1
|
Rooda I, Méar L, Hassan J, Damdimopoulou P. The adult ovary at single cell resolution: an expert review. Am J Obstet Gynecol 2025; 232:S95.e1-S95.e16. [PMID: 40253085 DOI: 10.1016/j.ajog.2024.05.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 04/21/2025]
Abstract
The ovaries play a crucial role in both the endocrine health and fertility of adult women. The fundamental functional units of the ovaries, primordial follicles, form during fetal development and constitute the ovarian reserve. Ovaries age prematurely in comparison to other organs, with the quality of oocytes declining steeply prior to the entire reserve becoming depleted, usually around age 50. Despite the pivotal role of ovaries in women's overall health, surprisingly little is known about the mechanisms controlling follicle dormancy, growth activation, atresia, maturation, and oocyte quality. Understanding ovarian function on a cellular and molecular level is increasingly important for several reasons. First, the global trend of women delaying childbirth creates a growing population of patients wishing to conceive when the quality and quantity of their oocytes are already critically low. Second, conditions affecting the ovaries, such as polycystic ovary syndrome and endometriosis, are widespread, yet diagnosis and treatment still present challenges. Lastly, advancements in cancer therapies have increased the number of cancer survivors who contend with late complications affecting fertility and hormonal balance. Clearly, a better understanding of diseases, aging, and toxicity in ovaries is needed for the development of novel treatments, preventive therapies, and safer pharmaceuticals. Human ovaries are notoriously difficult to obtain for research due to their pivotal role in women's health, and the highly heterogeneous distribution of follicles within the tissue combined with monthly cyclical changes present further challenges. Single-cell profiling techniques are creating new opportunities, enabling the characterization of small amounts of tissue with unprecedented resolution. Here, we review the literature on single-cell characterization of adult, reproductive-age ovaries. The majority of the 46 identified studies have focused on oocytes discarded during assisted reproduction, with only a handful focusing on ovarian tissue. The overwhelming focus of the studies is on follicles and oocytes, although the somatic cell niche in the ovary undoubtedly plays an important role in endocrine function and follicle biology. Altogether, the studies reveal unexpected diversity and heterogeneity among ovarian somatic and germ cells, highlighting the prevailing knowledge gaps in basic ovarian biology. As the most common outcome for a follicle is atresia, it is possible that part of the cell diversity relates to the biology of follicles destined to degenerate. The absence of spatial coordinates in single-cell studies further complicates the interpretation of the roles and significance of the various reported cell clusters. Accomplishing a representative ovarian single-cell atlas will require merging these studies. However, direct comparisons are challenging due to nonuniform nomenclature, differing tissue sources, varying meta-data reporting, and lack of gold standards in technical approaches. Although these reports establish a single-cell draft of adult-fertile age human ovaries, more detailed metadata and better quality reporting will be essential for the development of a robust ovarian cell atlas in health and disease.
Collapse
Affiliation(s)
- Ilmatar Rooda
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Loren Méar
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden; Cancer Precision Medicine Research Program, Department of Immunology, Genetics, and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Jasmin Hassan
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Pauliina Damdimopoulou
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
2
|
Kagami M, Hara-Isono K, Sasaki A, Amita M. Association between imprinting disorders and assisted reproductive technologies. Epigenomics 2025; 17:397-410. [PMID: 40033833 PMCID: PMC11980493 DOI: 10.1080/17501911.2025.2471269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Aberrant expression of imprinted genes results in imprinting disorders (IDs). Differentially methylated regions (DMRs) reveal parental-origin-specific DNA methylation on CpGs and regulate the expression of the imprinted genes. One etiology of IDs is epimutation (epi-IDs) induced by some error in the establishment or maintenance of methylation imprint during the processes of gametogenesis, fertilization, or early embryonic development. Therefore, it has been a concern that assisted reproductive technologies (ART) increase the risk for the development of IDs, particularly epi-IDs. We review the effects of ART on DNA methylation of the genome, including DMRs in gametes, embryos, and offspring, and the risk of advanced parental age (a confounding factor of ART) and infertility itself for the development of IDs, particularly epi-IDs.
Collapse
Affiliation(s)
- Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kaori Hara-Isono
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Aiko Sasaki
- Division of Obstetrics, Center for Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Mitsuyoshi Amita
- Division of Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
3
|
Zhou N, Wang X, Xia Y, Liu Z, Luo L, Jin R, Tong X, Shi Z, Wang Z, Sui H, Ma Y, Li Y, Cao Z, Zhang Y. Comparatively profiling the transcriptome of human, Porcine and mouse oocytes undergoing meiotic maturation. BMC Genomics 2025; 26:236. [PMID: 40075306 PMCID: PMC11900275 DOI: 10.1186/s12864-025-11431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Oocyte maturation is a critical process responsible for supporting preimplantation embryo development and full development to term. Understanding oocyte gene expression is relevant given the unique molecular mechanism present in this gamete. Comparative transcriptome analysis across species offers a powerful approach to uncover conserved and species-specific genes involved in the molecular regulation of oocyte maturation throughout evolution. RESULTS Transcriptome analysis identified 4,625, 3,824, 4,972 differentially expressed genes (DEGs) between the germinal vesicle (GV) and metaphase II (MII) stage in human, porcine and mouse oocytes respectively. These DEGs showed dynamic changes associated with oocyte maturation. Functional enrichment analysis revealed that the DEGs in all three species were mainly involved in DNA replication, cell cycle and redox regulation. Comparative transcriptome analysis identified 551 conserved DEGs in the three species with significant enrichment in mitochondria and mitochondrial intima. CONCLUSIONS This study provides a systematic comparative analysis of oocyte meiotic maturation in humans, pigs and mice identifying both conserved and species-specific patterns during oocyte meiosis. Our findings also implied that the selection of oocyte expressed genes among these three species could form a basis for further exploring their functional roles in human oocyte maturation.
Collapse
Affiliation(s)
- Naru Zhou
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, USTC, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Xin Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yi Xia
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongliang Liu
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lei Luo
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, USTC, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Rentao Jin
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, USTC, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Xianhong Tong
- Center for Reproduction and Genetics, Division of Life Sciences and Medicine, USTC, The First Affiliated Hospital of University of Science and Technology of China (USTC), Hefei, China
| | - Zhenhu Shi
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhichao Wang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Heming Sui
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yangyang Ma
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Yunsheng Li
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zubing Cao
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
4
|
Chen YR, Yin WW, Jin YR, Lv PP, Jin M, Feng C. Current status and hotspots of in vitro oocyte maturation: a bibliometric study of the past two decades. J Assist Reprod Genet 2025; 42:459-472. [PMID: 39317914 PMCID: PMC11871283 DOI: 10.1007/s10815-024-03272-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024] Open
Abstract
PURPOSE In vitro maturation (IVM) of oocytes is a promising technique among assisted reproductive technologies. Although IVM has been used for many years, its efficiency is still relatively low compared to that of traditional in vitro fertilization (IVF) procedures. Therefore, we aimed to explore the hotspots and frontiers of IVM research over the past two decades and provide direction for IVM advancement. METHODS The articles and reviews related to IVM in the Web of Science Core Collection (WoSCC) were retrieved on June 03, 2024. Three bibliometric tools, VOSviewer 1.6.18 (2010), CiteSpace 6.1. R6 (2006), and Bibliometrix R package 4.1.0 (2017), were used to generate network maps and explore knowledge frontiers and trends. To uncover the latest research advancements and frontiers in the IVM field, we conducted an analysis of the entire IVM field, including all species. Given our focus on human IVM developments, we identified the leading countries, institutions, authors, and journals driving progress in human IVM. RESULTS A total of 5150 publications about IVM and 1534 publications in the specific context of human IVM were retrieved from the WoSCC. The number of publications on both overall IVM and human IVM fields has increased steadily. In human IVM, the United States (USA) and McGill University were the most prolific country and institution, respectively. Human Reproduction was both the most published in and the most cited journal in human IVM. Seang Lin, Tan was the most productive author, and Ri-Cheng, Chian's papers were the most cited in human IVM. Furthermore, five hotspot topics were summarized, namely, culture system, supplementation, cooperation in the ovarian follicle, gene expression, and oocyte cryopreservation. CONCLUSIONS Further studies could concentrate on the following topics: (1) the mechanisms involved in oocyte maturation in vivo and in vitro, especially in energy metabolism and intercellular communications; (2) the establishment of IVM culture systems, including standardization of the biphasic IVM culture system and supplementation; (3) the genetic differences between oocytes matured in vivo and in vitro; and (4) the mechanism of cryopreservation-inflicted damage and solutions to this challenge. For human IVM, it is necessary to precisely assess the developmental stages of oocytes and adjust the IVM process accordingly to develop tailored culture media. Concurrently, clinical trials are essential for evaluating the effectiveness and safety of IVM.
Collapse
Affiliation(s)
- Yi-Ru Chen
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Wei-Wei Yin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Yi-Ru Jin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Ping-Ping Lv
- Department of Reproductive Endocrinology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Jin
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Chun Feng
- Department of Reproductive Medicine, the Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
5
|
Yang D, Hu Q, Zhao S, Hu X, Gao X, Dai F, Zheng Y, Yang Y, Cheng Y. An optofluidic system for the concentration gradient screening of oocyte protection drugs. Talanta 2024; 278:126472. [PMID: 38924991 DOI: 10.1016/j.talanta.2024.126472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/17/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024]
Abstract
Oocytes protective drug screening is essential for the treatment of reproductive diseases. However, few studies construct the oocyte in vitro drug screening microfluidic systems because of their enormous size, scarcity, and sensitivity to the culture environment. Here, we present an optofluidic system for oocyte drug screening and state analysis. The system consists of two parts: an open-top drug screening microfluidic chip and an optical Fourier filter analysis part. The open-top microfluidic chip anchors single oocyte with hydrogel and allows nutrient and gas environment updating which is essential for oocyte culturing. The optical filter analysis part is used to accurately analyse the status of oocytes. Based on this system, we found that fluorene-9-bisphenol (BHPF) damaged the oocyte spindle in a dose-dependent manner, a high dose of melatonin (10-3 M) effectively reduces the percentage of abnormally arranged chromosomes of oocytes exposed to 40 μM BHPF. This optofluidic system shows great promise for the culture of oocytes and demonstrates the robust ability for convenient multi-concentration oocytes drug screening. This technology may benefit further biomedicine and reproductive toxicology applications in the lab on a chip community.
Collapse
Affiliation(s)
- Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qinghao Hu
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Shukun Zhao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Xuejia Hu
- Department of Electronic Engineering, School of Electronic Science and Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoqi Gao
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yajing Zheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Yang
- Department of Clinical Laboratory, Institute of Medicine and Physics, Renmin Hospital of Wuhan University, Wuhan, 430072, China; Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics & Technology, Wuhan University, Wuhan, 430072, China; Shenzhen Research Institute, Wuhan University, Shenzhen, 518000, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
6
|
Ducreux B, Patrat C, Trasler J, Fauque P. Transcriptomic integrity of human oocytes used in ARTs: technical and intrinsic factor effects. Hum Reprod Update 2024; 30:26-47. [PMID: 37697674 DOI: 10.1093/humupd/dmad025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Millions of children have been born throughout the world thanks to ARTs, the harmlessness of which has not yet been fully demonstrated. For years, efforts to evaluate the specific effects of ART have focused on the embryo; however, it is the oocyte quality that mainly dictates first and foremost the developmental potential of the future embryo. Ovarian stimulation, cryopreservation, and IVM are sometimes necessary steps to obtain a mature oocyte, but they could alter the appropriate expression of the oocyte genome. Additionally, it is likely that female infertility, environmental factors, and lifestyle have a significant influence on oocyte transcriptomic quality, which may interfere with the outcome of an ART attempt. OBJECTIVE AND RATIONALE The objective of this review is to identify transcriptomic changes in the human oocyte caused by interventions specific to ART but also intrinsic factors such as age, reproductive health issues, and lifestyle. We also provide recommendations for future good practices to be conducted when attempting ART. SEARCH METHODS An in-depth literature search was performed on PubMed to identify studies assessing the human oocyte transcriptome following ART interventions, or in the context of maternal aging, suboptimal lifestyle, or reproductive health issues. OUTCOMES ART success is susceptible to external factors, maternal aging, lifestyle factors (smoking, BMI), and infertility due to endometriosis or polycystic ovary syndrome. Indeed, all of these are likely to increase oxidative stress and alter mitochondrial processes in the foreground. Concerning ART techniques themselves, there is evidence that different ovarian stimulation regimens shape the oocyte transcriptome. The perturbation of processes related to the mitochondrion, oxidative phosphorylation, and metabolism is observed with IVM. Cryopreservation might dysregulate genes belonging to transcriptional regulation, ubiquitination, cell cycle, and oocyte growth pathways. For other ART laboratory factors such as temperature, oxygen tension, air pollution, and light, the evidence remains scarce. Focusing on genes involved in chromatin-based processes such as DNA methylation, heterochromatin modulation, histone modification, and chromatin remodeling complexes, but also genomic imprinting, we observed systematic dysregulation of such genes either after ART intervention or lifestyle exposure, as well as due to internal factors such as maternal aging and reproductive diseases. Alteration in the expression of such epigenetic regulators may be a common mechanism linked to adverse oocyte environments, explaining global transcriptomic modifications. WIDER IMPLICATIONS Many IVF factors and additional external factors have the potential to impair oocyte transcriptomic integrity, which might not be innocuous for the developing embryo. Fortunately, it is likely that such dysregulations can be minimized by adapting ART protocols or reducing adverse exposure.
Collapse
Affiliation(s)
- Bastien Ducreux
- Université Bourgogne Franche-Comtés-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
| | - Catherine Patrat
- Université de Paris Cité, Faculty of Medicine, Inserm 1016, Paris, France
- Department of Reproductive Biology-CECOS, aphp.centre-Université Paris Cité, Paris, France
| | - Jacquetta Trasler
- Department of Pediatrics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Human Genetics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Department of Pharmacology & Therapeutics, McGill University and Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Patricia Fauque
- Université Bourgogne Franche-Comtés-Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, Dijon, France
| |
Collapse
|
7
|
Barberet J, Ducreux B, Bruno C, Guilleman M, Simonot R, Lieury N, Guilloteau A, Bourc’his D, Fauque P. Comparison of oocyte vitrification using a semi-automated or a manual closed system in human siblings: survival and transcriptomic analyses. J Ovarian Res 2022; 15:128. [PMID: 36464714 PMCID: PMC9720994 DOI: 10.1186/s13048-022-01064-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/21/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND Indications of oocyte vitrification increased substantially over the last decades for clinical and ethical reasons. A semi-automated vitrification system was recently developed making each act of vitrification reproducible. In this study, we evaluated the efficiency of the semi-automated technique of oocyte vitrification by survival rate, morphometric assessment and resistance to empty micro-injection gesture as compared with a manual method. Additionally, we intended to evaluate transcriptomic consequences of both techniques using single-cell RNA-seq technology. RESULTS Post-warming survival rate, oocyte surfaces and resistance to empty micro-injection were comparable between semi-automated and manual vitrification groups. Both oocyte vitrification techniques showed limited differences in the resulting transcriptomic profile of sibling oocytes since only 5 differentially expressed genes were identified. Additionally, there was no difference in median transcript integrity number or percentage of mitochondrial DNA between the two groups. However, a total of 108 genes were differentially expressed between fresh and vitrified oocytes (FDR < 0.05) and showed over-represented of genes related to important cellular process. CONCLUSIONS Our results provide reassurance about the influence of semi-automation as compared with the manual vitrification method. Concerning oocyte vitrification itself, no tight common transcriptomic signature associated has been observed across studies. TRIAL REGISTRATION NCT03570073.
Collapse
Affiliation(s)
- Julie Barberet
- grid.493090.70000 0004 4910 6615Université Bourgogne Franche-Comté - Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France ,grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France
| | - Bastien Ducreux
- grid.493090.70000 0004 4910 6615Université Bourgogne Franche-Comté - Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France
| | - Céline Bruno
- grid.493090.70000 0004 4910 6615Université Bourgogne Franche-Comté - Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France ,grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France
| | - Magali Guilleman
- grid.493090.70000 0004 4910 6615Université Bourgogne Franche-Comté - Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France ,grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France
| | - Raymond Simonot
- grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France
| | - Nicolas Lieury
- grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France
| | - Adrien Guilloteau
- grid.31151.37USMR, Dijon Bourgogne University Hospital, F-21000 Dijon, France
| | - Déborah Bourc’his
- Institut Curie, PSL University, CNRS, INSERM, 26 rue d’Ulm, F-75248 Paris, France
| | - Patricia Fauque
- grid.493090.70000 0004 4910 6615Université Bourgogne Franche-Comté - Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, F-21000 Dijon, France ,grid.31151.37CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction – CECOS, 14 rue Gaffarel, F-21000 Dijon, France ,grid.31151.37Laboratoire de Biologie de la Reproduction, CHU Dijon, BP 77908, 14, rue Gaffarel, 21079 Dijon Cedex, France
| |
Collapse
|
8
|
Machlin JH, Shikanov A. Single-cell RNA-sequencing of retrieved human oocytes and eggs in clinical practice and for human ovarian cell atlasing. Mol Reprod Dev 2022; 89:597-607. [PMID: 36264989 PMCID: PMC9805491 DOI: 10.1002/mrd.23648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 01/18/2023]
Abstract
With the advancement of single-cell separation techniques and high-throughput sequencing platforms, single-cell RNA-sequencing (scRNA-seq) has emerged as a vital technology for understanding tissue and organ systems at cellular resolution. Through transcriptional analysis, it is possible to characterize unique or rare cell types, interpret their interactions, and reveal novel functional states or shifts in developmental stages. As such, this technology is uniquely suited for studying the cells within the human ovary. The ovary is a cellularly heterogeneous organ that houses follicles, the reproductive and endocrine unit that consists of an oocyte surrounded by hormone-producing support cells, as well as many other cell populations constituting stroma, vasculature, lymphatic, and immune components. Here we review studies that have utilized scRNA-seq technology to analyze cells from healthy human ovaries and discuss the single-cell isolation techniques used. We identified two overarching applications for scRNA-seq in the human ovary. The first applies this technology to investigate transcriptional differences in oocytes/eggs from patients undergoing in vitro fertilization treatments to ultimately improve clinical outcomes. The second utilizes scRNA-seq for the pursuit of creating a comprehensive single-cell atlas of the human ovary. The knowledge gained from these studies underscores the importance of scRNA-seq technologies in unlocking a new biological understanding of the human ovary.
Collapse
Affiliation(s)
- Jordan H. Machlin
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Ariella Shikanov
- Program in Cellular and Molecular BiologyUniversity of MichiganAnn ArborMichiganUSA
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMichiganUSA
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
9
|
Hu W, Zeng H, Shi Y, Zhou C, Huang J, Jia L, Xu S, Feng X, Zeng Y, Xiong T, Huang W, Sun P, Chang Y, Li T, Fang C, Wu K, Cai L, Ni W, Li Y, Yang Z, Zhang QC, Chian R, Chen Z, Liang X, Kee K. Single-cell transcriptome and translatome dual-omics reveals potential mechanisms of human oocyte maturation. Nat Commun 2022; 13:5114. [PMID: 36042231 PMCID: PMC9427852 DOI: 10.1038/s41467-022-32791-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/17/2022] [Indexed: 12/20/2022] Open
Abstract
The combined use of transcriptome and translatome as indicators of gene expression profiles is usually more accurate than the use of transcriptomes alone, especially in cell types governed by translational regulation, such as mammalian oocytes. Here, we developed a dual-omics methodology that includes both transcriptome and translatome sequencing (T&T-seq) of single-cell oocyte samples, and we used it to characterize the transcriptomes and translatomes during mouse and human oocyte maturation. T&T-seq analysis revealed distinct translational expression patterns between mouse and human oocytes and delineated a sequential gene expression regulation from the cytoplasm to the nucleus during human oocyte maturation. By these means, we also identified a functional role of OOSP2 inducing factor in human oocyte maturation, as human recombinant OOSP2 induced in vitro maturation of human oocytes, which was blocked by anti-OOSP2. Single-oocyte T&T-seq analyses further elucidated that OOSP2 induces specific signaling pathways, including small GTPases, through translational regulation. Development of methods for simultaneous single cell analysis of transcription and translation is still underway. Here, Hu et al. develop single-cell transcriptome and translatome dual-omics on human oocytes, which enables them to identify OOSP2 as an induction factor during human oocyte maturation.
Collapse
Affiliation(s)
- Wenqi Hu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Haitao Zeng
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Yanan Shi
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Chuanchuan Zhou
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Jiana Huang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Lei Jia
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Siqi Xu
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Xiaoyu Feng
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Yanyan Zeng
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Tuanlin Xiong
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Wenze Huang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Peng Sun
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Yajie Chang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Tingting Li
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Cong Fang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Center of Clinical Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, 210029, Nanjing, China
| | - Wuhua Ni
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang Province, China
| | - Yan Li
- Reproductive Medicine Center, The First Affiliated Hospital of Wenzhou Medical University, 325000, Wenzhou, Zhejiang Province, China
| | - Zhiyong Yang
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Qiangfeng Cliff Zhang
- MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - RiCheng Chian
- Center for Reproductive Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Zijiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, 250012, Jinan, Shandong, China
| | - Xiaoyan Liang
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, 510655, Guangzhou, China.
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
10
|
Guo Y, Cai L, Liu X, Ma L, Zhang H, Wang B, Qi Y, Liu J, Diao F, Sha J, Guo X. Single-cell quantitative proteomic analysis of human oocyte maturation revealed high heterogeneity in in vitro matured oocytes. Mol Cell Proteomics 2022; 21:100267. [PMID: 35809850 PMCID: PMC9396076 DOI: 10.1016/j.mcpro.2022.100267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022] Open
Abstract
Oocyte maturation is pertinent to the success of in vitro maturation (IVM), which is used to overcome female infertility, and produced over 5000 live births worldwide. However, the quality of human IVM oocytes has not been investigated at single-cell proteome level. Here, we quantified 2094 proteins in human oocytes during in vitro and in vivo maturation (IVO) by single-cell proteomic analysis and identified 176 differential proteins between IVO and germinal vesicle oocytes and 45 between IVM and IVO oocytes including maternal effect proteins, with potential contribution to the clinically observed decreased fertilization, implantation, and birth rates using human IVM oocytes. IVM and IVO oocytes showed separate clusters in principal component analysis, with higher inter-cell variability among IVM oocytes, and have little correlation between mRNA and protein changes during maturation. The patients with the most aberrantly expressed proteins in IVM oocytes had the lowest level of estradiol per mature follicle on trigger day. Our data provide a rich resource to evaluate effect of IVM on oocyte quality and study mechanism of oocyte maturation. Single-cell proteomic profiling of human oocytes matured in vitro and in vivo. Low correlation between protein and mRNA levels during human oocyte maturation. In vitro matured (IVM) oocytes exhibit higher heterogeneity at the proteome level. 45 differentially expressed proteins between IVM and in vivo matured (IVO) oocytes.
Collapse
Affiliation(s)
- Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Lingbo Cai
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xiaofei Liu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Long Ma
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China; School of Medicine, Southeast University, Nanjing 210009, China
| | - Yaling Qi
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Feiyang Diao
- State Key Laboratory of Reproductive Medicine, Clinical Center for Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Jiahao Sha
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
11
|
Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo Pera RA. Transcriptional control of human gametogenesis. Hum Reprod Update 2022; 28:313-345. [PMID: 35297982 PMCID: PMC9071081 DOI: 10.1093/humupd/dmac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development. Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that, together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to gametes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Phillip J Iaquinta
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Renee A Reijo Pera
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
- McLaughlin Research Institute, Great Falls, MT, USA
| |
Collapse
|
12
|
Yang ZY, Ye M, Xing YX, Xie QG, Zhou JH, Qi XR, Kee K, Chian RC. Changes in the Mitochondria-Related Nuclear Gene Expression Profile during Human Oocyte Maturation by the IVM Technique. Cells 2022; 11:297. [PMID: 35053413 PMCID: PMC8774259 DOI: 10.3390/cells11020297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
To address which mitochondria-related nuclear differentially expressed genes (DEGs) and related pathways are altered during human oocyte maturation, single-cell analysis was performed in three oocyte states: in vivo matured (M-IVO), in vitro matured (M-IVT), and failed to mature in vitro (IM-IVT). There were 691 DEGs and 16 mitochondria-related DEGs in the comparison of M-IVT vs. IM-IVT oocytes, and 2281 DEGs and 160 mitochondria-related DEGs in the comparison of M-IVT vs. M-IVO oocytes, respectively. The GO and KEGG analyses showed that most of them were involved in pathways such as oxidative phosphorylation, pyruvate metabolism, peroxisome, and amino acid metabolism, i.e., valine, leucine, isoleucine, glycine, serine, and threonine metabolism or degradation. During the progress of oocyte maturation, the metabolic pathway, which derives the main source of ATP, shifted from glucose metabolism to pyruvate and fatty acid oxidation in order to maintain a low level of damaging reactive oxygen species (ROS) production. Although the immature oocytes could be cultured to a mature stage by an in vitro technique (IVM), there were still some differences in mitochondria-related regulations, which showed that the mitochondria were regulated by nuclear genes to compensate for their developmental needs. Meanwhile, the results indicated that the current IVM culture medium should be optimized to compensate for the special need for further development according to this disclosure, as it was a latent strategy to improve the effectiveness of the IVM procedure.
Collapse
Affiliation(s)
- Zhi-Yong Yang
- Center for Reproductive Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Z.-Y.Y.); (Y.-X.X.)
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China;
| | - Min Ye
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Ya-Xin Xing
- Center for Reproductive Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Z.-Y.Y.); (Y.-X.X.)
| | - Qi-Gui Xie
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Q.-G.X.); (J.-H.Z.)
| | - Jian-Hong Zhou
- Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Q.-G.X.); (J.-H.Z.)
| | - Xin-Rui Qi
- Department of Human Anatomy, Histology and Embryology, Tongji University School of Medicine, Shanghai 200092, China;
| | - Kehkooi Kee
- Center for Stem Cell Biology and Regenerative Medicine, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Ri-Cheng Chian
- Center for Reproductive Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China; (Z.-Y.Y.); (Y.-X.X.)
| |
Collapse
|
13
|
Mitochondrial proteome of mouse oocytes and cisplatin-induced shifts in protein profile. Acta Pharmacol Sin 2021; 42:2144-2154. [PMID: 34017067 PMCID: PMC8632880 DOI: 10.1038/s41401-021-00687-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/24/2021] [Indexed: 11/25/2022]
Abstract
Mitochondria are essential organelles that provide energy for mammalian cells and participate in multiple functions, such as signal transduction, cellular differentiation, and regulation of apoptosis. Compared with the mitochondria in somatic cells, oocyte mitochondria have an additional level of importance since they are required for germ cell maturation, dysfunction in which can lead to severe inherited disorders. Thus, a systematic proteomic profile of oocyte mitochondria is urgently needed to support the basic and clinical research, but the acquisition of such a profile has been hindered by the rarity of oocyte samples and technical challenges associated with capturing mitochondrial proteins from live oocytes. Here, in this work, using proximity labeling proteomics, we established a mitochondria-specific ascorbate peroxidase (APEX2) reaction in live GV-stage mouse oocytes and identified a total of 158 proteins in oocyte mitochondria. This proteome includes intrinsic mitochondrial structural and functional components involved in processes associated with “cellular respiration”, “ATP metabolism”, “mitochondrial transport”, etc. In addition, mitochondrial proteome capture after oocyte exposure to the antitumor chemotherapeutic cisplatin revealed differential changes in the abundance of several oocyte-specific mitochondrial proteins. Our study provides the first description of a mammalian oocyte mitochondrial proteome of which we are aware, and further illustrates the dynamic shifts in protein abundance associated with chemotherapeutic agents.
Collapse
|
14
|
Amoushahi M, Lykke-Hartmann K. Distinct Signaling Pathways Distinguish in vivo From in vitro Growth in Murine Ovarian Follicle Activation and Maturation. Front Cell Dev Biol 2021; 9:708076. [PMID: 34368158 PMCID: PMC8346253 DOI: 10.3389/fcell.2021.708076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
Women with cancer and low ovarian reserves face serious challenges in infertility treatment. Ovarian tissue cryopreservation is currently used for such patients to preserve fertility. One major challenge is the activation of dormant ovarian follicles, which is hampered by our limited biological understanding of molecular determinants that activate dormant follicles and help maintain healthy follicles during growth. Here, we investigated the transcriptomes of oocytes isolated from dormant (primordial) and activated (primary) follicles under in vivo and in vitro conditions. We compared the biological relevance of the initial molecular markers of mature metaphase II (MII) oocytes developed in vivo or in vitro. The expression levels of genes involved in the cell cycle, signal transduction, and Wnt signaling were highly enriched in oocytes from primary follicles and MII oocytes. Interestingly, we detected strong downregulation of the expression of genes involved in mitochondrial and reactive oxygen species (ROS) production in oocytes from primordial follicles, in contrast to oocytes from primary follicles and MII oocytes. Our results showed a dynamic pattern in mitochondrial and ROS production-related genes, emphasizing their important role(s) in primordial follicle activation and oocyte maturation. The transcriptome of MII oocytes showed a major divergence from that of oocytes of primordial and primary follicles.
Collapse
Affiliation(s)
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
15
|
Lee AWT, Ng JKW, Liao J, Luk AC, Suen AHC, Chan TTH, Cheung MY, Chu HT, Tang NLS, Zhao MP, Lian Q, Chan WY, Chan DYL, Leung TY, Chow KL, Wang W, Wang LH, Chen NCH, Yang WJ, Huang JY, Li TC, Lee TL. Single-cell RNA sequencing identifies molecular targets associated with poor in vitro maturation performance of oocytes collected from ovarian stimulation. Hum Reprod 2021; 36:1907-1921. [PMID: 34052851 DOI: 10.1093/humrep/deab100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
STUDY QUESTION What is the transcriptome signature associated with poor performance of rescue IVM (rIVM) oocytes and how can we rejuvenate them? SUMMARY ANSWER The GATA-1/CREB1/WNT signalling axis was repressed in rIVM oocytes, particularly those of poor quality; restoration of this axis may produce more usable rIVM oocytes. WHAT IS KNOWN ALREADY rIVM aims to produce mature oocytes (MII) for IVF through IVM of immature oocytes collected from stimulated ovaries. It is not popular due to limited success rate in infertility treatment. Genetic aberrations, cellular stress and the absence of cumulus cell support in oocytes could account for the failure of rIVM. STUDY DESIGN, SIZE, DURATION We applied single-cell RNA sequencing (scRNA-seq) to capture the transcriptomes of human in vivo oocytes (IVO) (n = 10) from 7 donors and rIVM oocytes (n = 10) from 10 donors. The effects of maternal age and ovarian responses on rIVM oocyte transcriptomes were also studied. In parallel, we studied the effect of gallic acid on the maturation rate of mouse oocytes cultured in IVM medium with (n = 84) and without (n = 85) gallic acid. PARTICIPANTS/MATERIALS, SETTING, METHODS Human oocytes were collected from donors aged 28-41 years with a body mass index of <30. RNA extraction, cDNA generation, library construction and sequencing were performed in one preparation. scRNA-seq data were then processed and analysed. Selected genes in the rIVM versus IVO comparison were validated by quantitative real-time PCR. For the gallic acid study, we collected immature oocytes from 5-month-old mice and studied the effect of 10-μM gallic acid on their maturation rate. MAIN RESULTS AND THE ROLE OF CHANCE The transcriptome profiles of rIVM/IVO oocytes showed distinctive differences. A total of 1559 differentially expressed genes (DEGs, genes with at least 2-fold change and adjusted P < 0.05) were found to be enriched in metabolic processes, biosynthesis and oxidative phosphorylation. Among these DEGs, we identified a repression of WNT/β-catenin signalling in rIVM when compared with IVO oocytes. We found that oestradiol levels exhibited a significant age-independent correlation with the IVO mature oocyte ratio (MII ratio) for each donor. rIVM oocytes from women with a high MII ratio were found to have over-represented cellular processes such as anti-apoptosis. To further identify targets that contribute to the poor clinical outcomes of rIVM, we compared oocytes collected from young donors with a high MII ratio with oocytes from donors of advanced maternal age and lower MII ratio, and revealed that CREB1 is an important regulator. Thus, our study identified that GATA-1/CREB1/WNT signalling was repressed in both rIVM oocytes versus IVO oocytes and in rIVM oocytes of lower versus higher quality. Consequently we investigated gallic acid, as a potential antioxidant substrate in human rIVM medium, and found that it increased the mouse oocyte maturation rate by 31.1%. LARGE SCALE DATA Raw data from this study can be accessed through GSE158539. LIMITATIONS, REASONS FOR CAUTION In the rIVM oocytes of the high- and low-quality comparison, the number of samples was limited after data filtering with stringent selection criteria. For the oocyte stage identification, we were unable to predict the presence of oocyte spindle, so polar body extrusion was the only indicator. WIDER IMPLICATIONS OF THE FINDINGS This study showed that GATA-1/CREB1/WNT signalling was repressed in rIVM oocytes compared with IVO oocytes and was further downregulated in low-quality rIVM oocytes, providing us the foundation of subsequent follow-up research on human oocytes and raising safety concerns about the clinical use of rescued oocytes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Collaborative Research Fund, Research Grants Council, C4054-16G, and Research Committee Funding (Research Sustainability of Major RGC Funding Schemes), The Chinese University of Hong Kong. The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- A W T Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - J K W Ng
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - J Liao
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - A C Luk
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - A H C Suen
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - T T H Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - M Y Cheung
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - H T Chu
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - N L S Tang
- Department of Chemical Pathology, and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - M P Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Q Lian
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - W Y Chan
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - D Y L Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - T Y Leung
- Department of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - K L Chow
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong SAR, PR China.,Division of Life Science, Hong Kong University of Science and Technology, Shatin, N.T., Hong Kong SAR, PR China
| | - W Wang
- Department of Obstetrics and Gynecology, IVF Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - L H Wang
- Institute of Molecular and Cellular Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - N C H Chen
- Department of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan
| | - W J Yang
- Department of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan
| | - J Y Huang
- Department of Infertility and Reproductive Medicine, Taiwan IVF Group Center, Hsinchu City, Taiwan
| | - T C Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - T L Lee
- Developmental and Regenerative Biology Program, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| |
Collapse
|
16
|
Zhu L, Marjani SL, Jiang Z. The Epigenetics of Gametes and Early Embryos and Potential Long-Range Consequences in Livestock Species-Filling in the Picture With Epigenomic Analyses. Front Genet 2021; 12:557934. [PMID: 33747031 PMCID: PMC7966815 DOI: 10.3389/fgene.2021.557934] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/04/2021] [Indexed: 12/31/2022] Open
Abstract
The epigenome is dynamic and forged by epigenetic mechanisms, such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNA species. Increasing lines of evidence support the concept that certain acquired traits are derived from environmental exposure during early embryonic and fetal development, i.e., fetal programming, and can even be "memorized" in the germline as epigenetic information and transmitted to future generations. Advances in technology are now driving the global profiling and precise editing of germline and embryonic epigenomes, thereby improving our understanding of epigenetic regulation and inheritance. These achievements open new avenues for the development of technologies or potential management interventions to counteract adverse conditions or improve performance in livestock species. In this article, we review the epigenetic analyses (DNA methylation, histone modification, chromatin remodeling, and non-coding RNAs) of germ cells and embryos in mammalian livestock species (cattle, sheep, goats, and pigs) and the epigenetic determinants of gamete and embryo viability. We also discuss the effects of parental environmental exposures on the epigenetics of gametes and the early embryo, and evidence for transgenerational inheritance in livestock.
Collapse
Affiliation(s)
- Linkai Zhu
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Sadie L. Marjani
- Department of Biology, Central Connecticut State University, New Britain, CT, United States
| | - Zongliang Jiang
- AgCenter, School of Animal Sciences, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
17
|
Zhang HL, Xu Y, Ju JQ, Pan ZN, Liu JC, Sun SC. Increased Environment-Related Metabolism and Genetic Expression in the In Vitro Matured Mouse Oocytes by Transcriptome Analysis. Front Cell Dev Biol 2021; 9:642010. [PMID: 33681227 PMCID: PMC7928285 DOI: 10.3389/fcell.2021.642010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/18/2021] [Indexed: 12/28/2022] Open
Abstract
Infertility in humans at their reproductive age is a world-wide problem. Oocyte in vitro maturation (IVM) is generally used in such cases to acquire the embryo in assisted reproductive technology (ART). However, the differences between an in vivo (IVO) and IVM culture environment in the RNA expression profile in oocytes, remains unclear. In this study, we compared the global RNA transcription pattern of oocytes from in vitro and in vivo maturation. Our results showed that 1,864 genes differentially expressed between the IVO and IVM oocytes. Among these, 1,638 genes were up-regulated, and 226 genes were down-regulated, and these changes were mainly divided into environmental adaption, metabolism, and genetic expression. Our detailed analysis showed that the expression of genes that belonged to metabolism-related processes such as energy metabolism, nucleotide metabolism, and carbohydrate metabolism was changed; and these genes also belonged to organismal systems including environmental adaptation and the circulatory system; moreover, we also found that the relative gene expression of genetic expression processes, such as protein synthesis, modification, and DNA replication and repair were also altered. In conclusion, our data suggests that in vitro maturation of mouse oocyte resulted in metabolism and genetic expression changes due to environmental changes compared with in vivo matured oocytes.
Collapse
Affiliation(s)
- Hao-Lin Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yi Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jia-Qian Ju
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhen-Nan Pan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing-Cai Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shao-Chen Sun
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
18
|
La H, Yoo H, Lee EJ, Thang NX, Choi HJ, Oh J, Park JH, Hong K. Insights from the Applications of Single-Cell Transcriptomic Analysis in Germ Cell Development and Reproductive Medicine. Int J Mol Sci 2021; 22:E823. [PMID: 33467661 PMCID: PMC7829788 DOI: 10.3390/ijms22020823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Mechanistic understanding of germ cell formation at a genome-scale level can aid in developing novel therapeutic strategies for infertility. Germ cell formation is a complex process that is regulated by various mechanisms, including epigenetic regulation, germ cell-specific gene transcription, and meiosis. Gonads contain a limited number of germ cells at various stages of differentiation. Hence, genome-scale analysis of germ cells at the single-cell level is challenging. Conventional genome-scale approaches cannot delineate the landscape of genomic, transcriptomic, and epigenomic diversity or heterogeneity in the differentiating germ cells of gonads. Recent advances in single-cell genomic techniques along with single-cell isolation methods, such as microfluidics and fluorescence-activated cell sorting, have helped elucidate the mechanisms underlying germ cell development and reproductive disorders in humans. In this review, the history of single-cell transcriptomic analysis and their technical advantages over the conventional methods have been discussed. Additionally, recent applications of single-cell transcriptomic analysis for analyzing germ cells have been summarized.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kwonho Hong
- Department of Stem Cell and Regenerative Biotechnology, Institute of Advanced Regenerative Science, Konkuk University, Seoul 05029, Korea; (H.L.); (H.Y.); (E.J.L.); (N.X.T.); (H.J.C.); (J.O.); (J.H.P.)
| |
Collapse
|
19
|
Peng Y, Qiao H. The Application of Single-Cell RNA Sequencing in Mammalian Meiosis Studies. Front Cell Dev Biol 2021; 9:673642. [PMID: 34485276 PMCID: PMC8416306 DOI: 10.3389/fcell.2021.673642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/05/2021] [Indexed: 12/14/2022] Open
Abstract
Meiosis is a cellular division process that produces gametes for sexual reproduction. Disruption of complex events throughout meiosis, such as synapsis and homologous recombination, can lead to infertility and aneuploidy. To reveal the molecular mechanisms of these events, transcriptome studies of specific substages must be conducted. However, conventional methods, such as bulk RNA-seq and RT-qPCR, are not able to detect the transcriptional variations effectively and precisely, especially for identifying cell types and stages with subtle differences. In recent years, mammalian meiotic transcriptomes have been intensively studied at the single-cell level by using single-cell RNA-seq (scRNA-seq) approaches, especially through two widely used platforms, Smart-seq2 and Drop-seq. The scRNA-seq protocols along with their downstream analysis enable researchers to accurately identify cell heterogeneities and investigate meiotic transcriptomes at a higher resolution. In this review, we compared bulk RNA-seq and scRNA-seq to show the advantages of the scRNA-seq in meiosis studies; meanwhile, we also pointed out the challenges and limitations of the scRNA-seq. We listed recent findings from mammalian meiosis (male and female) studies where scRNA-seq applied. Next, we summarized the scRNA-seq analysis methods and the meiotic marker genes from spermatocytes and oocytes. Specifically, we emphasized the different features of the two scRNA-seq protocols (Smart-seq2 and Drop-seq) in the context of meiosis studies and discussed their strengths and weaknesses in terms of different research purposes. Finally, we discussed the future applications of scRNA-seq in the meiosis field.
Collapse
Affiliation(s)
- Yiheng Peng
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
20
|
Li L, Yang R, Yin C, Kee K. Studying human reproductive biology through single-cell analysis and in vitro differentiation of stem cells into germ cell-like cells. Hum Reprod Update 2020; 26:670-688. [PMID: 32464645 DOI: 10.1093/humupd/dmaa021] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 04/15/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Understanding the molecular and cellular mechanisms of human reproductive development has been limited by the scarcity of human samples and ethical constraints. Recently, in vitro differentiation of human pluripotent stem cells into germ cells and single-cell analyses have opened new avenues to directly study human germ cells and identify unique mechanisms in human reproductive development. OBJECTIVE AND RATIONALE The goal of this review is to collate novel findings and insightful discoveries with these new methodologies, aiming at introducing researchers and clinicians to the use of these tools to study human reproductive biology and develop treatments for infertility. SEARCH METHODS PubMed was used to search articles and reviews with the following main keywords: in vitro differentiation, human stem cells, single-cell analysis, spermatogenesis, oogenesis, germ cells and other key terms related to these subjects. The search period included all publications from 2000 until now. OUTCOMES Single-cell analyses of human gonads have identified many important gene markers at different developmental stages and in subpopulations of cells. To validate the functional roles of these gene markers, researchers have used the in vitro differentiation of human pluripotent cells into germ cells and confirmed that some genetic requirements are unique in human germ cells and are not conserved in mouse models. Moreover, transcriptional regulatory networks and the interaction of germ and somatic cells in gonads were elucidated in these studies. WIDER IMPLICATIONS Single-cell analyses allow researchers to identify gene markers and potential regulatory networks using limited clinical samples. On the other hand, in vitro differentiation methods provide clinical researchers with tools to examine these newly identify gene markers and study the causative effects of mutations previously associated with infertility. Combining these two methodologies, researchers can identify gene markers and networks which are essential and unique in human reproductive development, thereby producing more accurate diagnostic tools for assessing reproductive disorders and developing treatments for infertility.
Collapse
Affiliation(s)
- Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Risako Yang
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Chenghong Yin
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Chaoyang, Beijing 100026, China
| | - Kehkooi Kee
- Department of Basic Medical Sciences, Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| |
Collapse
|