system lesions, although their development is not fully understood. Our single-cell RNA sequencing of mouse embryonic nasal tissues suggests that OECs and Schwann cells share a common origin from Schwann cell precursors yet exhibit significant genetic differences. The transcription factors Yap and Taz have previously been shown to play a crucial role in Schwann cell development. We used Sox10 -Cre mice to conditionally ablate Yap and Taz in migrating the neural crest and its derivatives. Our analyses showed reduced Sox10+ glial cells along nerves in the nasal region, altered gene expression of SCs, melanocytes, and OECs, and a significant reduction in olfactory sensory neurons and vascularization in the vomeronasal organ. However, despite these changes, GnRH-1 neuronal migration remained unaffected. Our findings highlight the importance of the Hippo pathway in OEC development and how changes in cranial neural crest derivatives indirectly impact the development of olfactory epithelia.
Collapse
|
3
|
Dong X, Zhang K, Yi S, Wang L, Wang X, Li M, Liang S, Wang Y, Zeng Y. Multi-omics profiling combined with molecular docking reveals immune-inflammatory proteins as potential drug targets in colorectal cancer. Biochem Biophys Res Commun 2024; 739:150598. [PMID: 39213754 DOI: 10.1016/j.bbrc.2024.150598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer is globally ranked as the third most common malignant tumor. Its development involves a complex biological process driven by various genetic and epigenetic alterations. To elucidate the biological significance of the extensive omics data, we conducted comparative multi-omics studies on colorectal cancer patients at different clinical stages. Bioinformatics methods were applied to analyze multi-omics datasets and explore the molecular landscape. Drug prediction and molecular docking also were conducted to assess potential therapeutic interventions. In vitro experiments were used to validate the inhibitory effect on the migration and proliferation of cell lines. The results indicate up-regulated proteins involved in immune-inflammatory related pathways, while biomarkers related to muscular contraction and cell adhesion are significantly down-regulated. Drug prediction, coupled with in vitro experiments, suggests that AZ-628 may act as a potential drug to inhibit the proliferation and migration of CRC cell lines HCT-116 and HT-29 by regulating the aforementioned key biological pathways or proteins. Complementing these findings, metabolomics analysis unveiled a down-regulation of key carbon metabolism pathways, alongside an up-regulation in amino acid metabolism, particularly proline metabolism. This metabolic shift may reflect an adaptive response in cancer cells, favoring specific amino acids to support their growth. Together, these integrated results provide valuable insights into the intricate landscape of tumor development, highlighting the crossroads of immune regulation, cellular structure, and metabolic reprogramming in the tumorigenic process and providing valuable insights into cancer pathology.
Collapse
Affiliation(s)
- Xiaoping Dong
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| | - Kun Zhang
- The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Siwei Yi
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| | - Lingxiang Wang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China; The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Xingyao Wang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| | - Mengtuo Li
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| | - Songping Liang
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China
| | - YongJun Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| | - Yong Zeng
- National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, Hunan, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha, 410081, China; The State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, China.
| |
Collapse
|
4
|
Devavarapu PKV, Uppaluri KR, Nikhade VA, Palasamudram K, Sri Manjari K. Exploring the complexities of megacystis-microcolon-intestinal hypoperistalsis syndrome: insights from genetic studies. Clin J Gastroenterol 2024; 17:383-395. [PMID: 38461165 DOI: 10.1007/s12328-024-01934-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/30/2024] [Indexed: 03/11/2024]
Abstract
Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is an uncommon genetic disorder inherited in an autosomal recessive pattern that affects the muscles that line the bladder and intestines. The most common genes associated with MMIHS mutations are ACTG2, LMOD1, MYH11, MYL9, MYLK, and PDCL3. However, the complete genetic landscape of MMIHS still needs to be fully understood. The diagnosis of MMIHS can be challenging. However, advances in prenatal and diagnostic techniques, such as ultrasound and fetal urine analysis, have improved the ability to detect the syndrome early. Targeted next-generation sequencing (NGS) and other diagnostic tests can also diagnose MMIHS. The management of MMIHS involves addressing severe intestinal dysmotility, which often necessitates total parenteral nutrition (TPN), which can lead to complications such as hepatotoxicity and nutritional deficiencies. Multivisceral and intestinal transplantation has emerged as therapeutic options, offering the potential for improved outcomes and enteral autonomy. Understanding the genetic underpinnings of MMIHS is crucial for personalized care. While the prognosis varies, timely interventions and careful monitoring enhance patient outcomes. Genetic studies have given us valuable insights into the molecular mechanisms of MMIHS. These studies have identified mutations in genes involved in the development and function of smooth muscle cells. They have also shown that MMIHS is associated with defects in the signaling pathways that control muscle contraction. Continued research in the genetics of MMIHS holds promise for unraveling the complexities of MMIHS and improving the lives of affected individuals.
Collapse
Affiliation(s)
- Prasad K V Devavarapu
- Department of Biochemistry, GITAM Institute of Medical Sciences & Research, Rushikonda, Visakhapatnam, Andhra Pradesh, 530045, India
| | - Kalyan Ram Uppaluri
- GenepoweRx, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana, 500033, India
| | - Vrushabh Anil Nikhade
- KIT's College of Engineering (Autonomous), Kolhapur, Maharashtra, 416234, India
- GenepoweRx, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana, 500033, India
| | - Kalyani Palasamudram
- GenepoweRx, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana, 500033, India
| | - Kavutharapu Sri Manjari
- GenepoweRx, Suit #2B, Plot No. 240, Nirvana, Road No. 36, Jawahar Colony, Jubilee Hills, Hyderabad, Telangana, 500033, India.
| |
Collapse
|
5
|
Ceron RH, Báez-Cruz FA, Palmer NJ, Carman PJ, Boczkowska M, Heuckeroth RO, Ostap EM, Dominguez R. Molecular mechanisms linking missense ACTG2 mutations to visceral myopathy. SCIENCE ADVANCES 2024; 10:eadn6615. [PMID: 38820162 PMCID: PMC11141634 DOI: 10.1126/sciadv.adn6615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Visceral myopathy is a life-threatening disease characterized by muscle weakness in the bowel, bladder, and uterus. Mutations in smooth muscle γ-actin (ACTG2) are the most common cause of the disease, but the mechanisms by which the mutations alter muscle function are unknown. Here, we examined four prevalent ACTG2 mutations (R40C, R148C, R178C, and R257C) that cause different disease severity and are spread throughout the actin fold. R178C displayed premature degradation, R148C disrupted interactions with actin-binding proteins, R40C inhibited polymerization, and R257C destabilized filaments. Because these mutations are heterozygous, we also analyzed 50/50 mixtures with wild-type (WT) ACTG2. The WT/R40C mixture impaired filament nucleation by leiomodin 1, and WT/R257C produced filaments that were easily fragmented by smooth muscle myosin. Smooth muscle tropomyosin isoform Tpm1.4 partially rescued the defects of R40C and R257C. Cryo-electron microscopy structures of filaments formed by R40C and R257C revealed disrupted intersubunit contacts. The biochemical and structural properties of the mutants correlate with their genotype-specific disease severity.
Collapse
Affiliation(s)
- Rachel H. Ceron
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Faviolla A. Báez-Cruz
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Palmer
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J. Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert O. Heuckeroth
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. Michael Ostap
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Billon C, Piccoli GB, de Sainte Agathe JM, Stoeva R, Derive N, Heidet L, Berrebi D, Bruneval P, Jeunemaitre X, Hureaux M. Genome-wide analysis identifies MYH11 compound heterozygous variants leading to visceral myopathy corresponding to late-onset form of megacystis-microcolon-intestinal hypoperistalsis syndrome. Mol Genet Genomics 2024; 299:44. [PMID: 38625590 DOI: 10.1007/s00438-024-02136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Megacystis-microcolon-hypoperistalsis-syndrome (MMIHS) is a rare and early-onset congenital disease characterized by massive abdominal distension due to a large non-obstructive bladder, a microcolon and decreased or absent intestinal peristalsis. While in most cases inheritance is autosomal dominant and associated with heterozygous variant in ACTG2 gene, an autosomal recessive transmission has also been described including pathogenic bialellic loss-of-function variants in MYH11. We report here a novel family with visceral myopathy related to MYH11 gene, confirmed by whole genome sequencing (WGS). WGS was performed in two siblings with unusual presentation of MMIHS and their two healthy parents. The 38 years-old brother had severe bladder dysfunction and intestinal obstruction, whereas the 30 years-old sister suffered from end-stage kidney disease with neurogenic bladder and recurrent sigmoid volvulus. WGS was completed by retrospective digestive pathological analyses. Compound heterozygous variants of MYH11 gene were identified, associating a deletion of 1.2 Mb encompassing MYH11 inherited from the father and an in-frame variant c.2578_2580del, p.Glu860del inherited from the mother. Pathology analyses of the colon and the rectum revealed structural changes which significance of which is discussed. Cardiac and vascular assessment of the mother was normal. This is the second report of a visceral myopathy corresponding to late-onset form of MMIHS related to compound heterozygosity in MYH11; with complete gene deletion and a hypomorphic allele in trans. The hypomorphic allele harbored by the mother raised the question of the risk of aortic disease in adults. This case shows the interest of WGS in deciphering complex phenotypes, allowing adapted diagnosis and genetic counselling.
Collapse
Affiliation(s)
- Clarisse Billon
- Université Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
| | | | - Jean-Madeleine de Sainte Agathe
- Laboratoire de Biologie Médicale MultiSites SeqOIA, Paris, France
- Département de Génétique Médicale, Groupe Hospitalier Universitaire Pitié Salpêtrière, Assistance Publique Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Radka Stoeva
- Service de Génétique Médicale, Centre Hospitalier du Mans, Le Mans, France
| | - Nicolas Derive
- Laboratoire de Biologie Médicale MultiSites SeqOIA, Paris, France
| | - Laurence Heidet
- Centre de référence des Maladies Rénales Héréditaires de L'Enfant Et de L'Adulte, MARHEA, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
- Service de Néphrologie Pédiatrique, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
| | - Dominique Berrebi
- Université Paris Cité, Paris, France
- Service de Pathologie, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
| | - Patrick Bruneval
- Université Paris Cité, Paris, France
- Service de Cardiologie, Hôpital Européen Georges Pompidou, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
| | - Xavier Jeunemaitre
- Université Paris Cité, Paris, France
- Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Assistance Publique Hôpitaux de Paris, 75015, Paris, France
| | - Marguerite Hureaux
- Université Paris Cité, Paris, France.
- Service de Médecine Génomique des Maladies Rares, Groupe Hospitalier Universitaire Centre, Assistance Publique Hôpitaux de Paris, 75015, Paris, France.
- Centre de référence des Maladies Rénales Héréditaires de L'Enfant Et de L'Adulte, MARHEA, Hôpital Necker-Enfants Malades, Assistance Publique Hôpitaux de Paris, 75015, Paris, France.
- INSERM, PARCC U970, 75015, Paris, France.
| |
Collapse
|
7
|
Murali K, Dhua AK. Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS): challenges in diagnosis and management. BMJ Case Rep 2024; 17:e259983. [PMID: 38627049 PMCID: PMC11029411 DOI: 10.1136/bcr-2024-259983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a rare, congenital functional intestinal obstruction, characterised by megacystis (bladder distention in the absence of mechanical obstruction), microcolon and intestinal hypoperistalsis (dysmotility).We are reporting a case of a female child with normal antenatal course who presented with recurrent episodes of abdominal distension since the second day of life and underwent negative exploratory laparotomy on multiple occasions. She also had urinary retention with a grossly distended bladder, requiring drainage by clean intermittent catheterisation. Surgical procedures for bowel decompression, including gastrostomy and ileostomy, were carried out without success. Genetic analysis revealed a mutation in the human smooth muscle (enteric) gamma-actin gene (ACTG2 gene), clinching the diagnosis of MMIHS. The patient was managed with parenteral nutrition and prokinetic medications and tolerated jejunostomy feeds for a brief period before she succumbed to the illness.Female neonates or infants presenting with abdominal distension and dilated urinary tract should be investigated for MMIHS early on. A timely diagnosis will enable the early involvement of a multidisciplinary team to provide the best options available for management.
Collapse
Affiliation(s)
- Keerthika Murali
- Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Anjan Kumar Dhua
- Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
8
|
Kuil LE, Chauhan RK, de Graaf BM, Cheng WW, Kakiailatu NJM, Lasabuda R, Verhaeghe C, Windster JD, Schriemer D, Azmani Z, Brooks AS, Edie S, Reeves RH, Eggen BJL, Shepherd IT, Burns AJ, Hofstra RMW, Melotte V, Brosens E, Alves MM. ATP5PO levels regulate enteric nervous system development in zebrafish, linking Hirschsprung disease to Down Syndrome. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166991. [PMID: 38128843 DOI: 10.1016/j.bbadis.2023.166991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
Hirschsprung disease (HSCR) is a complex genetic disorder characterized by the absence of enteric nervous system (ENS) in the distal region of the intestine. Down Syndrome (DS) patients have a >50-fold higher risk of developing HSCR than the general population, suggesting that overexpression of human chromosome 21 (Hsa21) genes contribute to HSCR etiology. However, identification of responsible genes remains challenging. Here, we describe a genetic screening of potential candidate genes located on Hsa21, using the zebrafish. Candidate genes were located in the DS-HSCR susceptibility region, expressed in the human intestine, were known potential biomarkers for DS prenatal diagnosis, and were present in the zebrafish genome. With this approach, four genes were selected: RCAN1, ITSN1, ATP5PO and SUMO3. However, only overexpression of ATP5PO, coding for a component of the mitochondrial ATPase, led to significant reduction of ENS cells. Paradoxically, in vitro studies showed that overexpression of ATP5PO led to a reduction of ATP5PO protein levels. Impaired neuronal differentiation and reduced mitochondrial ATP production, were also detected in vitro, after overexpression of ATP5PO in a neuroblastoma cell line. Finally, epistasis was observed between ATP5PO and ret, the most important HSCR gene. Taken together, our results identify ATP5PO as the gene responsible for the increased risk of HSCR in DS patients in particular if RET variants are also present, and show that a balanced expression of ATP5PO is required for normal ENS development.
Collapse
Affiliation(s)
- L E Kuil
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - R K Chauhan
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - B M de Graaf
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - W W Cheng
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - N J M Kakiailatu
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - R Lasabuda
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - C Verhaeghe
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - J D Windster
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center Rotterdam, Sophia's Children's Hospital, Rotterdam, the Netherlands
| | - D Schriemer
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Z Azmani
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - A S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - S Edie
- Johns Hopkins University School of Medicine, Department of Physiology and McKusick-Nathans Department of Genetic Medicine, Baltimore, MD, United States of America
| | - R H Reeves
- Johns Hopkins University School of Medicine, Department of Physiology and McKusick-Nathans Department of Genetic Medicine, Baltimore, MD, United States of America
| | - B J L Eggen
- Department of Biomedical Sciences of Cells and Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - I T Shepherd
- Department of Biology, Emory University, Atlanta, GA, United States of America
| | - A J Burns
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Birth Defects Research Centre, UCL Institute of Child Health, London, United Kingdom; Gastrointestinal Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, United States of America
| | - R M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - V Melotte
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pathology, GROW-school for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - E Brosens
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands
| | - M M Alves
- Department of Clinical Genetics, Erasmus University Medical Center Rotterdam - Sophia Children's Hospital, Rotterdam, the Netherlands; Department of Pediatric Surgery, Erasmus University Medical Center Rotterdam, Sophia's Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
9
|
Chen CP. Syndromic and single gene disorders associated with fetal megacystis (I): Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). Taiwan J Obstet Gynecol 2024; 63:19-21. [PMID: 38216263 DOI: 10.1016/j.tjog.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 01/14/2024] Open
Abstract
Fetal megacystis has been reported to be associated with chromosomal abnormalities, megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS), obstructive uropathy, prune belly syndrome, cloacal anomalies, limb-body wall complex, amniotic band syndrome, anorectal malformations, VACTERL association (vertebral anomalies, anal atresia, cardiac malformations, tracheo-esophageal fistula, renal anomalies and limb abnormalities) and fetal overgrowth syndrome such as Bechwith-Wiedemann syndrome and Sotos syndrome. This review provides an overview of syndromic and single gene disorders associated with fetal megacystis which is useful for genetic counseling at prenatal diagnosis of fetal megacystis.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan.
| |
Collapse
|
10
|
Bai Y, Zhao F, Wu T, Chen F, Pang X. Actin polymerization and depolymerization in developing vertebrates. Front Physiol 2023; 14:1213668. [PMID: 37745245 PMCID: PMC10515290 DOI: 10.3389/fphys.2023.1213668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Development is a complex process that occurs throughout the life cycle. F-actin, a major component of the cytoskeleton, is essential for the morphogenesis of tissues and organs during development. F-actin is formed by the polymerization of G-actin, and the dynamic balance of polymerization and depolymerization ensures proper cellular function. Disruption of this balance results in various abnormalities and defects or even embryonic lethality. Here, we reviewed recent findings on the structure of G-actin and F-actin and the polymerization of G-actin to F-actin. We also focused on the functions of actin isoforms and the underlying mechanisms of actin polymerization/depolymerization in cellular and organic morphogenesis during development. This information will extend our understanding of the role of actin polymerization in the physiologic or pathologic processes during development and may open new avenues for developing therapeutics for embryonic developmental abnormalities or tissue regeneration.
Collapse
Affiliation(s)
- Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Feng Zhao
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoxiao Pang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
11
|
Ma S, Mi Z, Wang Z, Sun L, Liu T, Shi P, Wang C, Xue X, Chen W, Wang Z, Yu Y, Zhang Y, Bao F, Wang N, Wang H, Xia Q, Liu H, Sun Y, Zhang F. Single-cell sequencing analysis reveals development and differentiation trajectory of Schwann cells manipulated by M. leprae. PLoS Negl Trop Dis 2023; 17:e0011477. [PMID: 37478057 PMCID: PMC10361531 DOI: 10.1371/journal.pntd.0011477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND M. leprae preferentially infects Schwann cells (SCs) in the peripheral nerves leading to nerve damage and irreversible disability. Knowledge of how M. leprae infects and interacts with host SCs is essential for understanding mechanisms of nerve damage and revealing potential new therapeutic strategies. METHODOLOGY/PRINCIPAL FINDINGS We performed a time-course single-cell sequencing analysis of SCs infected with M. leprae at different time points, further analyzed the heterogeneity of SCs, subpopulations associated with M. leprae infection, developmental trajectory of SCs and validated by Western blot or flow cytometry. Different subpopulations of SCs exhibiting distinct genetic features and functional enrichments were present. We observed two subpopulations associated with M. leprae infection, a stem cell-like cell subpopulation increased significantly at 24 h but declined by 72 h after M. leprae infection, and an adipocyte-like cell subpopulation, emerged at 72 h post-infection. The results were validated and confirmed that a stem cell-like cell subpopulation was in the early stage of differentiation and could differentiate into an adipocyte-like cell subpopulation. CONCLUSIONS/SIGNIFICANCE Our results present a systematic time-course analysis of SC heterogeneity after infection by M. leprae at single-cell resolution, provide valuable information to understand the critical biological processes underlying reprogramming and lipid metabolism during M. leprae infection of SCs, and increase understanding of the disease-causing mechanisms at play in leprosy patients as well as revealing potential new therapeutic strategies.
Collapse
Affiliation(s)
- Shanshan Ma
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peidian Shi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjie Chen
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yueqian Yu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Na Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Honglei Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qianqian Xia
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
12
|
Heinz-Erian P, Janecke AR, Müller T, Rehder P, Bruder E, Menter T, Zoller H, Pirklbauer M, Rieger M. Extremely severe hypochloremic metabolic alkalosis after ileorectal anastomosis in a patient with chronic intestinal pseudo-obstruction. Gastroenterol Rep (Oxf) 2023; 11:goad037. [PMID: 37398928 PMCID: PMC10313418 DOI: 10.1093/gastro/goad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 07/04/2023] Open
Affiliation(s)
- Peter Heinz-Erian
- Corresponding author. Department of Pediatric and Adolescent Medicine, Medical University of Innsbruck, 35 Anichstrasse, Innsbruck, Tyrol A-6020, Austria. Tel: +43-699-12621449; Fax: +43-512-50425886;
| | - Andreas R Janecke
- Department of Pediatric and Adolescent Medicine, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Thomas Müller
- Department of Pediatric and Adolescent Medicine, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Peter Rehder
- Department of Urology, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Elisabeth Bruder
- Institute of Pathology, University Hospital Basel, Basel, Basel, Switzerland
| | - Thomas Menter
- Institute of Pathology, University Hospital Basel, Basel, Basel, Switzerland
| | - Heinz Zoller
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Markus Pirklbauer
- Department of Internal Medicine IV, Medical University of Innsbruck, Innsbruck, Tyrol, Austria
| | - Michael Rieger
- Department of Radiology, District Hospital Hall, Hall, Tyrol, Austria
| |
Collapse
|
13
|
Geraghty RM, Orr S, Olinger E, Neatu R, Barroso-Gil M, Mabillard H, Consortium GER, Wilson I, Sayer JA. Use of whole genome sequencing to determine the genetic basis of visceral myopathies including Prune Belly syndrome. JOURNAL OF RARE DISEASES (BERLIN, GERMANY) 2023; 2:9. [PMID: 37288276 PMCID: PMC10241726 DOI: 10.1007/s44162-023-00012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Objectives/aims The visceral myopathies (VM) are a group of disorders characterised by poorly contractile or acontractile smooth muscle. They manifest in both the GI and GU tracts, ranging from megacystis to Prune Belly syndrome. We aimed to apply a bespoke virtual genetic panel and describe novel variants associated with this condition using whole genome sequencing data within the Genomics England 100,000 Genomes Project. Methods We screened the Genomics England 100,000 Genomes Project rare diseases database for patients with VM-related phenotypes. These patients were screened for sequence variants and copy number variants (CNV) in ACTG2, ACTA2, MYH11, MYLK, LMOD1, CHRM3, MYL9, FLNA and KNCMA1 by analysing whole genome sequencing data. The identified variants were analysed using variant effect predictor online tool, and any possible segregation in other family members and novel missense mutations was modelled using in silico tools. The VM cohort was also used to perform a genome-wide variant burden test in order to identify confirm gene associations in this cohort. Results We identified 76 patients with phenotypes consistent with a diagnosis of VM. The range of presentations included megacystis/microcolon hypoperistalsis syndrome, Prune Belly syndrome and chronic intestinal pseudo-obstruction. Of the patients in whom we identified heterozygous ACTG2 variants, 7 had likely pathogenic variants including 1 novel likely pathogenic allele. There were 4 patients in whom we identified a heterozygous MYH11 variant of uncertain significance which leads to a frameshift and a predicted protein elongation. We identified one family in whom we found a heterozygous variant of uncertain significance in KCNMA1 which in silico models predicted to be disease causing and may explain the VM phenotype seen. We did not find any CNV changes in known genes leading to VM-related disease phenotypes. In this phenotype selected cohort, ACTG2 is the largest monogenic cause of VM-related disease accounting for 9% of the cohort, supported by a variant burden test approach, which identified ACTG2 variants as the largest contributor to VM-related phenotypes. Conclusions VM are a group of disorders that are not easily classified and may be given different diagnostic labels depending on their phenotype. Molecular genetic analysis of these patients is valuable as it allows precise diagnosis and aids understanding of the underlying disease manifestations. We identified ACTG2 as the most frequent genetic cause of VM. We recommend a nomenclature change to 'autosomal dominant ACTG2 visceral myopathy' for patients with pathogenic variants in ACTG2 and associated VM phenotypes. Supplementary Information The online version contains supplementary material available at 10.1007/s44162-023-00012-z.
Collapse
Affiliation(s)
- Robert M. Geraghty
- Renal Services, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle Upon Tyne, NE7 7DN UK
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Sarah Orr
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Eric Olinger
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Ruxandra Neatu
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Miguel Barroso-Gil
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Holly Mabillard
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - Genomics England Research Consortium
- Renal Services, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle Upon Tyne, NE7 7DN UK
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle Upon Tyne, NE4 5PL UK
| | - Ian Wilson
- Faculty of Medical Sciences, Biosciences Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
| | - John A. Sayer
- Renal Services, The Newcastle Upon Tyne Hospitals NHS Foundation Trust, Freeman Road, Newcastle Upon Tyne, NE7 7DN UK
- Faculty of Medical Sciences, Translational and Clinical Institute, Newcastle University, Central Parkway, Newcastle Upon Tyne, NE1 3BZ UK
- National Institute for Health Research Newcastle Biomedical Research Centre, Newcastle Upon Tyne, NE4 5PL UK
| |
Collapse
|
14
|
Viti F, Pramotton FM, Martufi M, Magrassi R, Pedemonte N, Nizzari M, Zanacchi FC, De Michele B, Alampi M, Zambito M, Santamaria G, Bajetto A, Sardar S, Tomati V, Gandullia P, Giampietro C, Florio T, Beltrame F, Vassalli M, Ceccherini I. Patient's dermal fibroblasts as disease markers for visceral myopathy. BIOMATERIALS ADVANCES 2023; 148:213355. [PMID: 36893487 DOI: 10.1016/j.bioadv.2023.213355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Visceral myopathy (VSCM) is a rare genetic disease, orphan of pharmacological therapy. VSCM diagnosis is not always straightforward due to symptomatology similarities with mitochondrial or neuronal forms of intestinal pseudo-obstruction. The most prevalent form of VSCM is associates with variants in the gene ACTG2, encoding the protein gamma-2 actin. Overall, VSCM is a mechano-biological disorder, in which different genetic variants lead to similar alterations to the contractile phenotype of enteric smooth muscles, resulting in the emergence of life-threatening symptoms. In this work we analyzed the morpho-mechanical phenotype of human dermal fibroblasts from patients affected with VSCM, demonstrating that they retain a clear signature of the disease when compared with different controls. We evaluated several biophysical traits of fibroblasts, and we show that a measure of cellular traction forces can be used as a non-specific biomarker of the disease. We propose that a simple assay based on traction forces could be designed to provide a valuable support for clinical decision or pre-clinical research.
Collapse
Affiliation(s)
- Federica Viti
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Via De Marini 16, 16149 Genova, Italy.
| | - Francesca Micaela Pramotton
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland; ETH Zurich, The Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Michela Martufi
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Via De Marini 16, 16149 Genova, Italy; Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV, 2, 16132 Genova, Italy
| | - Raffaella Magrassi
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Via De Marini 16, 16149 Genova, Italy
| | - Nicoletta Pedemonte
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Mario Nizzari
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Via De Marini 16, 16149 Genova, Italy
| | | | - Benedetta De Michele
- Istituto di Biofisica - Consiglio Nazionale delle Ricerche, Via De Marini 16, 16149 Genova, Italy
| | - Manuela Alampi
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Viale Causa, 13, 16145 Genova, Italy
| | - Martina Zambito
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV, 2, 16132 Genova, Italy
| | - Giuseppe Santamaria
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Adriana Bajetto
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV, 2, 16132 Genova, Italy
| | - Sabah Sardar
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Oakfield avenue, G128LT Glasgow, UK
| | - Valeria Tomati
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Paolo Gandullia
- UOC Pediatric Gastroenterology and Digestive Endoscopy, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| | - Costanza Giampietro
- EMPA, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Dübendorf, Switzerland; ETH Zurich, The Institute for Mechanical Systems, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Tullio Florio
- Dipartimento Medicina Interna, Sezione di Farmacologia, Università di Genova, viale Benedetto XV, 2, 16132 Genova, Italy; IRCCS Ospedale Policlinico San Martino, Largo rosanna benzi 10, 16132 Genova, Italy
| | - Francesco Beltrame
- Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Viale Causa, 13, 16145 Genova, Italy
| | - Massimo Vassalli
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Oakfield avenue, G128LT Glasgow, UK
| | - Isabella Ceccherini
- UOSD Laboratorio di Genetica e Genomica delle Malattie Rare, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147 Genova, Italy
| |
Collapse
|
15
|
Cao S, Feng H, Yi H, Pan M, Lin L, Zhang YS, Feng Z, Liang W, Cai B, Li Q, Xiong Z, Shen Q, Ke M, Zhao X, Chen H, He Q, Min M, Cai Q, Liu H, Wang J, Pei D, Chen J, Ma Y. Single-cell RNA sequencing reveals the developmental program underlying proximal-distal patterning of the human lung at the embryonic stage. Cell Res 2023:10.1038/s41422-023-00802-6. [PMID: 37085732 PMCID: PMC10119843 DOI: 10.1038/s41422-023-00802-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/21/2023] [Indexed: 04/23/2023] Open
Abstract
The lung is the primary respiratory organ in human, in which the proximal airway and the distal alveoli are responsible for air conduction and gas exchange, respectively. However, the regulation of proximal-distal patterning at the embryonic stage of human lung development is largely unknown. Here we investigated the early lung development of human embryos at weeks 4-8 post fertilization (Carnegie stages 12-21) using single-cell RNA sequencing, and obtained a transcriptomic atlas of 169,686 cells. We observed discernible gene expression patterns of proximal and distal epithelia at week 4, upon the initiation of lung organogenesis. Moreover, we identified novel transcriptional regulators of the patterning of proximal (e.g., THRB and EGR3) and distal (e.g., ETV1 and SOX6) epithelia. Further dissection revealed various stromal cell populations, including an early-embryonic BDNF+ population, providing a proximal-distal patterning niche with spatial specificity. In addition, we elucidated the cell fate bifurcation and maturation of airway and vascular smooth muscle progenitor cells at the early stage of lung development. Together, our study expands the scope of human lung developmental biology at early embryonic stages. The discovery of intrinsic transcriptional regulators and novel niche providers deepens the understanding of epithelial proximal-distal patterning in human lung development, opening up new avenues for regenerative medicine.
Collapse
Affiliation(s)
- Shangtao Cao
- Guangzhou Laboratory, Guangzhou, Guangdong, China.
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Huijian Feng
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hongyan Yi
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Mengjie Pan
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Lihui Lin
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Yao Santo Zhang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Ziyu Feng
- Guangzhou Laboratory, Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Weifang Liang
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
| | - Baomei Cai
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Qi Li
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Zhi Xiong
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Qingmei Shen
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Minjing Ke
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xing Zhao
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Huilin Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qina He
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China
| | - Mingwei Min
- Guangzhou Laboratory, Guangzhou, Guangdong, China
| | - Quanyou Cai
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - He Liu
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jie Wang
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Duanqing Pei
- Laboratory of Cell Fate Control, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Jiekai Chen
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong, China.
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- University of the Chinese Academy of Sciences, Beijing, China.
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China.
| | - Yanlin Ma
- Hainan Provincial Key Laboratory for Human Reproductive Medicine and Genetic Research, Hainan Provincial Clinical Research Center for Thalassemia, Reproductive Medical Center, International Technology Cooperation Base "China-Myanmar Joint Research Center for Prevention and Treatment of Regional Major Disease" By the Ministry of Science and Technology of China, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China.
- Key Laboratory of the Ministry of Education for Reproductive Health Diseases Research and Translation, Hainan Medical University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Cai H, Xiao Y, Chen S, Lu Y, Du J, You Y, Zhu J, Zhou J, Cai W, Wang Y. Heterozygous Actg2 R257C mice mimic the phenotype of megacystis microcolon intestinal hypoperistalsis syndrome. Neurogastroenterol Motil 2023; 35:e14472. [PMID: 36264152 DOI: 10.1111/nmo.14472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/27/2022] [Accepted: 09/08/2022] [Indexed: 01/01/2023]
Abstract
BACKGROUND Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a rare and serious congenital disorder with poor outcomes, where a heterozygous missense mutation is present in the ACTG2 gene. Here, we aimed to investigate the pathogenesis of ACTG2 in MMIHS. METHODS A cohort with 20 patients with MMIHS was screened. Actg2R257C heterozygous mutant mice were generated using the CRISPR/Cas9 system. Gastrointestinal (GI) motility, voluntary urination, collagen gel contraction, and G-actin/F-actin analysis were performed. KEY RESULTS The R257C variant of ACTG2 most frequently occurred in patients with MMIHS and demonstrated the typical symptoms of MMIHS. Actg2R257C heterozygous mutant mice had dilated intestines and bladders. The functional assay showed a prolonged total time of GI transit and decreased urine spot area. Collagen gel contraction assay and G-actin/F-actin analysis indicated that mutant mice showed reduced area of contraction of smooth muscle cells (SMCs) and impaired actin polymerization. CONCLUSIONS & INFERENCES A mouse model demonstrating MMIHS-like symptoms was generated. The Actg2R257C heterozygous variant impairs SMCs contraction by interfering with actin polymerization, leading to GI motility disorders.
Collapse
Affiliation(s)
- Hui Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongtao Xiao
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Shanshan Chen
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying Lu
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jun Du
- Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yaying You
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Zhu
- Shanghai Institute of Pediatric Research, Shanghai, China
| | - Jie Zhou
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Cai
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Ying Wang
- Division of Pediatric Gastroenterology and Nutrition, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| |
Collapse
|
17
|
Kapur RP, Goldstein AM, Loeff DS, Myers CT, Paschal CR. Intestinal Pathology in Patients With Pathogenic ACTG2-Variant Visceral Myopathy: 16 Patients From 12 Families and Review of the Literature. Pediatr Dev Pathol 2022; 25:581-597. [PMID: 35695198 DOI: 10.1177/10935266221107449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Dominant gamma-smooth muscle actin gene (ACTG2) variants cause clinically diverse forms of visceral myopathy. Many patients undergo intestinal resection or biopsy before identification of their genetic defect. The pathology of ACTG2-variant visceral myopathy has not been evaluated systematically. METHODS Glass slides, ultrastructural images, molecular genetic reports, and clinical records from 16 patients with pathogenic (15) or likely pathogenic (1) ACTG2 variants were reviewed and compared with surgical specimens from controls (no evidence of a primary myopathy or pseudo-obstruction due to Hirschsprung disease) and published descriptions. RESULTS The variable clinical manifestations in our cohort matched those in the literature. Only non-specific light and electron microscopic findings observed in non-myopathic controls were encountered in 13 of 16 patients. The remaining 3 patients harbored hyalinized cytoplasmic inclusions in smooth muscle cells and 1 of them had polyglucosan bodies in the muscularis propria. CONCLUSIONS Apart from hyalinized inclusions, which were only observed in 3/16 patients, intestinal pathology in the majority of patients with ACTG2 variants is not indicative of an underlying visceral myopathy. Molecular testing should be considered even when no diagnostic intestinal pathology is identified.
Collapse
Affiliation(s)
- Raj P Kapur
- Department of Laboratories, 7274Seattle Children's Hospital, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, 7284University of Washington, Seattle, WA, USA
| | - Allan M Goldstein
- Department of Pediatric Surgery, 2348Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Deborah S Loeff
- Department of Pediatric Surgery, Comer Children's Hospital, University of Chicago Medicine, Chicago, IL, USA.,Advocate Aurora Children's Hospital, Park Ridge, IL, USA
| | - Candace T Myers
- Department of Laboratories, 7274Seattle Children's Hospital, Seattle, WA, USA
| | - Cate R Paschal
- Department of Laboratories, 7274Seattle Children's Hospital, Seattle, WA, USA.,Department of Laboratory Medicine and Pathology, 7284University of Washington, Seattle, WA, USA
| |
Collapse
|
18
|
Kalsbeek A, Dhar-Dass R, Hanan A, Al-Haddad E, William I, Alazraki A, Poulik J, McCollum K, Almashad A, Shehata BM. Five New Cases of Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome (MMIHS), with One Case Showing a Novel Mutation. Fetal Pediatr Pathol 2022; 41:749-758. [PMID: 34383618 DOI: 10.1080/15513815.2021.1964656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a lethal congenital disorder characterized by a large, non-obstructed bladder, microcolon, and lack of proper peristalsis. MATERIALS AND METHODS Five cases of MMIHS were identified, confirmed histologically and were predominantly female (F:M, 4:1). DNA sequencing was also performed. RESULTS Four cases showed mutations in the α3 and β4 nicotinic acetylcholine receptor (ηAChR) subunits (CHRNA3 and CHRNB4, respectively) on chromosome 15q24. The 5th case had a delayed clinical presentation of intussusception at 11 months and showed a novel missense mutation in ATP2B4 on Chromosome 1q32. CONCLUSION The first four patients showed a previously identified mutation. The 5th patient shows a novel mutation in ATP2B4. This novel gene was associated with a less severe presentation and increases success of multiorgan transplant than the other four patients. This highlights how identifying various mutations may impact prognosis and clinical treatment plans for MMIHS patients.
Collapse
Affiliation(s)
- Alyssa Kalsbeek
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Renee Dhar-Dass
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Abdul Hanan
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Eman Al-Haddad
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Iman William
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Adina Alazraki
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Janet Poulik
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Kasey McCollum
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Aya Almashad
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| | - Bahig M Shehata
- Department of Pathology, Children's Hospital of Michigan, Detroit, Michigan, USA
| |
Collapse
|
19
|
Zada A, Zhao Y, Halim D, Windster J, van der Linde HC, Glodener J, Overkleeft S, de Graaf BM, Verdijk RM, Brooks AS, Shepherd I, Gao Y, Burns AJ, Hofstra RMW, Alves MM. The long Filamin-A isoform is required for intestinal development and motility: implications for chronic intestinal pseudo-obstruction. Hum Mol Genet 2022; 32:151-160. [PMID: 35981053 PMCID: PMC9838097 DOI: 10.1093/hmg/ddac199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 01/25/2023] Open
Abstract
Filamin A (FLNA) is a cytoplasmic actin binding protein, recently shown to be expressed as a long and short isoform. Mutations in FLNA are associated with a wide spectrum of disorders, including an X-linked form of chronic intestinal pseudo-obstruction (CIPO). However, the role of FLNA in intestinal development and function is largely unknown. In this study, we show that FLNA is expressed in the muscle layer of the small intestine from early human fetal stages. Expression of FLNA variants associated with CIPO, blocked expression of the long flna isoform and led to an overall reduction of RNA and protein levels. As a consequence, contractility of human intestinal smooth muscle cells was affected. Lastly, our transgenic zebrafish line showed that the flna long isoform is required for intestinal elongation and peristalsis. Histological analysis revealed structural and architectural changes in the intestinal smooth muscle of homozygous fish, likely triggered by the abnormal expression of intestinal smooth muscle markers. No defect in the localization or numbers of enteric neurons was observed. Taken together, our study demonstrates that the long FLNA isoform contributes to intestinal development and function. Since loss of the long FLNA isoform does not seem to affect the enteric nervous system, it likely results in a myopathic form of CIPO, bringing new insights to disease pathogenesis.
Collapse
Affiliation(s)
| | | | - Danny Halim
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands
| | - Jonathan Windster
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands,Department of Pediatric Surgery, Erasmus University Medical Center Rotterdam, Sophia Children's Hospital, Rotterdam 3015GD, The Netherlands
| | - Herma C van der Linde
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands
| | - Jackleen Glodener
- Department of Biology, Rollins Research Center, Emory University, Atlanta, GA 30322, USA
| | - Sander Overkleeft
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands
| | - Bianca M de Graaf
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands
| | - Robert M Verdijk
- Department of Pathology, Erasmus University Medical Center, Rotterdam 3015GD, The Netherlands
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands
| | - Iain Shepherd
- Department of Biology, Rollins Research Center, Emory University, Atlanta, GA 30322, USA
| | - Ya Gao
- Department of Pediatric Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | | | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, Rotterdam 3015GD, The Netherlands,Birth Defects Research Centre, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK
| | - Maria M Alves
- To whom correspondence should be addressed at: Department of Clinical Genetics, Erasmus University Medical Center, Sophia Children’s Hospital, PO Box 2040, 3000CA Rotterdam, The Netherlands. Tel: +3110-7030683;
| |
Collapse
|
20
|
Fournier N, Fabre A. Smooth muscle motility disorder phenotypes: A systematic review of cases associated with seven pathogenic genes ( ACTG2, MYH11, FLNA, MYLK, RAD21, MYL9 and LMOD1). Intractable Rare Dis Res 2022; 11:113-119. [PMID: 36200034 PMCID: PMC9437995 DOI: 10.5582/irdr.2022.01060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/15/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
Smooth muscle disorders affecting both the intestine and the bladder have been known for a decade. However, the recent discovery of genes associated with these dysfunctions has led to the description of several clinical phenotypes. We performed a systematic review of all published cases involving seven genes with pathogenic variants, ACTG2, MYH11, FLNA, MYLK, RAD21, MYL9 and LMOD1, and included 28 articles describing 112 patients and 5 pregnancies terminated before birth. The most commonly described mutations involved ACTG2 (75/112, 67% of patients), MYH11 (14%) and FLNA (13%). Twenty-seven patients (28%) died at a median age of 14.5 months. Among the 76 patients for whom this information was available, 10 (13%) had isolated chronic intestinal pseudo-obstruction (CIPO), 17 (22%) had isolated megacystis, and 48 (63%) had combined CIPO and megacystis. The respective proportions of these phenotypes were 9%, 20% and 71% among the 56 patients with ACTG2 mutations, 20%, 20% and 60% among the 10 patients with MYH11 mutations and 50%, 50% and 0% among the 7 patients with FLNA mutations.
Collapse
Affiliation(s)
- Ninon Fournier
- APHM, Timone Enfant, Pediatric Multidisciplinary Department, Marseille, France
| | - Alexandre Fabre
- APHM, Timone Enfant, Pediatric Multidisciplinary Department, Marseille, France
- Aix-Marseille Université, INSERM, GMGF, Marseille, France
- Address correspondence to:Alexandre Fabre, Pediatric Multidisciplinary Department, Timone Enfant Hospital, APHM, Aix-Marseille University, 264 Rue Saint Pierre 13005 Marseille, France. E-mail:
| |
Collapse
|
21
|
Zada A, Kuil LE, de Graaf BM, Kakiailatu N, Windster JD, Brooks AS, van Slegtenhorst M, de Koning B, Wijnen RMH, Melotte V, Hofstra RMW, Brosens E, Alves MM. TFAP2B Haploinsufficiency Impacts Gastrointestinal Function and Leads to Pediatric Intestinal Pseudo-obstruction. Front Cell Dev Biol 2022; 10:901824. [PMID: 35874825 PMCID: PMC9304996 DOI: 10.3389/fcell.2022.901824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Pediatric Intestinal Pseudo-obstruction (PIPO) is a congenital enteric disorder characterized by severe gastrointestinal (GI) dysmotility, without mechanical obstruction. Although several genes have been described to cause this disease, most patients do not receive a genetic diagnosis. Here, we aim to identify the genetic cause of PIPO in a patient diagnosed with severe intestinal dysmotility shortly after birth. Methods: Whole exome sequencing (WES) was performed in the patient and unaffected parents, in a diagnostic setting. After identification of the potential disease-causing variant, its functional consequences were determined in vitro and in vivo. For this, expression constructs with and without the causing variant, were overexpressed in HEK293 cells. To investigate the role of the candidate gene in GI development and function, a zebrafish model was generated where its expression was disrupted using CRISPR/Cas9 editing. Results: WES analysis identified a de novo heterozygous deletion in TFAP2B (NM_003221.4:c.602-5_606delTCTAGTTCCA), classified as a variant of unknown significance. In vitro studies showed that this deletion affects RNA splicing and results in loss of exon 4, leading to the appearance of a premature stop codon and absence of TFAP2B protein. Disruption of tfap2b in zebrafish led to decreased enteric neuronal numbers and delayed transit time. However, no defects in neuronal differentiation were detected. tfap2b crispants also showed decreased levels of ednrbb mRNA, a downstream target of tfap2b. Conclusion: We showed that TFAP2B haploinsufficiency leads to reduced neuronal numbers and GI dysmotility, suggesting for the first time, that this gene is involved in PIPO pathogenesis.
Collapse
Affiliation(s)
- Almira Zada
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
- *Correspondence: Almira Zada, ; Maria M. Alves,
| | - Laura E. Kuil
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Bianca M. de Graaf
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Naomi Kakiailatu
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Jonathan D. Windster
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Alice S. Brooks
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Barbara de Koning
- Department of Pediatric Gastroenterology, Erasmus University Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - René M. H. Wijnen
- Department of Pediatric Surgery, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Veerle Melotte
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
- Department of Pathology, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, Netherlands
| | - Robert M. W. Hofstra
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
| | - Maria M. Alves
- Department of Clinical Genetics, Erasmus Medical Centre-Sophia Children’s Hospital, Rotterdam, Netherlands
- *Correspondence: Almira Zada, ; Maria M. Alves,
| |
Collapse
|
22
|
Sandy NS, Huysentruyt K, Mulder DJ, Warner N, Chong K, Morel C, AlQahtani S, Wales PW, Martin MG, Muise AM, Avitzur Y. The Diverse Phenotype of Intestinal Dysmotility Secondary to ACTG2-related Disorders. J Pediatr Gastroenterol Nutr 2022; 74:575-581. [PMID: 35149643 PMCID: PMC9632465 DOI: 10.1097/mpg.0000000000003400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS The initial description of a heterozygous dominant ACTG2 variant in familial visceral myopathy was followed by the identification of additional variants in other forms of intestinal dysmotility disorders. we aimed to describe the diverse phenotype of this newly reported and rare disease. METHODS Report of 4 new patients, and a systematic review of ACTG2-related disorders. we analyzed the population frequency and used in silico gene damaging predictions. Genotype-phenotype correlations were explored. RESULTS One hundred three patients (52% girls), from 14 publications, were included. Twenty-eight unique variants were analyzed, all exceedingly rare, and 27 predicted to be highly damaging. The median Combined Annotation Dependent Depletion (CADD) score was 29.2 (Interquartile range 26.3-29.4). Most patients underwent abdominal surgery (66%), about half required intermittent bladder catheterization (48.5%), and more than half were parenteral nutrition (PN)-dependent (53%). One-quarter of the patients died (25.7%), and 6 required transplant (5.8%). Girls had a higher rate of microcolon (P = 0.009), PN dependency (P = 0.003), and death/transplant (P = 0.029) compared with boys, and early disease onset (<2 years of age) was associated with megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) features. There was no statistical association between disease characteristics and CADD scores. CONCLUSIONS Damaging ACTG2 variants are rare, often associated with MMIHS phenotype, and overall have a wide phenotypic variation. Symptoms usually present in the perinatal period but can also appear at a later age. The course of the disease is marked by frequent need for surgical interventions, PN support, and mortality. Poor outcomes are more common among girls with ACTG2 variants.
Collapse
Affiliation(s)
- Natascha S. Sandy
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Group for Improvement of Intestinal Function and Treatment (GIFT), The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Koen Huysentruyt
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Group for Improvement of Intestinal Function and Treatment (GIFT), The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Department of Pediatric Gastroenterology, Universitair Ziekenhuis Brussel, vrije Universiteit Brussel (vUB), Brussels, Belgium
| | - Daniel J. Mulder
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Neil Warner
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Karen Chong
- The Prenatal Diagnosis and Medical Genetics Program. Mount Sinai Hospital, Toronto, ON
| | - Chantal Morel
- Cancer Clinical Research Unit (CCRU), Princess Margaret Cancer Centre, The Hospital for Sick Children, University ofToronto, Toronto, Ontario, Canada
| | - Saleh AlQahtani
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Paul W. Wales
- Group for Improvement of Intestinal Function and Treatment (GIFT), The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Division of general and thoracic Surgery, The Hospital for Sick Children, University ofToronto, Toronto, Ontario, Canada
| | - Martin G. Martin
- # Division of Gastroenterology and Nutrition, Department of Pediatrics, Mattel Children’s Hospital and the David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Aleixo M. Muise
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Yaron Avitzur
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Group for Improvement of Intestinal Function and Treatment (GIFT), The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Hahn JW, Moon SY, Kim MS, Woo MH, Sohn MJ, Kim HY, Seong MW, Park SS, Park SH, Moon JS, Ko JS. ACTG2 Variants in Pediatric Chronic Intestinal Pseudo-obstruction With Megacystis. J Neurogastroenterol Motil 2022; 28:104-110. [PMID: 34980693 PMCID: PMC8748860 DOI: 10.5056/jnm20243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/23/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Background/Aims Chronic intestinal pseudo-obstruction (CIPO) is a clinically heterogeneous syndrome characterized by compromised peristalsis and intestinal obstruction. Variants of actin gamma 2 (ACTG2), a protein crucial for correct enteric muscle contraction, have been found in CIPO patients. The aim of this study is to examine the clinical features and ACTG2 variants in Korean patients with CIPO. Methods From January 1995 to August 2020, 12 patients diagnosed with CIPO were included and genetic analysis testing of ACTG2 was performed. Results Heterozygous ACTG2 missense variants were found in 6 patients (50.0%). The p.Arg257Cys variant was found in 3 patients, and p.Arg63Gln and p.Arg178His variants were found in 1 patient each. A novel variant, p.Ile193Phe, was found in 1 patient. Three patients were diagnosed at birth, 2 at the age of 1 year, and 1 at 3 years of age. Abnormal prenatal genitourinary ultrasonographic findings were found in all 6 patients; microcolon was found in 4 patients (66.7%), and megacystis in all 6 patients. The pathology showed abnormal ganglion cells as well as myopathic findings. All patients are dependent on total parenteral nutrition and are to date alive. Conclusions ACTG2 variants are commonly found in Korean patients with CIPO. In CIPO patients with megacystis and abnormal prenatal ultrasonography, genetic testing of ACTG2 should be considered. Molecular diagnosis of CIPO is more important than pathologic diagnosis.
Collapse
Affiliation(s)
- Jong Woo Hahn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Soo Young Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Min Soo Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Min Hyung Woo
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Min Ji Sohn
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun-Young Kim
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung Sup Park
- Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Soo Moon
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
24
|
James KN, Lau M, Shayan K, Lenberg J, Mardach R, Ignacio R, Halbach J, Choi L, Kumar S, Ellsworth KA. Expanding the genotypic spectrum of ACTG2-related visceral myopathy. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006085. [PMID: 33883208 PMCID: PMC8208046 DOI: 10.1101/mcs.a006085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Visceral myopathies (VMs) encompass a spectrum of disorders characterized by chronic disruption of gastrointestinal function, with or without urinary system involvement. Pathogenic missense variation in smooth muscle γ-actin gene (ACTG2) is associated with autosomal dominant VM. Whole-genome sequencing of an infant presenting with chronic intestinal pseudo-obstruction revealed a homozygous 187 bp (c.589_613 + 163del188) deletion spanning the exon 6–intron 6 boundary within ACTG2. The patient's clinical course was marked by prolonged hospitalizations, multiple surgeries, and intermittent total parenteral nutrition dependence. This case supports the emerging understanding of allelic heterogeneity in ACTG2-related VM, in which both biallelic and monoallelic variants in ACTG2 are associated with gastrointestinal dysfunction of similar severity and overlapped clinical presentation. Moreover, it illustrates the clinical utility of rapid whole-genome sequencing, which can comprehensively and precisely detect different types of genomic variants including small deletions, leading to guidance of clinical care decisions.
Collapse
Affiliation(s)
- Kiely N James
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Megan Lau
- UC San Diego School of Medicine, La Jolla, California 92093, USA
| | - Katayoon Shayan
- Pathology Department, Hepatology and Nutrition, Rady Children's Hospital, San Diego, California 92123, USA
| | - Jerica Lenberg
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Rebecca Mardach
- Rady Children's Institute for Genomic Medicine, San Diego, California 92123, USA
| | - Romeo Ignacio
- Division of Pediatric Surgery, Hepatology and Nutrition, Rady Children's Hospital, San Diego, California 92123, USA
| | - Jonathan Halbach
- Division of Pediatric Surgery, Hepatology and Nutrition, Rady Children's Hospital, San Diego, California 92123, USA
| | - Lillian Choi
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children's Hospital, San Diego, California 92123, USA
| | - Soma Kumar
- Division of Gastroenterology, Hepatology and Nutrition, Rady Children's Hospital, San Diego, California 92123, USA
| | | |
Collapse
|
25
|
Suresh R, Diaz RJ. The remodelling of actin composition as a hallmark of cancer. Transl Oncol 2021; 14:101051. [PMID: 33761369 PMCID: PMC8008238 DOI: 10.1016/j.tranon.2021.101051] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Actin is a key structural protein that makes up the cytoskeleton of cells, and plays a role in functions such as division, migration, and vesicle trafficking. It comprises six different cell-type specific isoforms: ACTA1, ACTA2, ACTB, ACTC1, ACTG1, and ACTG2. Abnormal actin isoform expression has been reported in many cancers, which led us to hypothesize that it may serve as an early biomarker of cancer. We show an overview of the different actin isoforms and highlight mechanisms by which they may contribute to tumorigenicity. Furthermore, we suggest how the aberrant expression of actin subunits can confer cells with greater proliferation ability, increased migratory capability, and chemoresistance through incorporation into the normal cellular F-actin network and altered actin binding protein interaction. Studying this fundamental change that takes place within cancer cells can further our understanding of neoplastic transformation in multiple tissue types, which can ultimately aid in the early-detection, diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Rahul Suresh
- Montreal Neurological Institute, Integrated Program in Neuroscience, McGill University, Montreal, Canada
| | - Roberto J Diaz
- Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, Faculty of Medicine, McGill University, Montreal, Canada.
| |
Collapse
|
26
|
Hashmi SK, Ceron RH, Heuckeroth RO. Visceral myopathy: clinical syndromes, genetics, pathophysiology, and fall of the cytoskeleton. Am J Physiol Gastrointest Liver Physiol 2021; 320:G919-G935. [PMID: 33729000 PMCID: PMC8285581 DOI: 10.1152/ajpgi.00066.2021] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Visceral smooth muscle is a crucial component of the walls of hollow organs like the gut, bladder, and uterus. This specialized smooth muscle has unique properties that distinguish it from other muscle types and facilitate robust dilation and contraction. Visceral myopathies are diseases where severe visceral smooth muscle dysfunction prevents efficient movement of air and nutrients through the bowel, impairs bladder emptying, and affects normal uterine contraction and relaxation, particularly during pregnancy. Disease severity exists along a spectrum. The most debilitating defects cause highly dysfunctional bowel, reduced intrauterine colon growth (microcolon), and bladder-emptying defects requiring catheterization, a condition called megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). People with MMIHS often die early in childhood. When the bowel is the main organ affected and microcolon is absent, the condition is known as myopathic chronic intestinal pseudo-obstruction (CIPO). Visceral myopathies like MMIHS and myopathic CIPO are most commonly caused by mutations in contractile apparatus cytoskeletal proteins. Here, we review visceral myopathy-causing mutations and normal functions of these disease-associated proteins. We propose molecular, cellular, and tissue-level models that may explain clinical and histopathological features of visceral myopathy and hope these observations prompt new mechanistic studies.
Collapse
Affiliation(s)
- Sohaib Khalid Hashmi
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania,2Department of Bioengineering, The University of Pennsylvania School of Engineering and Applied Science, Philadelphia, Pennsylvania
| | - Rachel Helen Ceron
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania,3Department of Physiology, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Robert O. Heuckeroth
- 1Department of Pediatrics, The Children’s Hospital
of Philadelphia Research Institute and the Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania
| |
Collapse
|
27
|
Prathapan KM, King DE, Raghu VK, Ackerman K, Presel T, Yaworski JA, Ganoza A, Bond G, Sevilla WMA, Rudolph JA, Alissa F. Megacystis Microcolon Intestinal Hypoperistalsis Syndrome: A Case Series With Long-term Follow-up and Prolonged Survival. J Pediatr Gastroenterol Nutr 2021; 72:e81-e85. [PMID: 33264186 PMCID: PMC9124153 DOI: 10.1097/mpg.0000000000003008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Describe clinical characteristics, management, and outcome in a cohort of megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) patients. METHODS We conducted a retrospective chart review of MMIHS patients followed at a large transplant and intestinal rehabilitation center over a period of 17 years. RESULTS We identified 25 patients with MMIHS (68% girls, 13 transplanted). One transplanted and 1 nontransplanted patient were lost to follow-up. We estimated 100, 100, and 86% for 5-, 10-, and 20-year survival, respectively, with only 1 death. Of the 22 patients alive at the time of study (11 transplanted, 11 nontransplanted), median age was 9.2 years (range 2.7-22.9 years). Longest posttransplant follow-up was 16 years. Seventeen patients had available prenatal imaging reports; all showed distended bladder. Eight had genetic testing (5, ACTG2; 2, MYH11; 1, MYL9). Almost all patients had normal growth with median weight z-score -0.77 (interquartile range -1.39 to 0.26), height z score -1.2 (-2.04 to -0.48) and body mass index z-score 0.23 (-0.37 to 0.93) with no statistical difference between transplanted and nontransplanted patients. All nontransplanted patients were on parenteral nutrition with minimal/no feeds, and all except 1 of the transplanted patients were on full enteral feeds. Recent average bilirubin, INR, albumin, and creatinine fell within the reference ranges. CONCLUSIONS This is the largest single-center case series with the longest duration of follow-up for MMIHS patients. In the current era of improved intestinal rehabilitation and transplantation, MMIHS patients have excellent outcomes in survival, growth, and liver function. This observation contradicts previous reports and should alter counselling and management decisions in these patients at diagnosis.
Collapse
Affiliation(s)
- Krishnapriya Marangattu Prathapan
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Dale E. King
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Vikram Kalathur Raghu
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Kimberly Ackerman
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Tracey Presel
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Jane Anne Yaworski
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Armando Ganoza
- Hillman Center for Pediatric Liver Transplantation, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Geoffrey Bond
- Hillman Center for Pediatric Liver Transplantation, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Wednesday Marie A. Sevilla
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Jeffrey A. Rudolph
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Feras Alissa
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
28
|
Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome (MMIHS): Series of 4 Cases Caused by Mutation of ACTG2 (Actin Gamma 2, Smooth Muscle) Gene. Case Rep Gastrointest Med 2021; 2021:6612983. [PMID: 33859849 PMCID: PMC8026316 DOI: 10.1155/2021/6612983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 11/17/2022] Open
Abstract
MMIHS, also known as Berdon's syndrome, is a rare disease that belongs to primary causes of CIPOS (chronic intestinal pseudoobstruction syndrome). Clinical characteristics of MMIHS are differential, but we come across the following classic symptoms: disorders of intestinal peristalsis, microcolon, and megacystis. In this article, we present a series of 4 patients with Berdon's syndrome, in whom we managed to identify the genetic causes of MMIHS. All infants showed clinical features of bowel obstruction and dysfunction of the urinary system after birth. Two of them also manifested disorders from other systems. The prognosis for these patients is poor, but a constant betterment of management in MMIHS, in which the leading role plays TPN (total parental nutrition), causes improvement of patients' survival.
Collapse
|
29
|
Xiong X, Li J, Liu C, Xu F. Visceral myopathy diagnosed by a de novo ACTG2 mutation in a patient with chronic intestinal pseudo-obstruction-a case report. Transl Pediatr 2021; 10:679-685. [PMID: 33880338 PMCID: PMC8041608 DOI: 10.21037/tp-20-316] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Visceral myopathy is a rare genetic disorder that commonly affects the digestive and renal systems. Manifestations include a clinical spectrum covering chronic intestinal pseudo-obstruction (CIPO) and megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS). The smooth muscle actin γ-2 gene (ACTG2) is one of the most common disease-causing genes. Here, we present a case of pediatric intestinal pseudo-obstruction associated with a novel missense ACTG2 mutation, c.588G>C/p.E196D. His parents had no this mutation, which suggested the possibility of spontaneous mutation. Amino acid conservation analysis of γ-2 actin showed replacement of glutamate at position 196 by aspartate. The patient suffered from recurrent episodes of abdominal bloating, undergone repeated gastrointestinal surgery, had feeding difficulties, and required long-term parenteral nutrition support. The patient had no other specific symptoms or underlying diseases. X-ray of the abdomen showed dilation of the intestine as well as an air-fluid pattern. The manifestations of biopsy were various. All biochemical tests were normal, and the possibility of secondary intestinal pseudo-obstruction was excluded. The mutation site of ACTG2 in the present study has not been previously described in patients with visceral myopathy, and thus, our study reveals a novel mutation of ACTG2-associated visceral myopathy in a patient with CIPO. This report can serve as a reference for future research and further expands the map of genetic variation for visceral myopathy.
Collapse
Affiliation(s)
- Xiaoyu Xiong
- Department of Pediatric Intensive Care Unit, Chongqing Medical University Affiliated Children's Hospital; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jing Li
- Department of Pediatric Intensive Care Unit, Chongqing Medical University Affiliated Children's Hospital; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Chengjun Liu
- Department of Pediatric Intensive Care Unit, Chongqing Medical University Affiliated Children's Hospital; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Feng Xu
- Department of Pediatric Intensive Care Unit, Chongqing Medical University Affiliated Children's Hospital; National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders; Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
30
|
Pandurangi S, El-Chammas K, Kocoshis SA, Kaul A. Phenotypic diversity in clinical and manometric characteristics of pediatric patients with ACTG2 mutations. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2021. [DOI: 10.1016/j.epsc.2021.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
31
|
Variants in the Enteric Smooth Muscle Actin γ-2 Cause Pediatric Intestinal Pseudo-obstruction in Chinese Patients. J Pediatr Gastroenterol Nutr 2021; 72:36-42. [PMID: 32810037 DOI: 10.1097/mpg.0000000000002897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVES Pediatric intestinal pseudo-obstruction (PIPO) is a severe gastrointestinal disorder occurring in children, leading to failure to thrive, malnutrition, and long-term parenteral nutrition dependence. Enteric smooth muscle actin γ-2 (ACTG2) variants have been reported to be related to the pathogenesis of PIPO. This study aimed to determine the presence of ACTG2 variants in Chinese PIPO patients. METHODS Whole-exome sequencing was performed using samples from 39 recruited patients, whereas whole ACTG2 Sanger sequencing was performed using samples from 2 patients. Published data was reviewed to determine the number of pathogenic variants and the genotype related to ACTG2 variants in the Chinese population. RESULTS A total of 21 Chinese probands were found to carry heterozygous missense variants of ACTG2, among which 20 were de novo. Fifteen probands had p.Arg257 variants (c.770G>A and c.769C>T), and the other 2 probands had c.533G>A (p.Arg178His) and c.443G>T (p.Arg148Leu) variants. Four probands had novel variants c.337C>T (p.Pro113Ser), c.588G>C (p.Glu196Asp), c.734A>G (p.Asp245Gly), and c.553G>T (p.Asp185Tyr). CONCLUSIONS Variants affecting codon 257 of ACTG2 protein sequence appeared to be frequent in both Chinese and Caucasian PIPO patients, whereas p.Arg178 variants were less common in Chinese patients compared with Caucasian patients. The 4 novel variants in ACTG2 were also found to be related to Chinese PIPO.
Collapse
|
32
|
Matera I, Bordo D, Di Duca M, Lerone M, Santamaria G, Pongiglione M, Lezo A, Diamanti A, Spagnuolo MI, Pini Prato A, Alberti D, Mattioli G, Gandullia P, Ceccherini I. Novel ACTG2 variants disclose allelic heterogeneity and bi-allelic inheritance in pediatric chronic intestinal pseudo-obstruction. Clin Genet 2020; 99:430-436. [PMID: 33294969 DOI: 10.1111/cge.13895] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/13/2022]
Abstract
Variants in the ACTG2 gene, encoding a protein crucial for correct enteric muscle contraction, have been found in patients affected with chronic intestinal pseudo-obstruction, either congenital or late-onset visceral myopathy, and megacystis-microcolon-intestinal hypoperistalsis syndrome. Here we report about ten pediatric and one adult patients, from nine families, carrying ACTG2 variants: four show novel still unpublished missense variants, including one that is apparently transmitted according to a recessive mode of inheritance. Four of the remaining five probands carry variants affecting arginine residues, that have already been associated with a severe phenotype. A de novo occurrence of the variants could be confirmed in six of these families. Since a genotype-phenotype correlation is affected by extrinsic factors, such as, diagnosis delay, quality of clinical management, and intra-familial variability, we have undertaken 3D molecular modeling to get further insights into the effects of the variants here described. The present findings and further ACTG2 testing of patients presenting with intestinal pseudo-obstruction, will improve our understanding of visceral myopathies, including implications in the prognosis and genetic counseling of this set of severe disorders.
Collapse
Affiliation(s)
- Ivana Matera
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS Istituto Giannina Gaslini, Genoa, Italia, Italy
| | | | - Marco Di Duca
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italia, Italy
| | - Margherita Lerone
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italia, Italy
| | - Giuseppe Santamaria
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS Istituto Giannina Gaslini, Genoa, Italia, Italy
| | - Marta Pongiglione
- UOC Radiologia, IRCCS Istituto Giannina Gaslini, Genoa, Italia, Italy
| | - Antonella Lezo
- Dietetics and Clinical Nutrition Unit, Children's Hospital Regina Margherita, Torino, Italy
| | - Antonella Diamanti
- UOS Nutrizione Artificiale, IRCCS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | - Alessio Pini Prato
- UO Chirurgia Pediatrica, AON SS Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - Daniele Alberti
- UO Chirurgia Pediatrica, ASST- Spedali Civili di Brescia, Brescia, Italy
| | | | - Paolo Gandullia
- UOC Gastroenterologia. IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Ceccherini
- UOSD Genetica e Genomica delle Malattie Rare, IRCCS Istituto Giannina Gaslini, Genoa, Italia, Italy
| |
Collapse
|
33
|
Hashmi SK, Barka V, Yang C, Schneider S, Svitkina TM, Heuckeroth RO. Pseudo-obstruction-inducing ACTG2R257C alters actin organization and function. JCI Insight 2020; 5:140604. [PMID: 32814715 PMCID: PMC7455133 DOI: 10.1172/jci.insight.140604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
Actin γ 2, smooth muscle (ACTG2) R257C mutation is the most common genetic cause of visceral myopathy. Individuals with ACTG2 mutations endure prolonged hospitalizations and surgical interventions, become dependent on intravenous nutrition and bladder catheterization, and often die in childhood. Currently, we understand little about how ACTG2 mutations cause disease, and there are no mechanism-based treatments. Our goal was to characterize the effects of ACTG2R257C on actin organization and function in visceral smooth muscle cells. We overexpressed ACTG2WT or ACTG2R257C in primary human intestinal smooth muscle cells (HISMCs) and performed detailed quantitative analyses to examine effects of ACTG2R257C on (a) actin filament formation and subcellular localization, (b) actin-dependent HISMC functions, and (c) smooth muscle contractile gene expression. ACTG2R257C resulted in 41% fewer, 13% thinner, 33% shorter, and 40% less branched ACTG2 filament bundles compared with ACTG2WT. Curiously, total F-actin probed by phalloidin and a pan-actin antibody was unchanged between ACTG2WT- and ACTG2R257C-expressing HISMCs, as was ultrastructural F-actin organization. ACTG2R257C-expressing HISMCs contracted collagen gels similar to ACTG2WT-expressing HISMCs but spread 21% more and were 11% more migratory. In conclusion, ACTG2R257C profoundly affects ACTG2 filament bundle structure, without altering global actin cytoskeleton in HISMCs.
Collapse
Affiliation(s)
- Sohaib Khalid Hashmi
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA.,Department of Bioengineering, University of Pennsylvania School of Engineering and Applied Science, Philadelphia, Pennsylvania, USA
| | - Vasia Barka
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Changsong Yang
- Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania, USA
| | - Sabine Schneider
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | - Tatyana M Svitkina
- Department of Biology, University of Pennsylvania School of Arts and Sciences, Philadelphia, Pennsylvania, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, Children's Hospital of Philadelphia Research Institute, and Perelman School of Medicine at the University of Pennsylvania, Abramson Research Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
34
|
Janssen E, Tohme M, Butts J, Giguere S, Sage PT, Velázquez FE, Kam C, Milin E, Das M, Sobh A, Al-Tamemi S, Luscinskas FW, Batista F, Geha RS. DOCK8 is essential for LFA-1-dependent positioning of T follicular helper cells in germinal centers. JCI Insight 2020; 5:134508. [PMID: 32573493 DOI: 10.1172/jci.insight.134508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 06/18/2020] [Indexed: 01/07/2023] Open
Abstract
T follicular helper (Tfh) cell migration into germinal centers (GCs) is essential for the generation of GC B cells and antibody responses to T cell-dependent (TD) antigens. This process requires interactions between lymphocyte function-associated antigen 1 (LFA-1) on Tfh cells and ICAMs on B cells. The mechanisms underlying defective antibody responses to TD antigens in DOCK8 deficiency are incompletely understood. We show that mice selectively lacking DOCK8 in T cells had impaired IgG antibody responses to TD antigens, decreased GC size, and reduced numbers of GC B cells. However, they developed normal numbers of Tfh cells with intact capacity for driving B cell differentiation into a GC phenotype in vitro. Notably, migration of DOCK8-deficient T cells into GCs was defective. Following T cell receptor (TCR)/CD3 ligation, DOCK8-deficient T cells had impaired LFA-1 activation and reduced binding to ICAM-1. Our results therefore indicate that DOCK8 is important for LFA-1-dependent positioning of Tfh cells in GCs, and thereby the generation of GC B cells and IgG antibody responses to TD antigen.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mira Tohme
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jordan Butts
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sophie Giguere
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Peter T Sage
- Transplantation Research Center, Renal Division, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Francisco E Velázquez
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Departments of Pathology and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Christy Kam
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Elena Milin
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mrinmoy Das
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Sobh
- Department of Pediatrics, Mansoura University Children's Hospital, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | - Francis W Luscinskas
- Center for Excellence in Vascular Biology, Brigham and Women's Hospital, Departments of Pathology and Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Facundo Batista
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard Medical School, Cambridge, Massachusetts, USA
| | - Raif S Geha
- Division of Immunology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Billon C, Molin A, Poirsier C, Clemenson A, Dauge C, Grelet M, Sigaudy S, Patrier S, Goldenberg A, Layet V, Tantau J, Fleury C, Liard A, Diguet A, Fritih R, Verspyck E, Rendu J, Boutaud L, Tessier A, Thomas S, Razavi F, Achaiaa A, Elkhartoufi N, Hakkakian L, Magnin E, Bôle-Feysot C, Masson C, Ville Y, Roth P, Prieur F, Bessieres B, Bonniere M, Attie-Bitach T. Fetal megacystis-microcolon: Genetic mutational spectrum and identification of PDCL3 as a novel candidate gene. Clin Genet 2020; 98:261-273. [PMID: 32621347 DOI: 10.1111/cge.13801] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Megacystis-microcolon-intestinal-hypoperistalsis syndrome (MMIHS) is a severe congenital visceral myopathy characterized by an abdominal distension due to a large non-obstructed urinary bladder, a microcolon and intestinal hypo- or aperistalsis. Most of the patients described to date carry a sporadic heterozygous variant in ACTG2. More recently, recessive forms have been reported and mutations in MYH11, LMOD1, MYLK and MYL9 have been described at the molecular level. In the present report, we describe five patients carrying a recurrent heterozygous variant in ACTG2. Exome sequencing performed in four families allowed us to identify the genetic cause in three. In two families, we identified variants in MMIHS causal genes, respectively a nonsense homozygous variant in MYH11 and a previously described homozygous deletion in MYL9. Finally, we identified compound heterozygous variants in a novel candidate gene, PDCL3, c.[143_144del];[380G>A], p.[(Tyr48Ter)];[(Cys127Tyr)]. After cDNA analysis, a complete absence of PDLC3 expression was observed in affected individuals, indicating that both mutated transcripts were unstable and prone to mediated mRNA decay. PDCL3 encodes a protein involved in the folding of actin, a key step in thin filament formation. Presumably, loss-of-function of this protein affects the contractility of smooth muscle tissues, making PDCL3 an excellent candidate gene for autosomal recessive forms of MMIHS.
Collapse
Affiliation(s)
- Clarisse Billon
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France.,Département de Génétique, Hôpital Européen Georges Pompidou, APHP, Paris, France
| | - Arnaud Molin
- Département de Génétique, Normandie Université, UNICAEN, CHU de Caen Normandie, Caen, France
| | | | - Alix Clemenson
- Service d'Anatomie et Cytotologie Pathologique, CHU de Saint Etienne, Saint Etienne, France
| | - Coralie Dauge
- Department of Pathology, University Hospital, Caen, France
| | - Maude Grelet
- Département de Génétique Médicale, Hôpital de la Timone, APHM, Marseille, France
| | - Sabine Sigaudy
- Département de Génétique Médicale, Hôpital de la Timone, APHM, Marseille, France
| | - Sophie Patrier
- Service d'Anatomie Pathologique, CHU Ch. Nicolle, Rouen, France
| | - Alice Goldenberg
- centre de référence anomalies du développement et syndromes malformatifs, CHU de Rouen, Centre Normand de Génomique et de Médecine Personnalisée, France
| | - Valérie Layet
- Consultations de génétique, Groupe Hospitalier du Havre, Le Havre, France
| | - Julia Tantau
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Clémence Fleury
- Department of Pathology, Robert-Debré University Hospital, Reims, France
| | - Agnès Liard
- Département de chirurgie infantile, Chu de Rouen, Rouen, France
| | - Alain Diguet
- Laboratoire d'anatomie pathologique, pavillon Jacques-Delarue, CHU de Rouen, Rouen, France
| | - Radia Fritih
- Pathology Department, Hôpital de la Timone, APHM, Marseille, France
| | - Eric Verspyck
- Department of Obstetrics and Gynecology, Rouen University Hospital, Rouen, France
| | - John Rendu
- Unité Médicale de Génétique Moléculaire, Inserm U1216, CHU de Grenoble, Grenoble, France
| | - Lucile Boutaud
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France.,INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Aude Tessier
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Sophie Thomas
- INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| | - Ferechté Razavi
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Amale Achaiaa
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Nadia Elkhartoufi
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Leila Hakkakian
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Eglantine Magnin
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | | | - Cécile Masson
- Bioinformatics Platform, INSERM UMR 1163, Institut Imagine, Paris, France
| | - Yves Ville
- Service d'Obstétrique, Maternité, Chirurgie, Médecine et Imagerie Fœtales, Hôpital Necker-Enfants Malades, AP-HP, Centre - Université de Paris, Paris, France
| | - Philippe Roth
- Service d'Obstétrique, Maternité, Chirurgie, Médecine et Imagerie Fœtales, Hôpital Necker-Enfants Malades, AP-HP, Centre - Université de Paris, Paris, France
| | - Fabienne Prieur
- Service de génétique, Hôpital Nord CHU Saint-Etienne, Saint Etienne, France
| | - Bettina Bessieres
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Maryse Bonniere
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France
| | - Tania Attie-Bitach
- Service d'Histologie-Embryologie-Cytogénétique, Unité d'Embryofoetopathologie, Hôpital Necker-Enfants Malades, APHP, Paris, France.,INSERM UMR 1163, Université de Paris, Imagine Institute, Paris, France
| |
Collapse
|
36
|
Assia Batzir N, Kishor Bhagwat P, Larson A, Coban Akdemir Z, Bagłaj M, Bofferding L, Bosanko KB, Bouassida S, Callewaert B, Cannon A, Enchautegui Colon Y, Garnica AD, Harr MH, Heck S, Hurst ACE, Jhangiani SN, Isidor B, Littlejohn RO, Liu P, Magoulas P, Mar Fan H, Marom R, McLean S, Nezarati MM, Nugent KM, Petersen MB, Rocha ML, Roeder E, Smigiel R, Tully I, Weisfeld-Adams J, Wells KO, Posey JE, Lupski JR, Beaudet AL, Wangler MF. Recurrent arginine substitutions in the ACTG2 gene are the primary driver of disease burden and severity in visceral myopathy. Hum Mutat 2020; 41:641-654. [PMID: 31769566 PMCID: PMC7720429 DOI: 10.1002/humu.23960] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/04/2019] [Accepted: 11/06/2019] [Indexed: 02/06/2023]
Abstract
Visceral myopathy with abnormal intestinal and bladder peristalsis includes a clinical spectrum with megacystis-microcolon intestinal hypoperistalsis syndrome and chronic intestinal pseudo-obstruction. The vast majority of cases are caused by dominant variants in ACTG2; however, the overall genetic architecture of visceral myopathy has not been well-characterized. We ascertained 53 families, with visceral myopathy based on megacystis, functional bladder/gastrointestinal obstruction, or microcolon. A combination of targeted ACTG2 sequencing and exome sequencing was used. We report a molecular diagnostic rate of 64% (34/53), of which 97% (33/34) is attributed to ACTG2. Strikingly, missense mutations in five conserved arginine residues involving CpG dinucleotides accounted for 49% (26/53) of disease in the cohort. As a group, the ACTG2-negative cases had a more favorable clinical outcome and more restricted disease. Within the ACTG2-positive group, poor outcomes (characterized by total parenteral nutrition dependence, death, or transplantation) were invariably due to one of the arginine missense alleles. Analysis of specific residues suggests a severity spectrum of p.Arg178>p.Arg257>p.Arg40 along with other less-frequently reported sites p.Arg63 and p.Arg211. These results provide genotype-phenotype correlation for ACTG2-related disease and demonstrate the importance of arginine missense changes in visceral myopathy.
Collapse
Affiliation(s)
- Nurit Assia Batzir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Pranjali Kishor Bhagwat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
| | - Austin Larson
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado School of Medicine, Aurora, Colorado
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Maciej Bagłaj
- Department of Pediatric Surgery and Urology, Wroclaw Medical University, Wroclaw, Poland
| | - Leon Bofferding
- Département de Pédiatrie Néonatologie, Kannerklinik, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Katherine B Bosanko
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Skander Bouassida
- Humboldt Clinic, Vivantes Health Network GmbH, Charité Academic Teaching Hospital, Medical University of Berlin, Berlin, Germany
| | - Bert Callewaert
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ashley Cannon
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Yazmin Enchautegui Colon
- Inherited Metabolic Diseases Clinic, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, Colorado
| | - Adolfo D Garnica
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Margaret H Harr
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sandra Heck
- Département de Pédiatrie Néonatologie, Kannerklinik, Centre Hospitalier de Luxembourg, Luxembourg City, Luxembourg
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | | | - Bertrand Isidor
- CHU de Nantes, Service de Génétique Médicale, Nantes 44093 Cedex 1, Nantes, France
| | - Rebecca O Littlejohn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Pilar Magoulas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Helen Mar Fan
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
| | - Scott McLean
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | - Marjan M Nezarati
- Genetics Program, North York General Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Kimberly M Nugent
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | | | - Maria L Rocha
- Humboldt Clinic, Vivantes Health Network GmbH, Charité Academic Teaching Hospital, Medical University of Berlin, Berlin, Germany
| | - Elizabeth Roeder
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, San Antonio, Texas
| | - Robert Smigiel
- Department of Pediatrics, Division of Pediatrics and Rare Disorders, Wroclaw Medical University, Wroclaw, Poland
| | - Ian Tully
- Genetic Health Queensland, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
| | - James Weisfeld-Adams
- Inherited Metabolic Diseases Clinic, Section of Clinical Genetics and Metabolism, University of Colorado Denver, Aurora, Colorado
| | - Katerina O Wells
- Department of Surgery, Division of Colorectal Surgery, Baylor University Medical Center, Dallas, Texas
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Arthur L Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children's Hospital, Houston, Texas
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
37
|
Moore SW, Maluleke T, El Hosny AA. Is Hirschsprung disease a purely neurological condition? A study of the Actin G2 smooth muscle gene in Hirschsprung disease. J Pediatr Surg 2019; 54:2028-2031. [PMID: 30885557 DOI: 10.1016/j.jpedsurg.2019.01.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/02/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Hirschsprung disease is a functional obstruction of the gastrointestinal tract due to the congenital absence of ganglion cells in the intermyenteric plexuses of the distal bowel. Gastrointestinal motility requires intact muscular layers as well as neural network connection to function properly. The Actin G2 gene is the main gene encoding actin gamma 2; a smooth muscle actin found in enteric tissues. AIM This study of the Actin G2 gene in patients with Hirschsprung disease explores a possible molecular basis abnormal muscle function and post-surgical pseudo-obstruction in a group of patients. As far as the authors are aware, this is the first report confirming structural muscle deficits in Hirschsprung disease. PATIENTS AND METHODS Ethical permission and informed consent were obtained. DNA was extracted from whole blood samples in 10 patients with histologically proven HSCR patients. PCR amplification of the ACTG2 gene, were subjected to semi-automated bi-directional sequencing analysis. Sequencing results were analyzed using FinchTV Sequence Alignment Software (http:/en.biosoft.net) to read chromatogram files. Further predicting bioinformatic investigation was obtained by PolyPhen 2 software to evaluate the significance of the observed amino acid changes. RESULTS Ten new patients with similar HSCR phenotypes were prospectively investigated for variation in the Actin G2 gamma gene (ACTG2) variations. The results of ACTG2 gene analysis showing variation in exons 5, 8 and 10 of the ACTG2 gene in 7 of them (64%). The c.109C > G S345 L was the most frequent occurring in 6 of the 10 patients (54%), the c.171 A > A K119E in 2 and the significant c.108 T > G W357G variation in exon 10 (1 patient) Four patients had a combination of different variants in different exons which were less significant. Allele frequency on a control sample of the South African population showed no comparable pathology link scores (http://gnomad.broadinstitute.org/). Bioinformatic in silico modeling showed that the residue replacements in both variants (Lys to Glu and Trp to Gly) are highly non-conservative and variation can alter interactions within the protein conformation. CONCLUSIONS The Actin smooth muscle gene showed variation in 64% of samples, indicating a reason for abnormal functioning muscle in many HSCR patients. Hirschsprung disease is part of a complex spectrum which also includes smooth muscle. LEVEL OF EVIDENCE VI.
Collapse
Affiliation(s)
- Samuel W Moore
- Division of Paediatric Surgery, University of stellenbosch, Stellenbosch, South Africa.
| | - Twananani Maluleke
- Division of Paediatric Surgery, University of stellenbosch, Stellenbosch, South Africa; Division of Molecular Biology, University of stellenbosch, Stellenbosch, South Africa
| | - Ayman A El Hosny
- Division of Paediatric Surgery, University of stellenbosch, Stellenbosch, South Africa
| |
Collapse
|
38
|
Dong W, Baldwin C, Choi J, Milunsky JM, Zhang J, Bilguvar K, Lifton RP, Milunsky A. Identification of a dominant MYH11 causal variant in chronic intestinal pseudo-obstruction: Results of whole-exome sequencing. Clin Genet 2019; 96:473-477. [PMID: 31389005 DOI: 10.1111/cge.13617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023]
Abstract
Chronic Intestinal Pseudo-Obstruction (CIPO) is a rare gastrointestinal disorder, which affects the smooth muscle contractions of the gastrointestinal tract. Dominant mutations in the smooth muscle actin gene, ACTG2, accounts for 44%-50% of CIPO patients. Other recessive or X-linked genes, including MYLK, LMOD1, RAD21, MYH11, MYL9, and FLNA were reported in single cases. In this study, we used Whole-Exome Sequencing (WES) to study 23 independent CIPO families including one extended family with 13 affected members. A dominantly inherited rare mutation, c.5819delC (p.Pro1940HisfsTer91), in the smooth muscle myosin gene, MYH11, was found in the extended family, shared by 7 affected family members but not by 3 unaffected family members with available DNA, suggesting a high probability of genetic linkage. Gene burden analysis indicates that additional genes, COL4A1, FBLN1 and HK2, may be associated with the disease. This study expanded our understanding of CIPO etiology and provided additional genetic evidence to physicians and genetic counselors for CIPO diagnosis.
Collapse
Affiliation(s)
- Weilai Dong
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Clinton Baldwin
- Center for Human Genetics and Dept. Ob/Gyn, Tufts University School of Medicine, Boston, Massachusetts
| | - Jungmin Choi
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut.,Laboratory of Human Genetics and Genomics, Rockefeller University, New York, New York
| | - Jeff M Milunsky
- Center for Human Genetics and Dept. Ob/Gyn, Tufts University School of Medicine, Boston, Massachusetts
| | - Junhui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, New York
| | - Aubrey Milunsky
- Center for Human Genetics and Dept. Ob/Gyn, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
39
|
Abstract
INTRODUCTION Visceral myopathies remain difficult and frustrating clinical entities, a distinctive form of acquired degenerative visceral myopathy, African degenerative leiomyopathy, a myogenic functional intestinal obstruction without aganglionosis which affects smooth muscle of the intestine, in young indigenous African children. The Actin G2 gene is the main gene encoding smooth muscle actin found in enteric tissues. Recent research has identified Actin G2 alpha gene variation as an important causative biomarker in visceral myopathies and megacystis microcolon. This study of the Actin G2 gene (ACTG2) in an African population explores a possible molecular basis abnormal muscle function in a visceral myopathy. PATIENTS AND METHODS Following ethical permission and informed consent, DNA was extracted from whole blood samples in five patients with histologically proven African degenerative leiomyopathy. PCR amplification of ACTG2 alpha gene products by semi-automated bi-directional sequencing analysis. Results were analysed using FinchTV Sequence Alignment Software and predicting bioinformatic investigation by PolyPhen 2 software. RESULTS Five new patients with the ADL phenotypes were prospectively investigated for variation in the Actin G2 gamma gene (ACTG2). ACTG2 gene variation occurred in exon 5 (c.463 A>G K119R), in three (60%). In addition, intronic variation t > c-IVS3 was identified in three with the K119 mutation plus further g > c -IVS12 and t > c + IVS16(2), suggesting a possible haplotype. Bioinformatic modelling showed that these ACTG2 gene variations are highly non-conservative altering protein expression. CONCLUSIONS Recurrent Actin G2 smooth muscle gene variation in African degenerative visceral leiomyopathy is associated with abnormal muscle actin development.
Collapse
|
40
|
Yetman AT, Starr LJ. Newly described recessive MYH11 disorder with clinical overlap of Multisystemic smooth muscle dysfunction and Megacystis microcolon hypoperistalsis syndromes. Am J Med Genet A 2019; 176:1011-1014. [PMID: 29575632 DOI: 10.1002/ajmg.a.38647] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/12/2022]
Abstract
We describe a neonatal patient with fixed dilated pupils and pulmonary, bladder, and bowel dysfunction suspicious for the presence of ACTA2 R179 mediated multisystemic smooth muscle dysfunction syndrome. Whole exome sequencing revealed compound heterozygous mutations in MYH11 after ACTA2 specific testing revealed no abnormalities. The child lived until 18 months of age and represents the only reported case of an MYH11 compound heterozygote with widespread smooth muscle dysfunction.
Collapse
Affiliation(s)
- Anji T Yetman
- Division of Cardiology, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| | - Lois J Starr
- Division of Medical Genetics, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
41
|
Nakamura H, O'Donnell AM, Puri P. Consanguinity and its relevance for the incidence of megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS): systematic review. Pediatr Surg Int 2019; 35:175-180. [PMID: 30386895 DOI: 10.1007/s00383-018-4390-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND/PURPOSE Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is a rare congenital and generally fatal cause of functional intestinal obstruction in the newborn. The cause of this syndrome is unknown. Familial occurrence and reports of consanguinity in MMIHS implies that genetic factors may have an important role in the pathogenesis of this syndrome. The aim of the study was to determine the consequence of consanguinity for the incidence of MMIHS. METHODS A literature search was performed using the keywords "megacystis microcolon intestinal hypoperistalsis" for studies published between 1976 and 2018. Retrieved articles, including additional studies from reference lists, were reviewed for consanguinity between parents and recurrence of MMIHS between siblings. Data were extracted for cases where familial MMIHS was present. RESULTS A total of 450 patients with the diagnosis of MMIHS have been reported in the literature. There were 56 (12%) cases in which familial MMIHS was confirmed, 25 families with multiple siblings and 3 families with single affected infant. Of the 25 families with multiple siblings, 22 families had 2 siblings with confirmed MMIHS and 3 families had 3 children each with MMIHS. Consanguinity between parents was confirmed in 30 cases (18 siblings and 12 individual cases). Female-to-male ratio in the 30 patients was 4.4:1. CONCLUSION The occurrence of MMIHS in the offspring of consanguineous parents and recurrence in siblings of healthy parents suggest that MMIHS is an autosomal recessive disorder. Pre-marital and pre-conception counselling of consanguineous populations is recommended to prevent harmful consequences.
Collapse
Affiliation(s)
- Hiroki Nakamura
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Anne Marie O'Donnell
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland
| | - Prem Puri
- National Children's Research Centre, Our Lady's Children's Hospital, Dublin, Ireland. .,School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical, Research University College Dublin, Dublin, Ireland.
| |
Collapse
|
42
|
Ravenscroft G, Pannell S, O'Grady G, Ong R, Ee HC, Faiz F, Marns L, Goel H, Kumarasinghe P, Sollis E, Sivadorai P, Wilson M, Magoffin A, Nightingale S, Freckmann ML, Kirk EP, Sachdev R, Lemberg DA, Delatycki MB, Kamm MA, Basnayake C, Lamont PJ, Amor DJ, Jones K, Schilperoort J, Davis MR, Laing NG. Variants in ACTG2 underlie a substantial number of Australasian patients with primary chronic intestinal pseudo-obstruction. Neurogastroenterol Motil 2018; 30:e13371. [PMID: 29781137 DOI: 10.1111/nmo.13371] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/09/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Primary chronic intestinal pseudo-obstruction (CIPO) is a rare, potentially life-threatening disorder characterized by severely impaired gastrointestinal motility. The objective of this study was to examine the contribution of ACTG2, LMOD1, MYH11, and MYLK mutations in an Australasian cohort of patients with a diagnosis of primary CIPO associated with visceral myopathy. METHODS Pediatric and adult patients with primary CIPO and suspected visceral myopathy were recruited from across Australia and New Zealand. Sanger sequencing of the genes encoding enteric gamma-actin (ACTG2) and smooth muscle leiomodin (LMOD1) was performed on DNA from patients, and their relatives, where available. MYH11 and MYLK were screened by next-generation sequencing. KEY RESULTS We identified heterozygous missense variants in ACTG2 in 7 of 17 families (~41%) diagnosed with CIPO and its associated conditions. We also identified a previously unpublished missense mutation (c.443C>T, p.Arg148Leu) in one family. One case presented with megacystis-microcolon-intestinal hypoperistalsis syndrome in utero with subsequent termination of pregnancy at 28 weeks' gestation. All of the substitutions identified occurred at arginine residues. No likely pathogenic variants in LMOD1, MYH11, or MYLK were identified within our cohort. CONCLUSIONS AND INFERENCES ACTG2 mutations represent a significant underlying cause of primary CIPO with visceral myopathy and associated phenotypes in Australasian patients. Thus, ACTG2 sequencing should be considered in cases presenting with hypoperistalsis phenotypes with suspected visceral myopathy. It is likely that variants in other genes encoding enteric smooth muscle contractile proteins will contribute further to the genetic heterogeneity of hypoperistalsis phenotypes.
Collapse
Affiliation(s)
- G Ravenscroft
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - S Pannell
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - G O'Grady
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - R Ong
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - H C Ee
- Department of Gastroenterology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - F Faiz
- PathWest Diagnostic Genomics, QE II Medical Centre, Nedlands, WA, Australia
| | - L Marns
- PathWest Diagnostic Genomics, QE II Medical Centre, Nedlands, WA, Australia
| | - H Goel
- Hunter Genetics, Waratah, NSW, Australia
| | - P Kumarasinghe
- Faculty of Medicine and Health Sciences, University of Western Australia, Nedlands, WA, Australia
| | - E Sollis
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - P Sivadorai
- PathWest Diagnostic Genomics, QE II Medical Centre, Nedlands, WA, Australia
| | - M Wilson
- Department of Clinical Genetics, Children's Hospital at Westmead, Sydney, NSW, Australia
| | - A Magoffin
- Department of Gastroenterology, The Children's Hospital at Westmead, Westmead, NSW, Australia
| | - S Nightingale
- Paediatric Gastroenterology, John Hunter Children's Hospital, Newcastle, NSW, Australia
| | - M-L Freckmann
- ACT Genetics, The Canberra Hospital, Woden, ACT, Australia
| | - E P Kirk
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - R Sachdev
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick, NSW, Australia
| | - D A Lemberg
- Department of Paediatric Gastroenterology, Sydney Children's Hospital, Women's and Children's Health, University of New South Wales, Randwick, NSW, Australia
| | - M B Delatycki
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - M A Kamm
- Department of Gastroenterology, St Vincent's Hospital and University of Melbourne, Melbourne, Vic., Australia
| | - C Basnayake
- Department of Gastroenterology, St Vincent's Hospital and University of Melbourne, Melbourne, Vic., Australia
| | - P J Lamont
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia
| | - D J Amor
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Melbourne, Vic., Australia
| | - K Jones
- Faculty of Medicine and Health Sciences, University of Western Australia, Nedlands, WA, Australia
| | - J Schilperoort
- Faculty of Medicine and Health Sciences, University of Western Australia, Nedlands, WA, Australia
| | - M R Davis
- PathWest Diagnostic Genomics, QE II Medical Centre, Nedlands, WA, Australia
| | - N G Laing
- Harry Perkins Institute of Medical Research, University of Western Australia, Nedlands, WA, Australia.,PathWest Diagnostic Genomics, QE II Medical Centre, Nedlands, WA, Australia
| |
Collapse
|
43
|
Collins RRJ, Barth B, Megison S, Pfeifer CM, Rice LM, Harris S, Timmons CF, Rakheja D. ACTG2-Associated Visceral Myopathy With Chronic Intestinal Pseudoobstruction, Intestinal Malrotation, Hypertrophic Pyloric Stenosis, Choledochal Cyst, and a Novel Missense Mutation. Int J Surg Pathol 2018; 27:77-83. [PMID: 30019982 DOI: 10.1177/1066896918786586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Primary visceral myopathy caused by a pathogenic mutation in the gene encoding the enteric smooth muscle actin gamma 2 ( ACTG2) affects gastrointestinal and genitourinary tracts and often presents as chronic intestinal pseudoobstruction. We present a case of pediatric onset chronic intestinal pseudoobstruction associated with a novel missense ACTG2 mutation c.439G>T/p.G147C. In addition to the known disease manifestations of feeding intolerance and intestinal malrotation, our patient had a late-onset hypertrophic pyloric stenosis and a late-onset choledochal cyst, the former of which has not previously been described in patients with ACTG2-associated visceral myopathy.
Collapse
Affiliation(s)
- Rebecca R J Collins
- 1 University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Children's Health, Dallas, TX, USA
| | - Bradley Barth
- 1 University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Children's Health, Dallas, TX, USA
| | - Stephen Megison
- 1 University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Children's Health, Dallas, TX, USA
| | - Cory M Pfeifer
- 1 University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Children's Health, Dallas, TX, USA
| | - Luke M Rice
- 1 University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samar Harris
- 1 University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles F Timmons
- 1 University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Children's Health, Dallas, TX, USA
| | - Dinesh Rakheja
- 1 University of Texas Southwestern Medical Center, Dallas, TX, USA.,2 Children's Health, Dallas, TX, USA
| |
Collapse
|
44
|
Sribudiani Y, Chauhan RK, Alves MM, Petrova L, Brosens E, Harrison C, Wabbersen T, de Graaf BM, Rügenbrink T, Burzynski G, Brouwer RWW, van IJcken WFJ, Maas SM, de Klein A, Osinga J, Eggen BJL, Burns AJ, Brooks AS, Shepherd IT, Hofstra RMW. Identification of Variants in RET and IHH Pathway Members in a Large Family With History of Hirschsprung Disease. Gastroenterology 2018; 155:118-129.e6. [PMID: 29601828 DOI: 10.1053/j.gastro.2018.03.034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 02/22/2018] [Accepted: 03/19/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND & AIMS Hirschsprung disease (HSCR) is an inherited congenital disorder characterized by absence of enteric ganglia in the distal part of the gut. Variants in ret proto-oncogene (RET) have been associated with up to 50% of familial and 35% of sporadic cases. We searched for variants that affect disease risk in a large, multigenerational family with history of HSCR in a linkage region previously associated with the disease (4q31.3-q32.3) and exome wide. METHODS We performed exome sequencing analyses of a family in the Netherlands with 5 members diagnosed with HSCR and 2 members diagnosed with functional constipation. We initially focused on variants in genes located in 4q31.3-q32.3; however, we also performed an exome-wide analysis in which known HSCR or HSCR-associated gene variants predicted to be deleterious were prioritized for further analysis. Candidate genes were expressed in HEK293, COS-7, and Neuro-2a cells and analyzed by luciferase and immunoblot assays. Morpholinos were designed to target exons of candidate genes and injected into 1-cell stage zebrafish embryos. Embryos were allowed to develop and stained for enteric neurons. RESULTS Within the linkage region, we identified 1 putative splice variant in the lipopolysaccharide responsive beige-like anchor protein gene (LRBA). Functional assays could not confirm its predicted effect on messenger RNA splicing or on expression of the mab-21 like 2 gene (MAB21L2), which is embedded in LRBA. Zebrafish that developed following injection of the lrba morpholino had a shortened body axis and subtle gut morphological defects, but no significant reduction in number of enteric neurons compared with controls. Outside the linkage region, members of 1 branch of the family carried a previously unidentified RET variant or an in-frame deletion in the glial cell line derived neurotrophic factor gene (GDNF), which encodes a ligand of RET. This deletion was located 6 base pairs before the last codon. We also found variants in the Indian hedgehog gene (IHH) and its mediator, the transcription factor GLI family zinc finger 3 (GLI3). When expressed in cells, the RET-P399L variant disrupted protein glycosylation and had altered phosphorylation following activation by GDNF. The deletion in GDNF prevented secretion of its gene product, reducing RET activation, and the IHH-Q51K variant reduced expression of the transcription factor GLI1. Injection of morpholinos that target ihh reduced the number of enteric neurons to 13% ± 1.4% of control zebrafish. CONCLUSIONS In a study of a large family with history of HSCR, we identified variants in LRBA, RET, the gene encoding the RET ligand (GDNF), IHH, and a gene encoding a mediator of IHH signaling (GLI3). These variants altered functions of the gene products when expressed in cells and knockout of ihh reduced the number of enteric neurons in the zebrafish gut.
Collapse
Affiliation(s)
- Yunia Sribudiani
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Biomedical Sciences, Division of Biochemistry and Molecular Biology, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Rajendra K Chauhan
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Lucy Petrova
- Department of Biology, Emory University, Atlanta, Georgia
| | - Erwin Brosens
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Colin Harrison
- Department of Biology, Emory University, Atlanta, Georgia
| | - Tara Wabbersen
- Department of Biology, Emory University, Atlanta, Georgia
| | - Bianca M de Graaf
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Tim Rügenbrink
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Rutger W W Brouwer
- Erasmus Center for Biomics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Saskia M Maas
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan Osinga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bart J L Eggen
- Department of Neuroscience, Section Medical Physiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Alan J Burns
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Neural Development and Gastroenterology Units, UCL Institute of Child Health, London, UK
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Neural Development and Gastroenterology Units, UCL Institute of Child Health, London, UK.
| |
Collapse
|
45
|
Rosenblatt J, Dreux S, Spaggiari E, Morin C, Allaf B, Valat AS, Halim D, Oury JF, Muller F. Prenatal diagnosis of megacystis microcolon intestinal hypoperistalsis syndrome by biochemical analysis of fetal urine. Prenat Diagn 2018; 38:585-590. [PMID: 29752823 DOI: 10.1002/pd.5283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/18/2018] [Accepted: 05/01/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVES The objective of the study is to determine a model of fetal urine biochemical markers to differentiate megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) from other megacystis. METHOD This is a retrospective study of biochemical analysis of fetal urine in patients who presented prenatally with megacystis. We studied β2-microglobulin, sodium, calcium, and phosphorus. Twenty-six patients subsequently diagnosed with MMIHS were compared with 2 control groups: one of end-stage renal failure (64 fetuses) and the second of "good" postnatal renal function (control group, 64 fetuses). RESULTS Mean fetal urine β2-microglobulin was significantly higher (P < .001) in end-stage renal failure (15.7 mg/L) than in MMIHS (2.2 mg/L) and the control group (3.2 mg/L). Fetal urine profiles differed significantly (P < .001) between MMIHS and the control group: median sodium 46.5 and 51 mmol/L, median calcium 1.12 and 0.73 mmol/L, and median phosphorus 0.03 and 0.15 mmol/L respectively. Fetal urinary ionic index [ratio: calcium / (phosphorus × sodium)] gave an area under the ROC curve of 0.86, at 54% sensitivity and 97% specificity, with correct classification in 84% of cases. We defined a nomogram to obtain a probability for MMIHS. CONCLUSION Fetal urinalysis can be helpful in prenatal differentiation of MMIHS from posterior urethral valves with good postnatal renal function.
Collapse
Affiliation(s)
- Jonathan Rosenblatt
- Gynecologie-Obstétrique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Sophie Dreux
- Biochimie-Hormonologie, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | | | - Cécile Morin
- Gynecologie-Obstétrique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Bichr Allaf
- Biochimie-Hormonologie, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Anne Sylvie Valat
- Gynécologie-Obstétrique, Centre Hospitalier Lens, CPDPN, Lille, France
| | - Danny Halim
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jean-François Oury
- Gynecologie-Obstétrique, Hôpital Universitaire Robert Debré, APHP, Paris, France
| | - Françoise Muller
- Biochimie-Hormonologie, Hôpital Universitaire Robert Debré, APHP, Paris, France
| |
Collapse
|
46
|
Korğalı EÜ, Yavuz A, Şimşek CEÇ, Güney C, Kurtulgan HK, Başer B, Atalar MH, Özer H, Eğilmez HR. Megacystis Microcolon Intestinal Hypoperistalsis Syndrome in Which a Different De Novo Actg2 Gene Mutation was Detected: A Case Report. Fetal Pediatr Pathol 2018; 37:109-116. [PMID: 29608093 DOI: 10.1080/15513815.2018.1445149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) is characterized by bladder distension without urinary tract obstruction, decreased or absent intestinal peristalsis and microcolon. Although the definitive cause remains unknown, changes in the ACTG2 gene are thought to be responsible for the intestinal and bladder hypoperistalsis. CASE REPORT This female newborn with MMIHS had a c.532C>A /p.Arg178Ser heterozygous de novo mutation detected in the ACTG2 gene. Normal immature ganglion cells, normal calretinin punctate positivity, maintence of smooth muscle actin immunoreactivity, and decreased numbers of interstitial cells of Cajal(ICCs) were detected. CONCLUSION This previously unreported c.532C>A /p.Arg178Ser heterozygous de novo mutation in the ACTG2 gene may lead to a severe form of MMIHS.
Collapse
Affiliation(s)
- Elif Ünver Korğalı
- a Cumhuriyet University , Faculty of Medicine, Department of Pediatrics , Sivas , Turkey
| | - Amine Yavuz
- a Cumhuriyet University , Faculty of Medicine, Department of Pediatrics , Sivas , Turkey
| | | | - Cengiz Güney
- b Cumhuriyet Universitesi , Department of Pediatric Surgery , Sivas , Turkey
| | - Hande Küçük Kurtulgan
- c Cumhuriyet University Faculty of Medicine, Department of Medical Genetics , Sivas , Turkey
| | - Burak Başer
- c Cumhuriyet University Faculty of Medicine, Department of Medical Genetics , Sivas , Turkey
| | - Mehmet Haydar Atalar
- d Cumhuriyet University Faculty of Medicine, Department of Radiology , Sivas , Turkey
| | - Hatice Özer
- e Cumhuriyet University Faculty of Medicine, Department of Pathology , Sivas , Turkey
| | - Hatice Reyhan Eğilmez
- e Cumhuriyet University Faculty of Medicine, Department of Pathology , Sivas , Turkey
| |
Collapse
|
47
|
Farrelly JS, Weiss RM, Copel JA, Porto AF, Ahle SL, Luks VL, McGrath JM, Stitelman DH. An atypical case of megacystis microcolon intestinal hypoperistalsis syndrome with extended survival and consistent bowel function. JOURNAL OF PEDIATRIC SURGERY CASE REPORTS 2018. [DOI: 10.1016/j.epsc.2017.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
48
|
Homozygous deletion in MYL9 expands the molecular basis of megacystis-microcolon-intestinal hypoperistalsis syndrome. Eur J Hum Genet 2018; 26:669-675. [PMID: 29453416 DOI: 10.1038/s41431-017-0055-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 12/11/2022] Open
Abstract
Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a severe disease characterized by functional obstruction in the urinary and gastrointestinal tract. The molecular basis of this condition started to be defined recently, and the genes related to the syndrome (ACTG2-heterozygous variant in sporadic cases; and MYH11 (myosin heavy chain 11), LMOD1 (leiomodin 1) and MYLK (myosin light chain (MLC) kinase)-autosomal recessive inheritance), encode proteins involved in the smooth muscle contraction, supporting a myopathic basis for the disease. In the present article, we described a family with two affected siblings with MMIHS born to consanguineous parents and the molecular investigation performed to define the genetic etiology. Previous whole exome sequencing of the affected child and parents did not identify a candidate gene for the disease in this family, but now we present a reanalysis of the data that led to the identification of a homozygous deletion encompassing the last exon of MYL9 (myosin regulatory light chain 9) in the affected individual. MYL9 gene encodes a regulatory myosin MLC and the phosphorylation of this protein is a crucial step in the contraction process of smooth muscle cell. Despite the absence of human or animal phenotype related to MYL9, a cause-effect relationship between MYL9 and the MMIHS seems biologically plausible. The present study reveals a strong candidate gene for autosomal recessive forms of MMIHS, expanding the molecular basis of this disease and reinforces the myopathic basis of this condition.
Collapse
|
49
|
Zespół Berdona oraz zespół suszonej śliwki i ich współistnienie − analiza przypadków. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.pepo.2017.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Abstract
OBJECTIVES The diagnosis of chronic intestinal pseudo-obstruction has depended on clinical features, manometry, and imaging. This report aimed to determine the efficacy of sequencing the actin γ-2 (ACTG2) gene for diagnosis. In addition, the goal was to determine how often a mutation would be found in our randomly collected cohort of probands and those probands published previously. METHODS Whole exome sequencing was performed in 4 probands with chronic intestinal pseudo-obstruction. Subsequently, only the ACTG2 gene was sequenced in another 24 probands (total 28). We analyzed published data of 83 probands and our 28 (total 111) and determined how many had pathogenic variants and the precise genotype. RESULTS Whole exome and Sanger sequencing revealed a pathogenic variant in the ACTG2 gene in 4 out of 28 of our probands and in 45 out of 83 published probands (49/111 [44.1%]). Moreover, a mutational hotspot in the ACTG2 gene was recognized. Genetic heterogeneity is evident. CONCLUSIONS Pooled gene sequencing results from 1 individual in each of 111 families enabled a precise diagnosis of an ACTG2 mutation in 49 (44%). The benefit to patients and families of early confirmation of a motility disorder not only helps avoid unnecessary intervention, but also enables institution of appropriate treatments and avoidance of secondary disorders such as malnutrition and poor growth. Knowledge of a pathogenic variant in a parent, with a 50% risk of recurrence, provides an opportunity for genetic counseling.
Collapse
|