1
|
Ms S, Banerjee S, D'Mello SR, Dastidar SG. Amyotrophic Lateral Sclerosis: Focus on Cytoplasmic Trafficking and Proteostasis. Mol Neurobiol 2025:10.1007/s12035-025-04831-7. [PMID: 40180687 DOI: 10.1007/s12035-025-04831-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/09/2025] [Indexed: 04/05/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal motor neuron disease characterized by the pathological loss of upper and lower motor neurons. Whereas most ALS cases are caused by a combination of environmental factors and genetic susceptibility, in a relatively small proportion of cases, the disorder results from mutations in genes that are inherited. Defects in several different cellular mechanisms and processes contribute to the selective loss of motor neurons (MNs) in ALS. Prominent among these is the accumulation of aggregates of misfolded proteins or peptides which are toxic to motor neurons. These accumulating aggregates stress the ability of the endoplasmic reticulum (ER) to function normally, cause defects in the transport of proteins between the ER and Golgi, and impair the transport of RNA, proteins, and organelles, such as mitochondria, within axons and dendrites, all of which contribute to the degeneration of MNs. Although dysfunction of a variety of cellular processes combines towards the pathogenesis of ALS, in this review, we focus on recent advances concerning the involvement of defective ER stress, vesicular transport between the ER and Golgi, and axonal transport.
Collapse
Affiliation(s)
- Shrilaxmi Ms
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Saradindu Banerjee
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Santosh R D'Mello
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
- College of Arts and Sciences, Louisiana State University, Shreveport, LA, 71115, USA.
| | - Somasish Ghosh Dastidar
- Center for Molecular Neuroscience, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Roth DM, Piña JO, MacPherson M, Budden C, Graf D. Physiology and Clinical Manifestations of Pathologic Cranial Suture Widening. Cleft Palate Craniofac J 2024; 61:1750-1759. [PMID: 37271984 PMCID: PMC11468227 DOI: 10.1177/10556656231178438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023] Open
Abstract
Cranial sutures are complex structures integrating mechanical forces with osteogenesis which are often affected in craniofacial syndromes. While premature fusion is frequently described, rare pathological widening of cranial sutures is a comparatively understudied phenomenon. This narrative review aims to bring to light the biologically variable underlying causes of widened sutures and persistent fontanelles leading to a common outcome. The authors herein present four syndromes, selected from a literature review, and their identified biological mechanisms in the context of altered suture physiology, exploring the roles of progenitor cell differentiation, extracellular matrix production, mineralization, and bone resorption. This article illustrates the gaps in understanding of complex craniofacial disorders, and the potential for further unification of genetics, cellular biology, and clinical pillars of health science research to improve treatment outcomes for patients.
Collapse
Affiliation(s)
- Daniela M. Roth
- School of Dentistry, University of Alberta, Edmonton, Canada
| | - Jeremie Oliver Piña
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | | | - Curtis Budden
- Department of Surgery, University of Alberta, Edmonton, Canada
| | - Daniel Graf
- School of Dentistry, University of Alberta, Edmonton, Canada
- Department of Medical Genetics, University of Alberta, Edmonton, Canada
| |
Collapse
|
3
|
Todd TW, Shao W, Zhang YJ, Petrucelli L. The endolysosomal pathway and ALS/FTD. Trends Neurosci 2023; 46:1025-1041. [PMID: 37827960 PMCID: PMC10841821 DOI: 10.1016/j.tins.2023.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/23/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are considered to be part of a disease spectrum that is associated with causative mutations and risk variants in a wide range of genes. Mounting evidence indicates that several of these genes are linked to the endolysosomal system, highlighting the importance of this pathway in ALS/FTD. Although many studies have focused on how disruption of this pathway impacts on autophagy, recent findings reveal that this may not be the whole picture: specifically, disrupting autophagy may not be sufficient to induce disease, whereas disrupting the endolysosomal system could represent a crucial pathogenic driver. In this review we discuss the connections between ALS/FTD and the endolysosomal system, including a breakdown of how disease-associated genes are implicated in this pathway. We also explore the potential downstream consequences of disrupting endolysosomal activity in the brain, outside of an effect on autophagy.
Collapse
Affiliation(s)
- Tiffany W Todd
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Wei Shao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Neurobiology of Disease Graduate Program, Mayo Graduate School, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
4
|
Bhattacharya MRC. A nerve-wracking buzz: lessons from Drosophila models of peripheral neuropathy and axon degeneration. Front Aging Neurosci 2023; 15:1166146. [PMID: 37614471 PMCID: PMC10442544 DOI: 10.3389/fnagi.2023.1166146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023] Open
Abstract
The degeneration of axons and their terminals occurs following traumatic, toxic, or genetically-induced insults. Common molecular mechanisms unite these disparate triggers to execute a conserved nerve degeneration cascade. In this review, we will discuss how models of peripheral nerve injury and neuropathy in Drosophila have led the way in advancing molecular understanding of axon degeneration and nerve injury pathways. Both neuron-intrinsic as well as glial responses to injury will be highlighted. Finally, we will offer perspective on what additional questions should be answered to advance these discoveries toward clinical interventions for patients with neuropathy.
Collapse
|
5
|
Crombie EM, Kim S, Adamson S, Dong H, Lu TC, Wu Y, Wu Y, Levy Y, Stimple N, Lam WMR, Hey HWD, Withers DJ, Hsu AL, Bay BH, Ochala J, Tsai SY. Activation of eIF4E-binding-protein-1 rescues mTORC1-induced sarcopenia by expanding lysosomal degradation capacity. J Cachexia Sarcopenia Muscle 2023; 14:198-213. [PMID: 36398408 PMCID: PMC9891956 DOI: 10.1002/jcsm.13121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic mTORC1 activation in skeletal muscle is linked with age-associated loss of muscle mass and strength, known as sarcopenia. Genetic activation of mTORC1 by conditionally ablating mTORC1 upstream inhibitor TSC1 in skeletal muscle accelerates sarcopenia development in adult mice. Conversely, genetic suppression of mTORC1 downstream effectors of protein synthesis delays sarcopenia in natural aging mice. mTORC1 promotes protein synthesis by activating ribosomal protein S6 kinases (S6Ks) and inhibiting eIF4E-binding proteins (4EBPs). Whole-body knockout of S6K1 or muscle-specific over-expression of a 4EBP1 mutant transgene (4EBP1mt), which is resistant to mTORC1-mediated inhibition, ameliorates muscle loss with age and preserves muscle function by enhancing mitochondria activities, despite both transgenic mice showing retarded muscle growth at a young age. Why repression of mTORC1-mediated protein synthesis can mitigate progressive muscle atrophy and dysfunction with age remains unclear. METHODS Mice with myofiber-specific knockout of TSC1 (TSC1mKO), in which mTORC1 is hyperactivated in fully differentiated myofibers, were used as a mouse model of sarcopenia. To elucidate the role of mTORC1-mediated protein synthesis in regulating muscle mass and physiology, we bred the 4EBP1mt transgene or S6k1 floxed mice into the TSC1mKO mouse background to generate 4EBP1mt-TSC1mKO or S6K1-TSC1mKO mice, respectively. Functional and molecular analyses were performed to assess their role in sarcopenia development. RESULTS Here, we show that 4EBP1mt-TSC1mKO, but not S6K1-TSC1mKO, preserved muscle mass (36.7% increase compared with TSC1mKO, P < 0.001) and strength (36.8% increase compared with TSC1mKO, P < 0.01) at the level of control mice. Mechanistically, 4EBP1 activation suppressed aberrant protein synthesis (two-fold reduction compared with TSC1mKO, P < 0.05) and restored autophagy flux without relieving mTORC1-mediated inhibition of ULK1, an upstream activator of autophagosome initiation. We discovered a previously unidentified phenotype of lysosomal failure in TSC1mKO mouse muscle, in which the lysosomal defect was also conserved in the naturally aged mouse muscle, whereas 4EBP1 activation enhanced lysosomal protease activities to compensate for impaired autophagy induced by mTORC1 hyperactivity. Consequently, 4EBP1 activation relieved oxidative stress to prevent toxic aggregate accumulation (0.5-fold reduction compared with TSC1mKO, P < 0.05) in muscle and restored mitochondrial homeostasis and function. CONCLUSIONS We identify 4EBP1 as a communication hub coordinating protein synthesis and degradation to protect proteostasis, revealing therapeutic potential for activating lysosomal degradation to mitigate sarcopenia.
Collapse
Affiliation(s)
- Elisa M Crombie
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Seonyoung Kim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stuart Adamson
- Buck Institute for Research on Aging, Novato, California, USA
| | - Han Dong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tzu-Chiao Lu
- Research Center for Healthy Aging, China Medical University, Taichung, Taiwan
| | - Yiju Wu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yajun Wu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yotam Levy
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College, London, UK
| | - Nolan Stimple
- Buck Institute for Research on Aging, Novato, California, USA
| | - Wing Moon R Lam
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hwee Weng D Hey
- Department of Orthopedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dominic J Withers
- Metabolic Signalling Group, Medical Research Council London Institute of Medical Sciences (LMS), London, UK.,Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, UK
| | - Ao-Lin Hsu
- Research Center for Healthy Aging, China Medical University, Taichung, Taiwan.,Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Boon Huat Bay
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Julien Ochala
- Centre of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College, London, UK.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shih-Yin Tsai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
6
|
Giovannelli I, Higginbottom A, Kirby J, Azzouz M, Shaw PJ. Prospects for gene replacement therapies in amyotrophic lateral sclerosis. Nat Rev Neurol 2023; 19:39-52. [PMID: 36481799 DOI: 10.1038/s41582-022-00751-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2022] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease characterized by the progressive loss of upper and lower motor neurons. ALS causes death, usually within 2-5 years of diagnosis. Riluzole, the only drug currently approved in Europe for the treatment of this condition, offers only a modest benefit, increasing survival by 3 months on average. Recent advances in our understanding of causative or disease-modifying genetic variants and in the development of genetic therapy strategies present exciting new therapeutic opportunities for ALS. In addition, the approval of adeno-associated virus-mediated delivery of functional copies of the SMN1 gene to treat spinal muscular atrophy represents an important therapeutic milestone and demonstrates the potential of gene replacement therapies for motor neuron disorders. In this Review, we describe the current landscape of genetic therapies in ALS, highlighting achievements and critical challenges. In particular, we discuss opportunities for gene replacement therapy in subgroups of people with ALS, and we describe loss-of-function mutations that are known to contribute to the pathophysiology of ALS and could represent novel targets for gene replacement therapies.
Collapse
Affiliation(s)
- Ilaria Giovannelli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Adrian Higginbottom
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mimoun Azzouz
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
| |
Collapse
|
7
|
Nanayakkara R, Gurung R, Rodgers SJ, Eramo MJ, Ramm G, Mitchell CA, McGrath MJ. Autophagic lysosome reformation in health and disease. Autophagy 2022:1-18. [DOI: 10.1080/15548627.2022.2128019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Randini Nanayakkara
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Rajendra Gurung
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Samuel J. Rodgers
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Matthew J. Eramo
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Georg Ramm
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
- Monash Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Christina A. Mitchell
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Meagan J. McGrath
- Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
8
|
Muthukrishnan S, Prakathi P, Sivakumar T, Thiruvengadam M, Jayaprakash B, Baskar V, Rebezov M, Derkho M, Zengin G, Shariati MA. Bioactive Components and Health Potential of Endophytic Micro-Fungal Diversity in Medicinal Plants. Antibiotics (Basel) 2022; 11:1533. [PMID: 36358188 PMCID: PMC9686567 DOI: 10.3390/antibiotics11111533] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2023] Open
Abstract
The endophytic fungi that reside inside medicinal plants have the potential to produce various pharmaco-potential bioactive compounds. The endophytic fungi Graminicolous helminthosporium, Bipolaris australiensis and Cladosporium cladosporioides were isolated from different medicinal plants. The GC-MS analysis of intra- and extracellular products of endophytic fungi revealed the presence of various bioactive metabolites, such as Anthracene, Brallobarbital, Benzo [h] quinolone, Ethylacridine, 2-Ethylacridine, Cyclotrisiloxane, 5 methyl 2 phenylindolizine, and 1,4-Cyclohexadien-1-one, etc. The phytochemical composition analysis of endophytic fungus extracts also revealed the presence of flavonoids, phenols, saponins, carbohydrates, glycosides, and proteins. The intra- and extracellular endophytic extracts exhibited strong antibacterial and antioxidant activity, which was screened with the agar-well diffusion method and DPPH, H2O2, and nitric oxide scavenging activity, respectively. The bioactive compounds identified in the endophytic extracts from GC-MS profiling served as ligands for molecular-docking analysis to investigate the anticancer potential against non-small cell lung carcinoma receptor EGFR. Molecular docking results showed that compounds, such as Brallobarbital, and 5 methyl 2 phenylindolizine had the lowest E- min values, which suggests that these compounds could be used in anticancer drug development. Thus, the isolated endophytic fungal species can be used to produce various bioactive compounds that could be used in novel drug development from natural sources and reduce the environmental burden of synthetic chemical drugs.
Collapse
Affiliation(s)
- Sundaram Muthukrishnan
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Sivakasi 626124, Tamil Nadu, India
| | - Paranivasakam Prakathi
- Department of Biotechnology, Ayya Nadar Janaki Ammal College, Sivakasi 626124, Tamil Nadu, India
| | - Thangavel Sivakumar
- Department of Microbiology, Ayya Nadar Janaki Ammal College, Sivakasi 626124, Tamil Nadu, India
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Sciences, Konkuk University, Seoul 05029, Korea
| | - Bindhu Jayaprakash
- Departmentof Biotechnology, Sri Shakthi Institute of Engineering and Technology, Coimbatore 641062, Tamil Nadu, India
| | - Venkidasamy Baskar
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhin Str., Moscow 109316, Russia
- Department of Scientific Research, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, Moscow 109004, Russia
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| | - Marina Derkho
- Department of Natural Sciences, South-Urals State Agrarian University, 13 Gagarin Str., Troitsk 457100, Russia
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya 42130, Turkey
| | - Mohammad Ali Shariati
- Department of Scientific Research, K. G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 73 Zemlyanoy Val, Moscow 109004, Russia
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya Str., Moscow 127550, Russia
| |
Collapse
|
9
|
Cozzi M, Ferrari V. Autophagy Dysfunction in ALS: from Transport to Protein Degradation. J Mol Neurosci 2022; 72:1456-1481. [PMID: 35708843 PMCID: PMC9293831 DOI: 10.1007/s12031-022-02029-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/17/2022] [Indexed: 01/18/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motor neurons (MNs). Since the identification of the first ALS mutation in 1993, more than 40 genes have been associated with the disorder. The most frequent genetic causes of ALS are represented by mutated genes whose products challenge proteostasis, becoming unable to properly fold and consequently aggregating into inclusions that impose proteotoxic stress on affected cells. In this context, increasing evidence supports the central role played by autophagy dysfunctions in the pathogenesis of ALS. Indeed, in early stages of disease, high levels of proteins involved in autophagy are present in ALS MNs; but at the same time, with neurodegeneration progression, autophagy-mediated degradation decreases, often as a result of the accumulation of toxic protein aggregates in affected cells. Autophagy is a complex multistep pathway that has a central role in maintaining cellular homeostasis. Several proteins are involved in its tight regulation, and importantly a relevant fraction of ALS-related genes encodes products that directly take part in autophagy, further underlining the relevance of this key protein degradation system in disease onset and progression. In this review, we report the most relevant findings concerning ALS genes whose products are involved in the several steps of the autophagic pathway, from phagophore formation to autophagosome maturation and transport and finally to substrate degradation.
Collapse
Affiliation(s)
- Marta Cozzi
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| | - Veronica Ferrari
- Dipartimento Di Scienze Farmacologiche E Biomolecolari, Università Degli Studi Di Milano, 20133, Milan, Italy.
| |
Collapse
|
10
|
Houghton OH, Mizielinska S, Gomez-Suaga P. The Interplay Between Autophagy and RNA Homeostasis: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Front Cell Dev Biol 2022; 10:838402. [PMID: 35573690 PMCID: PMC9096704 DOI: 10.3389/fcell.2022.838402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are neurodegenerative disorders that lie on a disease spectrum, sharing genetic causes and pathology, and both without effective therapeutics. Two pathways that have been shown to play major roles in disease pathogenesis are autophagy and RNA homeostasis. Intriguingly, there is an increasing body of evidence suggesting a critical interplay between these pathways. Autophagy is a multi-stage process for bulk and selective clearance of malfunctional cellular components, with many layers of regulation. Although the majority of autophagy research focuses on protein degradation, it can also mediate RNA catabolism. ALS/FTD-associated proteins are involved in many stages of autophagy and autophagy-mediated RNA degradation, particularly converging on the clearance of persistent pathological stress granules. In this review, we will summarise the progress in understanding the autophagy-RNA homeostasis interplay and how that knowledge contributes to our understanding of the pathobiology of ALS/FTD.
Collapse
Affiliation(s)
- O H Houghton
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - S Mizielinska
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,UK Dementia Research Institute at King's College London, London, United Kingdom
| | - P Gomez-Suaga
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, United Kingdom.,Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| |
Collapse
|
11
|
Tzou FY, Wen JK, Yeh JY, Huang SY, Chen GC, Chan CC. Drosophila as a model to study autophagy in neurodegenerative diseases and digestive tract. IUBMB Life 2021; 74:339-360. [PMID: 34874101 DOI: 10.1002/iub.2583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
Autophagy regulates cellular homeostasis by degrading and recycling cytosolic components and damaged organelles. Disruption of autophagic flux has been shown to induce or facilitate neurodegeneration and accumulation of autophagic vesicles is overt in neurodegenerative diseases. The fruit fly Drosophila has been used as a model system to identify new factors that regulate physiology and disease. Here we provide a historical perspective of how the fly models have offered mechanistic evidence to understand the role of autophagy in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Charcot-Marie-Tooth neuropathy, and polyglutamine disorders. Autophagy also plays a pivotal role in maintaining tissue homeostasis and protecting organism health. The gastrointestinal tract regulates organism health by modulating food intake, energy balance, and immunity. Growing evidence is strengthening the link between autophagy and digestive tract health in recent years. Here, we also discuss how the fly models have advanced the understanding of digestive physiology regulated by autophagy.
Collapse
Affiliation(s)
- Fei-Yang Tzou
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Jui-Yu Yeh
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Qiu S, Lavallée-Adam M, Côté M. Proximity Interactome Map of the Vac14-Fig4 Complex Using BioID. J Proteome Res 2021; 20:4959-4973. [PMID: 34554760 DOI: 10.1021/acs.jproteome.1c00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conversion between phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate on endosomal membranes is critical for the maturation of early endosomes to late endosomes/lysosomes and is regulated by the PIKfyve-Vac14-Fig4 complex. Despite the importance of this complex for endosomal homeostasis and vesicular trafficking, there is little known about how its activity is regulated or how it interacts with other cellular proteins. Here, we screened for the cellular interactome of Vac14 and Fig4 using proximity-dependent biotin labeling (BioID). After independently screening the interactomes of Vac14 and Fig4, we identified 89 high-confidence protein hits shared by both proteins. Network analysis of these hits revealed pathways with known involvement of the PIKfyve-Vac14-Fig4 complex, including vesicular organization and PI3K/Akt signaling, as well as novel pathways including cell cycle and mitochondrial regulation. We also identified subunits of coatomer complex I (COPI), a Golgi-associated complex with an emerging role in endosomal dynamics. Using proximity ligation assays, we validated the interaction between Vac14 and COPI subunit COPB1 and between Vac14 and Arf1, a GTPase required for COPI assembly. In summary, this study used BioID to comprehensively map the Vac14-Fig4 interactome, revealing potential roles for these proteins in diverse cellular processes and pathways, including preliminary evidence of an interaction between Vac14 and COPI. Data are available via ProteomeXchange with the identifier PXD027917.
Collapse
Affiliation(s)
- Shirley Qiu
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada.,Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Mathieu Lavallée-Adam
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa K1H 8M5, Canada.,Ottawa Institute of Systems Biology, University of Ottawa, Ottawa K1H 8M5, Canada.,Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa K1H 8M5, Canada
| |
Collapse
|
13
|
Markworth R, Bähr M, Burk K. Held Up in Traffic-Defects in the Trafficking Machinery in Charcot-Marie-Tooth Disease. Front Mol Neurosci 2021; 14:695294. [PMID: 34483837 PMCID: PMC8415527 DOI: 10.3389/fnmol.2021.695294] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT), also known as motor and sensory neuropathy, describes a clinically and genetically heterogenous group of disorders affecting the peripheral nervous system. CMT typically arises in early adulthood and is manifested by progressive loss of motor and sensory functions; however, the mechanisms leading to the pathogenesis are not fully understood. In this review, we discuss disrupted intracellular transport as a common denominator in the pathogenesis of different CMT subtypes. Intracellular transport via the endosomal system is essential for the delivery of lipids, proteins, and organelles bidirectionally to synapses and the soma. As neurons of the peripheral nervous system are amongst the longest neurons in the human body, they are particularly susceptible to damage of the intracellular transport system, leading to a loss in axonal integrity and neuronal death. Interestingly, defects in intracellular transport, both in neurons and Schwann cells, have been found to provoke disease. This review explains the mechanisms of trafficking and subsequently summarizes and discusses the latest findings on how defects in trafficking lead to CMT. A deeper understanding of intracellular trafficking defects in CMT will expand our understanding of CMT pathogenesis and will provide novel approaches for therapeutic treatments.
Collapse
Affiliation(s)
- Ronja Markworth
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Katja Burk
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.,Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| |
Collapse
|
14
|
Muraoka Y, Nikaido A, Kowada R, Kimura H, Yamaguchi M, Yoshida H. Identification of Rpd3 as a novel epigenetic regulator of Drosophila FIG 4, a Charcot-Marie-Tooth disease-causing gene. Neuroreport 2021; 32:562-568. [PMID: 33850086 DOI: 10.1097/wnr.0000000000001636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutations in the factor-induced-gene 4 (FIG 4) gene are associated with multiple disorders, including Charcot-Marie-Tooth disease (CMT), epilepsy with polymicrogyria, Yunis-Varón syndrome and amyotrophic lateral sclerosis. The wide spectrum of disorders associated with FIG 4 may be related to the dysregulated epigenetics. Using Gene Expression Omnibus, we found that HDAC1 binds to the FIG 4 gene locus in the genome of human CD4+ T cells. Rpd3 is a well-known Drosophila homolog of human HDAC1. We previously established Drosophila models targeting Drosophila FIG 4 (dFIG 4) that exhibited defective locomotive ability, abnormal synapse morphology at neuromuscular junctions, enlarged vacuoles in the fat body and aberrant compound eye morphology. Genetic crossing experiments followed by physiological and immunocytochemical analyses revealed that Rpd3 mutations suppressed these defects induced by dFIG 4 knockdown. This demonstrated Rpd3 to be an important epigenetic regulator of dFIG 4, suggesting that the inhibition of HDAC1 represses the pathogenesis of FIG 4-associated disorders, including CMT. Defects in epigenetic regulators, such as HDAC1, may also explain the diverse symptoms of FIG 4-associated disorders.
Collapse
Affiliation(s)
- Yuuka Muraoka
- Department of Applied Biology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
| | - Atsushi Nikaido
- Department of Applied Biology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
| | - Ryosuke Kowada
- Department of Applied Biology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama
| | - Masamitsu Yamaguchi
- Department of Applied Biology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Kyoto, Japan
| | - Hideki Yoshida
- Department of Applied Biology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto
| |
Collapse
|
15
|
Bao W, Wang X, Luo L, Ni R. The Lysosomal Storage Disorder Due to fig4a Mutation Causes Robust Liver Vacuolation in Zebrafish. Zebrafish 2021; 18:175-183. [PMID: 33909505 DOI: 10.1089/zeb.2020.1911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The phospholipid phosphatase FIG4/Fig4 is a subunit of PIKFYVE/Pikfyve kinase complex that synthesizes phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a key regulator of endolysosomal trafficking and function. Loss of FIG4/Fig4 leads to intracellular deficiency of PI(3,5)P2 signaling and multiple endolysosomal defects. Previous works were focused on the effects of FIG4/Fig4 mutations in the nervous and musculoskeletal systems in human clinical and animal studies. In this study, we describe a zebrafish recessive mutant cq35 showing robust liver vacuolation and lethality, with a predicted truncating mutation in fig4a gene. The liver vacuolation progress in fig4a mutant was reversible after regaining normal fig4a transcripts. The hepatic vacuolation pathology was identified as abnormal lysosomal storage with numerous accumulated cargoes, including autophagy intermediates, and caused progressive degeneration of bile canaliculi in mutant liver. These hepatic pathological details of fig4a mutant were repeated in zebrafish pikfyve mutant. Thus, zebrafish possess the conserved structural and functional mechanisms in Pikfyve kinase complex, based on which, pikfyve mutant phenotype covered fig4a mutant phenotype in their double mutant. Our findings represent the first description of the in vivo defects caused by FIG4/Fig4 mutation or PI(3,5)P2 deficiency in liver, and reveal the conserved complex mechanisms associated with FIG4/Fig4-deficient disorders in zebrafish.
Collapse
Affiliation(s)
- Wandong Bao
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Xinjuan Wang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Rui Ni
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Yamaguchi M, Lee IS, Jantrapirom S, Suda K, Yoshida H. Drosophila models to study causative genes for human rare intractable neurological diseases. Exp Cell Res 2021; 403:112584. [PMID: 33812867 DOI: 10.1016/j.yexcr.2021.112584] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/11/2022]
Abstract
Drosophila is emerging as a convenient model for investigating human diseases. Functional homologues of almost 75% of human disease-related genes are found in Drosophila. Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease that causes defects in motoneurons. Charcot-Marie-Tooth disease (CMT) is one of the most commonly found inherited neuropathies affecting both motor and sensory neurons. No effective therapy has been established for either of these diseases. In this review, after overviewing ALS, Drosophila models targeting several ALS-causing genes, including TDP-43, FUS and Ubiquilin2, are described with their genetic interactants. Then, after overviewing CMT, examples of Drosophila models targeting several CMT-causing genes, including mitochondria-related genes and FIG 4, are also described with their genetic interactants. In addition, we introduce Sotos syndrome caused by mutations in the epigenetic regulator gene NSD1. Lastly, several genes and pathways that commonly interact with ALS- and/or CMT-causing genes are described. In the case of ALS and CMT that have many causative genes, it may be not practical to perform gene therapy for each of the many disease-causing genes. The possible uses of the common genes and pathways as novel diagnosis markers and effective therapeutic targets are discussed.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan; Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto, 619-0237, Japan
| | - Im-Soon Lee
- Department of Biological Sciences, Konkuk University, Seoul, Republic of Korea
| | - Salinee Jantrapirom
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
| |
Collapse
|
17
|
Yang M, Zhu Z, Bai Y, Zhuang Z, Ge F, Li M, Wang S. A novel phosphoinositide kinase Fab1 regulates biosynthesis of pathogenic aflatoxin in Aspergillus flavus. Virulence 2020; 12:96-113. [PMID: 33315533 PMCID: PMC7781676 DOI: 10.1080/21505594.2020.1859820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aspergillus flavus (A. flavus) is one of the most important model environmental fungi which can produce a potent toxin and carcinogen known as aflatoxin. Aflatoxin contamination causes massive agricultural economic loss and a critical human health issue each year. Although a functional vacuole has been highlighted for its fundamental importance in fungal virulence, the molecular mechanisms of the vacuole in regulating the virulence of A. flavus remain largely unknown. Here, we identified a novel vacuole-related protein in A. flavus, the ortholog of phosphatidylinositol-3-phosphate-5-kinase (Fab1) in Saccharomyces cerevisiae. This kinase was located at the vacuolar membrane, and loss of fab1 function was found to affect the growth, conidia and sclerotial development, cellular acidification and metal ion homeostasis, aflatoxin production and pathogenicity of A. flavus. Further functional analysis revealed that Fab1 was required to maintain the vacuole size and cell morphology. Additional quantitative proteomic analysis suggested that Fab1 was likely to play an important role in maintaining vacuolar/cellular homeostasis, with vacuolar dysregulation upon fab1 deletion leading to impaired aflatoxin synthesis in this fungus. Together, these results provide insight into the molecular mechanisms by which this pathogen produces aflatoxin and mediates its pathogenicity, and may facilitate dissection of the vacuole-mediated regulatory network in A. flavus.
Collapse
Affiliation(s)
- Mingkun Yang
- School of Life Sciences, and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University , Fuzhou, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, China
| | - Zhuo Zhu
- School of Life Sciences, and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University , Fuzhou, China
| | - Youhuang Bai
- School of Life Sciences, and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University , Fuzhou, China
| | - Zhenhong Zhuang
- School of Life Sciences, and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University , Fuzhou, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan, China
| | - Mingzhu Li
- School of Life Sciences, and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University , Fuzhou, China
| | - Shihua Wang
- School of Life Sciences, and Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, Fujian Agriculture and Forestry University , Fuzhou, China
| |
Collapse
|
18
|
Cunningham KM, Maulding K, Ruan K, Senturk M, Grima JC, Sung H, Zuo Z, Song H, Gao J, Dubey S, Rothstein JD, Zhang K, Bellen HJ, Lloyd TE. TFEB/Mitf links impaired nuclear import to autophagolysosomal dysfunction in C9-ALS. eLife 2020; 9:59419. [PMID: 33300868 PMCID: PMC7758070 DOI: 10.7554/elife.59419] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Disrupted nucleocytoplasmic transport (NCT) has been implicated in neurodegenerative disease pathogenesis; however, the mechanisms by which disrupted NCT causes neurodegeneration remain unclear. In a Drosophila screen, we identified ref(2)P/p62, a key regulator of autophagy, as a potent suppressor of neurodegeneration caused by the GGGGCC hexanucleotide repeat expansion (G4C2 HRE) in C9orf72 that causes amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). We found that p62 is increased and forms ubiquitinated aggregates due to decreased autophagic cargo degradation. Immunofluorescence and electron microscopy of Drosophila tissues demonstrate an accumulation of lysosome-like organelles that precedes neurodegeneration. These phenotypes are partially caused by cytoplasmic mislocalization of Mitf/TFEB, a key transcriptional regulator of autophagolysosomal function. Additionally, TFEB is mislocalized and downregulated in human cells expressing GGGGCC repeats and in C9-ALS patient motor cortex. Our data suggest that the C9orf72-HRE impairs Mitf/TFEB nuclear import, thereby disrupting autophagy and exacerbating proteostasis defects in C9-ALS/FTD.
Collapse
Affiliation(s)
- Kathleen M Cunningham
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Kirstin Maulding
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Kai Ruan
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Mumine Senturk
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, United States
| | - Jonathan C Grima
- Brain Science Institute, School of Medicine, Johns Hopkins University, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Hyun Sung
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, BCM, Houston, United States
| | - Helen Song
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Junli Gao
- Department of Neuroscience, Mayo Clinic, Jacksonville, United States
| | - Sandeep Dubey
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Jeffrey D Rothstein
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States.,Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States.,Brain Science Institute, School of Medicine, Johns Hopkins University, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| | - Ke Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, United States
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine (BCM), Houston, United States.,Department of Molecular and Human Genetics, BCM, Houston, United States.,Department of Neuroscience, BCM, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Howard Hughes Medical Institute, Houston, United States
| | - Thomas E Lloyd
- Cellular and Molecular Medicine Program, School of Medicine, Johns Hopkins University, Baltimore, United States.,Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, United States.,Solomon H. Snyder Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
19
|
Edgar JR, Ho AK, Laurá M, Horvath R, Reilly MM, Luzio JP, Roberts RC. A dysfunctional endolysosomal pathway common to two sub-types of demyelinating Charcot-Marie-Tooth disease. Acta Neuropathol Commun 2020; 8:165. [PMID: 33059769 PMCID: PMC7559459 DOI: 10.1186/s40478-020-01043-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 09/24/2020] [Indexed: 12/17/2022] Open
Abstract
Autosomal dominant mutations in LITAF are responsible for the rare demyelinating peripheral neuropathy, Charcot-Marie-Tooth disease type 1C (CMT1C). The LITAF protein is expressed in many human cell types and we have investigated the consequences of two different LITAF mutations in primary fibroblasts from CMT1C patients using confocal and electron microscopy. We observed the appearance of vacuolation/enlargement of late endocytic compartments (late endosomes and lysosomes). This vacuolation was also observed after knocking out LITAF from either control human fibroblasts or from the CMT1C patient-derived cells, consistent with it being the result of loss-of-function mutations in the CMT1C fibroblasts. The vacuolation was similar to that previously observed in fibroblasts from CMT4J patients, which have autosomal recessive mutations in FIG4. The FIG4 protein is a component of a phosphoinositide kinase complex that synthesises phosphatidylinositol 3,5-bisphosphate on the limiting membrane of late endosomes. Phosphatidylinositol 3,5-bisphosphate activates the release of lysosomal Ca2+ through the cation channel TRPML1, which is required to maintain the homeostasis of endosomes and lysosomes in mammalian cells. We observed that a small molecule activator of TRPML1, ML-SA1, was able to rescue the vacuolation phenotype of LITAF knockout, FIG4 knockout and CMT1C patient fibroblasts. Our data describe the first cellular phenotype common to two different subtypes of demyelinating CMT and are consistent with LITAF and FIG4 functioning on a common endolysosomal pathway that is required to maintain the homeostasis of late endosomes and lysosomes. Although our experiments were on human fibroblasts, they have implications for our understanding of the molecular pathogenesis and approaches to therapy in two subtypes of demyelinating Charcot-Marie-Tooth disease.
Collapse
Affiliation(s)
- James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.
| | - Anita K Ho
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Matilde Laurá
- Centre for Neuromuscular Diseases, UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Mary M Reilly
- Centre for Neuromuscular Diseases, UCL, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - J Paul Luzio
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK
| | - Rhys C Roberts
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK.
| |
Collapse
|
20
|
Recent Advances in Drosophila Models of Charcot-Marie-Tooth Disease. Int J Mol Sci 2020; 21:ijms21197419. [PMID: 33049996 PMCID: PMC7582988 DOI: 10.3390/ijms21197419] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Charcot-Marie-Tooth disease (CMT) is one of the most common inherited peripheral neuropathies. CMT patients typically show slowly progressive muscle weakness and sensory loss in a distal dominant pattern in childhood. The diagnosis of CMT is based on clinical symptoms, electrophysiological examinations, and genetic testing. Advances in genetic testing technology have revealed the genetic heterogeneity of CMT; more than 100 genes containing the disease causative mutations have been identified. Because a single genetic alteration in CMT leads to progressive neurodegeneration, studies of CMT patients and their respective models revealed the genotype-phenotype relationships of targeted genes. Conventionally, rodents and cell lines have often been used to study the pathogenesis of CMT. Recently, Drosophila has also attracted attention as a CMT model. In this review, we outline the clinical characteristics of CMT, describe the advantages and disadvantages of using Drosophila in CMT studies, and introduce recent advances in CMT research that successfully applied the use of Drosophila, in areas such as molecules associated with mitochondria, endosomes/lysosomes, transfer RNA, axonal transport, and glucose metabolism.
Collapse
|
21
|
Strunk BS, Steinfeld N, Lee S, Jin N, Muñoz-Rivera C, Meeks G, Thomas A, Akemann C, Mapp AK, MacGurn JA, Weisman LS. Roles for a lipid phosphatase in the activation of its opposing lipid kinase. Mol Biol Cell 2020; 31:1835-1845. [PMID: 32583743 PMCID: PMC7525815 DOI: 10.1091/mbc.e18-09-0556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Fig4 is a phosphoinositide phosphatase that converts PI3,5P2 to PI3P. Paradoxically, mutation of Fig4 results in lower PI3,5P2, indicating that Fig4 is also required for PI3,5P2 production. Fig4 promotes elevation of PI3,5P2, in part, through stabilization of a protein complex that includes its opposing lipid kinase, Fab1, and the scaffold protein Vac14. Here we show that multiple regions of Fig4 contribute to its roles in the elevation of PI3,5P2: its catalytic site, an N-terminal disease-related surface, and a C-terminal region. We show that mutation of the Fig4 catalytic site enhances the formation of the Fab1-Vac14-Fig4 complex, and reduces the ability to elevate PI3,5P2. This suggests that independent of its lipid phosphatase function, the active site plays a role in the Fab1-Vac14-Fig4 complex. We also show that the N-terminal disease-related surface contributes to the elevation of PI3,5P2 and promotes Fig4 association with Vac14 in a manner that requires the Fig4 C-terminus. We find that the Fig4 C-terminus alone interacts with Vac14 in vivo and retains some functions of full-length Fig4. Thus, a subset of Fig4 functions are independent of its phosphatase domain and at least three regions of Fig4 play roles in the function of the Fab1-Vac14-Fig4 complex.
Collapse
Affiliation(s)
- Bethany S Strunk
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Department of Biology, Trinity University, San Antonio, TX 78212
| | - Noah Steinfeld
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
| | - Sora Lee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Natsuko Jin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | | | - Garrison Meeks
- Department of Biology, Trinity University, San Antonio, TX 78212
| | - Asha Thomas
- Department of Biology, Trinity University, San Antonio, TX 78212
| | - Camille Akemann
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Anna K Mapp
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Lois S Weisman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
22
|
Ali MS, Suda K, Kowada R, Ueoka I, Yoshida H, Yamaguchi M. Neuron-specific knockdown of solute carrier protein SLC25A46a induces locomotive defects, an abnormal neuron terminal morphology, learning disability, and shortened lifespan. IBRO Rep 2020; 8:65-75. [PMID: 32140609 PMCID: PMC7047145 DOI: 10.1016/j.ibror.2020.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/17/2020] [Indexed: 01/21/2023] Open
Abstract
Various mutations in the SLC25A46 gene have been reported in mitochondrial diseases that are sometimes classified as type 2 Charcot-Marie-Tooth disease, optic atrophy, and Leigh syndrome. Although human SLC25A46 is a well-known transporter that acts through the mitochondrial outer membrane, the relationship between neurodegeneration in these diseases and the loss-of-function of SLC25A46 remains unclear. Two Drosophila genes, CG8931 (dSLC25A46a) and CG5755 (dSLC25A46b) have been identified as candidate homologs of human SLC25A46. We previously characterized the phenotypes of pan-neuron-specific dSLC25A46b knockdown flies. In the present study, we developed pan-neuron-specific dSLC25A46a knockdown flies and examined their phenotypes. Neuron-specific dSLC25A46a knockdown resulted in reduced mobility in larvae as well as adults. An aberrant morphology for neuromuscular junctions (NMJs), such as a reduced synaptic branch length and decreased number and size of boutons, was observed in dSLC25A46a knockdown flies. Learning ability was also reduced in the larvae of knockdown flies. In dSLC25A46a knockdown flies, mitochondrial hyperfusion was detected in NMJ synapses together with the accumulation of reactive oxygen species and reductions in ATP. These phenotypes were very similar to those of dSLC25A46b knockdown flies, suggesting that dSLC25A46a and dSLC25A46b do not have redundant roles in neurons. Collectively, these results show that the depletion of SLC25A46a leads to mitochondrial defects followed by an aberrant synaptic morphology, resulting in locomotive defects and learning disability. Thus, the dSLC25A46a knockdown fly summarizes most of the phenotypes in patients with mitochondrial diseases, offering a useful tool for studying these diseases.
Collapse
Affiliation(s)
- Md Saheb Ali
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
- Faculty of Agriculture, Bangladesh Jute Research Institute, Manik Mia Ave., Dhaka, 1207, Bangladesh
| | - Kojiro Suda
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ryosuke Kowada
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Ibuki Ueoka
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Advanced Insect Research Promotion Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
23
|
Abstract
Neurodegenerative diseases are, at present, major socio-economic burdens without effective treatments and their increasing prevalence means that these diseases will be a challenge for future generations. Neurodegenerative diseases may differ in etiology and pathology but are often caused by the accumulation of dysfunctional and aggregation-prone proteins. Autophagy, a conserved cellular mechanism, deals with cellular stress and waste product build-up and has been shown to reduce the accumulation of dysfunctional proteins in animal models of neurodegenerative diseases. Historically, progress in understanding the precise function of lipids has traditionally been far behind other biological molecules (like proteins) but emerging works demonstrate the importance of lipids in the autophagy pathway and how the disturbance of lipid metabolism is connected to neurodegeneration. Here we review how altered autophagy and the disturbance of lipid metabolism, particularly of phosphoinositols and sphingolipids, feature in neurodegenerative diseases and address work from the field that suggests that these potentially offer an opportunity of therapeutic intervention.
Collapse
Affiliation(s)
- Sergio Hernandez-Diaz
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| | - Sandra-Fausia Soukup
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 33000, Bordeaux, France
| |
Collapse
|
24
|
Michaelidou K, Tsiverdis I, Erimaki S, Papadimitriou D, Amoiridis G, Papadimitriou A, Mitsias P, Zaganas I. Whole exome sequencing establishes diagnosis of Charcot-Marie-Tooth 4J, 1C, and X1 subtypes. Mol Genet Genomic Med 2020; 8:e1141. [PMID: 32022442 PMCID: PMC7196464 DOI: 10.1002/mgg3.1141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Charcot-Marie-Tooth (CMT) hereditary polyneuropathies pose a diagnostic challenge. Our aim here is to describe CMT patients diagnosed by whole exome sequencing (WES) following years of fruitless testing. METHODS/RESULTS Three patients with polyneuropathy suspected to be genetic in origin, but not harboring PMP22 gene deletion/duplication, were offered WES. The first patient, a 66-year-old man, had been suffering from progressive weakness and atrophies in the lower and upper extremities for 20 years. Due to ambiguous electrophysiological findings, immune therapies were administered to no avail. Twelve years after PMP22 deletion/duplication testing, WES revealed two pathogenic variants in the FIG4 gene (p.Ile41Thr and p.Phe598fs, respectively), as a cause of CMT 4J. The second patient, a 19-year-old man, had been suffering from hearing and gait impairment since at least his infancy, and recently presented with weakness and dystonia of the lower extremities. In this patient, WES identified the p.Leu122Val LITAF gene variant in heterozygous state, suggesting the diagnosis of CMT 1C, several years after initial genetic analyses. The third patient, a 44-year-old man, presented with progressive weakness and atrophies of the lower and upper extremities since the age of 17 years old. In this patient, WES identified the hemizygous p.Arg164Gln pathogenic variant in the GJB1 gene, establishing the diagnosis of CMT X1, 8 years after testing for PMP22 deletion/duplication. CONCLUSION Novel diagnostic techniques, such as WES, offer the possibility to decipher the cause of CMT subtypes, ending the diagnostic Odyssey of the patients and sparing them from unnecessary and potentially harmful treatments.
Collapse
Affiliation(s)
- Kleita Michaelidou
- Neurogenetics LaboratoryMedical SchoolUniversity of CreteHeraklion, CreteGreece
| | - Ioannis Tsiverdis
- Neurology DepartmentUniversity Hospital of CreteHeraklion, CreteGreece
| | - Sophia Erimaki
- Neurophysiology UnitUniversity Hospital of CreteHeraklion, CreteGreece
| | | | | | | | - Panayiotis Mitsias
- Neurogenetics LaboratoryMedical SchoolUniversity of CreteHeraklion, CreteGreece
- Neurology DepartmentUniversity Hospital of CreteHeraklion, CreteGreece
- Neurophysiology UnitUniversity Hospital of CreteHeraklion, CreteGreece
- Department of NeurologyHenry Ford Hospital/Wayne State UniversityDetroitMIUSA
| | - Ioannis Zaganas
- Neurogenetics LaboratoryMedical SchoolUniversity of CreteHeraklion, CreteGreece
- Neurology DepartmentUniversity Hospital of CreteHeraklion, CreteGreece
| |
Collapse
|
25
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
26
|
Mohindra V, Dangi T, Tripathi RK, Kumar R, Singh RK, Jena JK, Mohapatra T. Draft genome assembly of Tenualosa ilisha, Hilsa shad, provides resource for osmoregulation studies. Sci Rep 2019; 9:16511. [PMID: 31712633 PMCID: PMC6848103 DOI: 10.1038/s41598-019-52603-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 10/18/2019] [Indexed: 01/23/2023] Open
Abstract
This study provides the first high-quality draft genome assembly (762.5 Mb) of Tenualosa ilisha that is highly contiguous and nearly complete. We observed a total of 2,864 contigs, with 96.4% completeness with N50 of 2.65 Mbp and the largest contig length of 17.4 Mbp, along with a complete mitochondrial genome of 16,745 bases. A total number of 33,042 protein coding genes were predicted, among these, 512 genes were classified under 61 Gene Ontology (GO) terms, associated with various homeostasis processes. Highest number of genes belongs to cellular calcium ion homeostasis, followed by tissue homeostasis. A total of 97 genes were identified, with 16 GO terms related to water homeostasis. Claudins, Aquaporins, Connexins/Gap junctions, Adenylate cyclase, Solute carriers and Voltage gated potassium channel genes were observed to be higher in number in T. ilisha, as compared to that in other teleost species. Seven novel gene variants, in addition to claudin gene (CLDZ), were found in T. ilisha. The present study also identified two putative novel genes, NKAIN3 and L4AM1, for the first time in fish, for which further studies are required for pinpointing their functions in fish. In addition, 1.6 million simple sequence repeats were mined from draft genome assembly. The study provides a valuable genomic resource for the anadromous Hilsa. It will form a basis for future studies, pertaining to its adaptation mechanisms to different salinity levels during migration, which in turn would facilitate in its domestication.
Collapse
Affiliation(s)
- Vindhya Mohindra
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.
| | - Tanushree Dangi
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - Ratnesh K Tripathi
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India.,Imperial Life Sciences (P) Limited, Gurgaon, Haryana, 122001, India
| | - Rajesh Kumar
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - Rajeev K Singh
- ICAR-National Bureau of Fish Genetic Resources (NBFGR), Canal Ring Road, P.O. Dilkusha, Lucknow, 226 002, India
| | - J K Jena
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India
| | - T Mohapatra
- Indian Council of Agricultural Research (ICAR), Krishi Anusandhan Bhawan - II, New Delhi, 110 012, India
| |
Collapse
|
27
|
Identification of CR43467 encoding a long non-coding RNA as a novel genetic interactant with dFIG4, a CMT-causing gene. Exp Cell Res 2019; 386:111711. [PMID: 31704059 DOI: 10.1016/j.yexcr.2019.111711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 12/15/2022]
Abstract
The eye imaginal disc-specific knockdown of dFIG4, a Drosophila homolog of FIG4 that is one of the Charcot-Marie-Tooth disease (CMT)-causing genes, induces an aberrant adult compound eye morphology, the so-called rough eye phenotype. We previously performed modifier screening on the dFIG4 knockdown-induced rough eye phenotype and identified several genes, including CR18854, encoding a long non-coding RNA (lncRNA) as genetic interactants with dFIG4. In the present study, in more extensive genetic screening, we found that the deletion of a gene locus encoding both Odorant rector 46a (Or46a) and lncRNA CR43467 effectively suppressed the rough eye phenotype induced by the knockdown of dFIG4. Both genes were located on the same locus, but oriented in opposite directions. In order to identify which of these genes is responsible for the suppression of the rough eye phenotype, we established a CR43467-specific knockdown line using the CRISPR-dCas9 system. By using this system, we demonstrated that the CR43467 gene, but not the Or46a gene, genetically interacted with the dFIG4 gene. The knockdown of CR43467 rescued the reductions in the length of synaptic branches and number of boutons at neuromuscular junctions induced by the knockdown of dFIG4. The vacuole enlargement phenotype induced by the fat body-specific dFIG4 knockdown was also effectively suppressed by the knockdown of CR43467. The knockdown of CR43467 also suppressed the rough eye phenotype induced by other peripheral neuropathy-related genes, such as dCOA7, dHADHB, and dPDHB. We herein identified another gene encoding lncRNA, CR43467 as a genetic interactant with the CMT-causing gene.
Collapse
|
28
|
Nguyen DKH, Thombre R, Wang J. Autophagy as a common pathway in amyotrophic lateral sclerosis. Neurosci Lett 2019; 697:34-48. [PMID: 29626651 PMCID: PMC6170747 DOI: 10.1016/j.neulet.2018.04.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/26/2018] [Accepted: 04/02/2018] [Indexed: 12/11/2022]
Abstract
Age-dependent neurodegenerative diseases are associated with a decline in protein quality control systems including autophagy. Amyotrophic lateral sclerosis (ALS) is a motor neuron degenerative disease of complex etiology with increasing connections to other neurodegenerative conditions such as frontotemporal dementia. Among the diverse genetic causes for ALS, a striking feature is the common connection to autophagy and its associated pathways. There is a recurring theme of protein misfolding as in other neurodegenerative diseases, but importantly there is a distinct common thread among ALS genes that connects them to the cascade of autophagy. However, the roles of autophagy in ALS remain enigmatic and it is still unclear whether activation or inhibition of autophagy would be a reliable avenue to ameliorate the disease. The main evidence that links autophagy to different genetic forms of ALS is discussed.
Collapse
Affiliation(s)
- Dao K H Nguyen
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Ravi Thombre
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA; Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
29
|
Loss-of-function mutation in Hippo suppressed enlargement of lysosomes and neurodegeneration caused by dFIG4 knockdown. Neuroreport 2019; 29:856-862. [PMID: 29742619 PMCID: PMC5999369 DOI: 10.1097/wnr.0000000000001044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Charcot–Marie–Tooth disease (CMT) is the most common hereditary neuropathy, and more than 80 CMT-causing genes have been identified to date. CMT4J is caused by a loss-of-function mutation in the Factor-Induced-Gene 4 (FIG4) gene, the product of which plays important roles in endosome–lysosome homeostasis. We hypothesized that Mammalian sterile 20-like kinase (MST) 1 and 2, tumor-suppressor genes, are candidate modifiers of CMT4J. We therefore examined the interaction between dFIG4 and Hippo (hpo), Drosophila counterparts of FIG4 and MSTs, respectively, using the Drosophila CMT4J model with the knockdown of dFIG4. The loss-of-function allele of hpo improved the rough eye morphology, locomotive dysfunction accompanied by structural defects in the presynaptic terminals of motoneurons, and the enlargement of lysosomes caused by the knockdown of dFIG4. Therefore, we identified hpo as a modifier of phenotypes induced by the knockdown of dFIG4. These results in Drosophila may provide an insight into the pathogenesis of CMT4J and contribute toward the development of disease-modifying therapy for CMT. We also identified the regulation of endosome–lysosome homeostasis as a novel probable function of Hippo/MST.
Collapse
|
30
|
Muraoka Y, Nakamura A, Tanaka R, Suda K, Azuma Y, Kushimura Y, Lo Piccolo L, Yoshida H, Mizuta I, Tokuda T, Mizuno T, Nakagawa M, Yamaguchi M. Genetic screening of the genes interacting with Drosophila FIG4 identified a novel link between CMT-causing gene and long noncoding RNAs. Exp Neurol 2018; 310:1-13. [PMID: 30165075 DOI: 10.1016/j.expneurol.2018.08.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 12/18/2022]
Abstract
Neuron-specific knockdown of the dFIG4 gene, a Drosophila homologue of human FIG4 and one of the causative genes for Charcot-Marie-Tooth disease (CMT), reduces the locomotive abilities of adult flies, as well as causing defects at neuromuscular junctions, such as reduced synaptic branch length in presynaptic terminals of the motor neurons in third instar larvae. Eye imaginal disc-specific knockdown of dFIG4 induces abnormal morphology of the adult compound eye, the rough eye phenotype. In this study, we carried out modifier screening of the dFIG4 knockdown-induced rough eye phenotype using a set of chromosomal deficiency lines on the second chromosome. By genetic screening, we detected 9 and 15 chromosomal regions whose deletions either suppressed or enhanced the rough eye phenotype induced by the dFIG4 knockdown. By further genetic screening with mutants of individual genes in one of these chromosomal regions, we identified the gene CR18854 that suppressed the rough eye phenotype and the loss-of-cone cell phenotype. The CR18854 gene encodes a long non-coding RNA (lncRNA) consisting of 2566 bases. Mutation and knockdown of CR18854 patially suppressed the enlarged lysosome phenotype induced by Fat body-specific knockdown of dFIG4. Further characterization of CR18854, and a few other lncRNAs in relation to dFIG4 in neuron, using neuron-specific dFIG4 knockdown flies indicated a genetic link between the dFIG4 gene and lncRNAs including CR18854 and hsrω. We also obtained data indicating genetic interaction between CR18854 and Cabeza, a Drosophila homologue of human FUS, which is one of the causing genes for amyotrophic lateral sclerosis (ALS). These results suggest that lncRNAs such as CR18854 and hsrω are involved in a common pathway in CMT and ALS pathogenesis.
Collapse
Affiliation(s)
- Yuuka Muraoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Aya Nakamura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryo Tanaka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Kojiro Suda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Yumiko Azuma
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Yukie Kushimura
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Luca Lo Piccolo
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ikuko Mizuta
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takahiko Tokuda
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; Department of Molecular Pathobiology of Brain Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiki Mizuno
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masanori Nakagawa
- Department of Neurology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan; North Medical Center, Kyoto Prefectural University of Medicine, 481 otokoyama, yosano-cho, yosa-gun, Kyoto 629-2291, Japan
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; The Center for Advanced Insect Research, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
31
|
Zhang K, Coyne AN, Lloyd TE. Drosophila models of amyotrophic lateral sclerosis with defects in RNA metabolism. Brain Res 2018; 1693:109-120. [PMID: 29752901 DOI: 10.1016/j.brainres.2018.04.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 12/12/2022]
Abstract
The fruit fly Drosophila Melanogaster has been widely used to study neurodegenerative diseases. The conservation of nervous system biology coupled with the rapid life cycle and powerful genetic tools in the fly have enabled the identification of novel therapeutic targets that have been validated in vertebrate model systems and human patients. A recent example is in the study of the devastating motor neuron degenerative disease amyotrophic lateral sclerosis (ALS). Mutations in genes that regulate RNA metabolism are a major cause of inherited ALS, and functional analysis of these genes in the fly nervous system has shed light on how mutations cause disease. Importantly, unbiased genetic screens have identified key pathways that contribute to ALS pathogenesis such as nucleocytoplasmic transport and stress granule assembly. In this review, we will discuss the utilization of Drosophila models of ALS with defects in RNA metabolism.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
32
|
Abstract
The lysosome-like vacuole is the main organelle to degrade membrane proteins and organelles and, thus, provides amino acids, but also ions to the cytosol for cellular survival. Maintenance of vacuole membrane integrity is thus important for cellular adaptations. The vacuole contains several protein complexes on its surface to maintain the vacuole functional, and one such complex is a lipid kinase named Fab1 (of PIKfyve in human cells). Fab1 is part of a protein complex that produces a phosphorylated lipid, PI-3,5-P2. Other proteins bind PI-3,5-P2 and can fragment the vacuole to balance volume vs. membrane during stress. We now identify Ivy1 as a protein that binds Fab1 and controls its activity. Lysosomes have an important role in cellular protein and organelle quality control, metabolism, and signaling. On the surface of lysosomes, the PIKfyve/Fab1 complex generates phosphatidylinositol 3,5-bisphosphate, PI-3,5-P2, which is critical for lysosomal membrane homeostasis during acute osmotic stress and for lysosomal signaling. Here, we identify the inverted BAR protein Ivy1 as an inhibitor of the Fab1 complex with a direct influence on PI-3,5-P2 levels and vacuole homeostasis. Ivy1 requires Ypt7 binding for its function, binds PI-3,5-P2, and interacts with the Fab1 kinase. Colocalization of Ivy1 and Fab1 is lost during osmotic stress. In agreement with Ivy1’s role as a Fab1 regulator, its overexpression blocks Fab1 activity during osmotic shock and vacuole fragmentation. Conversely, loss of Ivy1, or lateral relocalization of Ivy1 on vacuoles away from Fab1, results in vacuole fragmentation and poor growth. Our data suggest that Ivy1 modulates Fab1-mediated PI-3,5-P2 synthesis during membrane stress and may allow adjustment of the vacuole membrane environment.
Collapse
|
33
|
Novel Drosophila model for mitochondrial diseases by targeting of a solute carrier protein SLC25A46. Brain Res 2018; 1689:30-44. [PMID: 29604258 DOI: 10.1016/j.brainres.2018.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/26/2023]
Abstract
Mutations in SLC25A46 gene have been identified in mitochondrial diseases that are sometimes classified as Charcot-Marie-Tooth disease type 2, optic atrophy and Leigh syndrome. Human SLC25A46 functions as a transporter across the outer mitochondrial membrane. However, it is still unknown how the neurodegeneration occurring in these diseases relates to the loss of SLC25A46 function. Drosophila has CG5755 (dSLC25A46) as a single human SLC25A46 homolog. Here we established pan-neuron specific dSLC25A46 knockdown flies, and examined their phenotypes. Neuron specific knockdown of dSLC25A46 resulted in an impaired motility in both larvae and adults. Defects at neuromuscular junctions (NMJs), such as reduced synaptic branch length, decreased number and size of bouton, reduced density and size of active zone were also observed with the dSLC25A46 knockdown flies. Mitochondrial hyperfusion in synapse at NMJ, accumulation of reactive oxygen species and reduction of ATP were also observed in the dSLC25A46 knockdown flies. These results indicate that depletion of SLC25A46 induces mitochondrial defects accompanied with aberrant morphology of motoneuron and reduction of active zone that results in defect in locomotive ability. In addition, it is known that SLC25A46 mutations in human cause optic atrophy and knockdown of dSLC25A46 induces aberrant morphology of optic stalk of photoreceptor neurons in third instar larvae. Morphology and development of optic stalk of photoreceptor neurons in Drosophila are precisely regulated via cell proliferation and migration. Immunocytochemical analyses of subcellular localization of dSLC25A46 revealed that dSLC25A46 localizes not only in mitochondria, but also in plasma membrane. These observations suggest that in addition to the role in mitochondrial function, plasma membrane-localized dSLC25A46 plays a role in cell proliferation and/or migration to control optic stalk formation. The dSLC25A46 knockdown fly thus recapitulates most of the phenotypes in mitochondrial disease patients, providing a useful tool to study these diseases.
Collapse
|
34
|
Yamaguchi M, Takashima H. Drosophila Charcot-Marie-Tooth Disease Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:97-117. [PMID: 29951817 DOI: 10.1007/978-981-13-0529-0_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) was initially described in 1886. It is characterized by defects in the peripheral nervous system, including sensory and motor neurons. Although more than 80 CMT-causing genes have been identified to date, an effective therapy has not yet been developed for this disease. Since Drosophila does not have axons surrounded by myelin sheaths or Schwann cells, the establishment of a demyelinating CMT model is not appropriate. In this chapter, after overviewing CMT, examples of Drosophila CMT models with axonal neuropathy and other animal CMT models are described.
Collapse
Affiliation(s)
| | - Hiroshi Takashima
- Department of Neurology and Geriatrics, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
35
|
Bissig C, Hurbain I, Raposo G, van Niel G. PIKfyve activity regulates reformation of terminal storage lysosomes from endolysosomes. Traffic 2017; 18:747-757. [DOI: 10.1111/tra.12525] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Christin Bissig
- Institut Curie; PSL Research University, CNRS, UMR144; Paris France
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, UMR 144; Paris France
| | - Ilse Hurbain
- Institut Curie; PSL Research University, CNRS, UMR144; Paris France
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, UMR 144; Paris France
- Cell and Tissue Imaging Core Facility PICT-IBiSA; Institut Curie; Paris France
| | - Graça Raposo
- Institut Curie; PSL Research University, CNRS, UMR144; Paris France
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, UMR 144; Paris France
- Cell and Tissue Imaging Core Facility PICT-IBiSA; Institut Curie; Paris France
| | - Guillaume van Niel
- Institut Curie; PSL Research University, CNRS, UMR144; Paris France
- Sorbonne Universités; UPMC Univ Paris 06, CNRS, UMR 144; Paris France
- Cell and Tissue Imaging Core Facility PICT-IBiSA; Institut Curie; Paris France
| |
Collapse
|
36
|
Abstract
Yunis-Varón syndrome (YVS) is an autosomal recessive disorder comprising skeletal anomalies, dysmorphism, global developmental delay and intracytoplasmic vacuolation in brain and other tissues. All hitherto-reported pathogenic variants affect FIG4, a lipid phosphatase involved in phosphatidylinositol (3,5)-bisphosphate [PtdIns(3,5)P2] metabolism. FIG4 interacts with PIKfyve, a lipid kinase, via the adapter protein VAC14; all subunits of the resulting complex are essential for PtdIns(3,5)P2 synthesis in the endolysosomal membrane compartment. Here, we present the case of a female neonate with clinical features of YVS and normal FIG4 sequencing; exome sequencing identified biallelic rare coding variants in VAC14. Cultured patient fibroblasts exhibited a YVS-like vacuolation phenotype ameliorated in a dose-dependent fashion by ML-SA1, a pharmacological activator of the lysosomal PtdIns(3,5)P2 effector TRPML1. The patient developed a diffuse leukoencephalopathy with loss of the normal N-acetylaspartate spectrographic peak and presence of a large abnormal peak consistent with myoinositol. We report that VAC14 is a second gene for Yunis-Varón syndrome.
Collapse
|
37
|
Molecular pathogenesis of peripheral neuropathies: insights from Drosophila models. Curr Opin Genet Dev 2017; 44:61-73. [PMID: 28213160 DOI: 10.1016/j.gde.2017.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/10/2017] [Accepted: 01/26/2017] [Indexed: 01/18/2023]
Abstract
Peripheral neuropathies are characterized by degeneration of peripheral motor, sensory and/or autonomic axons, leading to progressive distal muscle weakness, sensory deficits and/or autonomic dysfunction. Acquired peripheral neuropathies, e.g., as a side effect of chemotherapy, are distinguished from inherited peripheral neuropathies (IPNs). Drosophila models for chemotherapy-induced peripheral neuropathy and several IPNs have provided novel insight into the molecular mechanisms underlying axonal degeneration. Forward genetic screens have predictive value for discovery of human IPN genes, and the pathogenicity of novel mutations in known IPN genes can be evaluated in Drosophila. Future screens for genes and compounds that modify Drosophila IPN phenotypes promise to make valuable contributions to unraveling the molecular pathogenesis and identification of therapeutic targets for these incurable diseases.
Collapse
|
38
|
Gross C. Defective phosphoinositide metabolism in autism. J Neurosci Res 2016; 95:1161-1173. [PMID: 27376697 DOI: 10.1002/jnr.23797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/26/2016] [Accepted: 06/01/2016] [Indexed: 12/12/2022]
Abstract
Phosphoinositides are essential components of lipid membranes and crucial regulators of many cellular functions, including signal transduction, vesicle trafficking, membrane receptor localization and activity, and determination of membrane identity. These functions depend on the dynamic and highly regulated metabolism of phosphoinositides and require finely balanced activity of specific phosphoinositide kinases and phosphatases. There is increasing evidence from genetic and functional studies that these enzymes are often dysregulated or mutated in autism spectrum disorders; in particular, phosphoinositide 3-kinases and their regulatory subunits appear to be affected frequently. Examples of autism spectrum disorders with defective phosphoinositide metabolism are fragile X syndrome and autism disorders associated with mutations in the phosphoinositide 3-phosphatase tensin homolog deleted on chromosome 10 (PTEN), but recent genetic analyses also suggest that select nonsyndromic, idiopathic forms of autism may have altered activity of phosphoinositide kinases and phosphatases. Isoform-specific inhibitors for some of the phosphoinositide kinases have already been developed for cancer research and treatment, and a few are being evaluated for use in humans. Altogether, this offers exciting opportunities to explore altered phosphoinositide metabolism as a therapeutic target in individuals with certain forms of autism. This review summarizes genetic and functional studies identifying defects in phosphoinositide metabolism in autism and related disorders, describes published preclinical work targeting phosphoinositide 3-kinases in neurological diseases, and discusses the opportunities and challenges ahead to translate these findings from animal models and human cells into clinical application in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Christina Gross
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio.,Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
39
|
Mironova YA, Lenk GM, Lin JP, Lee SJ, Twiss JL, Vaccari I, Bolino A, Havton LA, Min SH, Abrams CS, Shrager P, Meisler MH, Giger RJ. PI(3,5)P2 biosynthesis regulates oligodendrocyte differentiation by intrinsic and extrinsic mechanisms. eLife 2016; 5. [PMID: 27008179 PMCID: PMC4889328 DOI: 10.7554/elife.13023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/23/2016] [Indexed: 12/18/2022] Open
Abstract
Proper development of the CNS axon-glia unit requires bi-directional communication between axons and oligodendrocytes (OLs). We show that the signaling lipid phosphatidylinositol-3,5-bisphosphate [PI(3,5)P2] is required in neurons and in OLs for normal CNS myelination. In mice, mutations of Fig4, Pikfyve or Vac14, encoding key components of the PI(3,5)P2 biosynthetic complex, each lead to impaired OL maturation, severe CNS hypomyelination and delayed propagation of compound action potentials. Primary OLs deficient in Fig4 accumulate large LAMP1+ and Rab7+ vesicular structures and exhibit reduced membrane sheet expansion. PI(3,5)P2 deficiency leads to accumulation of myelin-associated glycoprotein (MAG) in LAMP1+perinuclear vesicles that fail to migrate to the nascent myelin sheet. Live-cell imaging of OLs after genetic or pharmacological inhibition of PI(3,5)P2 synthesis revealed impaired trafficking of plasma membrane-derived MAG through the endolysosomal system in primary cells and brain tissue. Collectively, our studies identify PI(3,5)P2 as a key regulator of myelin membrane trafficking and myelinogenesis. DOI:http://dx.doi.org/10.7554/eLife.13023.001 Neurons communicate with each other through long cable-like extensions called axons. An insulating sheath called myelin (or white matter) surrounds each axon, and allows electrical impulses to travel more quickly. Cells in the brain called oligodendrocytes produce myelin. If the myelin sheath is not properly formed during development, or is damaged by injury or disease, the consequences can include paralysis, impaired thought, and loss of vision. Oligodendrocytes have complex shapes, and each can generate myelin for as many as 50 axons. Oligodendrocytes produce the building blocks of myelin inside their cell bodies, by following instructions encoded by genes within the nucleus. However, the signals that regulate the trafficking of these components to the myelin sheath are poorly understood. Mironova et al. set out to determine whether signaling molecules called phosphoinositides help oligodendrocytes to mature and move myelin building blocks from the cell bodies to remote contact points with axons. Genetic techniques were used to manipulate an enzyme complex in mice that controls the production and turnover of a phosphoinositide called PI(3,5)P2. Mironova et al. found that reducing the levels of PI(3,5)P2 in oligodendrocytes caused the trafficking of certain myelin building blocks to stall. Key myelin components instead accumulated inside bubble-like structures near the oligodendrocyte’s cell body. This showed that PI(3,5)P2 in oligodendrocytes is essential for generating myelin. Further experiments then revealed that reducing PI(3,5)P2 in the neurons themselves indirectly prevented the oligodendrocytes from maturing. This suggests that PI(3,5)P2 also takes part in communication between axons and oligodendrocytes during development of the myelin sheath. A key next step will be to identify the regulatory mechanisms that control the production of PI(3,5)P2 in oligodendrocytes and neurons. Future studies could also explore what PI(3,5)P2 acts upon inside the axons, and which signaling molecules support the maturation of oligodendrocytes. Finally, it remains unclear whether PI(3,5)P2signaling is also required for stabilizing mature myelin, and for repairing myelin after injury in the adult brain. Further work could therefore address these questions as well. DOI:http://dx.doi.org/10.7554/eLife.13023.002
Collapse
Affiliation(s)
- Yevgeniya A Mironova
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States.,Cellular and Molecular Biology Graduate Program, University of Michigan School of Medicine, Ann Arbor, United States
| | - Guy M Lenk
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, United States
| | - Jing-Ping Lin
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, United States
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, United States
| | - Ilaria Vaccari
- Human Inherited Neuropathies Unit, INSPE-Institute for Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Bolino
- Human Inherited Neuropathies Unit, INSPE-Institute for Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Leif A Havton
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, United States
| | - Sang H Min
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, United States
| | - Charles S Abrams
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, United States
| | - Peter Shrager
- Department of Neurobiology and Anatomy, University of Rochester Medical Center, Rochester, United States
| | - Miriam H Meisler
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, United States
| | - Roman J Giger
- Department of Cell and Developmental Biology, University of Michigan School of Medicine, Ann Arbor, United States.,Department of Neurology, University of Michigan School of Medicine, Ann Arbor, United States
| |
Collapse
|