1
|
Kim HG, Berdasco C, Nairn AC, Kim Y. The WAVE complex in developmental and adulthood brain disorders. Exp Mol Med 2025; 57:13-29. [PMID: 39774290 PMCID: PMC11799376 DOI: 10.1038/s12276-024-01386-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/09/2024] [Accepted: 10/31/2024] [Indexed: 01/11/2025] Open
Abstract
Actin polymerization and depolymerization are fundamental cellular processes required not only for the embryonic and postnatal development of the brain but also for the maintenance of neuronal plasticity and survival in the adult and aging brain. The orchestrated organization of actin filaments is controlled by various actin regulatory proteins. Wiskott‒Aldrich syndrome protein-family verprolin-homologous protein (WAVE) members are key activators of ARP2/3 complex-mediated actin polymerization. WAVE proteins exist as heteropentameric complexes together with regulatory proteins, including CYFIP, NCKAP, ABI and BRK1. The activity of the WAVE complex is tightly regulated by extracellular cues and intracellular signaling to execute its roles in specific intracellular events in brain cells. Notably, dysregulation of the WAVE complex and WAVE complex-mediated cellular processes confers vulnerability to a variety of brain disorders. De novo mutations in WAVE genes and other components of the WAVE complex have been identified in patients with developmental disorders such as intellectual disability, epileptic seizures, schizophrenia, and/or autism spectrum disorder. In addition, alterations in the WAVE complex are implicated in the pathophysiology of Alzheimer's disease and Parkinson's disease, as well as in behavioral adaptations to psychostimulants or maladaptive feeding.
Collapse
Affiliation(s)
- Hyung-Goo Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Clara Berdasco
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA
| | - Angus C Nairn
- Department of Psychiatry, Yale School of Medicine, Connecticut Mental Health Center, New Haven, CT, USA
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, 08854, USA.
- Brain Health Institute, Rutgers University, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Mousavi H, Rimaz M, Zeynizadeh B. Practical Three-Component Regioselective Synthesis of Drug-Like 3-Aryl(or heteroaryl)-5,6-dihydrobenzo[ h]cinnolines as Potential Non-Covalent Multi-Targeting Inhibitors To Combat Neurodegenerative Diseases. ACS Chem Neurosci 2024; 15:1828-1881. [PMID: 38647433 DOI: 10.1021/acschemneuro.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Neurodegenerative diseases (NDs) are one of the prominent health challenges facing contemporary society, and many efforts have been made to overcome and (or) control it. In this research paper, we described a practical one-pot two-step three-component reaction between 3,4-dihydronaphthalen-1(2H)-one (1), aryl(or heteroaryl)glyoxal monohydrates (2a-h), and hydrazine monohydrate (NH2NH2•H2O) for the regioselective preparation of some 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnoline derivatives (3a-h). After synthesis and characterization of the mentioned cinnolines (3a-h), the in silico multi-targeting inhibitory properties of these heterocyclic scaffolds have been investigated upon various Homo sapiens-type enzymes, including hMAO-A, hMAO-B, hAChE, hBChE, hBACE-1, hBACE-2, hNQO-1, hNQO-2, hnNOS, hiNOS, hPARP-1, hPARP-2, hLRRK-2(G2019S), hGSK-3β, hp38α MAPK, hJNK-3, hOGA, hNMDA receptor, hnSMase-2, hIDO-1, hCOMT, hLIMK-1, hLIMK-2, hRIPK-1, hUCH-L1, hPARK-7, and hDHODH, which have confirmed their functions and roles in the neurodegenerative diseases (NDs), based on molecular docking studies, and the obtained results were compared with a wide range of approved drugs and well-known (with IC50, EC50, etc.) compounds. In addition, in silico ADMET prediction analysis was performed to examine the prospective drug properties of the synthesized heterocyclic compounds (3a-h). The obtained results from the molecular docking studies and ADMET-related data demonstrated that these series of 3-aryl(or heteroaryl)-5,6-dihydrobenzo[h]cinnolines (3a-h), especially hit ones, can really be turned into the potent core of new drugs for the treatment of neurodegenerative diseases (NDs), and/or due to the having some reactionable locations, they are able to have further organic reactions (such as cross-coupling reactions), and expansion of these compounds (for example, with using other types of aryl(or heteroaryl)glyoxal monohydrates) makes a new avenue for designing novel and efficient drugs for this purpose.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| | - Mehdi Rimaz
- Department of Chemistry, Payame Noor University, P.O. Box 19395-3697, Tehran 19395-3697, Iran
| | - Behzad Zeynizadeh
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
3
|
Khan E, Hasan I, Haque ME. Parkinson's Disease: Exploring Different Animal Model Systems. Int J Mol Sci 2023; 24:ijms24109088. [PMID: 37240432 DOI: 10.3390/ijms24109088] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Disease modeling in non-human subjects is an essential part of any clinical research. To gain proper understanding of the etiology and pathophysiology of any disease, experimental models are required to replicate the disease process. Due to the huge diversity in pathophysiology and prognosis in different diseases, animal modeling is customized and specific accordingly. As in other neurodegenerative diseases, Parkinson's disease is a progressive disorder coupled with varying forms of physical and mental disabilities. The pathological hallmarks of Parkinson's disease are associated with the accumulation of misfolded protein called α-synuclein as Lewy body, and degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) area affecting the patient's motor activity. Extensive research has already been conducted regarding animal modeling of Parkinson's diseases. These include animal systems with induction of Parkinson's, either pharmacologically or via genetic manipulation. In this review, we will be summarizing and discussing some of the commonly employed Parkinson's disease animal model systems and their applications and limitations.
Collapse
Affiliation(s)
- Engila Khan
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Ikramul Hasan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Emdadul Haque
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| |
Collapse
|
4
|
Hu J, Zhang D, Tian K, Ren C, Li H, Lin C, Huang X, Liu J, Mao W, Zhang J. Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. Eur J Med Chem 2023; 256:115475. [PMID: 37201428 DOI: 10.1016/j.ejmech.2023.115475] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that orchestrates a diverse array of cellular processes, including vesicle transport, autophagy, lysosome degradation, neurotransmission, and mitochondrial activity. Hyperactivation of LRRK2 triggers vesicle transport dysfunction, neuroinflammation, accumulation of α-synuclein, mitochondrial dysfunction, and the loss of cilia, ultimately leading to Parkinson's disease (PD). Therefore, targeting LRRK2 protein is a promising therapeutic strategy for PD. The clinical translation of LRRK2 inhibitors was historically impeded by issues surrounding tissue specificity. Recent studies have identified LRRK2 inhibitors that have no effect on peripheral tissues. Currently, there are four small-molecule LRRK2 inhibitors undergoing clinical trials. This review provides a summary of the structure and biological functions of LRRK2, along with an overview of the binding modes and structure-activity relationships (SARs) of small-molecule inhibitors targeting LRRK2. It offers valuable references for developing novel drugs targeting LRRK2.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changyu Ren
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Heng Li
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoli Huang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Fenner BM, Fenner ME, Prowse N, Hayley SP. LRRK2 and WAVE2 regulate microglial-transition through distinct morphological phenotypes to induce neurotoxicity in a novel two-hit in vitro model of neurodegeneration. J Cell Physiol 2021; 237:1013-1032. [PMID: 34543438 DOI: 10.1002/jcp.30588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 12/16/2022]
Abstract
We report a novel in vitro classification system that tracks microglial activation state and their potential neurotoxicity. Mixed live-cell imaging was used to characterize transition through distinct morphological phenotypes, production of reactive oxygen species (ROS), formation of reactive microglial aggregates, and subsequent cytokine production. Transwell cultures were used to determine microglial migration (control and lipopolysaccharide (LPS) treated) to glutamate pre-stressed or healthy neurons. This two-hit paradigm was developed to model the vast evidence that neurodegenerative conditions, like Parkinson's disease (PD), may stem from the collective impact of multiple environmental stressors. We found that healthy neurons were resistant to microglial-mediated inflammation, whereas glutamate pre-stressed neurons were highly susceptible and in fact, appeared to recruit microglia. The LPS treated microglia progressed through distinct morphological states and expressed high levels of ROS and formed large cellular aggregates. Recent evidence implicates leucine-rich repeat kinase 2 (LRRK2) as an important player in the microglial inflammatory state, as well as in the genesis of PD. We found that inhibition of the LRRK2 signaling pathway using the kinase inhibitor cis-2,6-dimethyl-4-(6-(5-(1-methylcyclopropoxy)-1H-indazol-3-yl)pyrimidin-4-yl)morpholine (MLi2) or inhibition of the actin regulatory protein, Wiskott-Aldrich syndrome family Verprolin-homologous Protein-2 (WAVE2), stunted microglial activation and prevented neurotoxicity. Furthermore, inhibition of LRRK2 kinase activity reduced pro-inflammatory chemokines including MIP-2, CRG-2, and RANTES. These data together support the notion that LRRK2 and WAVE2 are important mediators of cytokine production and cytoskeletal rearrangement necessary for microglial-induced neurotoxicity. Furthermore, our model demonstrated unique microglial phenotypic changes that might be mechanistically important for better understanding neuron-microglial crosstalk.
Collapse
Affiliation(s)
- Barbara M Fenner
- Department of Biology, King's College, Wilkes-Barre, Pennsylvania, USA
| | - Mark E Fenner
- Fenner Training and Consulting, LLC, Kingston, Pennsylvania, USA
| | - Natalie Prowse
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Shawn P Hayley
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Dutta D, Sharma V, Mutsuddi M, Mukherjee A. Regulation of Notch signaling by E3 ubiquitin ligases. FEBS J 2021; 289:937-954. [PMID: 33644958 DOI: 10.1111/febs.15792] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 12/11/2022]
Abstract
Notch signaling is an evolutionarily conserved pathway that is widely used for multiple cellular events during development. Activation of the Notch pathway occurs when the ligand from a neighboring cell binds to the Notch receptor and induces cleavage of the intracellular domain of Notch, which further translocates into the nucleus to activate its downstream genes. The involvement of the Notch pathway in diverse biological events is possible due to the complexity in its regulation. In order to maintain tight spatiotemporal regulation, the Notch receptor, as well as its ligand, undergoes a series of physical and biochemical modifications that, in turn, helps in proper maintenance and fine-tuning of the signaling outcome. Ubiquitination is the post-translational addition of a ubiquitin molecule to a substrate protein, and the process is regulated by E3 ubiquitin ligases. The present review describes the involvement of different E3 ubiquitin ligases that play an important role in the regulation and maintenance of proper Notch signaling and how perturbation in ubiquitination results in abnormal Notch signaling leading to a number of human diseases.
Collapse
Affiliation(s)
- Debdeep Dutta
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vartika Sharma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Mousumi Mutsuddi
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
7
|
Petridi S, Middleton CA, Ugbode C, Fellgett A, Covill L, Elliott CJH. In Vivo Visual Screen for Dopaminergic Rab ↔ LRRK2-G2019S Interactions in Drosophila Discriminates Rab10 from Rab3. G3 (BETHESDA, MD.) 2020; 10:1903-1914. [PMID: 32321836 PMCID: PMC7263684 DOI: 10.1534/g3.120.401289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 04/22/2020] [Indexed: 02/07/2023]
Abstract
LRRK2 mutations cause Parkinson's, but the molecular link from increased kinase activity to pathological neurodegeneration remains undetermined. Previous in vitro assays indicate that LRRK2 substrates include at least 8 Rab GTPases. We have now examined this hypothesis in vivo in a functional, electroretinogram screen, expressing each Rab with/without LRRK2-G2019S in selected Drosophila dopaminergic neurons. Our screen discriminated Rab10 from Rab3. The strongest Rab/LRRK2-G2019S interaction is with Rab10; the weakest with Rab3. Rab10 is expressed in a different set of dopaminergic neurons from Rab3. Thus, anatomical and physiological patterns of Rab10 are related. We conclude that Rab10 is a valid substrate of LRRK2 in dopaminergic neurons in vivo We propose that variations in Rab expression contribute to differences in the rate of neurodegeneration recorded in different dopaminergic nuclei in Parkinson's.
Collapse
Affiliation(s)
- Stavroula Petridi
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - C Adam Middleton
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Chris Ugbode
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Alison Fellgett
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Laura Covill
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| | - Christopher J H Elliott
- Department of Biology and York Biomedical Research Institute, University of York, YO1 5DD, UK
| |
Collapse
|
8
|
Papanikolopoulou K, Mudher A, Skoulakis E. An assessment of the translational relevance of Drosophila in drug discovery. Expert Opin Drug Discov 2019; 14:303-313. [PMID: 30664368 DOI: 10.1080/17460441.2019.1569624] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Drosophila melanogaster offers a powerful expedient and economical system with facile genetics. Because of the high sequence and functional conservation with human disease-associated genes, it has been cardinal in deciphering disease mechanisms at the genetic and molecular level. Drosophila are amenable to and respond well to pharmaceutical treatment which coupled to their genetic tractability has led to discovery, repositioning, and validation of a number of compounds. Areas covered: This review summarizes the generation of fly models of human diseases, their advantages and use in elucidation of human disease mechanisms. Representative studies provide examples of the utility of this system in modeling diseases and the discovery, repositioning and testing on pharmaceuticals to ameliorate them. Expert opinion: Drosophila offers a facile and economical whole animal system with many homologous organs to humans, high functional conservation and established methods of generating and validating human disease models. Nevertheless, it remains relatively underused as a drug discovery tool probably because its relevance to mammalian systems remains under question. However, recent exciting success stories using Drosophila disease models for drug screening, repositioning and validation strongly suggest that fly models should figure prominently in the drug discovery pipeline from bench to bedside.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- a Division of Neuroscience , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| | - Amrit Mudher
- b Centre for Biological Sciences , University of Southampton , Southampton , UK
| | - Efthimios Skoulakis
- a Division of Neuroscience , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| |
Collapse
|
9
|
Deal SL, Yamamoto S. Unraveling Novel Mechanisms of Neurodegeneration Through a Large-Scale Forward Genetic Screen in Drosophila. Front Genet 2019; 9:700. [PMID: 30693015 PMCID: PMC6339878 DOI: 10.3389/fgene.2018.00700] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/13/2018] [Indexed: 01/04/2023] Open
Abstract
Neurodegeneration is characterized by progressive loss of neurons. Genetic and environmental factors both contribute to demise of neurons, leading to diverse devastating cognitive and motor disorders, including Alzheimer's and Parkinson's diseases in humans. Over the past few decades, the fruit fly, Drosophila melanogaster, has become an integral tool to understand the molecular, cellular and genetic mechanisms underlying neurodegeneration. Extensive tools and sophisticated technologies allow Drosophila geneticists to identify and study evolutionarily conserved genes that are essential for neural maintenance. In this review, we will focus on a large-scale mosaic forward genetic screen on the fly X-chromosome that led to the identification of a number of essential genes that exhibit neurodegenerative phenotypes when mutated. Most genes identified from this screen are evolutionarily conserved and many have been linked to human diseases with neurological presentations. Systematic electrophysiological and ultrastructural characterization of mutant tissue in the context of the Drosophila visual system, followed by a series of experiments to understand the mechanism of neurodegeneration in each mutant led to the discovery of novel molecular pathways that are required for neuronal integrity. Defects in mitochondrial function, lipid and iron metabolism, protein trafficking and autophagy are recurrent themes, suggesting that insults that eventually lead to neurodegeneration may converge on a set of evolutionarily conserved cellular processes. Insights from these studies have contributed to our understanding of known neurodegenerative diseases such as Leigh syndrome and Friedreich's ataxia and have also led to the identification of new human diseases. By discovering new genes required for neural maintenance in flies and working with clinicians to identify patients with deleterious variants in the orthologous human genes, Drosophila biologists can play an active role in personalized medicine.
Collapse
Affiliation(s)
- Samantha L Deal
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
10
|
Marcogliese PC, Shashi V, Spillmann RC, Stong N, Rosenfeld JA, Koenig MK, Martínez-Agosto JA, Herzog M, Chen AH, Dickson PI, Lin HJ, Vera MU, Salamon N, Graham JM, Ortiz D, Infante E, Steyaert W, Dermaut B, Poppe B, Chung HL, Zuo Z, Lee PT, Kanca O, Xia F, Yang Y, Smith EC, Jasien J, Kansagra S, Spiridigliozzi G, El-Dairi M, Lark R, Riley K, Koeberl DD, Golden-Grant K, Yamamoto S, Wangler MF, Mirzaa G, Hemelsoet D, Lee B, Nelson SF, Goldstein DB, Bellen HJ, Pena LDM. IRF2BPL Is Associated with Neurological Phenotypes. Am J Hum Genet 2018; 103:245-260. [PMID: 30057031 PMCID: PMC6081494 DOI: 10.1016/j.ajhg.2018.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Abstract
Interferon regulatory factor 2 binding protein-like (IRF2BPL) encodes a member of the IRF2BP family of transcriptional regulators. Currently the biological function of this gene is obscure, and the gene has not been associated with a Mendelian disease. Here we describe seven individuals who carry damaging heterozygous variants in IRF2BPL and are affected with neurological symptoms. Five individuals who carry IRF2BPL nonsense variants resulting in a premature stop codon display severe neurodevelopmental regression, hypotonia, progressive ataxia, seizures, and a lack of coordination. Two additional individuals, both with missense variants, display global developmental delay and seizures and a relatively milder phenotype than those with nonsense alleles. The IRF2BPL bioinformatics signature based on population genomics is consistent with a gene that is intolerant to variation. We show that the fruit-fly IRF2BPL ortholog, called pits (protein interacting with Ttk69 and Sin3A), is broadly detected, including in the nervous system. Complete loss of pits is lethal early in development, whereas partial knockdown with RNA interference in neurons leads to neurodegeneration, revealing a requirement for this gene in proper neuronal function and maintenance. The identified IRF2BPL nonsense variants behave as severe loss-of-function alleles in this model organism, and ectopic expression of the missense variants leads to a range of phenotypes. Taken together, our results show that IRF2BPL and pits are required in the nervous system in humans and flies, and their loss leads to a range of neurological phenotypes in both species.
Collapse
Affiliation(s)
- Paul C Marcogliese
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Vandana Shashi
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rebecca C Spillmann
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nicholas Stong
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary Kay Koenig
- Division of Child & Adolescent Neurology, Department of Pediatrics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Julián A Martínez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Child and Adolescent Psychiatry, Resnick Neuropsychiatric Hospital, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Matthew Herzog
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Agnes H Chen
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Patricia I Dickson
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Henry J Lin
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Moin U Vera
- Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Noriko Salamon
- Department of Radiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John M Graham
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Damara Ortiz
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Elena Infante
- Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Wouter Steyaert
- Department of Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bart Dermaut
- Department of Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Bruce Poppe
- Department of Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Hyung-Lok Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pei-Tseng Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Edward C Smith
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Joan Jasien
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sujay Kansagra
- Division of Neurology, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Gail Spiridigliozzi
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mays El-Dairi
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Robert Lark
- Department of Orthopedic Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kacie Riley
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Dwight D Koeberl
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katie Golden-Grant
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Ghayda Mirzaa
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, Seattle, WA 98105, USA
| | - Dimitri Hemelsoet
- Department of Neurology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stanley F Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David B Goldstein
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY 10032, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Loren D M Pena
- Division of Medical Genetics, Department of Pediatrics, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Soukup SF, Vanhauwaert R, Verstreken P. Parkinson's disease: convergence on synaptic homeostasis. EMBO J 2018; 37:embj.201898960. [PMID: 30065071 DOI: 10.15252/embj.201898960] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 05/07/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder, affects millions of people globally. There is no cure, and its prevalence will double by 2030. In recent years, numerous causative genes and risk factors for Parkinson's disease have been identified and more than half appear to function at the synapse. Subtle synaptic defects are thought to precede blunt neuronal death, but the mechanisms that are dysfunctional at synapses are only now being unraveled. Here, we review recent work and propose a model where different Parkinson proteins interact in a cell compartment-specific manner at the synapse where these proteins regulate endocytosis and autophagy. While this field is only recently emerging, the work suggests that the loss of synaptic homeostasis may contribute to neurodegeneration and is a key player in Parkinson's disease.
Collapse
Affiliation(s)
- Sandra-Fausia Soukup
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Roeland Vanhauwaert
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium.,Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- VIB-KU Leuven Center for Brain& Disease Research, Leuven, Belgium .,Department of Neurosciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Genetic Modifiers of Neurodegeneration in a Drosophila Model of Parkinson's Disease. Genetics 2018; 209:1345-1356. [PMID: 29907646 DOI: 10.1534/genetics.118.301119] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/03/2018] [Indexed: 11/18/2022] Open
Abstract
Disease phenotypes can be highly variable among individuals with the same pathogenic mutation. There is increasing evidence that background genetic variation is a strong driver of disease variability in addition to the influence of environment. To understand the genotype-phenotype relationship that determines the expressivity of a pathogenic mutation, a large number of backgrounds must be studied. This can be efficiently achieved using model organism collections such as the Drosophila Genetic Reference Panel (DGRP). Here, we used the DGRP to assess the variability of locomotor dysfunction in a LRRK2 G2019S Drosophila melanogaster model of Parkinson's disease (PD). We find substantial variability in the LRRK2 G2019S locomotor phenotype in different DGRP backgrounds. A genome-wide association study for candidate genetic modifiers reveals 177 genes that drive wide phenotypic variation, including 19 top association genes. Genes involved in the outgrowth and regulation of neuronal projections are enriched in these candidate modifiers. RNAi functional testing of the top association and neuronal projection-related genes reveals that pros, pbl, ct, and CG33506 significantly modify age-related dopamine neuron loss and associated locomotor dysfunction in the Drosophila LRRK2 G2019S model. These results demonstrate how natural genetic variation can be used as a powerful tool to identify genes that modify disease-related phenotypes. We report novel candidate modifier genes for LRRK2 G2019S that may be used to interrogate the link between LRRK2, neurite regulation and neuronal degeneration in PD.
Collapse
|
13
|
Regulation of myeloid cell phagocytosis by LRRK2 via WAVE2 complex stabilization is altered in Parkinson's disease. Proc Natl Acad Sci U S A 2018; 115:E5164-E5173. [PMID: 29760073 DOI: 10.1073/pnas.1718946115] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) has been implicated in both familial and sporadic Parkinson's disease (PD), yet its pathogenic role remains unclear. A previous screen in Drosophila identified Scar/WAVE (Wiskott-Aldrich syndrome protein-family verproline) proteins as potential genetic interactors of LRRK2 Here, we provide evidence that LRRK2 modulates the phagocytic response of myeloid cells via specific modulation of the actin-cytoskeletal regulator, WAVE2. We demonstrate that macrophages and microglia from LRRK2-G2019S PD patients and mice display a WAVE2-mediated increase in phagocytic response, respectively. Lrrk2 loss results in the opposite effect. LRRK2 binds and phosphorylates Wave2 at Thr470, stabilizing and preventing its proteasomal degradation. Finally, we show that Wave2 also mediates Lrrk2-G2019S-induced dopaminergic neuronal death in both macrophage-midbrain cocultures and in vivo. Taken together, a LRRK2-WAVE2 pathway, which modulates the phagocytic response in mice and human leukocytes, may define an important role for altered immune function in PD.
Collapse
|