1
|
Lahnsteiner A, Ellmer V, Oberlercher A, Liutkeviciute Z, Schönauer E, Paulweber B, Aigner E, Risch A. G-quadruplex forming regions in GCK and TM6SF2 are targets for differential DNA methylation in metabolic disease and hepatocellular carcinoma patients. Sci Rep 2024; 14:20215. [PMID: 39215018 PMCID: PMC11364803 DOI: 10.1038/s41598-024-70749-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.Pyrosequencing of 148 blood samples from a nested cohort study revealed significant differential methylation in GCK and TM6SF2 in MetD patients versus healthy controls. Furthermore, these regions harbor hypervariable and differentially methylated CpGs also in hepatocellular carcinoma versus normal tissue samples from The Cancer Genome Atlas (TCGA). Permanganate/S1 nuclease footprinting with direct adapter ligation (PDAL-Seq), native polyacrylamide DNA gel electrophoresis and circular dichroism (CD) spectroscopy revealed the formation of G4 structures in these regions and demonstrated that their topology and stability is affected by DNA methylation. Detailed analyses including histone marks, chromatin conformation capture data, and luciferase reporter assays, highlighted the cell-type specific regulatory function of the target regions. Based on our analyses, we hypothesize that changes in DNA methylation lead to topological changes, especially in GCK exon 7, and cause the activation of alternative regulatory elements or potentially play a role in alternative splicing.Our analyses provide a new view on the mechanisms underlying the progression of MetDs and their link to hepatocellular carcinomas, unveiling non-B DNA structures as important key players already in early disease stages.
Collapse
Affiliation(s)
- Angelika Lahnsteiner
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
- Cancer Cluster Salzburg, Salzburg, Austria.
| | - Victoria Ellmer
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Anna Oberlercher
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Zita Liutkeviciute
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Esther Schönauer
- Division of Structural Biology, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Salzburg, Austria
| | - Bernhard Paulweber
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
| | - Elmar Aigner
- First Department of Medicine, University Clinic Salzburg, Salzburg, Austria
- Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Angela Risch
- Division of Cancer (Epi-)Genetics, Department of Biosciences and Medical Biology, Center for Tumor Biology and Immunology (CTBI), Paris Lodron University Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
2
|
Wong CH, Wingett SW, Qian C, Hunter MR, Taliaferro JM, Ross-Thriepland D, Bullock SL. Genome-scale requirements for dynein-based transport revealed by a high-content arrayed CRISPR screen. J Cell Biol 2024; 223:e202306048. [PMID: 38448164 PMCID: PMC10916854 DOI: 10.1083/jcb.202306048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
The microtubule motor dynein plays a key role in cellular organization. However, little is known about how dynein's biosynthesis, assembly, and functional diversity are orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a genome-wide gRNA library, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints revealed co-functional proteins involved in many cellular processes, including several candidate novel regulators of core dynein functions. Further analysis of one of these factors, the RNA-binding protein SUGP1, indicates that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our data represent a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organization captured by our high-content imaging.
Collapse
Affiliation(s)
- Chun Hao Wong
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Centre for Genomic Research, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - Steven W. Wingett
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Chen Qian
- Quantitative Biology, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - Morag Rose Hunter
- Centre for Genomic Research, Discovery Sciences, AstraZeneca, Cambridge, UK
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Simon L. Bullock
- Cell Biology Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
3
|
Wong CH, Wingett SW, Qian C, Taliaferro JM, Ross-Thriepland D, Bullock SL. Genome-scale requirements for dynein-based trafficking revealed by a high-content arrayed CRISPR screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530592. [PMID: 36909483 PMCID: PMC10002790 DOI: 10.1101/2023.03.01.530592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The cytoplasmic dynein-1 (dynein) motor plays a key role in cellular organisation by transporting a wide variety of cellular constituents towards the minus ends of microtubules. However, relatively little is known about how the biosynthesis, assembly and functional diversity of the motor is orchestrated. To address this issue, we have conducted an arrayed CRISPR loss-of-function screen in human cells using the distribution of dynein-tethered peroxisomes and early endosomes as readouts. From a guide RNA library targeting 18,253 genes, 195 validated hits were recovered and parsed into those impacting multiple dynein cargoes and those whose effects are restricted to a subset of cargoes. Clustering of high-dimensional phenotypic fingerprints generated from multiplexed images revealed co-functional genes involved in many cellular processes, including several candidate novel regulators of core dynein functions. Mechanistic analysis of one of these proteins, the RNA-binding protein SUGP1, provides evidence that it promotes cargo trafficking by sustaining functional expression of the dynein activator LIS1. Our dataset represents a rich source of new hypotheses for investigating microtubule-based transport, as well as several other aspects of cellular organisation that were captured by our high-content imaging.
Collapse
Affiliation(s)
- Chun Hao Wong
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
- Discovery Biology, Discovery Sciences, AstraZeneca, R&D, Cambridge, CB4 0WG, UK
- Current address: Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Steven W. Wingett
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Chen Qian
- Quantitative Biology, Discovery Sciences, AstraZeneca, R&D, Cambridge, CB4 0WG, UK
| | - J. Matthew Taliaferro
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Simon L. Bullock
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
4
|
Wu B, Li Y, Li J, Xie Z, Luan M, Gao C, Shi Y, Chen S. Genome-Wide Analysis of Alternative Splicing and Non-Coding RNAs Reveal Complicated Transcriptional Regulation in Cannabis sativa L. Int J Mol Sci 2021; 22:ijms222111989. [PMID: 34769433 PMCID: PMC8584933 DOI: 10.3390/ijms222111989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/26/2022] Open
Abstract
It is of significance to mine the structural genes related to the biosynthetic pathway of fatty acid (FA) and cellulose as well as explore the regulatory mechanism of alternative splicing (AS), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the biosynthesis of cannabinoids, FA and cellulose, which would enhance the knowledge of gene expression and regulation at post-transcriptional level in Cannabis sativa L. In this study, transcriptome, small RNA and degradome libraries of hemp 'Yunma No.1' were established, and comprehensive analysis was performed. As a result, a total of 154, 32 and 331 transcripts encoding key enzymes involved in the biosynthesis of cannabinoids, FA and cellulose were predicted, respectively, among which AS occurred in 368 transcripts. Moreover, 183 conserved miRNAs, 380 C. sativa-specific miRNAs and 7783 lncRNAs were predicted. Among them, 70 miRNAs and 17 lncRNAs potentially targeted 13 and 17 transcripts, respectively, encoding key enzymes or transporters involved in the biosynthesis of cannabinoids, cellulose or FA. Finally, the crosstalk between AS and miRNAs or lncRNAs involved in cannabinoids and cellulose was also predicted. In summary, all these results provided insights into the complicated network of gene expression and regulation in C. sativa.
Collapse
Affiliation(s)
- Bin Wu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Yanni Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Jishuang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Zhenzhen Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China; (B.W.); (Y.L.); (J.L.); (Z.X.)
| | - Mingbao Luan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Chunsheng Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (M.L.); (C.G.)
| | - Yuhua Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China;
- Correspondence:
| |
Collapse
|
5
|
Luo W, Zhou Y, Wang J, Yu X, Tong J. Identifying Candidate Genes Involved in the Regulation of Early Growth Using Full-Length Transcriptome and RNA-Seq Analyses of Frontal and Parietal Bones and Vertebral Bones in Bighead Carp ( Hypophthalmichthys nobilis). Front Genet 2021; 11:603454. [PMID: 33519908 PMCID: PMC7844397 DOI: 10.3389/fgene.2020.603454] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/14/2020] [Indexed: 12/23/2022] Open
Abstract
Growth, one of the most important traits monitored in domestic animals, is essentially associated with bone development. To date, no large-scale transcriptome studies investigating bone development in bighead carp have been reported. In this study, we applied Isoform-sequencing technology to uncover the entire transcriptomic landscape of the bighead carp (Hypophthalmichthys nobilis) in early growth stage, and obtained 63,873 non-redundant transcripts, 20,907 long non-coding RNAs, and 1,579 transcription factors. A total of 381 alternative splicing events were seen in the frontal and parietal bones with another 784 events simultaneously observed in the vertebral bones. Coupling this to RNA sequencing (RNA-seq) data, we identified 27 differentially expressed unigenes (DEGs) in the frontal and parietal bones and 45 DEGs in the vertebral bones in the fast-growing group of fish, when compared to the slow-growing group of fish. Finally, 15 key pathways and 20 key DEGs were identified and found to be involved in regulation of early growth such as energy metabolism, immune function, and cytoskeleton function and important cellular pathways such as the arginine and proline metabolic pathway (p4ha1), FoxO signaling pathway (sgk1), cell adhesion molecules (b2m, ptprc, and mhcII), and peroxisome proliferator-activated receptor signaling pathway (scd). We established a novel full-length transcriptome resource and combined it with RNA-seq to elucidate the mechanism of genetic regulation of differential growth in bighead carp. The key DEGs identified in this study could fuel further studies investigating associations between growth and bone development and serve as a source of potential candidate genes for marker-assisted breeding programs.
Collapse
Affiliation(s)
- Weiwei Luo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Castaldo L, Laguzzi F, Strawbridge RJ, Baldassarre D, Veglia F, Vigo L, Tremoli E, de Faire U, Eriksson P, Smit AJ, Aubrecht J, Leander K, Pirro M, Giral P, Ritieni A, Di Minno G, Mälarstig A, Gigante B. Genetic Variants Associated with Non-Alcoholic Fatty Liver Disease Do Not Associate with Measures of Sub-Clinical Atherosclerosis: Results from the IMPROVE Study. Genes (Basel) 2020; 11:genes11111243. [PMID: 33105679 PMCID: PMC7690395 DOI: 10.3390/genes11111243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 01/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and atherosclerosis-related cardiovascular diseases (CVD) share common metabolic pathways. We explored the association between three NAFLD-associated single nucleotide polymorphisms (SNPs) rs738409, rs10401969, and rs1260326 with sub-clinical atherosclerosis estimated by the carotid intima-media thickness (c-IMT) and the inter-adventitia common carotid artery diameter (ICCAD) in patients free from clinically overt NAFLD and CVD. The study population is the IMPROVE, a multicenter European study (n = 3711). C-IMT measures and ICCAD were recorded using a standardized protocol. Linear regression with an additive genetic model was used to test for association of the three SNPs with c-IMT and ICCAD. In secondary analyses, the association of the three SNPs with c-IMT and ICCAD was tested after stratification by alanine aminotransferase levels (ALT). No associations were found between rs738409, rs1260326, rs10401969, and c-IMT or ICCAD. Rs738409-G and rs10401969-C were associated with ALT levels (p < 0.001). In patients with ALT levels above 28 U/L (highest quartile), we observed an association between rs10401969-C and c-IMT measures of c-IMTmax and c-IMTmean-max (p = 0.018 and 0.021, respectively). In conclusion, NAFLD-associated SNPs do not associate with sub-clinical atherosclerosis measures. However, our results suggest a possible mediating function of impaired liver function on atherosclerosis development.
Collapse
Affiliation(s)
- Luigi Castaldo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy;
- Department of Pharmacy, University of Naples “Federico II”, 80138 Naples, Italy;
- Correspondence: ; Tel.: +39-081-678116
| | - Federica Laguzzi
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden; (F.L.); (U.d.F.); (K.L.)
| | - Rona J. Strawbridge
- Mental Health and Wellbeing, Institute of Health and Wellbeing, University of Glasgow, Glasgow G12-8QQ, UK;
- Health Data Research University of Glasgow, College of Medicine, Veterinarian and Life Sciences, Glasgow G12-8RZ, UK
- Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden; (P.E.); (A.M.); (B.G.)
| | - Damiano Baldassarre
- Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Parea 4, 20138 Milan, Italy; (D.B.); (F.V.); (L.V.); (E.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20122 Milano MI, Italy
| | - Fabrizio Veglia
- Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Parea 4, 20138 Milan, Italy; (D.B.); (F.V.); (L.V.); (E.T.)
| | - Lorenzo Vigo
- Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Parea 4, 20138 Milan, Italy; (D.B.); (F.V.); (L.V.); (E.T.)
| | - Elena Tremoli
- Centro Cardiologico Monzino, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS), Via Parea 4, 20138 Milan, Italy; (D.B.); (F.V.); (L.V.); (E.T.)
| | - Ulf de Faire
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden; (F.L.); (U.d.F.); (K.L.)
| | - Per Eriksson
- Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden; (P.E.); (A.M.); (B.G.)
| | - Andries J. Smit
- Department of Medicine, Division of vascular medicine University Medical Center Groningen, 9713 GZ Groningen, The Netherlands;
| | - Jiri Aubrecht
- Takeda Pharmaceuticals International Co., Cambridge, 02139 MA, USA;
| | - Karin Leander
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77 Stockholm, Sweden; (F.L.); (U.d.F.); (K.L.)
| | - Matteo Pirro
- Unit of Internal Medicine, Department of Medicine, University of Perugia, 06123 Perugia PG, Italy;
| | - Philippe Giral
- Assistance Publique—Hopitaux de Paris; Service Endocrinologie-Metabolisme, Groupe Hôpitalier Pitie-Salpetriere, Unités de Prévention Cardiovasculaire, 75013 Paris, France;
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Giovanni Di Minno
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80138 Naples, Italy;
| | - Anders Mälarstig
- Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden; (P.E.); (A.M.); (B.G.)
| | - Bruna Gigante
- Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Box 210, 171 77 Stockholm, Sweden; (P.E.); (A.M.); (B.G.)
| |
Collapse
|
7
|
Deng GX, Yin RX, Guan YZ, Liu CX, Zheng PF, Wei BL, Wu JZ, Miao L. Association of the NCAN-TM6SF2-CILP2-PBX4-SUGP1-MAU2 SNPs and gene-gene and gene-environment interactions with serum lipid levels. Aging (Albany NY) 2020; 12:11893-11913. [PMID: 32568739 PMCID: PMC7343441 DOI: 10.18632/aging.103361] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/01/2020] [Indexed: 01/07/2023]
Abstract
This study investigated the association of the NCAN-TM6SF2-CILP2-PBX4-SUGP1-MAU2 SNPs and gene-gene and gene-environment interactions with serum lipid levels in the population of Southwest China. Genotyping of 12 SNPs (i.e., rs2238675, rs2228603, rs58542926, rs735273, rs16996148, rs968525, rs17216525, rs12610185, rs10401969, rs8102280, rs73001065 and rs150268548) was performed in 1248 hyperlipidemia patients and 1248 normal subjects. The allelic and genotypic frequencies of the detected SNPs differed substantially between the normal and hyperlipidemia groups (P < 0.05-0.001), and the association of the 12 SNPs and hyperlipidemia was also observed (P < 0.004-0.0001). Four haplotypes (i.e., NCAN C-C, CILP2 G-T, PBX4-SUGP1 G-C, and MAU2 C-A-G-T) and 5 gene-gene interaction haplotypes (i.e., rs2238675C-rs2228603C, rs16996148G-rs17216525T, rs12610185G-rs10401969C, rs73001065G-rs8102280A-rs150268548G-rs968525C and rs73001065C-rs8102280A-rs150268548G-rs96852)showed a protective effect, whereas four other haplotypes (i.e., TM6SF2 T-A, TM6SF2 C-A, MAU2 G-G-G-C and MAU2 C-G-A-T), as well as 4 gene-gene interaction haplotypes (i.e., rs58542926C-rs735273A, rs58542926T-rs735273A, rs73001065G-rs8102280G-rs150268548G-rs968525C, and rs73001065C-rs8102280G-rs150268548A-rs968525T), exhibited an inverse effect on hyperlipidemia (P < 0.05-0.0001). There were notable three-locus models comprising SNP-SNP, SNP-environment, and haplotype-haplotype interactions (P < 0.05-0.0001). The individuals with some genotypes and haplotypes reduced the prevalence of hyperlipidemia, whereas the individuals with some other genotypes and haplotypes augmented the prevalence of hyperlipidemia. The NCAN-TM6SF2-CILP2-PBX4-SUGP1-MAU2 SNPs and gene-gene and gene-environment interactions on hyperlipidemia were observed in the population of Southwest China.
Collapse
Affiliation(s)
- Guo-Xiong Deng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Rui-Xing Yin
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Key Laboratory Base of Precision Medicine in Cardio-cerebrovascular Disease Control and Prevention, Nanning 530021, Guangxi, People's Republic of China.,Guangxi Clinical Research Center for Cardio-cerebrovascular Diseases, Nanning 530021, Guangxi, People's Republic of China
| | - Yao-Zong Guan
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Chun-Xiao Liu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Peng-Fei Zheng
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Bi-Liu Wei
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Jin-Zhen Wu
- Department of Cardiology, Institute of Cardiovascular Diseases, The First Affiliated Hospital, Guangxi Medical University, Nanning 530021, Guangxi, People's Republic of China
| | - Liu Miao
- Department of Cardiology, Liuzhou People's Hospital, Liuzhou 545006, Guangxi, People's Republic of China
| |
Collapse
|
8
|
Cellular Processes Involved in Jurkat Cells Exposed to Nanosecond Pulsed Electric Field. Int J Mol Sci 2019; 20:ijms20235847. [PMID: 31766457 PMCID: PMC6929111 DOI: 10.3390/ijms20235847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, nanosecond pulsed electric field (nsPEF) has been considered as a new tool for tumor therapy, but its molecular mechanism of function remains to be fully elucidated. Here, we explored the cellular processes of Jurkat cells exposed to nanosecond pulsed electric field. Differentially expressed genes (DEGs) were acquired from the GEO2R, followed by analysis with a series of bioinformatics tools. Subsequently, 3D protein models of hub genes were modeled by Modeller 9.21 and Rosetta 3.9. Then, a 100 ns molecular dynamics simulation for each hub protein was performed with GROMACS 2018.2. Finally, three kinds of nsPEF voltages (0.01, 0.05, and 0.5 mV/mm) were used to simulate the molecular dynamics of hub proteins for 100 ns. A total of 1769 DEGs and eight hub genes were obtained. Molecular dynamic analysis, including root mean square deviation (RMSD), root mean square fluctuation (RMSF), and the Rg, demonstrated that the 3D structure of hub proteins was built, and the structural characteristics of hub proteins under different nsPEFs were acquired. In conclusion, we explored the effect of nsPEF on Jurkat cell signaling pathway from the perspective of molecular informatics, which will be helpful in understanding the complex effects of nsPEF on acute T-cell leukemia Jurkat cells.
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Residual cardiovascular disease risk and increasing metabolic syndrome risk underscores a need for novel therapeutics targeting lipid metabolism in humans. Unbiased human genetic screens have proven powerful in identifying novel genomic loci, and this review discusses recent developments in such discovery. RECENT FINDINGS Recent human genome-wide association studies have been completed in incredibly large, detailed cohorts, allowing for the identification of more than 300 genomic loci that participate in the regulation of plasma lipid metabolism. However, the discovery of these loci has greatly outpaced the elucidation of the underlying functional mechanisms. The identification of novel roles for long noncoding RNAs, such as CHROME, LeXis, and MeXis, in lipid metabolism suggests that noncoding RNAs should be included in the functional translation of GWAS loci. SUMMARY Unbiased genetic studies appear to have unearthed a great deal of novel biology with respect to lipid metabolism, yet translation of these findings into actionable mechanisms has been slow. Increased focus on the translation, rather than the discovery, of these loci, with new attention paid to lncRNAs, can help spur the development of novel therapeutics targeting lipid metabolism.
Collapse
Affiliation(s)
- Elizabeth E. Ha
- Cardiometabolic Genomics Program, Division of Cardiology, Department of
Medicine, Columbia University, New York, NY, 10032
| | - Andrew G. Van Camp
- Cardiometabolic Genomics Program, Division of Cardiology, Department of
Medicine, Columbia University, New York, NY, 10032
| | - Robert C. Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of
Medicine, Columbia University, New York, NY, 10032
| |
Collapse
|
10
|
Dahl A, Cai N, Ko A, Laakso M, Pajukanta P, Flint J, Zaitlen N. Reverse GWAS: Using genetics to identify and model phenotypic subtypes. PLoS Genet 2019; 15:e1008009. [PMID: 30951530 PMCID: PMC6469799 DOI: 10.1371/journal.pgen.1008009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 04/17/2019] [Accepted: 02/07/2019] [Indexed: 12/16/2022] Open
Abstract
Recent and classical work has revealed biologically and medically significant subtypes in complex diseases and traits. However, relevant subtypes are often unknown, unmeasured, or actively debated, making automated statistical approaches to subtype definition valuable. We propose reverse GWAS (RGWAS) to identify and validate subtypes using genetics and multiple traits: while GWAS seeks the genetic basis of a given trait, RGWAS seeks to define trait subtypes with distinct genetic bases. Unlike existing approaches relying on off-the-shelf clustering methods, RGWAS uses a novel decomposition, MFMR, to model covariates, binary traits, and population structure. We use extensive simulations to show that modelling these features can be crucial for power and calibration. We validate RGWAS in practice by recovering a recently discovered stress subtype in major depression. We then show the utility of RGWAS by identifying three novel subtypes of metabolic traits. We biologically validate these metabolic subtypes with SNP-level tests and a novel polygenic test: the former recover known metabolic GxE SNPs; the latter suggests subtypes may explain substantial missing heritability. Crucially, statins, which are widely prescribed and theorized to increase diabetes risk, have opposing effects on blood glucose across metabolic subtypes, suggesting the subtypes have potential translational value.
Collapse
Affiliation(s)
- Andy Dahl
- Department of Medicine, UCSF, San Francisco, California, United States of America
| | - Na Cai
- Wellcome Sanger Institute, Cambridge, United Kingdom
- European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| | - Arthur Ko
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Markku Laakso
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
- Kuopio University Hospital, Kuopio, Finland
| | - Päivi Pajukanta
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Jonathan Flint
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, California, United States of America
| | - Noah Zaitlen
- Department of Medicine, UCSF, San Francisco, California, United States of America
| |
Collapse
|
11
|
Whalen S, Pollard KS. Most chromatin interactions are not in linkage disequilibrium. Genome Res 2019; 29:334-343. [PMID: 30617125 PMCID: PMC6396425 DOI: 10.1101/gr.238022.118] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023]
Abstract
Chromatin interactions and linkage disequilibrium (LD) are both pairwise measurements between genomic loci that show block patterns along mammalian chromosomes. Their values are generally high for sites that are nearby in the linear genome but abruptly drop across block boundaries. One function of chromatin boundaries is to insulate regulatory domains from one another. Since recombination is depressed within genes and between distal regulatory elements and their promoters, we hypothesized that LD and chromatin contact frequency might be correlated genome-wide with the boundaries of LD blocks and chromatin domains frequently coinciding. To comprehensively address this question, we compared chromatin contacts in 22 cell types to LD across billions of pairs of loci in the human genome. These computationally intensive analyses revealed that there is no concordance between LD and chromatin interactions, even at genomic distances below 25 kilobases (kb) where both tend to be high. At genomic distances where LD is approximately zero, chromatin interactions are frequent. While LD is somewhat elevated between distal regulatory elements and their promoters, LD block boundaries are depleted—not enriched—at chromatin boundaries. Finally, gene expression and ontology data suggest that chromatin contacts identify regulatory variants more reliably than do LD and genomic proximity. We conclude that the genomic architectures of genetic and physical interactions are independent, with important implications for gene regulatory evolution, interpretation of genetic association studies, and precision medicine.
Collapse
Affiliation(s)
- Sean Whalen
- Gladstone Institutes, San Francisco, California 94158, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, California 94158, USA.,Department of Epidemiology and Biostatistics, Institute for Human Genetics, Quantitative Biology Institute, and Institute for Computational Health Sciences, University of California San Francisco, San Francisco, California 94158, USA.,Chan-Zuckerberg Biohub, San Francisco, California 94158, USA
| |
Collapse
|
12
|
Single-nucleotide rs738409 polymorphisms in the PNPLA3 gene are strongly associated with alcoholic liver disease in Han Chinese males. Hepatol Int 2018; 12:429-437. [PMID: 30132178 DOI: 10.1007/s12072-018-9889-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Alcoholic liver disease (ALD) is a chronic liver disorder caused by the consumption of large amounts of alcohol. Genome-wide association studies have recently confirmed that polymorphisms in PNPLA3 predispose individuals to ALD and have identified risk loci of MBOAT7 and TM6SF2 in persons of European descent. However, the association with alcoholic liver damage has not been evaluated thus far in a Han Chinese population. METHODS We performed a large case-control multicenter study of 507 ALD patients and 645 ethnically matched healthy controls. Five SNPs were genotyped using matrix-assisted laser desorption/ionization time of flight mass spectrometry, and association analysis was performed using PLINK 1.07 software. RESULTS The rs738409 in the PNPLA3 gene was found to be significantly associated with ALD in allele and genotype frequencies (p = 6.25 × 10-14 and p = 9.05 × 10-13). The frequencies of the risk allele G in rs738409 were notably higher in ALD compared to controls (odds ratio = 1.93, 95% confidence interval = 1.63-2.28). The current study showed that the genotype frequencies of three genetic models were also statistically significant (p = 1.07 × 10-13, p = 9.3 × 10-8, and p = 1.57 × 10-12). Additionally, the G-allele of rs738409 was associated with a variety of clinical manifestations such as elevated alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), and mean corpuscular volume (MCV) in the patients with ALD. CONCLUSION In a Han Chinese population, the present study confirmed that PNPLA3 polymorphism rs738409 was more likely to influence the susceptibility to ALD. However, no statistically significant differences for the allele and genotype frequencies of rs626283, rs641738 in MBOAT7, rs10401969 in SUGP1 and rs58542926 in TM6SF2 were found between ALD patients and healthy controls.
Collapse
|