1
|
Cressoni ACL, Penariol LBC, Padovan CC, Orellana MD, Rosa-E-Silva JC, Poli-Neto OB, Ferriani RA, de Paz CCP, Meola J. Downregulation of DROSHA: Could It Affect miRNA Biogenesis in Endometriotic Menstrual Blood Mesenchymal Stem Cells? Int J Mol Sci 2023; 24:ijms24065963. [PMID: 36983035 PMCID: PMC10057010 DOI: 10.3390/ijms24065963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Menstrual blood mesenchymal stem cells (MenSCs) have gained prominence in the endometriosis scientific community, given their multifunctional roles in regenerative medicine as a noninvasive source for future clinical applications. In addition, changes in post-transcriptional regulation via miRNAs have been explored in endometriotic MenSCs with a role in modulating proliferation, angiogenesis, differentiation, stemness, self-renewal, and the mesenchymal-epithelial transition process. In this sense, homeostasis of the miRNA biosynthesis pathway is essential for several cellular processes and is related to the self-renewal and differentiation of progenitor cells. However, no studies have investigated the miRNA biogenesis pathway in endometriotic MenSCs. In this study, we profiled the expression of eight central genes for the miRNA biosynthesis pathway under experimental conditions involving a two-dimensional culture of MenSCs obtained from healthy women (n = 10) and women with endometriosis (n = 10) using RT-qPCR and reported a two-fold decrease in DROSHA expression in the disease. In addition, miR-128-3p, miR-27a-3p, miR-27b-3p, miR-181a-5p, miR-181b-5p, miR-452-3p, miR-216a-5p, miR-216b-5p, and miR-93-5p, which have been associated with endometriosis, were identified through in silico analyses as negative regulators of DROSHA. Because DROSHA is essential for miRNA maturation, our findings may justify the identification of different profiles of miRNAs with DROSHA-dependent biogenesis in endometriosis.
Collapse
Affiliation(s)
- Ana Clara Lagazzi Cressoni
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Letícia B C Penariol
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cristiana Carolina Padovan
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Maristela D Orellana
- Regional Blood Center, Medical School of Hemocenter Foundation of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Júlio Cesar Rosa-E-Silva
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Omero Benedicto Poli-Neto
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona)-CNPq, Porto Alegre 90035-003, Brazil
| | - Cláudia Cristina Paro de Paz
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Juliana Meola
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona)-CNPq, Porto Alegre 90035-003, Brazil
| |
Collapse
|
2
|
de Oliveira RZ, de Oliveira Buono F, Cressoni ACL, Penariol LBC, Padovan CC, Tozetti PA, Poli-Neto OB, Ferriani RA, Orellana MD, Rosa-E-Silva JC, Meola J. Overexpression of miR-200b-3p in Menstrual Blood-Derived Mesenchymal Stem Cells from Endometriosis Women. Reprod Sci 2022; 29:734-742. [PMID: 35075610 DOI: 10.1007/s43032-022-00860-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 01/06/2023]
Abstract
The key relationship between Sampson's theory and the presence of mesenchymal stem cells in the menstrual flow (MenSCs), as well as the changes in post-transcriptional regulatory processes as actors in the etiopathogenesis of endometriosis, are poorly understood. No study to date has investigated the imbalance of miRNAs in MenSCs related to the disease. Thus, through literature and in silico analyses, we selected four predicted miRNAs as regulators of EGR1, SNAI1, NR4A1, NR4A2, ID1, LAMC3, and FOSB involved in pathways of apoptosis, angiogenesis, response to steroid hormones, migration, differentiation, and cell proliferation. These genes are frequently overexpressed in the endometriosis condition in our group studies. They were the trigger for the miRNAs search. Therefore, a case-control study was conducted with MenSCs of women with and without endometriosis (ten samples per group). Crossing information obtained from the STRING, PubMed, miRPathDB, miRWalk, and DIANA TOOLS databases, we chose to explore the expression of miR-21-5p, miR-100-5p, miR-143-3p, and miR-200b-3p by RT-qPCR. We found an upregulation of the miR-200b-3p in endometriosis MenSCs (P = 0.0207), with a 7.93-fold change (ratio of geometric means) compared to control. Overexpression of miR-200b has been associated with increased cell proliferation, stemness, and accentuated mesenchymal-epithelial transition process in eutopic endometrium of endometriosis. We believe that dysregulated miR-200b-3p may establish primary changes in the MenSCs, thus favoring tissue implantation at the ectopic site.
Collapse
Affiliation(s)
- Rafael Zucco de Oliveira
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Fabiana de Oliveira Buono
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Ana Clara Lagazzi Cressoni
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Letícia Bruna Corrêa Penariol
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Cristiana Carolina Padovan
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Patricia Aparecida Tozetti
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Omero Benedito Poli-Neto
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Rui Alberto Ferriani
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona), CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil
| | - Maristela Delgado Orellana
- Center for Cell Therapy and Reginal Blood Center, University of São Paulo, Ribeirão Preto, São Paulo, 14051-140, Brazil
| | - Júlio Cesar Rosa-E-Silva
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil
| | - Juliana Meola
- Division of Human Reproduction, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, 3900 Bandeirantes Avenue, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- Laboratory for Translational Data Science, Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, 14049-900, Brazil.
- National Institute of Hormones and Women's Health (Hormona), CNPq, Porto Alegre, Rio Grande Do Sul, 90035-003, Brazil.
| |
Collapse
|
3
|
Zhang Y, Ma NY. Environmental Risk Factors for Endometriosis: An Umbrella Review of a Meta-Analysis of 354 Observational Studies With Over 5 Million Populations. Front Med (Lausanne) 2021; 8:680833. [PMID: 34760897 PMCID: PMC8573094 DOI: 10.3389/fmed.2021.680833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Background: The association between a diverse array of environmental risk factors and the risk of endometriosis is contradictory. Objective: To summarize the evidence of associations between environmental risk factors and the risk of endometriosis. Methods: Databases such as PubMed, EMBASE, Web of Science, and ClinicalTrial.gov were systematically searched in June 2020. Meta-analyses of observational studies investigated any environmental exposure (non-genetic) and endometriosis risk. For each article, we estimated the summary effect size, 95% CIs, and the 95% prediction interval (PI). We also estimated the between-study heterogeneity expressed by I 2, evidence for small-study effects, and evidence of excess significance bias. Results: About 12 eligible articles (featuring 143,422 cases and 5,112,967 participants) yielded data on 40 unique environmental risk factors, including life styles (n = 16), reproductive factors (n = 3), early life factors (n = 4), and a range of other risk factors [e.g., phthalate metabolites, endocrine-disrupting chemicals, and body mass index (BMI)]. About 25 of these 40 associations (62.5%) were statistically significant (p < 0.05) under random-effects models. Evidence for an association was indicated for alcohol intake [relative risk (RR): 1.25; 95% CI: 1.11-1.41] and the exposure to endocrine disruptor chemicals (EDCs) (RR: 1.41; 95% CI: 1.23-1.60) while 15 associations presented only weak evidence. Conclusions: Our analyses showed that alcohol intake and exposure to endocrine-disrupting chemicals may be potential risk factors for endometriosis and supported by suggestive epidemiological evidence. However, it was evident that there was substantial heterogeneity and/or bias between the different studies featured in various meta-analyses included in this review; therefore, the outcomes of our analysis should be interpreted cautiously.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning-Ye Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zani ACT, Valerio FP, Meola J, da Silva AR, Nogueira AA, Candido-Dos-Reis FJ, Poli-Neto OB, Rosa-E-Silva JC. Impact of Bevacizumab on Experimentally Induced Endometriotic Lesions: Angiogenesis, Invasion, Apoptosis, and Cell Proliferation. Reprod Sci 2020; 27:1943-1950. [PMID: 32542537 DOI: 10.1007/s43032-020-00213-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023]
Abstract
Endometriosis is responsible for pain symptoms with great impact on the patient's quality of life. Several medication lines have been studied aiming at its definitive treatment. Among them, angiogenesis inhibitor factors may be effective given that angiogenesis has fundamental role in the establishment and growth of endometriotic lesions. In this study, we investigated the influence of bevacizumab, anti-factor drug of endothelial growth (anti-VEGF), used at two different dosages, in experimental endometriosis induced in rats. After the induction of endometriosis lesions in rats, they were divided in 3 groups: control group, no treatment, and two other groups were treated with different dosages of the same medication for 4 weeks. At the end of the treatment, endometriotic lesions were removed and evaluated regarding area of lesions, presence of endometrial tissue in microscopy, positivity for anti-VEGF antibody in immunohistochemistry, and gene expression of Pcna, Mmp9, Tp63, and Vegfa. Bevacizumab acted by reducing the area of lesions in the groups that received medication (p = 0.002) and reducing gene expression to Tp63 in lesions (p = 0.04). There was no significant result in other evaluations. We observed that there was significant reduction of the area of lesions among groups, suggesting that bevacizumab has a positive effect on disease control. The gene expression of Tp63 was significantly lower in the group that received high dose of the drug when compared with the other two groups; therefore, we concluded that bevacizumab acts by reducing cell proliferation and differentiation in lesions, constituting a real option for treating endometriosis.
Collapse
Affiliation(s)
- Ana Carolina Tagliatti Zani
- Ribeirão Preto School of Medicine, Department of Gynecology and Obstetrics, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Fernando Passador Valerio
- Ribeirão Preto School of Medicine, Department of Gynecology and Obstetrics, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Juliana Meola
- Ribeirão Preto School of Medicine, Department of Gynecology and Obstetrics, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Alfredo Ribeiro da Silva
- Ribeirão Preto School of Medicine, Department of Pathology and Legal Medicine, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Antonio Alberto Nogueira
- Ribeirão Preto School of Medicine, Department of Gynecology and Obstetrics, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Francisco José Candido-Dos-Reis
- Ribeirão Preto School of Medicine, Department of Gynecology and Obstetrics, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Omero Benedicto Poli-Neto
- Ribeirão Preto School of Medicine, Department of Gynecology and Obstetrics, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Julio Cesar Rosa-E-Silva
- Ribeirão Preto School of Medicine, Department of Gynecology and Obstetrics, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
5
|
Bioinformatic analysis reveals the importance of epithelial-mesenchymal transition in the development of endometriosis. Sci Rep 2020; 10:8442. [PMID: 32439908 PMCID: PMC7242372 DOI: 10.1038/s41598-020-65606-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Endometriosis is a frequently occurring disease in women, which seriously affects their quality of life. However, its etiology and pathogenesis are still unclear. Methods: To identify key genes/pathways involved in the pathogenesis of endometriosis, we recruited 3 raw microarray datasets (GSE11691, GSE7305, and GSE12768) from Gene Expression Omnibus database (GEO), which contain endometriosis tissues and normal endometrial tissues. We then performed in-depth bioinformatic analysis to determine differentially expressed genes (DEGs), followed by gene ontology (GO), Hallmark pathway enrichment and protein-protein interaction (PPI) network analysis. The findings were further validated by immunohistochemistry (IHC) staining in endometrial tissues from endometriosis or control patients. Results: We identified 186 DEGs, of which 118 were up-regulated and 68 were down-regulated. The most enriched DEGs in GO functional analysis were mainly associated with cell adhesion, inflammatory response, and extracellular exosome. We found that epithelial-mesenchymal transition (EMT) ranked first in the Hallmark pathway enrichment. EMT may potentially be induced by inflammatory cytokines such as CXCL12. IHC confirmed the down-regulation of E-cadherin (CDH1) and up-regulation of CXCL12 in endometriosis tissues. Conclusions: Utilizing bioinformatics and patient samples, we provide evidence of EMT in endometriosis. Elucidating the role of EMT will improve the understanding of the molecular mechanisms involved in the development of endometriosis.
Collapse
|
6
|
Montenegro ML, Bonocher CM, Meola J, Portella RL, Ribeiro-Silva A, Brunaldi MO, Ferriani RA, Rosa-e-Silva JC. Effect of Physical Exercise on Endometriosis Experimentally Induced in Rats. Reprod Sci 2018; 26:785-793. [DOI: 10.1177/1933719118799205] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Objective: Endometriosis is characterized by the growth of endometrial tissue outside the uterine cavity. The prevalence of endometriosis among women experiencing pain, infertility, or both is as high as 35% to 50%. The most common symptoms of endometriosis are dysmenorrhea, dyspareunia, chronic pelvic pain, and infertility. Evidence has suggested that endometriosis symptoms result from a local inflammatory peritoneal reaction caused by ectopic endometrial implants that undergo cyclic bleeding. On the other hand, regular physical exercise seems to have protective effects against diseases that involve inflammatory processes such as type 2 diabetes and colon and breast cancer. On this basis, it is possible that the practice of physical exercise may have beneficial effects on endometriosis. Therefore, the objective of this study was to evaluate the possible anti-inflammatory effect of physical exercise on endometriosis experimentally induced in rats. Study Design: Seventy female Wistar rats were divided into 7groups of 10 animals each. Animals performed light exercise (swimming once a week), moderate exercise (swimming 3 times a week), and intense exercise (swimming 5 times a week) before or after endometriosis induction. Results: At the end of the experimental protocol, a reduction in the size of endometriotic lesions was observed after physical exercise regardless of its frequency, with a greater reduction in the groups practicing moderate and intense activity; an increase in FAS levels and a decrease in matrix metalloproteinases 9 and proliferating cell nuclear antigen (PCNA)levels was also observed. The immunohistochemistry results did not lead to conclusive results. As expected, oxidative stress was reduced in all groups. These results show that the practice of physical exercise could be beneficial, at least in part, for the treatment of endometriosis.
Collapse
Affiliation(s)
- Mary Lourdes Montenegro
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Camila M. Bonocher
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Juliana Meola
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Rafael L. Portella
- Department of Pharmacology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Alfredo Ribeiro-Silva
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Mariangela O. Brunaldi
- Department of Pathology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| | - Julio Cesar Rosa-e-Silva
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Agrawal S, Tapmeier T, Rahmioglu N, Kirtley S, Zondervan K, Becker C. The miRNA Mirage: How Close Are We to Finding a Non-Invasive Diagnostic Biomarker in Endometriosis? A Systematic Review. Int J Mol Sci 2018; 19:ijms19020599. [PMID: 29463003 PMCID: PMC5855821 DOI: 10.3390/ijms19020599] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 12/27/2022] Open
Abstract
Background: Endometriosis is a common disorder of the reproductive age group, characterised by the presence of ectopic endometrial tissue. The disease not only causes enormous suffering to the affected women, but also brings a tremendous medical and economic burden to bear on society. There is a long lag phase between the onset and diagnosis of the disease, mainly due to its non-specific symptoms and the lack of a non-invasive test. Endometriosis can only be diagnosed invasively by laparoscopy. A specific, non-invasive test to diagnose endometriosis is an unmet clinical need. The recent discovery of microRNAs (miRNAs) as modulators of gene expression, and their stability and specificity, make them an attractive candidate biomarker. Various studies on miRNAs in endometriosis have identified their cardinal role in the pathogenesis of the disease, and have proposed them as potential biomarkers in endometriosis. Rationale/Objectives: The aims of this review were to study the role of circulatory miRNAs in endometriosis, and bring to light whether circulatory miRNAs could be potential non-invasive biomarkers to diagnose the disease. Search methods: Three databases, PubMed, EMBASE, and BIOSIS were searched, using a combination of Mesh or Emtree headings and free-text terms, to identify literature relating to circulating miRNAs in endometriosis published from 1996 to 31 December 2017. Only peer-reviewed, full-text original research articles in English were included in the current review. The studies meeting the inclusion criteria were critically assessed and checked using the QUADAS-2 (Quality Assessment of Diagnostic Accuracy Studies) tool. The dysregulated miRNAs were assessed regarding the concordance between the various studies and their role in the disease. Outcomes: Nine studies were critically analysed, and 42 different miRNAs were found to be dysregulated in them, with only one common miRNA (miR-20a) differentially expressed in more than one study. miR-17-5p/20a, miR-200, miR-199a, miR-143, and miR-145 were explored for their pivotal role in the aetiopathogenesis of endometriosis. Wider implications: It is emerging that miRNAs play a central role in the pathogenesis of endometriosis and have the potential of being promising biomarkers. Circulating miRNAs as a non-invasive diagnostic tool may shorten the delay in the diagnosis of the disease, thus alleviating the suffering of women and reducing the burden on health care systems. However, despite numerous studies on circulating miRNAs in endometriosis, no single miRNA or any panel of them seems to meet the criteria of a diagnostic biomarker. The disagreement between the various studies upholds the demand of larger, well-controlled systematic validation studies with uniformity in the research approaches and involving diverse populations.
Collapse
Affiliation(s)
- Swati Agrawal
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
| | - Thomas Tapmeier
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
| | - Nilufer Rahmioglu
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK.
| | - Shona Kirtley
- Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, Oxford OX1 2JD, UK.
| | - Krina Zondervan
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX1 2JD, UK.
| | - Christian Becker
- Endometriosis CaRe Centre, Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, UK;.
| |
Collapse
|
8
|
Logan PC, Yango P, Tran ND. Endometrial Stromal and Epithelial Cells Exhibit Unique Aberrant Molecular Defects in Patients With Endometriosis. Reprod Sci 2017; 25:140-159. [PMID: 28490276 DOI: 10.1177/1933719117704905] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT Endometriosis is a chronic inflammatory disease that causes pain and infertility in women of reproductive age. OBJECTIVE To investigate the pathologic pathways in endometrial stromal and epithelial cells that contribute to the manifestation of endometriosis. DESIGN In vitro cellular and molecular analyses of isolated eutopic endometrial stromal and epithelial cells. METHODS Eutopic stromal and epithelial cells from endometriotic and normal patients were isolated by fluorescence-activated cell sorting for paired sibling RNA sequencing and microRNA microarray. Aberrant pathways were identified using ingenuity pathway analysis networks and confirmed with in vitro modulation of the affected pathways in stromal and epithelial cell cultures. RESULTS Both stromal versus epithelial cell types and paired endometriotic versus normal samples exhibited distinct hierarchical clustering. Compared to normal samples, there were 151 and 215 differentially expressed genes in the endometriotic stromal and epithelial populations, respectively, and concomitantly 9 and 16 differentially expressed microRNAs. Overall, endometriotic stromal and epithelial cells revealed distinct defects. In endometriotic stromal cells, key decidualization genes Zinc finger E-box Binding protein 1 (ZEB1), Heart And Neural crest Derivatives expressed 2 (HAND2), WNT4, and Interleukin 15 (IL-15) were found to be downregulated and Periostin (POSTN) and Matrix Metallopeptidase 7 (MMP7) were upregulated. Specifically, ZEB1 was downregulated in stromal cells by aberrant elevation in miR-200b. In contrast, ZEB1 was found to be upregulated in endometriotic epithelial cells through associated upregulation of transforming growth factor β1 (TGFβ1), inducer of the TGFβ1-Bone Morphogenetic Protein 2 (BMP2)-MMP2-Prostaglandin-endoperoxide Synthase 2 (COX2)-ZEB1 pathway, which activates epithelial-mesenchymal transition. CONCLUSION Manifestation of endometriosis involves dysregulation of unique molecular pathways within the diseased endometrial stromal and epithelial cells in the endometrium. Targeting the cell type-specific defects may offer a novel approach to treating endometriosis.
Collapse
Affiliation(s)
- Philip C Logan
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Pamela Yango
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Nam D Tran
- 1 Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Affiliation(s)
- Jayasree Sengupta
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - G. Anupa
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - Muzaffer Ahmed Bhat
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| | - Debabrata Ghosh
- Department of Physiology; All India Institute of Medical Sciences; New Delhi India
| |
Collapse
|
10
|
Al-Jefout M, Tokushige N, Hey-Cunningham AJ, Manconi F, Ng C, Schulke L, Berbic M, Markham R, Fraser IS. Microanatomy and function of the eutopic endometrium in women with endometriosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/17474108.4.1.61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Li X, Liu X, Guo SW. Histone deacetylase inhibitors as therapeutics for endometriosis. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.12.52] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
12
|
Khan MA, Sengupta J, Mittal S, Ghosh D. Genome-wide expressions in autologous eutopic and ectopic endometrium of fertile women with endometriosis. Reprod Biol Endocrinol 2012; 10:84. [PMID: 23006437 PMCID: PMC3533745 DOI: 10.1186/1477-7827-10-84] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/28/2012] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND In order to obtain a lead of the pathophysiology of endometriosis, genome-wide expressional analyses of eutopic and ectopic endometrium have earlier been reported, however, the effects of stages of severity and phases of menstrual cycle on expressional profiles have not been examined. The effect of genetic heterogeneity and fertility history on transcriptional activity was also not considered. In the present study, a genome-wide expression analysis of autologous, paired eutopic and ectopic endometrial samples obtained from fertile women (n=18) suffering from moderate (stage 3; n=8) or severe (stage 4; n=10) ovarian endometriosis during proliferative (n=13) and secretory (n=5) phases of menstrual cycle was performed. METHODS Individual pure RNA samples were subjected to Agilent's Whole Human Genome 44K microarray experiments. Microarray data were validated (P<0.01) by estimating transcript copy numbers by performing real time RT-PCR of seven (7) arbitrarily selected genes in all samples. The data obtained were subjected to differential expression (DE) and differential co-expression (DC) analyses followed by networks and enrichment analysis, and gene set enrichment analysis (GSEA). The reproducibility of prediction based on GSEA implementation of DC results was assessed by examining the relative expressions of twenty eight (28) selected genes in RNA samples obtained from fresh pool of eutopic and ectopic samples from confirmed ovarian endometriosis patients with stages 3 and 4 (n=4/each) during proliferative and secretory (n=4/each) phases. RESULTS Higher clustering effect of pairing (cluster distance, cd=0.1) in samples from same individuals on expressional arrays among eutopic and ectopic samples was observed as compared to that of clinical stages of severity (cd=0.5) and phases of menstrual cycle (cd=0.6). Post hoc analysis revealed anomaly in the expressional profiles of several genes associated with immunological, neuracrine and endocrine functions and gynecological cancers however with no overt oncogenic potential in endometriotic tissue. Dys-regulation of three (CLOCK, ESR1, and MYC) major transcription factors appeared to be significant causative factors in the pathogenesis of ovarian endometriosis. A novel cohort of twenty-eight (28) genes representing potential marker for ovarian endometriosis in fertile women was discovered. CONCLUSIONS Dysfunctional expression of immuno-neuro-endocrine behaviour in endometrium appeared critical to endometriosis. Although no overt oncogenic potential was evident, several genes associated with gynecological cancers were observed to be high in the expressional profiles in endometriotic tissue.
Collapse
Affiliation(s)
- Meraj A Khan
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Jayasree Sengupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Suneeta Mittal
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Debabrata Ghosh
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
13
|
Abstract
Micro RNAs (miRNAs) are small non-coding RNAs which regulate numerous cellular processes at the posttranscriptional and translational level. In endometriosis, expression of miRNAs is frequently dysregulated. miRNAs are predicted to modulate several relevant processes involved in the pathogenesis of endometriosis, including cell proliferation, apoptosis, cell migration and invasiveness, angiogenesis, and inflammation, as well as stem cell properties. miRNA expression has been studied by microarray profiling and quantitative real-time PCR, enabling the identification of specific miRNAs as potential novel diagnostic markers for endometriosis. The future application of locked-nucleic acid miRNA inhibitors, miRNA decoys, and synergistic approaches involving conventional therapeutics may open up promising new perspectives in endometriosis therapy.
Collapse
|
14
|
Dos Santos Hidalgo G, Meola J, Rosa E Silva JC, Paro de Paz CC, Ferriani RA. TAGLN expression is deregulated in endometriosis and may be involved in cell invasion, migration, and differentiation. Fertil Steril 2011; 96:700-3. [PMID: 21763649 DOI: 10.1016/j.fertnstert.2011.06.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/02/2011] [Accepted: 06/17/2011] [Indexed: 12/24/2022]
Abstract
We found an increased expression of the TAGLN gene in endometriotic lesions compared with the eutopic endometrium of the same patients by real-time polymerase chain reaction. It is possible that this deregulation contributes to the development and maintenance of endometriosis by being involved in the pathways of organization of cytoskeletal architecture.
Collapse
Affiliation(s)
- Gabriela Dos Santos Hidalgo
- Department of Gynecology and Obstetrics, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil.
| | | | | | | | | |
Collapse
|
15
|
“Spot”-ting differences between the ectopic and eutopic endometrium of endometriosis patients. Fertil Steril 2010; 94:1964-71, 1971.e1. [DOI: 10.1016/j.fertnstert.2010.01.048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 11/18/2022]
|
16
|
Wang L, Zheng W, Ding XY, Yu JK, Jiang WZ, Zhang SZ. Identification biomarkers of eutopic endometrium in endometriosis using artificial neural networks and protein fingerprinting. Fertil Steril 2010; 93:2460-2. [DOI: 10.1016/j.fertnstert.2009.08.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 08/05/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
|
17
|
Ohlsson Teague EMC, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update 2009; 16:142-65. [DOI: 10.1093/humupd/dmp034] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
18
|
|
19
|
Braundmeier AG, Fazleabas AT. The non-human primate model of endometriosis: research and implications for fecundity. Mol Hum Reprod 2009; 15:577-86. [PMID: 19633013 DOI: 10.1093/molehr/gap057] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of an animal model of endometriosis is crucial for the investigation of disease pathogenesis and therapeutic intervention. These models will enhance our ability to evaluate the causes for the subfertility associated with disease and provide a first-line validation of treatment modulators. Currently rodents and non-human primate models have been developed, but each model has their limitations. The aim of this manuscript is to summarize the current findings and theories on the development of endometriosis and disease progression and the effectiveness of therapeutic targets using the experimental induced model of endometriosis in the baboon (Papio anubis).
Collapse
Affiliation(s)
- A G Braundmeier
- Department of Obstetrics and Gynecology (MC808), College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
20
|
Miyamoto A, Taniguchi F, Tagashira Y, Watanabe A, Harada T, Terakawa N. ORIGINAL ARTICLE: TNFα Gene Silencing Reduced Lipopolysaccharide-Promoted Proliferation of Endometriotic Stromal Cells. Am J Reprod Immunol 2009; 61:277-85. [DOI: 10.1111/j.1600-0897.2009.00691.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
21
|
Seeber B, Sammel MD, Fan X, Gerton GL, Shaunik A, Chittams J, Barnhart KT. Proteomic analysis of serum yields six candidate proteins that are differentially regulated in a subset of women with endometriosis. Fertil Steril 2009; 93:2137-44. [PMID: 19230876 DOI: 10.1016/j.fertnstert.2008.12.121] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 11/28/2008] [Accepted: 12/22/2008] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To identify potential novel biomarkers that differ between subjects with and without endometriosis and that might aid in developing a noninvasive, serum-based diagnostic test. DESIGN Case-control evaluation of a diagnostic test. SETTING University medical center. PATIENT(S) Consenting women of reproductive age undergoing laparoscopy for indications of pain, infertility, elective tubal ligation, tubal reanastomosis, or other benign indication. INTERVENTION(S) Diagnostic laparoscopy and peripheral venipuncture. MAIN OUTCOME MEASURE(S) Concentrations of low-molecular-weight proteins in serum; surgical staging of endometriosis. RESULT(S) Six proteins were found that were differentially expressed between those with and without disease and that had good diagnostic properties. Taken together in a two-step diagnostic algorithm, we were able to diagnose 55% of subjects, with 99% accuracy as to the status of disease. Further combining this algorithm with that derived by our previous study of serum putative markers (monocyte chemoattractant protein-1, migration inhibitory factor, leptin, and CA-125) improved our diagnostic capability to 73% of subjects, with 94% overall accuracy. CONCLUSION(S) This study is the critical first step in the identification of potential novel biomarkers of endometriosis. Future identification of the proteins and further validation in a second population is needed before applying these findings in clinical practice.
Collapse
Affiliation(s)
- Beata Seeber
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Fang CL, Han SP, Fu SL, Wang W, Kong N, Wang XL. Ectopic, autologous eutopic and normal endometrial stromal cells have altered expression and chemotactic activity of RANTES. Eur J Obstet Gynecol Reprod Biol 2009; 143:55-60. [PMID: 19157676 DOI: 10.1016/j.ejogrb.2008.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2008] [Revised: 09/28/2008] [Accepted: 12/01/2008] [Indexed: 10/21/2022]
Abstract
OBJECTIVE To evaluate if the expression and chemotactic activity of RANTES are different in IL-1beta treated autologous eutopic endometrial stromal cells compared to ectopic and normal endometrium. STUDY DESIGN Conditioned media from IL-1beta-treated ectopic, autologous eutopic and normal endometrial stromal cells were analyzed with a specific sandwich ELISA to quantify RANTES. The monocyte chemotactic activity of RANTES was assayed in a Boyden Chamber. RESULTS RANTES expression in IL-1beta-treated autologous eutopic and normal endometrial stromal cells was significantly lower than ectopic endometrium. Autologous eutopic endometrial stromal cells showed a significant increase in RANTES expression compared to normal endometrium after IL-1beta stimulation for 60 h. The monocyte chemotactic activities of these conditioned media were highly correlated with the immunoreactive RANTES concentration. We observed significantly increased monocyte chemotactic activity in conditioned media of ectopic stromal cells compared to autologous eutopic and normal endometrium. The different chemotactic activity of RANTES between the autologous eutopic and normal endometrial stromal cells was also statistically significant. RANTES accounts for the majority (62%) of the monocyte chemotactic activity in ectopic endometrial stromal cells conditioned media and 55% of that activity in autologous eutopic endometrium. CONCLUSIONS Although the eutopic endometric of women with and without endometriosis are histologically similar, our findings confirm that different expression and chemotactic activity of RANTES exist between autologous eutopic and normal endometrium. The altered expression of RANTES and monocyte chemotactic activity observed in ectopic, autologous eutopic and normal endometrium suggest the autologous eutopic endometrium may contribute to the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Chun-Li Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Nanjing Medical University, 99 Ding Huai Men Street, 210036 Nanjing, China
| | | | | | | | | | | |
Collapse
|
23
|
Kobayashi H, Yamada Y, Kanayama S, Furukawa N, Noguchi T, Haruta S, Yoshida S, Sakata M, Sado T, Oi H. The role of iron in the pathogenesis of endometriosis. Gynecol Endocrinol 2009; 25:39-52. [PMID: 19165662 DOI: 10.1080/09513590802366204] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Endometriosis may cause symptoms including chronic pelvic pain and infertility, and increases susceptibility to the development of ovarian cancer. Genomic studies have started to delineate the wide array of mediators involved in the development of endometriosis. Understanding the mechanisms of endometriosis development and elucidating its pathogenesis and pathophysiology are intrinsic to prevention and the search for effective therapies. METHOD OF STUDY The present article reviews the English language literature for biological, pathogenetic and pathophysiological studies on endometriosis. Several recent genomic studies are discussed in the context of endometriosis biology. RESULTS Severe hemolysis occurring during the development of endometriosis results in high levels of free heme and iron. These compounds oxidatively modify lipids and proteins, leading to cell and DNA damage, and subsequently fibrosis development. Recent studies based on genome-wide expression analysis technology have noted specific expression of heme/iron-dependent mediators in endometriosis. The heme/iron-dependent signaling pathway of endometriosis, which is providing new insights into the regulation of inflammation, detoxification and survival, is discussed. CONCLUSION Several important endometriosis-specific genes overlap with those known to be regulated by iron. Other genes are involved in oxidative stress. Iron has a significant impact on endometriotic-cell gene expression. This review summarizes recent advances in the heme/iron-mediated signaling and its target genes, outlines the potential challenges to understanding of the pathogenesis and pathophysiology of endometriosis, and proposes a possible novel model.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ametzazurra A, Matorras R, Garcia-Velasco J, Prieto B, Simon L, Martinez A, Nagore D. Endometrial fluid is a specific and non-invasive biological sample for protein biomarker identification in endometriosis. Hum Reprod 2008; 24:954-65. [DOI: 10.1093/humrep/den450] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
25
|
Ohlsson Teague EMC, Van der Hoek KH, Van der Hoek MB, Perry N, Wagaarachchi P, Robertson SA, Print CG, Hull LM. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol 2008; 23:265-75. [PMID: 19074548 DOI: 10.1210/me.2008-0387] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Endometriosis is a prevalent gynecological disease characterized by growth of endometriotic tissue outside the uterine cavity. MicroRNAs (miRNAs) are naturally occurring posttranscriptional regulatory molecules that potentially play a role in endometriotic lesion development. We assessed miRNA expression by microarray analysis in paired ectopic and eutopic endometrial tissues and identified 14 up-regulated (miR-145, miR-143, miR-99a, miR-99b, miR-126, miR-100, miR-125b, miR-150, miR-125a, miR-223, miR-194, miR-365, miR-29c and miR-1) and eight down-regulated (miR-200a, miR-141, miR-200b, miR-142-3p, miR-424, miR-34c, miR-20a and miR-196b) miRNAs. The differential expression of six miRNAs was confirmed by quantitative RT-PCR. An in silico analysis identified 3851 mRNA transcripts as putative targets of the 22 miRNAs. Of these predicted targets, 673 were also differentially expressed in ectopic vs. eutopic endometrial tissue, as determined by microarray. Functional analysis suggested that the 673 miRNA targets constitute molecular pathways previously associated with endometriosis, including c-Jun, CREB-binding protein, protein kinase B (Akt), and cyclin D1 (CCND1) signaling. These pathways appeared to be regulated both transcriptionally as well as by miRNAs at posttranscriptional level. These data are a rich and novel resource for endometriosis and miRNA research and suggest that the 22 miRNAs and their cognate mRNA target sequences constitute pathways that promote endometriosis. Accordingly, miRNAs are potential therapeutic targets for treating this disease.
Collapse
Affiliation(s)
- E Maria C Ohlsson Teague
- Research Centre for Reproductive Health, University of Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Honda H, Barrueto FF, Gogusev J, Im DD, Morin PJ. Serial analysis of gene expression reveals differential expression between endometriosis and normal endometrium. Possible roles for AXL and SHC1 in the pathogenesis of endometriosis. Reprod Biol Endocrinol 2008; 6:59. [PMID: 19055724 PMCID: PMC2615013 DOI: 10.1186/1477-7827-6-59] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/02/2008] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Endometriosis is a clinical condition that affects up to 10% of the women of reproductive age. Endometriosis is characterized by the presence of endometrial tissues outside the uterine cavity and can lead to chronic pelvic pain, infertility and, in some cases, to ovarian cancer. METHODS In order to better understand the pathogenesis of endometriosis, we have used Serial Analysis of Gene Expression (SAGE) to identify genes differentially in this disease by studying three endometriotic tissues and a normal endometrium sample. Promising candidates (AXL, SHC1, ACTN4, PI3KCA, p-AKT, p-mTOR, and p-ERK) were independently validated by immunohistochemistry in additional normal and endometriotic tissues. RESULTS We identified several genes differentially expressed between endometriosis and normal endometrium. IGF2, ACTN4, AXL, and SHC1 were among the most upregulated genes. Comparison of the endometriosis gene expression profiles with the gene expression patterns observed in normal human tissues allowed the identification of endometriosis-specific genes, which included several members of the MMP family (MMP1,2,3,10,11,14). Immunohistochemical analysis of several candidates confirmed the SAGE findings, and suggested the involvement of the PI3K-Akt and MAPK signaling pathways in endometriosis. CONCLUSION In human endometriosis, the PI3K-Akt and MAPK signaling pathways may be activated via overexpression of AXL and SHC1, respectively. These genes, as well as others identified as differentially expressed in this study, may be useful for the development of novel strategies for the detection and/or therapy of endometriosis.
Collapse
Affiliation(s)
- Hiroshi Honda
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore MD 21224, USA
| | | | | | - Dwight D Im
- The Gynecology Center, Mercy Hospital, Baltimore, MD 21202, USA
| | - Patrice J Morin
- Laboratory of Cellular and Molecular Biology, National Institute on Aging, Baltimore MD 21224, USA
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA
| |
Collapse
|
27
|
|
28
|
Shen F, Wang Y, Lu Y, Yuan L, Liu X, Guo SW. Immunoreactivity of progesterone receptor isoform B and nuclear factor kappa-B as biomarkers for recurrence of ovarian endometriomas. Am J Obstet Gynecol 2008; 199:486.e1-486.e10. [PMID: 18554567 DOI: 10.1016/j.ajog.2008.04.040] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 02/04/2008] [Accepted: 04/17/2008] [Indexed: 12/11/2022]
Abstract
OBJECTIVE This study was undertaken to evaluate the immunoreactivity of progesterone receptor isoform B and nuclear factor kappa-B p65 subunit in ovarian endometrioma tissue samples harvested at the time of surgery and their relationship with the recurrence risk. STUDY DESIGN One hundred nine patients were selected; 53 of them had recurrence within 30 months after surgery, whereas the other 56 had not had recurrence at least 32 months after surgery. For each patient, host and clinical information was also collected. The patients' archived, formalin-fixed, paraffin-embedded tissue blocks were retrieved, subjected to immunohistochemical staining of progesterone receptor isoform B and nuclear factor kappa-B p65 subunit, and were scored and compared. RESULTS Increased nuclear factor kappa-B activation and decreased progesterone receptor isoform B immunoreactivity in ovarian endometriomas were 2 predominant factors in predicting recurrence. The classification tree method based on these 2 yielded a sensitivity of 86.6% and a specificity of 82.1%. CONCLUSION Nuclear factor kappa-B activation/p65 and progesterone receptor isoform B immunoreactivity in ovarian endometrioma jointly constitutes a good biomarker for recurrence. The close relationship between nuclear factor kappa-B activation/p65 subunit and progesterone receptor isoform B immunoreactivity strongly suggests their roles involved in recurrence and may thus be excellent therapeutic targets to prevent recurrence. Our finding supports the notion that there are identifiable molecular genetic differences intrinsic to ovarian endometriomas that confer recurrence risk differential.
Collapse
|
29
|
Murk W, Atabekoglu CS, Cakmak H, Heper A, Ensari A, Kayisli UA, Arici A. Extracellularly signal-regulated kinase activity in the human endometrium: possible roles in the pathogenesis of endometriosis. J Clin Endocrinol Metab 2008; 93:3532-40. [PMID: 18559923 DOI: 10.1210/jc.2007-2051] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT Endometriosis is an estrogen-dependent disease characterized by the presence of endometrial tissue outside of the uterine cavity, causing pelvic pain and infertility in 10% of reproductive-aged women. It is unclear why ectopic endometrium remains viable in only a subset of women. ERK1/2 plays key intracellular roles in activating cellular survival and differentiation processes. OBJECTIVE We sought to determine ERK1/2 activity in patients with endometriosis and its possible roles in regulating endometrial cell survival. DESIGN ERK1/2 phosphorylation and expression throughout the menstrual cycle were evaluated in vivo in normal and endometriotic human endometrium, and in vitro techniques assessed the steroidal regulation of ERK1/2 and its effect on endometrial cell survival. RESULTS Total ERK1/2 remained constant in normal and endometriotic endometrium throughout the menstrual cycle. Phospho-ERK1/2 was high in the late proliferative and secretory phases in normal endometrium (P < 0.05). In endometriotic glandular cells, there was no cyclical variation in phospho-ERK1/2. In endometriotic stromal cells, there was also a reduction in phospho-ERK1/2 variation, with higher levels in the early-mid secretory phase (P < 0.05). In cultured endometrial stromal cells (ESCs), estrogen plus progesterone increased ERK1/2 phosphorylation within 15 min (P < 0.05). Although estrogen alone did not induce ERK1/2 phosphorylation in normal ESCs, there was a significant response to estrogen in ESCs isolated from eutopic endometriotic endometrium (P < 0.05). ERK1/2 inhibition in ESCs reduced proliferation and increased apoptosis (P < 0.05). CONCLUSION Abnormally high levels of ERK1/2 activity may be involved in endometriosis, possibly by stimulating endometrial cell survival.
Collapse
Affiliation(s)
- William Murk
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520-8063, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Hull ML, Escareno CR, Godsland JM, Doig JR, Johnson CM, Phillips SC, Smith SK, Tavaré S, Print CG, Charnock-Jones DS. Endometrial-peritoneal interactions during endometriotic lesion establishment. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:700-15. [PMID: 18688027 PMCID: PMC2527068 DOI: 10.2353/ajpath.2008.071128] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/29/2008] [Indexed: 01/24/2023]
Abstract
The pathophysiology of endometriosis remains unclear but involves a complex interaction between ectopic endometrium and host peritoneal tissues. We hypothesized that disruption of this interaction would suppress endometriotic lesion formation. We hoped to delineate the molecular and cellular dialogue between ectopic human endometrium and peritoneal tissues in nude mice as a first step toward testing this hypothesis. Human endometrium was xenografted into nude mice, and the resulting lesions were analyzed using microarrays. A novel technique was developed that unambiguously determined whether RNA transcripts identified via microarray analyses originated from human cells (endometrium) or mouse cells (mesothelium). Four key pathways (ubiquitin/proteasome, inflammation, tissue remodeling/repair, and ras-mediated oncogenesis) were revealed, demonstrating communication between host mesothelial cells and ectopic endometrium. Morphometric analysis of nude mouse lesions confirmed that necrosis, inflammation, healing and repair, and cell proliferation occurred during xenograft development. These processes were entirely consistent with the molecular networks revealed by the microarray data. The transcripts detected in the xenografts overlapped with differentially expressed transcripts in a comparison between paired eutopic and ectopic endometria from human endometriotic patients. For the first time, components of the interaction between ectopic endometrium and peritoneal stromal tissues are revealed. Targeted disruption of this dialogue is likely to inhibit endometriotic tissue formation and may prove to be an effective therapeutic strategy for endometriosis.
Collapse
Affiliation(s)
- M Louise Hull
- Department of Pathology,, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jarboe EA, Folkins AK, Drapkin R, Ince TA, Agoston ES, Crum CP. Tubal and ovarian pathways to pelvic epithelial cancer: a pathological perspective. Histopathology 2008; 53:127-38. [PMID: 18298580 DOI: 10.1111/j.1365-2559.2007.02938.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prolongation of ovarian epithelial cancer survival depends on early detection or improved responses to chemotherapy. Gains in either have been modest at best. Understanding the diverse pathogenesis of this disease is critical to early intervention or prevention. This review addresses six important variables, including (i) cell of origin, (ii) site of origin, (iii) initial genotoxic events, (iv) risks imposed by hereditary and other promoting conditions, (v) subsequent factors that promote different patterns of metastatic spread, and (vi) prospects for intervention. This review proposes two distinct pathways to pelvic epithelial cancer. The first initiates in ovarian surface epithelium (OSE), Mullerian inclusions or endometriosis in the ovary. The second arises from the endosalpinx and encompasses a subset of serous carcinomas. The serous carcinogenic sequence in the distal fallopian tube is described and contrasted with lower grade serous tumors based on tumour location, earliest genetic change and ability (or lack of) to undergo terminal (ciliated) differentiation. Ultimately, a clear understanding of tumour origin and the mechanism(s) leading to the earliest phases of the serous and endometrioid carcinogenic sequences may hold the greatest promise for designing prevention strategies and/or developing new therapies.
Collapse
Affiliation(s)
- E A Jarboe
- Division of Women's and Perinatal Pathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|